Static Analysis of Concurrent Programs MPRI 2–6: Abstract Interpretation, application to verification and static analysis

Antoine Miné

year 2013-2014

course 08-A 15 November 2013

Concurrent programming

Idea:

Decompose a program into a set of (loosely) interacting processes.

Why concurrent programs?

 exploit parallelism in current computers (multi-processors, multi-cores, hyper-threading)

"Free lunch is over"

change in Moore's law (×2 transistors every 2 years)

- exploit several computers (distributed computing)
- ease of programming (GUI, network code, reactive programs)

Introduction

Models of concurrent programs

Many models:

- process calculi: CSP, π -calculus, join calculus
- message passing
- shared memory (threads)
- transactional memory
- combination of several models

Example implementations:

- C, C++, etc. with a thread library (POSIX threads, Win32)
- C, C++, etc. with a message library (MPI, OpenMP)
- Java (native threading API)
- Erlang (based on π -calculus)
- JoCaml (OCaml + join calculus)
- processor-level (interrupts, test-and-set instructions)

In this talk: thread model

- implicit communication through shared memory
- explicit communication through synchronisation primitives
- fixed number of threads (no dynamic creation of threads)
- numeric programs

(real-valued variables)

Goal: static analysis

- infer numeric program invariants
- discover possible run-time errors (e.g., division by 0)
- parametrized by a choice of abstract domains

- State-based analyses
 - sequential programs (reminders)
 - concurrent programs
- Toward thread-modular analyses
 - detour through proof methods (Floyd–Hoare, Owicki–Gries, Jones)
 - rely-guarantee in abstract interpretation form
- Interference-based abstract analyses
 - denotational-style analysis
 - weakly consistent memory models
 - synchronisation

Introduction

Simple structured numeric language

- finite set of (toplevel) threads: stat₁ to stat_n
- finite set of numeric program variables $X \in \mathbb{V}$
- finite set of statement locations $\boldsymbol{\ell} \in \boldsymbol{\mathcal{L}}$
- finite set of potential error locations $\omega \in \Omega$

State-based analyses

Sequential program semantics (reminders)

Transition systems

Transition system: $(\Sigma, \tau, \mathcal{I})$

- Σ : a set of program states
- $\tau \subseteq \Sigma \times \Sigma$: transition relation we note $(\sigma, \sigma') \in \tau$ as $\sigma \to_{\tau} \sigma'$
- $\mathcal{I} \subseteq \Sigma$: a set of initial states

<u>Traces:</u> sequences of states $\sigma_0, \ldots, \sigma_n, \ldots$

- Σ*: finite traces
- Σ^{ω} : infinite countable traces
- $\Sigma^{\infty} \stackrel{\text{def}}{=} \Sigma^* \cup \Sigma^{\omega}$: finite or infinite countable traces
- $u \leq t : u$ is a prefix of t

We view program semantics and properties as sets of traces.

course 08-A

Traces of a transition system

Maximal trace semantics: $\mathcal{M}_{\infty} \in \mathcal{P}(\Sigma^{\infty})$

- set of total executions $\sigma_0, \ldots, \sigma_n, \ldots$
 - starting in an initial state $\sigma_0 \in \mathcal{I}$ and either
 - ending in a blocking state in $\mathcal{B} \stackrel{\text{def}}{=} \{ \sigma \mid \forall \sigma' : \sigma \not\to_{\tau} \sigma' \}$ or infinite

$$\mathcal{M}_{\infty} \stackrel{\text{def}}{=} \{ \sigma_0, \dots, \sigma_n \, | \, \sigma_0 \in \mathcal{I} \land \sigma_n \in \mathcal{B} \land \forall i < n: \sigma_i \to_{\tau} \sigma_{i+1} \} \cup \\ \{ \sigma_0, \dots, \sigma_n \dots \, | \, \sigma_0 \in \mathcal{I} \land \forall i: \sigma_i \to_{\tau} \sigma_{i+1} \}$$

- able to express many properties of programs, e.g.:
 - safety: $\mathcal{M}_{\infty} \subset S^{\infty}$ (executions stay in S)
 - ordering: $\mathcal{M}_{\infty} \subset S_1^{\infty} \cdot S_2^{\infty}$ (S₂ can only occur after S₁) (executions are finite)
 - termination: $\mathcal{M}_{\infty} \subset \Sigma^*$
 - inevitability: $\mathcal{M}_{\infty} \subset \Sigma^* \cdot S \cdot \Sigma^{\infty}$ (executions pass through S)

Traces of a transition system

Finite prefix trace semantics: $\mathcal{T}_{p} \subseteq \mathcal{P}(\Sigma^{*})$

- set of finite prefixes of executions: $\mathcal{T}_{\rho} \stackrel{\text{def}}{=} \{ \sigma_0, \dots, \sigma_n \, | \, \sigma_0 \in \mathcal{I}, \, \forall i < n : \sigma_i \to_{\tau} \sigma_{i+1} \}$
- \mathcal{T}_{p} is an abstraction of the maximal trace semantics $\mathcal{T}_{p} = \alpha_{*\preceq}(\mathcal{M}_{\infty})$ where $\alpha_{*\preceq}(X) \stackrel{\text{def}}{=} \{ t \in \Sigma^{*} \mid \exists u \in X : t \preceq u \}$
- *T_p* can prove safety properties: *T_p* ⊆ *S*^{*} (executions stay in *S*)
 T_p can prove ordering properties: *T_p* ⊆ *S*^{*}₁ · *S*^{*}₂
 (if *S*₁ and *S*₂ occur, *S*₂ occurs after *S*₁)
- \mathcal{T}_p cannot prove termination nor inevitability properties
- fixpoint characterisation: $\mathcal{T}_{p} = \text{lfp } F_{p}$ where $F_{p}(X) = \mathcal{I} \cup \{ \sigma_{0}, \dots, \sigma_{n+1} | \sigma_{0}, \dots, \sigma_{n} \in X \land \sigma_{n} \rightarrow_{\tau} \sigma_{n+1} \}$

State abstraction

<u>Reachable state semantics:</u> $\mathcal{R} \subseteq \mathcal{P}(\Sigma)$

- set of states reachable in any execution: $\mathcal{R} \stackrel{\text{def}}{=} \{ \sigma \mid \exists \sigma_0, \dots, \sigma_n : \sigma_0 \in \mathcal{I}, \forall i < n : \sigma_i \to_{\tau} \sigma_{i+1} \land \sigma = \sigma_n \}$
- \mathcal{R} is an abstraction of the finite trace semantics: $\mathcal{R} = \alpha_p(\mathcal{T}_p)$ where $\alpha_p(X) \stackrel{\text{def}}{=} \{ \sigma \mid \exists \sigma_0, \dots, \sigma_n \in X : \sigma = \sigma_n \}$
- \mathcal{R} can prove safety properties: $\mathcal{R} \subseteq S$ (executions stay in S) \mathcal{R} cannot prove ordering, termination, inevitability properties
- fixpoint characterisation: $\mathcal{R} = \text{lfp } F_{\mathcal{R}}$ where $F_{\mathcal{R}}(X) = \mathcal{I} \cup \{ \sigma \mid \exists \sigma' \in X : \sigma' \rightarrow_{\tau} \sigma \}$

States of a sequential program

Simple sequential numeric program: $prog = {}^{\ell i}stat {}^{\ell x}$.

Program states: $\Sigma \stackrel{\text{def}}{=} (\mathcal{L} \times \mathcal{E}) \cup \Omega$

- a control state in \mathcal{L}
- a memory state: an environment in $\mathcal{E} \stackrel{\mathrm{\tiny def}}{=} \mathbb{V} \to \mathbb{R}$
- an error state in Ω

Initial states:

start at the first control point ℓi , and with variables set to 0: $\mathcal{I} \stackrel{\text{def}}{=} \{ (\ell i, \lambda V.0) \}$

Note that $\mathcal{P}(\Sigma) \simeq (\mathcal{L} \to \mathcal{P}(\mathcal{E})) \times \mathcal{P}(\Omega)$:

- a state property in $\mathcal{P}(\mathcal{E})$ at each program point in \mathcal{L}
- and a set of errors in $\mathcal{P}(\Omega)$

Expression semantics with errors

Expression sem	antics	$E[\![\operatorname{expr}]\!]:\mathcal{E}\to(\mathcal{P}(\mathbb{R})\times\mathcal{P}(\Omega))$
$E[\![X]\!]\rho$	$\stackrel{\rm def}{=}$	$\langle \{ \rho(X) \}, \emptyset \rangle$
$E[\![[c_1,c_2]]\!]\rho$	$\stackrel{\rm def}{=}$	$\langle \{ x \in \mathbb{R} c_1 \leq x \leq c_2 \}, \emptyset \rangle$
$E[\![-e_1]\!]\rho$		$ \begin{array}{l} let\;\langle V_1,\; \mathcal{O}_1\rangle = E[\![e_1]\!]\rho\;in \\ \langle\{-v_1 v_1\inV_1\},\;\mathcal{O}_1\rangle \end{array} \end{array} $
$E[\![e_1 \diamond_{\boldsymbol{\omega}} e_2]\!] \rho$		$ \begin{array}{l} let \; \forall i \in \{ 1,2 \} : \langle \; V_i, \; O_i \; \rangle = E[\![\; e_i \;]\!] \; \rho \; in \\ \langle \; \{ \; v_1 \diamond v_2 \; \; v_i \in V_i, \; \diamond \neq / \lor v_2 \neq 0 \; \}, \\ O_1 \cup O_2 \cup \{ \; \omega \; if \; \diamond = / \land 0 \in V_2 \; \} \; \rangle \end{array} $

- defined by structural induction on the syntax
- evaluates in an environment ρ to a set of values
- also returns a set of accumulated errors (divisions by zero)

Reminders: semantics in equational form

Principle: (without handling errors in Ω)

- see lfp f as the least solution of an equation x = f(x)
- partition states by control: P(L × E) ≃ L → P(E)
 X_ℓ ∈ P(E): invariants at ℓ ∈ L
 ∀ℓ ∈ L: X_ℓ ^{def} { m ∈ E | (ℓ, m) ∈ R }
 ⇒ set of (recursive) equations on X_ℓ

Example:

$$\begin{array}{l} {}^{\ell 1} i \leftarrow 2; \\ {}^{\ell 2} n \leftarrow [-\infty, +\infty]; \\ {}^{\ell 3} \text{ while } {}^{\ell 4} i < n \text{ do} \\ {}^{\ell 5} \text{ if } [0,1] = 0 \text{ then} \\ {}^{\ell 6} i \leftarrow i+1 \\ {}^{\ell 7} \end{array} \qquad \begin{array}{l} {}^{\mathcal{X}_1 = \mathcal{I}} \\ {}^{\mathcal{X}_2 = \mathbb{C} \llbracket i \leftarrow 2 \rrbracket \mathcal{X}_1 \\ {}^{\mathcal{X}_3 = \mathbb{C} \llbracket n \leftarrow [-\infty, +\infty] \rrbracket \mathcal{X}_2 \\ {}^{\mathcal{X}_4 = \mathcal{X}_3 \cup \mathcal{X}_7 \\ {}^{\mathcal{X}_5 = \mathbb{C} \llbracket i < n \rrbracket \mathcal{X}_4 \\ {}^{\mathcal{X}_6 = \mathcal{X}_5 \\ {}^{\mathcal{X}_7 = \mathcal{X}_5 \cup \mathbb{C} \llbracket i \leftarrow i+1 \rrbracket \mathcal{X}_6 \\ {}^{\mathcal{X}_8 = \mathbb{C} \llbracket i \geq n \rrbracket \mathcal{X}_4 \end{array}$$

Semantics in denotational form

Input-output function C stat $\mathbb{C}[\![\mathsf{stat}]\!] : (\mathcal{P}(\mathcal{E}) \times \mathcal{P}(\Omega)) \to (\mathcal{P}(\mathcal{E}) \times \mathcal{P}(\Omega))$ $\mathsf{C}\llbracket X \leftarrow e \rrbracket \langle R, O \rangle \stackrel{\text{def}}{=} \langle \emptyset, O \rangle \sqcup \bigsqcup_{\rho \in R} \langle \{ \rho[X \mapsto v] \mid v \in V_{\rho} \}, O_{\rho} \rangle$ $\mathbb{C}[\![e \bowtie 0?]\!]\langle R, O \rangle \stackrel{\text{def}}{=} \langle \emptyset, O \rangle \sqcup \bigsqcup_{\rho \in R} \langle \{\rho \mid \exists v \in V_{\rho} : v \bowtie 0 \}, O_{\rho} \rangle$ where $\langle V_{\rho}, O_{\rho} \rangle \stackrel{\text{def}}{=} \mathsf{E} \llbracket e \rrbracket \rho$ $\mathbb{C}\llbracket \mathbf{if} \ e \bowtie 0 \ \mathbf{then} \ s \rrbracket X \stackrel{\text{def}}{=} (\mathbb{C}\llbracket s \rrbracket \circ \mathbb{C}\llbracket e \bowtie 0? \rrbracket) X \sqcup \mathbb{C}\llbracket e \bowtie 0? \rrbracket X$ C while $e \bowtie 0$ do $s X \stackrel{\text{def}}{=}$ $\mathbb{C}\llbracket e \bowtie 0? \rrbracket (\mathsf{lfp} \lambda Y. X \sqcup (\mathbb{C}\llbracket s \rrbracket \circ \mathbb{C}\llbracket e \bowtie 0? \rrbracket) Y)$ $\mathbb{C}\llbracket s_1; s_2 \rrbracket \stackrel{\text{def}}{=} \mathbb{C}\llbracket s_2 \rrbracket \circ \mathbb{C}\llbracket s_1 \rrbracket$

- mutate memory states in \mathcal{E} , accumulate errors in Ω (\sqcup is the element-wise \cup in $\mathcal{P}(\mathcal{E}) \times \mathcal{P}(\Omega)$)
- structured: nested loops yield nested fixpoints
- big-step: forget information on intermediate locations ℓ

Abstract semantics in denotational form

Extend a numeric abstract domain \mathcal{E}^{\sharp} abstracting $\mathcal{P}(\mathcal{E})$ to $\mathcal{D}^{\sharp} \stackrel{\text{def}}{=} \mathcal{E}^{\sharp} \times \mathcal{P}(\Omega)$.

 $\mathsf{C}^{\sharp}[\![\operatorname{\mathit{stat}}]\!]\,:\mathcal{D}^{\sharp}\to\mathcal{D}^{\sharp}$

 $C^{\sharp}\llbracket X \leftarrow e \rrbracket \langle R^{\sharp}, O \rangle \text{ and } C^{\sharp}\llbracket e \bowtie 0? \rrbracket \langle R^{\sharp}, O \rangle \text{ are given}$ $C^{\sharp}\llbracket \mathbf{if} e \bowtie 0 \text{ then } s \rrbracket X^{\sharp} \stackrel{\text{def}}{=} (C^{\sharp}\llbracket s \rrbracket \circ C^{\sharp}\llbracket e \bowtie 0? \rrbracket) X^{\sharp} \sqcup^{\sharp} C^{\sharp}\llbracket e \bowtie 0? \rrbracket X^{\sharp}$ $C^{\sharp}\llbracket \text{ while } e \bowtie 0 \text{ do } s \rrbracket X^{\sharp} \stackrel{\text{def}}{=} C^{\sharp}\llbracket e \bowtie 0? \rrbracket (\operatorname{Iim} \lambda Y^{\sharp} . Y^{\sharp} \bigtriangledown (X^{\sharp} \sqcup (C^{\sharp}\llbracket s \rrbracket \circ C^{\sharp}\llbracket e \bowtie 0? \rrbracket) Y^{\sharp}))$ $C^{\sharp}\llbracket s_{1}; s_{2} \rrbracket \stackrel{\text{def}}{=} C^{\sharp}\llbracket s_{2} \rrbracket \circ C^{\sharp}\llbracket s_{1} \rrbracket$

- the abstract interpreter mimicks an actual interpreter
- efficient in memory (intermediate invariants are not kept)
- less flexibility in the iteration scheme (iteration order, widening points, etc.)

Concurrent program semantics

Labelled transition systems

Labelled transition system: $(\Sigma, \mathcal{A}, \tau, \mathcal{I})$

- Σ : set of program states
- \mathcal{A} : set of actions
- $\tau \subseteq \Sigma \times \mathcal{A} \times \Sigma$: transition relation we note $(\sigma, a, \sigma') \in \tau$ as $\sigma \xrightarrow{a}_{\tau} \sigma'$

•
$$\mathcal{I} \subseteq \Sigma$$
: set of initial states

<u>Labelled traces</u>: sequences of states interspersed with actions denoted as $\sigma_0 \xrightarrow{a_0} \sigma_1 \xrightarrow{a_1} \cdots \sigma_n \xrightarrow{a_n} \sigma_{n+1}$

From concurrent programs to labelled transition systems

Notations:

- concurrent program: $prog ::= \ell_1^i stat_1 \ell_1^x || \cdots || \ell_n^i stat_n \ell_n^x$
- thread are identified by number in $\mathbb{T} \stackrel{\text{def}}{=} \{1, \dots, n\}$

Program states:
$$\Sigma \stackrel{\text{def}}{=} ((\mathbb{T} \to \mathcal{L}) \times \mathcal{E}) \cup \Omega$$

- control state $L(t) \in \mathcal{L}$ for each thread $t \in \mathbb{T}$, and
- single shared memory state $\rho \in \mathcal{E}$
- or error state in $\omega\in\Omega$

Initial states:

threads start at their first control point ℓ_t^i , variables are set to 0: $\mathcal{I} \stackrel{\text{def}}{=} \{ (\lambda t. \ell_t^i, \lambda V. 0) \}$

Actions: thread identifiers: $\mathcal{A} \stackrel{\text{def}}{=} \mathbb{T}$

course 08-A

State-based analyses

From concurrent programs to labelled transition systems

 $\begin{array}{ll} \underline{\text{Transition relation:}} & \tau \subseteq \Sigma \times \mathcal{A} \times \Sigma \\ (L,\rho) \xrightarrow{t}_{\tau} (L',\rho') & \stackrel{\text{def}}{\longleftrightarrow} & (L(t),\rho) \rightarrow_{\tau[stat_t]} (L'(t),\rho') \land \\ & \forall u \neq t \colon L(u) = L'(u) \\ (L,\rho) \xrightarrow{t}_{\tau} \omega & \stackrel{\text{def}}{\longleftrightarrow} & (L(t),\rho) \rightarrow_{\tau[stat_t]} \omega \end{array}$

- based on the transition relation of individual threads seen as sequential processes stat_t:¹
 τ[stat] ⊆ (L × E) × ((L × E) ∪ Ω)
 - choose a thread t to run
 - update ρ and L(t)
 - leave L(u) intact for $u \neq t$

• each $\sigma \rightarrow \sigma'$ in $\tau[stat_t]$ leads to many transitions in $\tau!$

¹See lesson 02-B for the full definition of τ [*stat*].

Interleaved trace semantics

Maximal and finite prefix trace semantics are as before:

 $\underline{ \text{Blocking states:}} \quad \mathcal{B} \stackrel{\text{def}}{=} \{ \sigma \, | \, \forall \sigma', t : \sigma \stackrel{t}{\not\rightarrow}_{\tau} \sigma' \}$

 $\begin{array}{ll} \underline{\text{Maximal traces:}} & \mathcal{M}_{\infty} & \text{(finite or infinite)} \\ \mathcal{M}_{\infty} \stackrel{\text{def}}{=} & \{ \sigma_{0} \stackrel{t_{0}}{\to} \cdots \stackrel{t_{n-1}}{\to} \sigma_{n} \, | \, \sigma_{0} \in \mathcal{I} \land \sigma_{n} \in \mathcal{B} \land \forall i < n : \sigma_{i} \stackrel{t_{i}}{\to}_{\tau} \sigma_{i+1} \} \cup \\ & \{ \sigma_{0} \stackrel{t_{0}}{\to} \sigma_{1} \dots \, | \, \sigma_{0} \in \mathcal{I} \land \forall i : \sigma_{i} \stackrel{t_{i}}{\to}_{\tau} \sigma_{i+1} \} \end{array}$

Fairness

Fairness conditions: avoid threads being denied to run

- Given *enabled*(σ , t) $\stackrel{\text{def}}{\iff} \exists \sigma' \in \Sigma: \sigma \xrightarrow{t}_{\tau} \sigma'$, an infinite trace $\sigma_0 \xrightarrow{t_0} \cdots \sigma_n \xrightarrow{t_n} \cdots$ is:
 - weakly fair if $\forall t \in \mathbb{T}$:
 - $(\exists i: \forall j \ge i: enabled(\sigma_j, t)) \implies (\forall i: \exists j \ge i: a_j = t)$ (no thread can be continuously enabled without running)
 - strongly fair if $\forall t \in \mathbb{T}$:
 - $(\forall i: \exists j \ge i: enabled(\sigma_j, t)) \implies (\forall i: \exists j \ge i: a_j = t)$

(no thread can be infinitely often enabled without running)

Proofs under fairness conditions given:

- \bullet the maximal traces \mathcal{M}_∞ of a program
- a property X to prove (as a set of traces)
- the set F of all (weakly or strongly) fair and of finite traces

 \implies prove $\mathcal{M}_{\infty} \cap F \subseteq X$ instead of $\mathcal{M}_{\infty} \subseteq X$

Fairness (cont.)

Example: while $x \ge 0$ do $x \leftarrow x + 1 \parallel x \leftarrow -1$

- may not terminate without fairness
- always terminates under weak and strong fairness

Finite prefix traces

 $\mathcal{M}_{\infty} \cap F \subseteq X$ reduces to $\alpha_{*\preceq}(\mathcal{M}_{\infty} \cap F) \subseteq \alpha_{*\preceq}(X)$

for all fairness conditions F, $\alpha_{*\preceq}(\mathcal{M}_{\infty} \cap F) = \alpha_{*\preceq}(\mathcal{M}_{\infty}) = \mathcal{T}_{p}$

 \Longrightarrow fairness-dependent properties cannot be proved with finite prefixes

In the following, we ignore fairness conditions. (see [Cous85])

Equational state semantics

<u>State abstraction \mathcal{R}:</u> as before

•
$$\mathcal{R} \stackrel{\text{def}}{=} \{ \sigma \mid \exists \sigma_0 \stackrel{t_0}{\to} \cdots \sigma_n : \sigma_0 \in \mathcal{I} \ \forall i < n : \sigma_i \stackrel{t_i}{\to}_{\tau} \sigma_{i+1} \land \sigma = \sigma_n \}$$

•
$$\mathcal{R} = \alpha_{\rho}(\mathcal{T}_{\rho})$$
 where $\alpha_{\rho}(X) \stackrel{\text{def}}{=} \{ \sigma \mid \exists \sigma_0 \stackrel{t_0}{\to} \cdots \sigma_n \in X : \sigma = \sigma_n \}$

•
$$\mathcal{R} = \mathsf{lfp} \, F_{\mathcal{R}} \, \mathsf{where} \, F_{\mathcal{R}}(X) = \mathcal{I} \cup \{ \, \sigma \, | \, \exists \sigma' \in X, t \in \mathbb{T} : \sigma' \stackrel{t}{\rightarrow_{\tau}} \sigma \, \}$$

Equational form: (without handling errors in Ω)

• for each $L \in \mathbb{T} \to \mathcal{L}$, a variable \mathcal{X}_L with value in \mathcal{E}

• equations are derived from thread equations $eq(stat_t)$ as:² $\mathcal{X}_{L_1} = \bigcup_{t \in \mathbb{T}} \{ F(\mathcal{X}_{L_2}, \dots, \mathcal{X}_{L_N}) \mid \exists (\mathcal{X}_{\ell_1} = F(\mathcal{X}_{\ell_2}, \dots, \mathcal{X}_{\ell_N})) \in eq(stat_t): \forall i \leq N: L_i(t) = \ell_i, \forall u \neq t: L_i(u) = L_1(u) \}$

(join with \cup equations updating a single thread)

²See lesson 02-B for the definition of eq(stat).

Equational state semantics (example)

Example: inferring $0 \le x \le y \le 10$				
t_1	t_2			
while $\ell^1 0 = 0$ do	while $\ell^4 0 = 0$ do			
ℓ^2 if $x < y$ then	^{$\ell 5$} if $y < 10$ then			
$\frac{\ell 3}{x} \times x + 1$	$\frac{\ell 6}{y} \leftarrow y + 1$			

Equational state semantics (example)

Example: inferring	$0 \le x \le y \le 10$
t_1	t_2
while ${}^{\ell 1}0 = 0$ do	while ${}^{\ell 4}0 = 0$ do
ℓ^2 if $x < y$ then	^{$\ell 5$} if $y < 10$ then
$\frac{\ell 3}{x} \times x + 1$	$\frac{\ell 6}{y} \leftarrow y + 1$

(Simplified) equation system:

$$\begin{split} \mathcal{X}_{1,4} &= \mathcal{I} \cup \mathbb{C}[\![x \leftarrow x + 1 \,]\!] \, \mathcal{X}_{3,4} \cup \mathbb{C}[\![x \ge y \,]\!] \, \mathcal{X}_{2,4} \\ & \cup \mathbb{C}[\![y \leftarrow y + 1 \,]\!] \, \mathcal{X}_{1,6} \cup \mathbb{C}[\![y \ge 10 \,]\!] \, \mathcal{X}_{1,5} \\ \mathcal{X}_{2,4} &= \mathcal{X}_{1,4} \cup \mathbb{C}[\![y \leftarrow y + 1 \,]\!] \, \mathcal{X}_{2,6} \cup \mathbb{C}[\![y \ge 10 \,]\!] \, \mathcal{X}_{2,5} \\ \mathcal{X}_{3,4} &= \mathbb{C}[\![x < y \,]\!] \, \mathcal{X}_{2,4} \cup \mathbb{C}[\![y \leftarrow y + 1 \,]\!] \, \mathcal{X}_{3,6} \cup \mathbb{C}[\![y \ge 10 \,]\!] \, \mathcal{X}_{3,5} \\ \mathcal{X}_{1,5} &= \mathbb{C}[\![x \leftarrow x + 1 \,]\!] \, \mathcal{X}_{3,5} \cup \mathbb{C}[\![x \ge y \,]\!] \, \mathcal{X}_{2,5} \cup \, \mathcal{X}_{1,4} \\ \mathcal{X}_{2,5} &= \mathcal{X}_{1,5} \cup \, \mathcal{X}_{2,4} \\ \mathcal{X}_{3,5} &= \mathbb{C}[\![x \leftarrow x + 1 \,]\!] \, \mathcal{X}_{3,6} \cup \mathbb{C}[\![x \ge y \,]\!] \, \mathcal{X}_{2,6} \cup \mathbb{C}[\![y < 10 \,]\!] \, \mathcal{X}_{1,5} \\ \mathcal{X}_{2,6} &= \mathcal{X}_{1,6} \cup \mathbb{C}[\![y < 10 \,]\!] \, \mathcal{X}_{2,5} \\ \mathcal{X}_{3,6} &= \mathbb{C}[\![x < y \,]\!] \, \mathcal{X}_{2,6} \cup \mathbb{C}[\![y < 10 \,]\!] \, \mathcal{X}_{3,5} \end{split}$$

course 08-A

Equational state semantics (example)

Example: inferring	$0 \le x \le y \le 10$
t_1	t_2
while $\ell^1 0 = 0$ do	while ${}^{\ell 4}0 = 0$ do
ℓ^2 if $x < y$ then	^{$\ell 5$} if $y < 10$ then
$\frac{\ell 3}{x} \times x + 1$	$\frac{\ell 6}{y} \leftarrow y + 1$

Pros:

- easy to construct
- ullet easy to further abstract in an abstract domain \mathcal{E}^{\sharp}

Cons:

- explosion of the number of variables and equations
- explosion of the size of equations

 \implies efficiency issues

• the equation system does *not* reflect the program structure (not defined by induction on the concurrent program)

course 08-A

Static Analysis of Concurrent Programs

We would like to:

- keep information attached to syntactic program locations (control points in \mathcal{L} , not control point tuples in $\mathbb{T} \to \mathcal{L}$)
- be able to abstract away control information (precision/cost trade-off control)
- avoid duplicating thread instructions
- have a computation structure based on the program syntax (denotational style)

Ideally:

thread-modular denotational-style semantics

(analyze each thread independently by induction on its syntax)

Detour through proof methods

Floyd–Hoare logic

Logic to prove properties about sequential programs [Hoar69].

Hoare triples: $\{P\}$ stat $\{Q\}$

- annotate programs with logic assertions {P} stat {Q} (if P holds before stat, then Q holds after stat)
- check that {*P*}*stat*{*Q*} is derivable with the following rules (the assertions are program invariants)

$$\frac{\{P \land e \bowtie 0\} s \{Q\} \quad P \land e \bowtie 0 \Rightarrow Q}{\{P[e/x]\} X \leftarrow e \{P\}} \qquad \frac{\{P \land e \bowtie 0\} s \{Q\} \quad P \land e \bowtie 0 \Rightarrow Q}{\{P\} \text{ if } e \bowtie 0 \text{ then } s \{Q\}}$$

$$\frac{\{P\} s_1 \{Q\} \quad \{Q\} s_2 \{R\}}{\{P\} s_1; s_2 \{R\}} \qquad \frac{\{P \land e \bowtie 0\} s \{P\}}{\{P\} \text{ while } e \bowtie 0 \text{ do } s \{P \land e \bowtie 0\}}$$

$$\frac{\{P'\} s \{Q'\} \quad P \Rightarrow P' \quad Q' \Rightarrow Q}{\{P\} s \{Q\}}$$

Floyd–Hoare logic as abstract interpretation

Link with the equational state semantics:

Correspondence between $\ell stat^{\ell'}$ and $\{P\} stat \{Q\}$:

- if P (resp. Q) models exactly the points in X_l (resp. X_{l'}) then {P} stat {Q} is a derivable Hoare triple
- if {P} stat {Q} is derivable, then X_ℓ ⊨ P and X_{ℓ'} ⊨ Q
 (all the points in X_ℓ (resp. X_{ℓ'}) satisfy P (resp. Q))
- $\implies \mathcal{X}_\ell \quad \text{provide the most precise Hoare assertions} \\ \text{in a constructive form}$
- γ(X[#]) provide (less precise) Hoare assertions in a computable form

Link with the denotational semantics:

both C[[stat]] and the proof tree for $\{P\}$ stat $\{Q\}$ reflect the syntactic structure of stat (compositional methods)

course 08-A

Owicki-Gries proof method

Extension of Floyd–Hoare to concurrent programs [Owic76].

Principle: add a new rule, for ||

$$\frac{\{P_1\}\,s_1\,\{Q_1\}}{\{P_1 \land P_2\}\,s_1 \mid\mid s_2\,\{Q_1 \land Q_2\}}$$

Owicki-Gries proof method

Extension of Floyd–Hoare to concurrent programs [Owic76].

Principle: add a new rule, for ||

$$\frac{\{P_1\}\,s_1\,\{Q_1\}}{\{P_1 \land P_2\}\,s_1 \mid\mid s_2\,\{Q_1 \land Q_2\}}$$

This rule is not always sound!

e.g., we have $\{X = 0, Y = 0\} X \leftarrow 1 \{X = 1, Y = 0\}$ and $\{X = 0, Y = 0\}$ if X = 0 then $Y \leftarrow 1\{X = 0, Y = 1\}$ but not $\{X = 0, Y = 0\} X \leftarrow 1 \parallel \text{if } X = 0 \text{ then } Y \leftarrow 1 \{\text{false}\}$

$\implies \text{ we need a side-condition to the rule:} \\ \{P_1\} s_1 \{Q_1\} \text{ and } \{P_2\} s_2 \{Q_2\} \text{ must not interfere}$

Owicki-Gries proof method (cont.)

interference freedom

given proofs Δ_1 and Δ_2 of $\{P_1\} s_1 \{Q_1\}$ and $\{P_2\} s_2 \{Q_2\}$

 $\begin{array}{l} \Delta_1 \text{ does not interfere with } \Delta_2 \text{ if:} \\ \text{ for any } \Phi \text{ appearing before a statement in } \Delta_1 \\ \text{ for any } \{P_2'\} s_2' \{Q_2'\} \text{ appearing in } \Delta_2 \\ \{\Phi \land P_2'\} s_2' \{\Phi\} \text{ holds} \\ \text{ and moreover } \{Q_1 \land P_2'\} s_2' \{Q_1\} \end{array}$

- i.e.: the assertions used to prove $\{P_1\}\, s_1\, \{Q_1\}$ are stable by s_2
- e.g., {X = 0, Y \in [0, 1]} X \leftarrow 1 {X = 1, Y \in [0, 1]} {X \in [0, 1], Y = 0} if X = 0 then Y \leftarrow 1 {X \in [0, 1], Y \in [0, 1]} {X = 0, Y = 0} X \leftarrow 1 || if X = 0 then Y \leftarrow 1 {X = 1, Y \in [0, 1]}

Summary:

- pros: the invariants are local to threads
- cons: the proof is not compositional

(proving one thread requires delving into the proof of other threads)

 \implies not satisfactory

course 08-A

Jones' rely-guarantee proof method

<u>Idea:</u> explicit interferences with (more) annotations [Jone81]. Rely-guarantee "quintuples": $R, G \vdash \{P\}$ stat $\{Q\}$

- if *P* is true before *stat* is executed
- and the effect of other threads is included in R (rely)
- then Q is true after stat
- and the effect of *stat* is included in *G* (guarantee)

where:

- P and Q are assertions on states (in $\mathcal{P}(\Sigma)$)
- *R* and *G* are assertions on transitions (in $\mathcal{P}(\Sigma \times \mathcal{A} \times \Sigma)$)

The parallel composition rule becomes:

$$\frac{R \lor G_2, G_1 \vdash \{P_1\} s_1 \{Q_1\} \quad R \lor G_1, G_2 \vdash \{P_2\} s_2 \{Q_2\}}{R, G_1 \lor G_2 \vdash \{P_1 \land P_2\} s_1 \mid\mid s_2 \{Q_1 \land Q_2\}}$$
Rely-guarantee example

Example: proving $0 \le x \le y \le 10$

checking t_1	
^{$\ell 1$} while $0 = 0$ do ^{$\ell 2$} if $x < y$ then ^{$\ell 3$} $x \leftarrow x + 1$	
at $l1, l2: 0 \le x \le y$ at $l3: 0 \le x < y \le y$	$\gamma \leq 10$ 10

checking t ₂	
$x \leq y$	^{ℓ4} while 0 = 0 do ^{ℓ5} if $y < 10$ then ^{ℓ6} $y \leftarrow y + 1$
at $\ell 4, \ell 5: 0 \le x \le y \le 10$ at $\ell 6: 0 \le x \le y < 10$	

Rely-guarantee example

Example: proving $0 \le x \le y \le 10$

checking t_1		cł
^{ℓ1} while $0 = 0$ do ^{ℓ2} if $x < y$ then ^{ℓ3} $x \leftarrow x + 1$	x unchanged y incremented $y \le 10$	y x
at $l_{1}, l_{2}: 0 \le x \le y$ at $l_{3}: 0 \le x < y \le y$	$\gamma \leq 10$ 10	a

checking t₂

 $\begin{array}{c|c} y \text{ unchanged} \\ x \leq y \end{array} \begin{vmatrix} \ell^4 & \text{while } 0 = 0 & \text{do} \\ \ell^5 & \text{if } y < 10 & \text{then} \\ \ell^6 & y \leftarrow y + 1 \\ \text{at } \ell 4, \ell 5 : 0 \leq x \leq y \leq 10 \\ \text{at } \ell 6 : 0 \leq x \leq y < 10 \\ \end{array}$

In this example:

- guarantee exactly what is relied on $(R_1 = G_1 \text{ and } R_2 = G_2)$
- rely and guarantee are global assertions

Benefits of rely-guarantee:

- invariants are still local to threads
- checking a thread does not require looking at other threads,

only at an abstraction of their semantics

course 08-A

Static Analysis of Concurrent Programs

Antoine Miné

Auxiliary variables

<u>Goal:</u> prove $\{x = 0\} t_1 || t_2 \{x = 2\}$.

Auxiliary variables

Goal: prove
$$\{x = 0\} t_1 \mid | t_2 \{x = 2\}$$
.

we must rely on and guarantee that each thread increments *x* exactly once!

Solution: auxiliary variables

do not change the semantics but store extra information:

- past values of variables (history of the computation)
- program counter of other threads (pc_t)

Rely-guarantee as abstract interpretation

Local invariants

State projection: on a thread $t \in \mathbb{T}$

- add auxiliary variables $\mathbb{V}_t \stackrel{\text{def}}{=} \mathbb{V} \cup \{ pc_u \mid u \in \mathbb{T}, u \neq t \}$
- enriched environments for t: C_t ^{def} = V_t → R (for simplicity, pc_u are numeric variables, i.e., L ⊆ R)

• projection: $\pi_t(L, \rho) \stackrel{\text{def}}{=} (L(t), \rho[\forall u \neq t: pc_u \mapsto L(u)])$ extended naturally to $\pi_t : \mathcal{P}(\Sigma) \to \mathcal{P}(\Sigma_t)$

Local invariants on t: $\mathcal{R}I(t) \stackrel{\text{def}}{=} \pi_t(\mathcal{R})$ (where \mathcal{R} is the reachable state abstraction)

Note: π_t is a bijection, no information is lost

Interferences

Interference: caused by a thread $t \in \mathbb{T}$

 $\begin{aligned} & A \in \mathbb{T} \to \mathcal{P}(\Sigma \times \Sigma) \\ & A(t) \stackrel{\text{def}}{=} \alpha^{itf}(\mathcal{T}_p)(t) \\ & \text{where } \alpha^{itf}(X)(t) \stackrel{\text{def}}{=} \{ (\sigma, \sigma') \, | \, \exists \cdots \sigma \stackrel{t}{\to} \sigma' \cdots \in X \, \} \end{aligned}$

subset of the transition system $\boldsymbol{\tau}$

- spawned by t and
- actually observed in some execution trace (recall that T_p is the prefix trace abstraction)

Fixpoint form

Local state fixpoint:

• we express $\mathcal{R}I(t)$ as a function of A and thread $t \in \mathbb{T}$: $\mathcal{R}I(t) = \operatorname{lfp} R_t(A)$ where $R_t : (\mathbb{T} \to \mathcal{P}(\Sigma \times \Sigma)) \to \mathcal{P}(\Sigma_t) \to \mathcal{P}(\Sigma_t)$ $R_t(\mathbf{Y})(X) \stackrel{\text{def}}{=} \pi_t(\mathcal{I}) \cup$ $\{\pi_t(\sigma') | \exists \pi_t(\sigma) \in X : \sigma \stackrel{t}{\to}_{\tau} \sigma' \lor \exists u \neq t : (\sigma, \sigma') \in \mathbf{Y}(u) \}$

A state is reachable if it is initial,

or reachable by transitions from t or from the environment A.

 R_t only looks into the syntax of thread t.

 R_t is parameterized by the interferences from other threads Y.

Interferences:

• we express A(t) as a function of \mathcal{R} and thread $t \in \mathbb{T}$: $A(t) = B(\mathcal{R})(t)$ where $B: (\prod_{t \in \mathbb{T}} \{t\} \to \mathcal{P}(\Sigma_t)) \to \mathbb{T} \to \mathcal{P}(\Sigma \times \Sigma)$ $B(\mathbb{Z})(t) \stackrel{\text{def}}{=} \{(\sigma, \sigma') | \pi_t(\sigma) \in \mathbb{Z}(t) \land \sigma \stackrel{t}{\to}_{\tau} \sigma' \}$

Collect transitions starting from reachable states.

No fixpoint needed.

Nested fixpoint characterization:

- $(t) = B(\mathcal{R})(t)$
- O mutual dependency between $\mathcal{R}I$ and A

Nested fixpoint characterization:

- $(t) = B(\mathcal{R})(t)$
- mutual dependency between $\mathcal{R}I$ and A \implies solved using a fixpoint:

 $\mathcal{R}I = \mathsf{lfp} \ H$ where

$$H: (\prod_{t\in\mathbb{T}} \{t\} \to \mathcal{P}(\Sigma_t)) \to (\prod_{t\in\mathbb{T}} \{t\} \to \mathcal{P}(\Sigma_t))$$
$$H(Z)(t) \stackrel{\text{def}}{=} \mathsf{lfp} \, R_t(B(Z))$$

Constructive fixpoint form:

Use Kleene's iteration to construct fixpoints:

- *RI* = Ifp *H* = ∐_{n∈ℕ} *Hⁿ*(λ*t*.Ø) in the pointwise powerset lattice ∏_{t∈T} {*t*} → *P*(Σ_t)
- H(Z)(t) = Ifp R_t(B(Z)) = ⋃_{n∈ℕ}(R_t(B(Z)))ⁿ(Ø) in the powerset lattice P(Σ_t)

(similar to the sequential semantics of thread t in isolation)

 \implies nested iterations

Abstract rely-guarantee

Suggested algorithm: nested iterations with acceleration

once abstract domains for states and interferences are chosen

- start from $\mathcal{R}I_0^{\sharp} \stackrel{\text{def}}{=} A_0^{\sharp} \stackrel{\text{def}}{=} \lambda t. \bot^{\sharp}$
- while A_n^{\sharp} is not stable
 - compute $\forall t \in \mathbb{T} : \mathcal{R}l_{n+1}^{\sharp}(t) \stackrel{\text{def}}{=} \text{lfp } R_t^{\sharp}(A_n^{\sharp})$ by iteration with widening ∇

(\simeq separate analysis of each thread)

• compute
$$A_{n+1}^{\sharp} \stackrel{\text{def}}{=} A_n^{\sharp} \triangledown B^{\sharp}(\mathcal{R}I_{n+1}^{\sharp})$$

• when
$$A_n^{\sharp} = A_{n+1}^{\sharp}$$
, return $\mathcal{R} I_n^{\sharp}$

thread-modular analysis parameterized by abstract domains able to easily reuse existing sequential analyses

Flow-insensitive abstraction

Idea:

- reduce as much control information as possible
- but keep flow-sensitivity on each thread's control location

Local state abstraction: remove auxiliary variables

$$\begin{aligned} \alpha_{\mathcal{R}}^{nf} : \mathcal{P}(\Sigma_t) \to \mathcal{P}((\mathcal{L} \times \mathcal{E}) \cup \Omega) \\ \alpha_{\mathcal{R}}^{nf}(X) \stackrel{\text{def}}{=} \{ (\ell, \rho_{|_{\mathbb{V}}}) \,|\, (\ell, \rho) \in X \} \cup (X \cap \Omega) \end{aligned}$$

Interference abstraction: remove all control state $\alpha_{\bullet}^{nf} : \mathcal{P}(\Sigma \times \Sigma) \rightarrow \mathcal{P}(\mathcal{E} \times \mathcal{E})$

$$\alpha_{A}^{nf}(Y) \stackrel{\text{def}}{=} \{ (\rho, \rho') \mid \exists L, L' \in \mathbb{T} \to \mathcal{L}: ((L, \rho), (L', \rho')) \in Y \}$$

Flow-insensitive abstraction (cont.)

Flow-insensitive fixpoint semantics: (omitting errors Ω) We apply $\alpha_{\mathcal{P}}^{nf}$ and $\alpha_{\mathcal{A}}^{nf}$ to the nested fixpoint semantics. $\mathcal{R}I^{nf} \stackrel{\text{def}}{=} \text{lfp } \lambda Z.\lambda t. \text{lfp } R^{nf}_{t}(B^{nf}(Z)), \text{ where }$ $B^{nf}(Z)(t) \stackrel{\text{def}}{=} \{ (\rho, \rho') \mid \exists \ell, \ell' \in \mathcal{L}: (\ell, \rho) \in Z(t) \land (\ell, \rho) \to_t (\ell', \rho') \}$ $R_{\star}^{nf}(Y)(X) \stackrel{\text{def}}{=} R_{\star}^{loc}(X) \cup A_{\star}^{nf}(Y)(X)$ $R_{t}^{loc}(X) \stackrel{\text{def}}{=} \{ (\ell_{t}^{i}, \lambda V.0) \} \cup \{ (\ell^{i}, \rho^{i}) \mid \exists (\ell, \rho) \in X : (\ell, \rho) \rightarrow_{t} (\ell^{i}, \rho^{i}) \}$ $A_{\star}^{nf}(Y)(X) \stackrel{\text{def}}{=} \{ (\ell, \rho') \mid \exists \rho, u \neq t : (\ell, \rho) \in X \land (\rho, \rho') \in Y(u) \}$ where \rightarrow_t is the transition relation for thread t alone: $\tau[stat_t]$

Cost/precision trade-off:

less variables

 \Longrightarrow subsequent numeric abstractions are more efficient

- sufficient to analyze our first example (p. 34)
- insufficient to analyze $x \leftarrow x + 1 \mid\mid x \leftarrow x + 1$

course 08-A

Non-relational interference abstraction

- Idea: simplify further flow-insensitive interferences
 - numeric relations are more costly than numeric sets
 remove input sensitivity
 - relational domains are more costly than non-relational
 ⇒ abstract the interference on each variable separately

Non-relational interference abstraction:

$$\begin{array}{l} \alpha_A^{nr} : \mathcal{P}(\mathcal{E} \times \mathcal{E}) \to (\mathbb{V} \to \mathcal{P}(\mathbb{R})) \\ \alpha_A^{nr}(Y) \stackrel{\text{def}}{=} \lambda V.\{x \in \mathbb{V} \mid \exists (\rho, \rho') \in Y : \rho(V) \neq x \land \rho'(V) = x\} \\ \text{(remember which variables are modified and their new values)} \end{array}$$

To apply interferences, we get, in the nested fixpoint form: $\begin{array}{l} \mathcal{A}_{t}^{nr}(Y)(X) \stackrel{\text{def}}{=} \\ \left\{ \left(\ell, \rho[V \mapsto v] \right) \mid (\ell, \rho) \in X, V \in \mathbb{V}, \exists u \neq t : v \in Y(u)(V) \right\} \end{array}$

A note on unbounded threads

Extension: relax the finiteness constraint on \mathbb{T}

- there is still a finite syntactic set of threads \mathbb{T}_s
- some threads $\mathbb{T}_{\infty} \subseteq \mathbb{T}_s$ can have several instances (possibly an unbounded number)

Flow-insensitive analysis:

- local state and interference domains have finite dimensions $(\mathcal{E}_t \text{ and } (\mathcal{L} \times \mathcal{E}) \times (\mathcal{L} \times \mathcal{E}), \text{ as opposed to } \mathcal{E} \text{ and } \mathcal{E} \times \mathcal{E})$
- all instances of a thread t ∈ T_s are isomorphic
 ⇒ iterate the analysis on the finite set T_s (instead of T)
- we must handle self-interferences for threads in \mathbb{T}_{∞} : $A_t^{nf}(Y)(X) \stackrel{\text{def}}{=} \{ (\ell, \rho') | \exists \rho, u: (u \neq t \lor t \in \mathbb{T}_{\infty}) \land (\ell, \rho) \in X \land (\rho, \rho') \in Y(u) \}$

Towards thread-modular analyses

course 08-A

Rely-guarantee as abstract interpretation

From traces to thread-modular analyses

Static Analysis of Concurrent Programs

Compare with sequential analyses...

Construction of an interference-based analysis

Reminder: sequential analysis in denotational form

 $\begin{array}{ll} \begin{array}{ll} \mbox{Expression semantics:} & \mathbb{E}\llbracket expr \rrbracket : \mathcal{E} \to (\mathcal{P}(\mathbb{R}) \times \mathcal{P}(\Omega)) \\ & \mathbb{E}\llbracket X \rrbracket \rho \stackrel{\rm def}{=} \langle \{\rho(X)\}, \emptyset \rangle \\ & \mathbb{E}\llbracket [c_1, c_2] \rrbracket \rho \stackrel{\rm def}{=} \langle \{x \in \mathbb{R} \mid c_1 \leq x \leq c_2\}, \emptyset \rangle \\ & \mathbb{E}\llbracket -e_1 \rrbracket \rho \stackrel{\rm def}{=} \det \langle V_1, O_1 \rangle = \mathbb{E}\llbracket e_1 \rrbracket \rho \text{ in } \langle \{-v_1 \mid v_1 \in V_1\}, O_1 \rangle \\ & \mathbb{E}\llbracket e_1 \diamond_{\omega} e_2 \rrbracket \rho \stackrel{\rm def}{=} \det \forall i \in \{1, 2\} : \langle V_i, O_i \rangle = \mathbb{E}\llbracket e_i \rrbracket \rho \text{ in } \\ & \langle \{v_1 \diamond v_2 \mid v_i \in V_i, \diamond \neq / \lor v_2 \neq 0\}, O_1 \cup O_2 \cup \{\omega \text{ if } \diamond = / \land 0 \in V_2\} \rangle \end{array}$

 $\begin{array}{lll} & \underbrace{\mathsf{Statement semantics:}} & \mathbb{C}\llbracket\operatorname{stat}\rrbracket : (\mathcal{P}(\mathcal{E}) \times \mathcal{P}(\Omega)) \to (\mathcal{P}(\mathcal{E}) \times \mathcal{P}(\Omega)) \\ & \mathbb{C}\llbracket X \leftarrow e \rrbracket \langle R, O \rangle \stackrel{\mathrm{def}}{=} \langle \emptyset, O \rangle \sqcup \bigsqcup_{\rho \in R} \langle \{\rho | \exists v \in V_{\rho} : v \bowtie 0 \}, O_{\rho} \rangle \\ & \mathbb{C}\llbracket e \bowtie 0? \rrbracket \langle R, O \rangle \stackrel{\mathrm{def}}{=} \langle \emptyset, O \rangle \sqcup \bigsqcup_{\rho \in R} \langle \{\rho | \exists v \in V_{\rho} : v \bowtie 0 \}, O_{\rho} \rangle \\ & \mathbb{C}\llbracket if e \bowtie 0 \text{ then } s \rrbracket X \stackrel{\mathrm{def}}{=} (\mathbb{C}\llbracket s \rrbracket \circ \mathbb{C}\llbracket e \bowtie 0? \rrbracket) X \sqcup \mathbb{C}\llbracket e \bowtie 0? \rrbracket X \\ & \mathbb{C}\llbracket while e \bowtie 0 \text{ do } s \rrbracket X \stackrel{\mathrm{def}}{=} \\ & \mathbb{C}\llbracket e \not\bowtie 0? \rrbracket (\mathsf{lfp} \lambda Y. X \sqcup (\mathbb{C}\llbracket s \rrbracket \circ \mathbb{C}\llbracket e \bowtie 0? \rrbracket) Y) \\ & \mathbb{C}\llbracket s_{1}; s_{2} \rrbracket \stackrel{\mathrm{def}}{=} \mathbb{C}\llbracket s_{2} \rrbracket \circ \mathbb{C}\llbracket s_{1} \rrbracket \\ & \text{where } \langle V_{\rho}, O_{\rho} \rangle \stackrel{\mathrm{def}}{=} \mathbb{E}\llbracket e \rrbracket \rho \end{array}$

Denotational semantics with interferences

Interferences in $\mathbb{I} \stackrel{\text{\tiny def}}{=} \mathbb{T} \times \mathbb{V} \times \mathbb{R}$

 $\langle t, X, v
angle$ means: t can store the value v into the variable X

We define the analysis of a thread twith respect to a set of interferences $I \subseteq \mathbb{I}$.

Expressions with interference: for thread t

 $\mathsf{E}_t[\![\operatorname{expr}]\!] : (\mathcal{E} \times \mathcal{P}(\mathbb{I})) \to (\mathcal{P}(\mathbb{R}) \times \mathcal{P}(\Omega))$

• Apply interferences to read variables: $E_{t}[X] \langle \rho, I \rangle \stackrel{\text{def}}{=} \langle \{ \rho(X) \} \cup \{ v \mid \exists u \neq t : \langle u, X, v \rangle \in I \}, \emptyset \rangle$

• Pass recursively / down to sub-expressions:

$$E_{t}[\![-e_{1}]\!]\langle \rho, I \rangle \stackrel{\text{def}}{=} \\
\text{let } \langle V_{1}, O_{1} \rangle = E_{t}[\![e_{1}]\!]\langle \rho, I \rangle \text{ in } \langle \{-v_{1} | v_{1} \in V_{1} \}, O_{1} \rangle$$

Denotational semantics with interferences (cont.)

<u>Statements with interference:</u> for thread t $C_t[stat]: (\mathcal{P}(\mathcal{E}) \times \mathcal{P}(\Omega) \times \mathcal{P}(\mathbb{I})) \rightarrow (\mathcal{P}(\mathcal{E}) \times \mathcal{P}(\Omega) \times \mathcal{P}(\mathbb{I}))$

- pass interferences to expressions
- collect new interferences due to assignments
- accumulate interferences from inner statements

 $\begin{array}{l} \mathsf{C}_{\mathsf{t}}\llbracket X \leftarrow e \rrbracket \langle R, \ O, \ I \rangle \stackrel{\mathrm{def}}{=} \\ \langle \emptyset, \ O, \ I \rangle \ \sqcup \ \bigsqcup_{\rho \in R} \langle \{ \rho[X \mapsto v] \, | \, v \in V_{\rho} \, \}, \ O_{\rho}, \, \{ \langle t, \ X, \ v \rangle \, | \, v \in V_{\rho} \, \} \rangle \\ \mathsf{C}_{\mathsf{t}}\llbracket s_{1}; \ s_{2} \, \rrbracket \stackrel{\mathrm{def}}{=} \mathsf{C}_{\mathsf{t}}\llbracket s_{2} \, \rrbracket \circ \mathsf{C}_{\mathsf{t}}\llbracket s_{1} \, \rrbracket \end{array}$

(noting
$$\langle V_{\rho}, O_{\rho} \rangle \stackrel{\text{def}}{=} \mathsf{E}_{\mathsf{t}} \llbracket e \rrbracket \langle \rho, \mathbf{1} \rangle$$
)
(\sqcup is now the element-wise \cup in $\mathcal{P}(\mathcal{E}) \times \mathcal{P}(\Omega) \times \mathcal{P}(\mathbb{I})$)

. . .

Denotational semantics with interferences (cont.)

 $\frac{\mathsf{Program semantics:}}{\mathsf{P}[\![\textit{prog}]\!]} \subseteq \Omega$

Given prog ::= $stat_1 || \cdots || stat_n$, we compute:

$$\mathsf{P}\llbracket \operatorname{prog} \rrbracket \stackrel{\text{def}}{=} \left[\mathsf{lfp}\,\lambda\langle\,\mathcal{O},\,\boldsymbol{I}\,\rangle.\,\bigsqcup_{t\in\mathbb{T}}\,\left[\mathsf{C}_{\mathsf{t}}\llbracket\operatorname{stat}_{t}\,\rrbracket\,\langle\,\mathcal{E}_{\mathsf{0}},\,\emptyset,\,\boldsymbol{I}\,\rangle\right]_{\Omega,\mathbb{I}}\right]_{\Omega}$$

- each thread analysis starts in an initial environment set $\mathcal{E}_0 \stackrel{\text{def}}{=} \{ \lambda V.0 \}$
- [X]_{Ω,I} projects X ∈ P(E) × P(Ω) × P(I) on P(Ω) × P(I) and interferences and errors from all threads are joined (the output environments are ignored)
- P[[prog]] only outputs the set of possible run-time errors

Example	
t_1	t_2
while ${}^{\ell 1}0 = 0$ do	while ${}^{\ell 4} 0 = 0$ do
ℓ^2 if $x < y$ then	$^{\ell 5}$ if $y < 10$ then
$\ell^3 x \leftarrow x + 1$	$\frac{\ell 6}{y} \leftarrow y + 1$

Concrete interference semantics:

iteration 1

$$I = \emptyset$$

 $\ell 1 : x = 0, y = 0$
 $\ell 4 : x = 0, y \in [0, 10]$
new $I = \{ \langle t_2, y, 1 \rangle, \dots, \langle t_2, y, 10 \rangle \}$

Example	
t_1	t_2
while ${}^{\ell 1}0 = 0$ do	while ${}^{\ell 4} 0 = 0$ do
ℓ^2 if $x < y$ then	$^{\ell 5}$ if $y < 10$ then
$\ell^3 x \leftarrow x + 1$	$\frac{\ell 6}{y} \leftarrow y + 1$

Concrete interference semantics:

$$\begin{array}{l} \text{iteration } 2 \\ I = \{ \langle t_2, y, 1 \rangle, \dots, \langle t_2, y, 10 \rangle \} \\ \ell 1 : x \in [0, 10], y = 0 \\ \ell 4 : x = 0, y \in [0, 10] \\ \text{new } I = \{ \langle t_1, x, 1 \rangle, \dots, \langle t_1, x, 10 \rangle, \langle t_2, y, 1 \rangle, \dots, \langle t_2, y, 10 \rangle \} \end{array}$$

Example	
t_1	t_2
while ${}^{\ell 1}0 = 0$ do	while ${}^{\ell 4} 0 = 0$ do
ℓ^2 if $x < y$ then	$^{\ell 5}$ if $y < 10$ then
$\ell^3 x \leftarrow x + 1$	$\frac{\ell 6}{y} \leftarrow y + 1$

Concrete interference semantics:

 $\begin{array}{l} \text{iteration 3} \\ I = \{ \langle t_1, x, 1 \rangle, \dots, \langle t_1, x, 10 \rangle, \langle t_2, y, 1 \rangle, \dots, \langle t_2, y, 10 \rangle \} \\ \ell 1 : x \in [0, 10], y = 0 \\ \ell 4 : x = 0, y \in [0, 10] \\ \text{new } I = \{ \langle t_1, x, 1 \rangle, \dots, \langle t_1, x, 10 \rangle, \langle t_2, y, 1 \rangle, \dots, \langle t_2, y, 10 \rangle \} \end{array}$

Example	
t_1	t_2
while ${}^{\ell 1}0 = 0$ do	while ${}^{\ell 4} 0 = 0$ do
ℓ^2 if $x < y$ then	^{$\ell 5$} if $y < 10$ then
$\ell^3 x \leftarrow x + 1$	$\frac{\ell 6}{y} \leftarrow y + 1$

Concrete interference semantics:

iteration 3 $I = \{ \langle t_1, x, 1 \rangle, \dots, \langle t_1, x, 10 \rangle, \langle t_2, y, 1 \rangle, \dots, \langle t_2, y, 10 \rangle \}$ $\ell 1 : x \in [0, 10], y = 0$ $\ell 4 : x = 0, y \in [0, 10]$ new $I = \{ \langle t_1, x, 1 \rangle, \dots, \langle t_1, x, 10 \rangle, \langle t_2, y, 1 \rangle, \dots, \langle t_2, y, 10 \rangle \}$

<u>Note:</u> we don't get that $x \leq y$ at $\ell 1$, only that $x, y \in [0, 10]$

Interference abstraction

Abstract interferences I[#]

 $\mathcal{P}(\mathbb{I}) \stackrel{\text{def}}{=} \mathcal{P}(\mathbb{T} \times \mathbb{V} \times \mathbb{R}) \text{ is abstracted as } \mathbb{I}^{\sharp} \stackrel{\text{def}}{=} (\mathbb{T} \times \mathbb{V}) \to \mathcal{R}^{\sharp}$ where \mathcal{R}^{\sharp} abstracts $\mathcal{P}(\mathbb{R})$ (e.g. intervals)

Abstract semantics with interferences $C_t^{\sharp}[s]$

derived from $C^{\sharp}[s]$ in a generic way:

 $\underline{\mathsf{Example:}} \quad \mathsf{C}^{\sharp}_{\mathsf{t}}[\![X \leftarrow e \,]\!] \, \langle \, R^{\sharp}, \, \Omega, \, I^{\sharp} \, \rangle$

- for each Y in e, get its interference $Y_{\mathcal{R}}^{\sharp} = \bigsqcup_{\mathcal{R}}^{\sharp} \{ I^{\sharp} \langle u, Y \rangle | u \neq t \}$
- if Y[♯]_R ≠ ⊥[♯]_R, replace Y in e with get(Y, R[♯]) ⊔[♯]_R Y[♯]_R (where get(Y, R[♯]) extracts the abstract values in R[♯] of a variable Y from R[♯] ∈ E[♯])
- compute $\langle R^{\sharp'}, O' \rangle = C^{\sharp} \llbracket e \rrbracket \langle R^{\sharp}, O \rangle$
- enrich $I^{\sharp}\langle t, X \rangle$ with $get(X, R^{\sharp'})$

Static analysis with interferences

Abstract analysis

$$\mathbb{P}^{\sharp} \llbracket \operatorname{prog} \rrbracket \stackrel{\text{def}}{=} \left[\lim \lambda \langle O, I^{\sharp} \rangle. \langle O, I^{\sharp} \rangle \nabla \bigsqcup_{t \in \mathbb{T}}^{\sharp} \left[C_{t}^{\sharp} \llbracket \operatorname{stat}_{t} \rrbracket \langle \mathcal{E}_{0}^{\sharp}, \emptyset, I^{\sharp} \rangle \right]_{\Omega, \mathbb{I}^{\sharp}} \right]_{\Omega}$$

- effective analysis by structural induction
- termination ensured by a widening
- \bullet parametrized by a choice of abstract domains $\mathcal{R}^{\sharp},\,\mathcal{E}^{\sharp}$
- \bullet interferences are flow-insensitive and non-relational in \mathcal{R}^{\sharp}
- thread analysis remains flow-sensitive and relational in \mathcal{E}^{\sharp}

[Miné12]

Path-based semantics

Control paths

atomic ::=
$$X \leftarrow expr \mid expr \bowtie 0$$
?

Control paths

$$\pi$$
: stat $\rightarrow \mathcal{P}(atomic^*)$

$$\pi(X \leftarrow e) \stackrel{\text{def}}{=} \{X \leftarrow e\}$$

$$\pi(\text{if } e \bowtie 0 \text{ then } s) \stackrel{\text{def}}{=} (\{e \bowtie 0?\} \cdot \pi(s)) \cup \{e \bowtie 0?\}$$

$$\pi(\text{while } e \bowtie 0 \text{ do } s) \stackrel{\text{def}}{=} \left(\bigcup_{i \ge 0} (\{e \bowtie 0?\} \cdot \pi(s))^i\right) \cdot \{e \bowtie 0?\}$$

$$\pi(s_1; s_2) \stackrel{\text{def}}{=} \pi(s_1) \cdot \pi(s_2)$$

$\pi(stat)$ is a (generally infinite) set of finite control paths

Path-based concrete semantics of sequential programs

Semantic equivalence

$$C[[stat]] = \Pi[[\pi(stat)]]$$

(not true in the abstract)

Advantages:

- easily extended to concurrent programs (path interleavings)
- able to model program transformations (weak memory models)

Path-based concrete semantics of concurrent programs

Concurrent control paths

$$\pi_* \stackrel{\text{def}}{=} \{ \text{ interleavings of } \pi(\textit{stat}_t), t \in \mathbb{T} \} \\ = \{ p \in \textit{atomic}^* \mid \forall t \in \mathbb{T}, \textit{proj}_t(p) \in \pi(\textit{stat}_t) \} \}$$

Interleaving program semantics

$$\mathsf{P}_*\llbracket \operatorname{prog} \rrbracket \stackrel{\text{def}}{=} \llbracket \Pi \llbracket \pi_* \rrbracket \langle \mathcal{E}_0, \emptyset \rangle \rrbracket_{\Omega}$$

 $(proj_t(p)$ keeps only the atomic statement in p coming from thread t)

Soundness of the interference semantics

Soundness theorem

 $\mathsf{P}_*\llbracket \operatorname{prog} \rrbracket \subseteq \mathsf{P}\llbracket \operatorname{prog} \rrbracket$

Proof sketch:

- define $\Pi_t \llbracket P \rrbracket X \stackrel{\text{def}}{=} \bigsqcup \{ C_t \llbracket s_1; \ldots; s_n \rrbracket X \mid s_1 \cdot \ldots \cdot s_n \in P \},$ then $\Pi_t \llbracket \pi(s) \rrbracket = C_t \llbracket s \rrbracket;$
- given the interference fixpoint I ⊆ I from P[[prog]], prove by recurrence on the length of p ∈ π_{*} that:
 - $\forall t \in \mathbb{T}, \forall \rho \in [\Pi[\![p]\!] \langle \mathcal{E}_0, \emptyset \rangle]_{\mathcal{E}},$ $\exists \rho' \in [\Pi_t[\![proj_t(p)]\!] \langle \mathcal{E}_0, \emptyset, I \rangle]_{\mathcal{E}}$ such that $\forall X \in \mathbb{V}, \ \rho(X) = \rho'(X) \text{ or } \langle u, X, \rho(X) \rangle \in I \text{ for some } u \neq t.$
 - $[\llbracket p \rrbracket \langle \mathcal{E}_0, \emptyset \rangle]_{\Omega} \subseteq \bigcup_{t \in \mathbb{T}} [\llbracket t \llbracket \operatorname{proj}_t(p) \rrbracket \langle \mathcal{E}_0, \emptyset, I \rangle]_{\Omega}$

Note: sound but not complete

Weakly consistent memories
Issues with weak consistency

program written

$$\begin{array}{c|c} F_1 \leftarrow 1; \\ \textbf{if } F_2 = 0 \textbf{ then } \\ S_1 \end{array} \middle| \begin{array}{c} F_2 \leftarrow 1; \\ \textbf{if } F_1 = 0 \textbf{ then } \\ S_2 \end{array} \right|$$

(simplified Dekker mutual exclusion algorithm)

 S_1 and S_2 cannot execute simultaneously.

Issues with weak consistency

program written

$$\begin{array}{c|c} F_1 \leftarrow 1; \\ \textbf{if } F_2 = 0 \textbf{ then } \\ S_1 \end{array} \middle| \begin{array}{c} F_2 \leftarrow 1; \\ \textbf{if } F_1 = 0 \textbf{ then } \\ S_2 \end{array} \right.$$

program executedif
$$F_2 = 0$$
 thenif $F_1 = 0$ then $F_1 \leftarrow 1;$ $F_2 \leftarrow 1;$ S_1 S_2

(simplified Dekker mutual exclusion algorithm)

 S_1 and S_2 can execute simultaneously. Not a sequentially consistent behavior!

Caused by:

- write FIFOs, caches, distributed memory
- hardware or compiler optimizations, transformations

• . . .

behavior accepted by Java [Mans05]

Weakly consistent memories

Out of thin air principle

original program

 $\begin{array}{c|c} R_1 \leftarrow X; & R_2 \leftarrow Y; \\ Y \leftarrow R_1 & X \leftarrow R_2 \end{array}$

(example from causality test case #4 for Java by Pugh et al.)

We should not have $R_1 = 42$.

Weakly consistent memories

Out of thin air principle

(example from causality test case #4 for Java by Pugh et al.)

We should not have $R_1 = 42$.

Possible if we allow speculative writes! \implies we disallow this kind of program transformations.

(also forbidden in Java)

Weakly consistent memories

Atomicity and granularity

original program

 $X \leftarrow X + 1 \mid X \leftarrow X + 1$

We assumed that assignments are atomic...

Weakly consistent memories

Atomicity and granularity

We assumed that assignments are atomic... but that may not be the case

The second program admits more behaviors e.g.: X = 1 at the end of the program [Reyn04]

Path-based definition of weak consistency

<u>Acceptable control path transformations</u>: $p \rightsquigarrow q$

only reduce interferences and errors

- Reordering: $X_1 \leftarrow e_1 \cdot X_2 \leftarrow e_2 \rightsquigarrow X_2 \leftarrow e_2 \cdot X_1 \leftarrow e_1$ (if $X_1 \notin var(e_2)$, $X_2 \notin var(e_1)$, and e_1 does not stop the program)
- Propagation: X ← e ⋅ s → X ← e ⋅ s[e/X] (if X ∉ var(e), var(e) are thread-local, and e is deterministic)
- Factorization: $s_1 \cdot \ldots \cdot s_n \rightsquigarrow X \leftarrow e \cdot s_1[X/e] \cdot \ldots \cdot s_n[X/e]$ (if X is fresh, $\forall i, var(e) \cap lval(s_i) = \emptyset$, and e has no error)
- Decomposition: $X \leftarrow e_1 + e_2 \rightsquigarrow T \leftarrow e_1 \cdot X \leftarrow T + e_2$ (change of granularity)

• . . .

but NOT:

• "out-of-thin-air" writes: $X \leftarrow e \rightsquigarrow X \leftarrow 42 \cdot X \leftarrow e$

Soundness of the interference semantics

Interleaving semantics of transformed programs $P'_*[[prog]]$

- $\pi'(s) \stackrel{\text{def}}{=} \{ p \mid \exists p' \in \pi(s) : p' \rightsquigarrow * p \}$
- $\pi'_* \stackrel{\text{def}}{=} \{ \text{ interleavings of } \pi'(stat_t), t \in \mathbb{T} \}$
- $\mathsf{P}'_*\llbracket \operatorname{prog} \rrbracket \stackrel{\text{def}}{=} \llbracket \Pi \llbracket \pi'_* \rrbracket \langle \mathcal{E}_0, \emptyset \rangle \rrbracket_{\Omega}$

Soundness theorem $P'_* \llbracket prog \rrbracket \subseteq P \llbracket prog \rrbracket$

 \implies the interference semantics is sound wrt. weakly consistent memories and changes of granularity

Synchronisation

Scheduling

Synchronization primitives		
stat ::= $lock(m)$		
unlock(<i>m</i>)		
$m \in \mathbb{M}$: finite set of non-recursive mutexes		

Scheduling

• mutexes ensure mutual exclusion

a each time, each mutex can be locked by a single thread

 mutexes enforce memory consistency and atomicity no optimization across lock and unlock instructions memory caches and buffer are flushed

Mutual exclusion

Mutual exclusion

Data-race effects

Partition wrt. mutexes $M \subseteq \mathbb{M}$ held by the current thread t

- $C_t[X \leftarrow e] \langle \rho, M, I \rangle$ adds $\{ \langle t, M, X, v \rangle \mid v \in E_t[X] \langle \rho, M, I \rangle \}$ to I
- $\mathsf{E}_{\mathsf{t}}[\![X]\!]\langle \rho, M, I \rangle =$ { $\rho(X)$ } \cup { $\mathsf{v} \mid \langle t', M', X, \mathsf{v} \rangle \in I, t \neq t', M \cap M' = \emptyset$ }
- flow-insensitive, subject to weak memory consistency

Mutual exclusion

Well-synchronized effects

- last write before unlock affects first read after lock
- partition interferences wrt. a protecting mutex *m* (and *M*)
- $C_t[[unlock(m)]] \langle \rho, M, I \rangle$ stores $\rho(X)$ into I
- $C_t[[lock(m)]] \langle \rho, M, I \rangle$ imports values form I into ρ
- imprecision: non-relational, largely flow-insensitive

Example analysis

abstract consumer/producer		
t_1	t_2	
while 0=0 do	while 0=0 do	
lock(m); ^{ℓ1}	lock(m);	
if $X > 0$ then $\ell^2 X \leftarrow X - 1$;	$X \leftarrow X + 1;$	
unlock(m);	if $X > 10$ then $X \leftarrow 10$;	
$\ell^3 Y \leftarrow X$	unlock(m)	

- at $\ell 1$, the **unlock lock** effect from t_2 imports $\{X\} \times [1, 10]$
- at $\ell 2$, $X \in [1, 10]$, no effect from t_2 : $X \leftarrow X 1$ is safe
- at ℓ 3, $X \in [0,9]$, and t_2 has the effects $\{X\} \times [1,10]$ so, $Y \in [0,10]$

Limitations of the interference abstraction

Lack of relational lock invariants

Our analysis finds $X \in [0, 10]$, but no bound on Y.

Actually $Y \in [0, 10]$. To prove this, we would need to infer the relational invariant X = Y at lock boundaries.

Lack of inter-process flow-sensitivity

a more difficult example		
while 1 do	while 1 do	
lock (m);	lock(m);	
$X \leftarrow X + 1;$	$X \leftarrow X + 1;$	
unlock(m);	unlock(m);	
lock (m);	lock(m);	
$X \leftarrow X - 1;$	$X \leftarrow X - 1;$	
unlock(m)	unlock(m)	

Our analysis finds no bound on X.

Actually $X \in [-2, 2]$ at all program points. To prove this we need to infer an invariant on the history of interleaved executions: no more than two incrementation (resp. decrementation) can occur without a decrementation (resp. incrementation).

Summary

Summary

Conclusion

We presented a static analysis that is:

- inspired from thread-modular proof methods
- sound for all interleavings
- sound for weakly consistent memory semantics
- aware of scheduling and synchronization
- parametrized by abstract domains

Future work: leverage the connection with rely-guarantee

• relational interferences

(especially for synchronized program parts)

• flow-sensitive interferences and invariants

Bibliography

Bibliography

[Bour93] **F. Bourdoncle**. *Efficient chaotic iteration strategies with widenings*. In Proc. FMPA'93, LNCS vol. 735, pp. 128–141, Springer, 1993.

[Carr09] J.-L. Carré & C. Hymans. From single-thread to multithreaded: An efficient static analysis algorithm. In arXiv:0910.5833v1, EADS, 2009.

[Cous84] **P. Cousot & R. Cousot**. *Invariance proof methods and analysis techniques for parallel programs.* In Automatic Program Construction Techniques, chap. 12, pp. 243–271, Macmillan, 1984.

[Cous85] **R. Cousot**. Fondements des méthodes de preuve d'invariance et de fatalité de programmes parallèles. In Thèse d'Etat es sc. math., INP Lorraine, Nancy, 1985.

[Hoar69] C. A. R. Hoare. An axiomatic basis for computer programming. In Com. ACM, 12(10):576–580, 1969.

course 08-A

Bibliography (cont.)

[Jone81] **C. B. Jones**. *Development methods for computer programs including a notion of interference*. In PhD thesis, Oxford University, 1981.

[Lamp77] L. Lamport. Proving the correctness of multiprocess programs. In IEEE Trans. on Software Engineering, 3(2):125–143, 1977.

[Lamp78] L. Lamport. *Time, clocks, and the ordering of events in a distributed system.* In Comm. ACM, 21(7):558–565, 1978.

[Mans05] J. Manson, B. Pugh & S. V. Adve. The Java memory model. In Proc. POPL'05, pp. 378–391, ACM, 2005.

[Miné12] **A. Miné**. Static analysis of run-time errors in embedded real-time parallel C programs. In LMCS 8(1:26), 63 p., arXiv, 2012.

[Owic76] **S. Owicki & D. Gries**. An axiomatic proof technique for parallel programs *I*. In Acta Informatica, 6(4):319–340, 1976.

Bibliography (cont.)

[Reyn04] J. C. Reynolds. *Toward a grainless semantics for shared-variable concurrency.* In Proc. FSTTCS'04, LNCS vol. 3328, pp. 35–48, Springer, 2004.

[Sara07] V. A. Saraswat, R. Jagadeesan, M. M. Michael & C. von Praun. A theory of memory models. In Proc. PPoPP'07, pp. 161–172, ACM, 2007.