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Introduction

Concurrent programming

Idea:

Decompose a program into a set of (loosely) interacting processes.

Why concurrent programs?

exploit parallelism in current computers
(multi-processors, multi-cores, hyper-threading)

“Free lunch is over”
change in Moore’s law (×2 transistors every 2 years)

exploit several computers
(distributed computing)

ease of programming
(GUI, network code, reactive programs)
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Introduction

Models of concurrent programs

Many models:

process calculi: CSP, π−calculus, join calculus

message passing

shared memory (threads)

transactional memory

combination of several models

Example implementations:

C, C++, etc. with a thread library (POSIX threads, Win32)

C, C++, etc. with a message library (MPI, OpenMP)

Java (native threading API)

Erlang (based on π−calculus)

JoCaml (OCaml + join calculus)

processor-level (interrupts, test-and-set instructions)
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Introduction

Scope

In this talk: thread model

implicit communication through shared memory

explicit communication through synchronisation primitives

fixed number of threads (no dynamic creation of threads)

numeric programs (real-valued variables)

Goal: static analysis

infer numeric program invariants

discover possible run-time errors (e.g., division by 0)

parametrized by a choice of abstract domains
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Introduction

Outline

State-based analyses

sequential programs (reminders)

concurrent programs

Toward thread-modular analyses

detour through proof methods
(Floyd–Hoare, Owicki–Gries, Jones)

rely-guarantee in abstract interpretation form

Interference-based abstract analyses

denotational-style analysis

weakly consistent memory models

synchronisation
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Introduction

Simple structured numeric language

finite set of (toplevel) threads: stat1 to statn

finite set of numeric program variables X ∈ V

finite set of statement locations ` ∈ L
finite set of potential error locations ω ∈ Ω

Language syntax

prog ::= `stat1
` || . . . || `statn

` (parallel composition)

`stat` ::= `X ← expr ` (assignment)
| `if expr ./ 0 then `stat` (conditional)
| `while `expr ./ 0 do `stat` (loop)
| `stat; `stat` (sequence)

expr ::= X | [c1, c2] | − expr | expr �ω expr

c1, c2 ∈ R ∪ {+∞,−∞}, � ∈ {+,−,×, / }, ./∈ {=,≤, . . . }

course 08-A Static Analysis of Concurrent Programs Antoine Miné p. 6 / 81



State-based analyses

State-based analyses
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State-based analyses Sequential program semantics (reminders)

Sequential program semantics (reminders)
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State-based analyses Sequential program semantics (reminders)

Transition systems

Transition system: (Σ, τ, I)

Σ: a set of program states

τ ⊆ Σ× Σ: transition relation
we note (σ, σ′) ∈ τ as σ →τ σ

′

I ⊆ Σ: a set of initial states

Traces: sequences of states σ0, . . . , σn, . . .

Σ∗: finite traces

Σω: infinite countable traces

Σ∞
def
= Σ∗ ∪ Σω: finite or infinite countable traces

u � t : u is a prefix of t

We view program semantics and properties as sets of traces.
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State-based analyses Sequential program semantics (reminders)

Traces of a transition system

Maximal trace semantics: M∞ ∈ P(Σ∞)

set of total executions σ0, . . . , σn, . . .

starting in an initial state σ0 ∈ I and either

ending in a blocking state in B def
= {σ | ∀σ′:σ 6→τ σ

′ }
or infinite

M∞
def
= {σ0, . . . , σn |σ0 ∈ I ∧ σn ∈ B ∧ ∀i < n:σi →τ σi+1 } ∪
{σ0, . . . , σn . . . |σ0 ∈ I ∧ ∀i :σi →τ σi+1 }

able to express many properties of programs, e.g.:

safety: M∞ ⊆ S∞ (executions stay in S)
ordering: M∞ ⊆ S∞1 · S∞2 (S2 can only occur after S1)
termination: M∞ ⊆ Σ∗ (executions are finite)
inevitability: M∞ ⊆ Σ∗ · S · Σ∞ (executions pass through S)
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State-based analyses Sequential program semantics (reminders)

Traces of a transition system

Finite prefix trace semantics: Tp ⊆ P(Σ∗)

set of finite prefixes of executions:

Tp
def
= {σ0, . . . , σn |σ0 ∈ I, ∀i < n:σi →τ σi+1 }

Tp is an abstraction of the maximal trace semantics

Tp = α∗�(M∞) where α∗�(X )
def
= { t ∈ Σ∗ | ∃u ∈ X : t � u }

Tp can prove safety properties: Tp ⊆ S∗ (executions stay in S)

Tp can prove ordering properties: Tp ⊆ S∗1 · S∗2
(if S1 and S2 occur, S2 occurs after S1)

Tp cannot prove termination nor inevitability properties

fixpoint characterisation: Tp = lfpFp where
Fp(X ) = I ∪ {σ0, . . . , σn+1 |σ0, . . . , σn ∈ X ∧ σn →τ σn+1 }
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State-based analyses Sequential program semantics (reminders)

State abstraction

Reachable state semantics: R ⊆ P(Σ)

set of states reachable in any execution:
R def

= {σ | ∃σ0, . . . , σn:σ0 ∈ I, ∀i < n:σi →τ σi+1 ∧ σ = σn }

R is an abstraction of the finite trace semantics: R = αp(Tp)

where αp(X )
def
= {σ | ∃σ0, . . . , σn ∈ X :σ = σn }

R can prove safety properties: R ⊆ S (executions stay in S)

R cannot prove ordering, termination, inevitability properties

fixpoint characterisation: R = lfpFR where
FR(X ) = I ∪ {σ | ∃σ′ ∈ X :σ′ →τ σ }
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State-based analyses Sequential program semantics (reminders)

States of a sequential program

Simple sequential numeric program: prog = `i stat`x .

Program states: Σ
def
= (L × E) ∪ Ω

a control state in L
a memory state: an environment in E def

= V→ R

an error state in Ω

Initial states:

start at the first control point `i , and with variables set to 0:

I def
= { (`i , λV .0) }

Note that P(Σ) ' (L → P(E))× P(Ω):

a state property in P(E) at each program point in L

and a set of errors in P(Ω)
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State-based analyses Sequential program semantics (reminders)

Expression semantics with errors

Expression semantics: EJ expr K : E → (P(R)× P(Ω))

EJX K ρ def
= 〈 { ρ(X ) }, ∅ 〉

EJ [c1, c2] K ρ def
= 〈 { x ∈ R | c1 ≤ x ≤ c2 }, ∅ 〉

EJ−e1 K ρ def
= let 〈V1, O1 〉 = EJ e1 K ρ in

〈 {−v1 | v1 ∈ V1 }, O1 〉

EJ e1 �ω e2 K ρ def
= let ∀i ∈ { 1, 2 }: 〈Vi , Oi 〉 = EJ ei K ρ in

〈 { v1 � v2 | vi ∈ Vi , � 6= / ∨ v2 6= 0 },
O1 ∪ O2 ∪ {ω if � = / ∧ 0 ∈ V2 } 〉

defined by structural induction on the syntax

evaluates in an environment ρ to a set of values

also returns a set of accumulated errors (divisions by zero)
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State-based analyses Sequential program semantics (reminders)

Reminders: semantics in equational form

Principle: (without handling errors in Ω)

see lfp f as the least solution of an equation x = f (x)

partition states by control: P(L × E) ' L → P(E)
X` ∈ P(E): invariants at ` ∈ L
∀` ∈ L:X`

def
= {m ∈ E | (`,m) ∈ R}

=⇒ set of (recursive) equations on X`

Example:

`1 i ← 2;
`2 n← [−∞,+∞];
`3 while `4 i < n do

`5 if [0, 1] = 0 then
`6 i ← i + 1

`7

`8

X1 = I
X2 = CJ i ← 2 KX1

X3 = CJ n← [−∞,+∞] KX2

X4 = X3 ∪ X7

X5 = CJ i < n KX4

X6 = X5

X7 = X5 ∪ CJ i ← i + 1 KX6

X8 = CJ i ≥ n KX4
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State-based analyses Sequential program semantics (reminders)

Semantics in denotational form

Input-output function CJ stat K

CJ stat K : (P(E)× P(Ω))→ (P(E)× P(Ω))

CJX ← e K 〈R, O 〉 def
= 〈 ∅, O 〉 t

⊔
ρ∈R 〈 { ρ[X 7→ v ] | v ∈ Vρ }, Oρ 〉

CJ e ./ 0? K 〈R, O 〉 def
= 〈 ∅, O 〉 t

⊔
ρ∈R 〈 { ρ | ∃v ∈ Vρ: v ./ 0 }, Oρ 〉

where 〈Vρ, Oρ 〉
def
= EJ e K ρ

CJ if e ./ 0 then s KX def
= (CJ s K ◦ CJ e ./ 0? K )X t CJ e 6./ 0? KX

CJ while e ./ 0 do s KX def
=

CJ e 6./ 0? K (lfpλY .X t (CJ s K ◦ CJ e ./ 0? K )Y )

CJ s1; s2 K def
= CJ s2 K ◦ CJ s1 K

mutate memory states in E , accumulate errors in Ω
(t is the element-wise ∪ in P(E)× P(Ω))

structured: nested loops yield nested fixpoints

big-step: forget information on intermediate locations `
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State-based analyses Sequential program semantics (reminders)

Abstract semantics in denotational form

Extend a numeric abstract domain E] abstracting P(E)

to D] def
= E] × P(Ω).

C]J stat K : D] → D]

C]JX ← e K 〈R], O 〉 and C]J e ./ 0? K 〈R], O 〉 are given

C]J if e ./ 0 then s KX ] def
=

(C]J s K ◦ C]J e ./ 0? K )X ] t] C]J e 6./ 0? KX ]

C]J while e ./ 0 do s KX ] def
=

C]J e 6./ 0? K (limλY ].Y ] O (X ] t (C]J s K ◦ C]J e ./ 0? K )Y ]))

C]J s1; s2 K def
= C]J s2 K ◦ C]J s1 K

the abstract interpreter mimicks an actual interpreter

efficient in memory (intermediate invariants are not kept)

less flexibility in the iteration scheme
(iteration order, widening points, etc.)
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State-based analyses Concurrent program semantics

Concurrent program semantics
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State-based analyses Concurrent program semantics

Labelled transition systems

Labelled transition system: (Σ,A, τ, I)

Σ: set of program states

A: set of actions

τ ⊆ Σ×A× Σ: transition relation
we note (σ, a, σ′) ∈ τ as σ

a→τ σ
′

I ⊆ Σ: set of initial states

Labelled traces: sequences of states interspersed with actions

denoted as σ0
a0→ σ1

a1→ · · ·σn
an→ σn+1
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State-based analyses Concurrent program semantics

From concurrent programs to labelled transition systems

Notations:

concurrent program: prog ::= `i1stat1
`x1 || · · · || `instatn

`xn

thread are identified by number in T
def
= { 1, . . . , n }

Program states: Σ
def
= ((T→ L)× E) ∪ Ω

control state L(t) ∈ L for each thread t ∈ T, and

single shared memory state ρ ∈ E
or error state in ω ∈ Ω

Initial states:

threads start at their first control point `it , variables are set to 0:

I def
= { (λt.`it , λV .0) }

Actions: thread identifiers: A def
= T
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State-based analyses Concurrent program semantics

From concurrent programs to labelled transition systems

Transition relation: τ ⊆ Σ×A× Σ

(L, ρ)
t→τ (L′, ρ′)

def⇐⇒ (L(t), ρ)→τ [statt ] (L′(t), ρ′) ∧
∀u 6= t: L(u) = L′(u)

(L, ρ)
t→τ ω

def⇐⇒ (L(t), ρ)→τ [statt ] ω

based on the transition relation of individual threads
seen as sequential processes statt :

1

τ [stat] ⊆ (L × E)× ((L × E) ∪ Ω)

choose a thread t to run
update ρ and L(t)
leave L(u) intact for u 6= t

each σ → σ′ in τ [statt ] leads to many transitions in τ !

1See lesson 02-B for the full definition of τ [stat].
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State-based analyses Concurrent program semantics

Interleaved trace semantics

Maximal and finite prefix trace semantics are as before:

Blocking states: B def
= {σ | ∀σ′, t:σ

t
6→τ σ

′ }

Maximal traces: M∞ (finite or infinite)

M∞
def
= {σ0

t0→ · · · tn−1→ σn |σ0 ∈ I ∧ σn ∈ B ∧ ∀i < n:σi
ti→τ σi+1 } ∪

{σ0
t0→ σ1 . . . |σ0 ∈ I ∧ ∀i :σi

ti→τ σi+1 }

Finite prefix traces: Tp

Tp
def
= {σ0

t0→ · · · tn−1→ σn |σ0 ∈ I ∧ ∀i < n:σi
ti→τ σi+1 }

Fixpoint form: Tp = lfpFp where

Fp(X ) = I ∪ {σ0
t0→ · · · tn→ σn+1 |σ0

t0→ · · · tn−1→ σn ∈ X ∧ σn
tn→τ σn+1 }

Abstraction: Tp = α∗�(M∞)
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State-based analyses Concurrent program semantics

Fairness

Fairness conditions: avoid threads being denied to run

Given enabled(σ, t)
def⇐⇒ ∃σ′ ∈ Σ:σ

t→τ σ
′,

an infinite trace σ0
t0→ · · ·σn

tn→ · · · is:

weakly fair if ∀t ∈ T:
(∃i : ∀j ≥ i : enabled(σj , t)) =⇒ (∀i :∃j ≥ i : aj = t)
(no thread can be continuously enabled without running)

strongly fair if ∀t ∈ T:
(∀i : ∃j ≥ i : enabled(σj , t)) =⇒ (∀i : ∃j ≥ i : aj = t)
(no thread can be infinitely often enabled without running)

Proofs under fairness conditions given:

the maximal traces M∞ of a program

a property X to prove (as a set of traces)

the set F of all (weakly or strongly) fair and of finite traces

=⇒ prove M∞ ∩ F ⊆ X instead of M∞ ⊆ X
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State-based analyses Concurrent program semantics

Fairness (cont.)

Example: while x ≥ 0 do x ← x + 1 || x ← −1

may not terminate without fairness

always terminates under weak and strong fairness

Finite prefix traces

M∞ ∩ F ⊆ X reduces to α∗�(M∞ ∩ F ) ⊆ α∗�(X )

for all fairness conditions F , α∗�(M∞ ∩ F ) = α∗�(M∞) = Tp
=⇒ fairness-dependent properties cannot be proved with finite prefixes

In the following, we ignore fairness conditions.
(see [Cous85])
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State-based analyses Concurrent program semantics

Equational state semantics

State abstraction R: as before

R def
= {σ | ∃σ0

t0→ · · ·σn:σ0 ∈ I ∀i < n:σi
ti→τ σi+1 ∧ σ = σn }

R = αp(Tp) where αp(X )
def
= {σ | ∃σ0

t0→ · · ·σn ∈ X :σ = σn }

R = lfpFR where FR(X ) = I ∪ {σ | ∃σ′ ∈ X , t ∈ T:σ′
t→τ σ }

Equational form: (without handling errors in Ω)

for each L ∈ T→ L, a variable XL with value in E
equations are derived from thread equations eq(statt) as:2

XL1 =
⋃

t∈T{F (XL2 , . . . ,XLN ) |
∃(X`1 = F (X`2 , . . . ,X`N )) ∈ eq(statt):
∀i ≤ N: Li (t) = `i , ∀u 6= t: Li (u) = L1(u) }

(join with ∪ equations updating a single thread)

2See lesson 02-B for the definition of eq(stat).
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State-based analyses Concurrent program semantics

Equational state semantics (example)

Example: inferring 0 ≤ x ≤ y ≤ 10

t1 t2

while `1 0 = 0 do while `4 0 = 0 do
`2 if x < y then `5 if y < 10 then
`3 x ← x + 1 `6 y ← y + 1
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State-based analyses Concurrent program semantics

Equational state semantics (example)

Example: inferring 0 ≤ x ≤ y ≤ 10

t1 t2

while `1 0 = 0 do while `4 0 = 0 do
`2 if x < y then `5 if y < 10 then
`3 x ← x + 1 `6 y ← y + 1

(Simplified) equation system:

X1,4 = I ∪ CJ x ← x + 1 KX3,4 ∪ CJ x ≥ y KX2,4

∪ CJ y ← y + 1 KX1,6 ∪ CJ y ≥ 10 KX1,5

X2,4 = X1,4 ∪ CJ y ← y + 1 KX2,6 ∪ CJ y ≥ 10 KX2,5

X3,4 = CJ x < y KX2,4 ∪ CJ y ← y + 1 KX3,6 ∪ CJ y ≥ 10 KX3,5

X1,5 = CJ x ← x + 1 KX3,5 ∪ CJ x ≥ y KX2,5 ∪ X1,4

X2,5 = X1,5 ∪ X2,4

X3,5 = CJ x < y KX2,5 ∪ X3,4

X1,6 = CJ x ← x + 1 KX3,6 ∪ CJ x ≥ y KX2,6 ∪ CJ y < 10 KX1,5

X2,6 = X1,6 ∪ CJ y < 10 KX2,5

X3,6 = CJ x < y KX2,6 ∪ CJ y < 10 KX3,5
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State-based analyses Concurrent program semantics

Equational state semantics (example)

Example: inferring 0 ≤ x ≤ y ≤ 10

t1 t2

while `1 0 = 0 do while `4 0 = 0 do
`2 if x < y then `5 if y < 10 then
`3 x ← x + 1 `6 y ← y + 1

Pros:

easy to construct

easy to further abstract in an abstract domain E]

Cons:

explosion of the number of variables and equations

explosion of the size of equations
=⇒ efficiency issues

the equation system does not reflect the program structure
(not defined by induction on the concurrent program)
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State-based analyses Concurrent program semantics

Wish-list

We would like to:

keep information attached to syntactic program locations
(control points in L, not control point tuples in T→ L)

be able to abstract away control information
(precision/cost trade-off control)

avoid duplicating thread instructions

have a computation structure based on the program syntax
(denotational style)

Ideally:

thread-modular denotational-style semantics
(analyze each thread independently by induction on its syntax)
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Towards thread-modular analyses Detour through proof methods

Detour through proof methods
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Towards thread-modular analyses Detour through proof methods

Floyd–Hoare logic

Logic to prove properties about sequential programs [Hoar69].

Hoare triples: {P} stat {Q}
annotate programs with logic assertions {P} stat {Q}
(if P holds before stat, then Q holds after stat)

check that {P}stat{Q} is derivable with the following rules
(the assertions are program invariants)

{P[e/x ]}X ← e {P}
{P ∧ e ./ 0} s {Q} P ∧ e 6./ 0⇒ Q

{P} if e ./ 0 then s {Q}

{P} s1 {Q} {Q} s2 {R}
{P} s1; s2 {R}

{P ∧ e ./ 0} s {P}
{P}while e ./ 0 do s {P ∧ e 6./ 0}

{P ′} s {Q ′} P ⇒ P ′ Q ′ ⇒ Q

{P} s {Q}
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Towards thread-modular analyses Detour through proof methods

Floyd–Hoare logic as abstract interpretation

Link with the equational state semantics:

Correspondence between `stat`
′

and {P} stat {Q}:
if P (resp. Q) models exactly the points in X` (resp. X`′)
then {P} stat {Q} is a derivable Hoare triple

if {P} stat {Q} is derivable, then X` |= P and X`′ |= Q
(all the points in X` (resp. X`′) satisfy P (resp. Q))

=⇒ X` provide the most precise Hoare assertions
in a constructive form

γ(X ]) provide (less precise) Hoare assertions
in a computable form

Link with the denotational semantics:

both CJ stat K and the proof tree for {P} stat {Q}
reflect the syntactic structure of stat
(compositional methods)
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Towards thread-modular analyses Detour through proof methods

Owicki–Gries proof method

Extension of Floyd–Hoare to concurrent programs [Owic76].

Principle: add a new rule, for ||

{P1} s1 {Q1} {P2} s2 {Q2}
{P1 ∧ P2} s1 || s2 {Q1 ∧ Q2}

This rule is not always sound!

e.g., we have {X = 0,Y = 0}X ← 1 {X = 1,Y = 0}
and {X = 0,Y = 0} if X = 0 then Y ← 1{X = 0,Y = 1}

but not {X = 0,Y = 0}X ← 1 || if X = 0 then Y ← 1 {false}

=⇒ we need a side-condition to the rule:
{P1} s1 {Q1} and {P2} s2 {Q2} must not interfere
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Towards thread-modular analyses Detour through proof methods

Owicki–Gries proof method (cont.)

interference freedom

given proofs ∆1 and ∆2 of {P1} s1 {Q1} and {P2} s2 {Q2}
∆1 does not interfere with ∆2 if:

for any Φ appearing before a statement in ∆1

for any {P ′2} s ′2 {Q ′2} appearing in ∆2

{Φ ∧ P ′2} s ′2 {Φ} holds
and moreover {Q1 ∧ P ′2} s ′2 {Q1}

i.e.: the assertions used to prove {P1} s1 {Q1} are stable by s2

e.g., {X = 0,Y ∈ [0, 1]}X ← 1 {X = 1,Y ∈ [0, 1]}
{X ∈ [0, 1],Y = 0} if X = 0 then Y ← 1{X ∈ [0, 1],Y ∈ [0, 1]}

=⇒ {X = 0,Y = 0}X ← 1 || if X = 0 then Y ← 1 {X = 1,Y ∈ [0, 1]}

Summary:

pros: the invariants are local to threads

cons: the proof is not compositional
(proving one thread requires delving into the proof of other threads)

=⇒ not satisfactory
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Towards thread-modular analyses Detour through proof methods

Jones’ rely-guarantee proof method

Idea: explicit interferences with (more) annotations [Jone81].

Rely-guarantee “quintuples”: R,G ` {P} stat {Q}
if P is true before stat is executed

and the effect of other threads is included in R (rely)

then Q is true after stat

and the effect of stat is included in G (guarantee)

where:

P and Q are assertions on states (in P(Σ))

R and G are assertions on transitions (in P(Σ×A× Σ))

The parallel composition rule becomes:

R ∨ G2,G1 ` {P1} s1 {Q1} R ∨ G1,G2 ` {P2} s2 {Q2}
R,G1 ∨ G2 ` {P1 ∧ P2} s1 || s2 {Q1 ∧ Q2}
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Towards thread-modular analyses Detour through proof methods

Rely-guarantee example

Example: proving 0 ≤ x ≤ y ≤ 10

checking t1

`1 while 0 = 0 do

x unchanged

`2 if x < y then

y incremented

`3 x ← x + 1

y ≤ 10

at `1, `2 : 0 ≤ x ≤ y ≤ 10
at `3 : 0 ≤ x < y ≤ 10

checking t2

y unchanged

`4 while 0 = 0 do
x ≤ y `5 if y < 10 then

`6 y ← y + 1

at `4, `5 : 0 ≤ x ≤ y ≤ 10
at `6 : 0 ≤ x ≤ y < 10

In this example:

guarantee exactly what is relied on (R1 = G1 and R2 = G2)

rely and guarantee are global assertions

Benefits of rely-guarantee:

invariants are still local to threads
checking a thread does not require looking at other threads,
only at an abstraction of their semantics
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Towards thread-modular analyses Detour through proof methods

Rely-guarantee example

Example: proving 0 ≤ x ≤ y ≤ 10

checking t1

`1 while 0 = 0 do x unchanged
`2 if x < y then y incremented
`3 x ← x + 1 y ≤ 10

at `1, `2 : 0 ≤ x ≤ y ≤ 10
at `3 : 0 ≤ x < y ≤ 10

checking t2

y unchanged `4 while 0 = 0 do
x ≤ y `5 if y < 10 then

`6 y ← y + 1

at `4, `5 : 0 ≤ x ≤ y ≤ 10
at `6 : 0 ≤ x ≤ y < 10

In this example:

guarantee exactly what is relied on (R1 = G1 and R2 = G2)

rely and guarantee are global assertions

Benefits of rely-guarantee:

invariants are still local to threads
checking a thread does not require looking at other threads,
only at an abstraction of their semantics
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Towards thread-modular analyses Detour through proof methods

Auxiliary variables

Example

t1 t2

`1 x ← x + 1 `2 `3 x ← x + 1 `4

Goal: prove {x = 0} t1 || t2 {x = 2}.

we must rely on and guarantee that
each thread increments x exactly once!

Solution: auxiliary variables
do not change the semantics but store extra information:

past values of variables (history of the computation)

program counter of other threads (pc t)

Example: for t1: {(pc2 = `3 ∧ x = 0) ∨ (pc2 = `4 ∧ x = 1)}
x ← x + 1

{(pc2 = `3 ∧ x = 1) ∨ (pc2 = `4 ∧ x = 2)}
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Auxiliary variables

Example

t1 t2

`1 x ← x + 1 `2 `3 x ← x + 1 `4

Goal: prove {x = 0} t1 || t2 {x = 2}.
we must rely on and guarantee that
each thread increments x exactly once!

Solution: auxiliary variables
do not change the semantics but store extra information:

past values of variables (history of the computation)

program counter of other threads (pc t)

Example: for t1: {(pc2 = `3 ∧ x = 0) ∨ (pc2 = `4 ∧ x = 1)}
x ← x + 1

{(pc2 = `3 ∧ x = 1) ∨ (pc2 = `4 ∧ x = 2)}
course 08-A Static Analysis of Concurrent Programs Antoine Miné p. 35 / 81



Towards thread-modular analyses Rely-guarantee as abstract interpretation

Rely-guarantee as abstract interpretation
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Towards thread-modular analyses Rely-guarantee as abstract interpretation

Local invariants

State projection: on a thread t ∈ T

add auxiliary variables Vt
def
= V ∪ { pcu | u ∈ T, u 6= t }

enriched environments for t: Et
def
= Vt → R

(for simplicity, pcu are numeric variables, i.e., L ⊆ R)

local states: Σt
def
= (L × Et) ∪ Ω

(recall that Σ
def
= ((T→ L)× E) ∪ Ω)

projection: πt(L, ρ)
def
= (L(t), ρ[∀u 6= t: pcu 7→ L(u)])

extended naturally to πt : P(Σ)→ P(Σt)

Local invariants on t: Rl(t)
def
= πt(R)

(where R is the reachable state abstraction)

Note: πt is a bijection, no information is lost
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Towards thread-modular analyses Rely-guarantee as abstract interpretation

Interferences

Interference: caused by a thread t ∈ T

A ∈ T→ P(Σ× Σ)

A(t)
def
= αitf (Tp)(t)

where αitf (X )(t)
def
= { (σ, σ′) | ∃ · · ·σ t→ σ′ · · · ∈ X }

subset of the transition system τ

spawned by t and

actually observed in some execution trace
(recall that Tp is the prefix trace abstraction)
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Towards thread-modular analyses Rely-guarantee as abstract interpretation

Fixpoint form

Local state fixpoint:

we express Rl(t) as a function of A and thread t ∈ T:

Rl(t) = lfpRt(A) where

Rt : (T→ P(Σ× Σ))→ P(Σt)→ P(Σt)

Rt(Y )(X )
def
= πt(I) ∪

{πt(σ′) | ∃πt(σ) ∈ X :σ
t→τ σ

′ ∨ ∃u 6= t: (σ, σ′) ∈ Y (u) }

A state is reachable if it is initial,
or reachable by transitions from t or from the environment A.

Rt only looks into the syntax of thread t.
Rt is parameterized by the interferences from other threads Y .
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Towards thread-modular analyses Rely-guarantee as abstract interpretation

Fixpoint form (cont.)

Interferences:

we express A(t) as a function of Rl and thread t ∈ T:

A(t) = B(Rl)(t) where

B : (
∏

t∈T {t} → P(Σt))→ T→ P(Σ× Σ)

B(Z )(t)
def
= { (σ, σ′) |πt(σ) ∈ Z (t) ∧ σ t→τ σ

′ }

Collect transitions starting from reachable states.

No fixpoint needed.
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Towards thread-modular analyses Rely-guarantee as abstract interpretation

Fixpoint form (cont.)

Nested fixpoint characterization:

1 Rl(t) = lfpRt(A)

2 A(t) = B(Rl)(t)

3 mutual dependency between Rl and A

=⇒ solved using a fixpoint:

Rl = lfp H where

H : (
∏

t∈T {t} → P(Σt))→ (
∏

t∈T {t} → P(Σt))

H(Z )(t)
def
= lfpRt(B(Z ))
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Towards thread-modular analyses Rely-guarantee as abstract interpretation

Fixpoint form (cont.)

Nested fixpoint characterization:

1 Rl(t) = lfpRt(A)

2 A(t) = B(Rl)(t)

3 mutual dependency between Rl and A
=⇒ solved using a fixpoint:

Rl = lfp H where

H : (
∏

t∈T {t} → P(Σt))→ (
∏

t∈T {t} → P(Σt))

H(Z )(t)
def
= lfpRt(B(Z ))
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Towards thread-modular analyses Rely-guarantee as abstract interpretation

Fixpoint form (cont.)

Constructive fixpoint form:

Use Kleene’s iteration to construct fixpoints:

Rl = lfp H =
⊔

n∈N Hn(λt.∅)
in the pointwise powerset lattice

∏
t∈T {t} → P(Σt)

H(Z )(t) = lfp Rt(B(Z )) =
⋃

n∈N(Rt(B(Z )))n(∅)
in the powerset lattice P(Σt)

(similar to the sequential semantics of thread t in isolation)

=⇒ nested iterations
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Towards thread-modular analyses Rely-guarantee as abstract interpretation

Abstract rely-guarantee

Suggested algorithm: nested iterations with acceleration

once abstract domains for states and interferences are chosen

start from Rl ]0
def
= A]0

def
= λt.⊥]

while A]n is not stable

compute ∀t ∈ T:Rl]n+1(t)
def
= lfp R]t (A]n)

by iteration with widening O

(' separate analysis of each thread)

compute A]n+1
def
= A]n O B](Rl]n+1)

when A]n = A]n+1, return Rl ]n

=⇒ thread-modular analysis
parameterized by abstract domains
able to easily reuse existing sequential analyses
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Towards thread-modular analyses Rely-guarantee as abstract interpretation

Flow-insensitive abstraction

Idea:

reduce as much control information as possible

but keep flow-sensitivity on each thread’s control location

Local state abstraction: remove auxiliary variables

αnf
R : P(Σt)→ P((L × E) ∪ Ω)

αnf
R (X )

def
= { (`, ρ|V) | (`, ρ) ∈ X } ∪ (X ∩ Ω)

Interference abstraction: remove all control state

αnf
A : P(Σ× Σ)→ P(E × E)

αnf
A (Y )

def
= { (ρ, ρ′) | ∃L, L′ ∈ T→ L: ((L, ρ), (L′, ρ′)) ∈ Y }
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Towards thread-modular analyses Rely-guarantee as abstract interpretation

Flow-insensitive abstraction (cont.)

Flow-insensitive fixpoint semantics: (omitting errors Ω)

We apply αnf
R and αnf

A to the nested fixpoint semantics.

Rlnf def
= lfpλZ .λt. lfpRnf

t(B
nf (Z )), where

Bnf (Z )(t)
def
= { (ρ, ρ′) | ∃`, `′ ∈ L: (`, ρ) ∈ Z (t) ∧ (`, ρ)→t (`′, ρ′) }

Rnf
t (Y )(X )

def
= R loc

t (X ) ∪ Anf
t (Y )(X )

R loc
t (X )

def
= {(`it , λV .0)} ∪ { (`′, ρ′) | ∃(`, ρ) ∈ X : (`, ρ)→t (`′, ρ′) }

Anf
t (Y )(X )

def
= { (`, ρ′) | ∃ρ, u 6= t: (`, ρ) ∈ X ∧ (ρ, ρ′) ∈ Y (u) }

where →t is the transition relation for thread t alone: τ [statt ]

Cost/precision trade-off:

less variables
=⇒ subsequent numeric abstractions are more efficient
sufficient to analyze our first example (p. 34)
insufficient to analyze x ← x + 1 || x ← x + 1
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Towards thread-modular analyses Rely-guarantee as abstract interpretation

Non-relational interference abstraction

Idea: simplify further flow-insensitive interferences

numeric relations are more costly than numeric sets
=⇒ remove input sensitivity

relational domains are more costly than non-relational
=⇒ abstract the interference on each variable separately

Non-relational interference abstraction:

αnr
A : P(E × E)→ (V→ P(R))

αnr
A (Y )

def
= λV .{ x ∈ V | ∃(ρ, ρ′) ∈ Y : ρ(V ) 6= x ∧ ρ′(V ) = x }

(remember which variables are modified and their new values)

To apply interferences, we get, in the nested fixpoint form:

Anr
t (Y )(X )

def
=

{ (`, ρ[V 7→ v ]) | (`, ρ) ∈ X ,V ∈ V, ∃u 6= t: v ∈ Y (u)(V ) }
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Towards thread-modular analyses Rely-guarantee as abstract interpretation

A note on unbounded threads

Extension: relax the finiteness constraint on T

there is still a finite syntactic set of threads Ts

some threads T∞ ⊆ Ts can have several instances

(possibly an unbounded number)

Flow-insensitive analysis:

local state and interference domains have finite dimensions
(Et and (L × E)× (L × E), as opposed to E and E × E)

all instances of a thread t ∈ Ts are isomorphic
=⇒ iterate the analysis on the finite set Ts (instead of T)

we must handle self-interferences for threads in T∞:

Anf
t (Y )(X )

def
=

{ (`, ρ′) | ∃ρ, u: (u 6= t∨ t ∈ T∞)∧ (`, ρ) ∈ X ∧ (ρ, ρ′) ∈ Y (u) }
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Towards thread-modular analyses Rely-guarantee as abstract interpretation

From traces to thread-modular analyses

abstract states
(T× L)→ E]

abstract interferences
T→ E]

static analyzer

non-relational interferences

T→ P(E)

αE
OO

local states

(T× L)→ P(E)

αE

OO

flow-insensitive interferences

T→ P(E × E)

αnr
A

OO

rely-guarantee
(without aux. variables)

local states

Rl :
∏

t∈T {t} → P(Σt )

αnf
R

OO

interferences

A : T→ P(Σ× Σ)

αnf
A

OO

rely-guarantee
(with aux. variables)

πt

OO
αitf
OO

interleaved execution trace prefixes test
Tp ∈ P(Σ∗)
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Towards thread-modular analyses Rely-guarantee as abstract interpretation

Compare with sequential analyses. . .

abstract states
L → E] static analyzer

states

R ∈ P(Σ)

αE

OO

reachability

execution trace prefixes

Tp ∈ P(Σ∗)

αp

OO

test
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Construction of an interference-based analysis

Construction of an interference-based analysis
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Construction of an interference-based analysis

Reminder: sequential analysis in denotational form

Expression semantics: EJ expr K : E → (P(R)× P(Ω))

EJX K ρ def
= 〈 { ρ(X ) }, ∅ 〉

EJ [c1, c2] K ρ def
= 〈 { x ∈ R | c1 ≤ x ≤ c2 }, ∅ 〉

EJ−e1 K ρ def
= let 〈V1, O1 〉 = EJ e1 K ρ in 〈 {−v1 | v1 ∈ V1 }, O1 〉

EJ e1 �ω e2 K ρ def
= let ∀i ∈ { 1, 2 }: 〈Vi , Oi 〉 = EJ ei K ρ in

〈 { v1 � v2 | vi ∈ Vi , � 6= / ∨ v2 6= 0 }, O1 ∪ O2 ∪ {ω if � = / ∧ 0 ∈ V2 } 〉

Statement semantics: CJ stat K : (P(E)× P(Ω))→ (P(E)× P(Ω))

CJX ← e K 〈R, O 〉 def
= 〈 ∅, O 〉 t

⊔
ρ∈R 〈 { ρ[X 7→ v ] | v ∈ Vρ }, Oρ 〉

CJ e ./ 0? K 〈R, O 〉 def
= 〈 ∅, O 〉 t

⊔
ρ∈R 〈 { ρ | ∃v ∈ Vρ: v ./ 0 }, Oρ 〉

CJ if e ./ 0 then s KX def
= (CJ s K ◦ CJ e ./ 0? K )X t CJ e 6./ 0? KX

CJ while e ./ 0 do s KX def
=

CJ e 6./ 0? K (lfpλY .X t (CJ s K ◦ CJ e ./ 0? K )Y )

CJ s1; s2 K def
= CJ s2 K ◦ CJ s1 K

where 〈Vρ, Oρ 〉
def
= EJ e K ρ
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Construction of an interference-based analysis

Denotational semantics with interferences

Interferences in I
def
= T× V× R

〈 t, X , v 〉 means: t can store the value v into the variable X

We define the analysis of a thread t
with respect to a set of interferences I ⊆ I.

Expressions with interference: for thread t

EtJ expr K : (E × P(I))→ (P(R)× P(Ω))

Apply interferences to read variables:

EtJX K 〈 ρ, I 〉 def
= 〈 { ρ(X ) } ∪ { v | ∃u 6= t: 〈 u, X , v 〉 ∈ I }, ∅ 〉

Pass recursively I down to sub-expressions:

EtJ−e1 K 〈 ρ, I 〉 def
=

let 〈V1, O1 〉 = EtJ e1 K 〈 ρ, I 〉 in 〈 {−v1 | v1 ∈ V1 }, O1 〉
. . .
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Construction of an interference-based analysis

Denotational semantics with interferences (cont.)

Statements with interference: for thread t

CtJ stat K : (P(E)× P(Ω)× P(I))→ (P(E)× P(Ω)× P(I))

pass interferences to expressions

collect new interferences due to assignments

accumulate interferences from inner statements

CtJX ← e K 〈R, O, I 〉 def
=

〈 ∅, O, I 〉 t
⊔
ρ∈R 〈 { ρ[X 7→ v ] | v ∈ Vρ }, Oρ, { 〈 t, X , v 〉 | v ∈ Vρ } 〉

CtJ s1; s2 K def
= CtJ s2 K ◦ CtJ s1 K

· · ·

(noting 〈Vρ, Oρ 〉
def
= EtJ e K 〈 ρ, I 〉)

(t is now the element-wise ∪ in P(E)× P(Ω)× P(I))
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Construction of an interference-based analysis

Denotational semantics with interferences (cont.)

Program semantics: PJ prog K ⊆ Ω

Given prog ::= stat1 || · · · || statn, we compute:

PJ prog K def
=
[
lfpλ〈O, I 〉.

⊔
t∈T [CtJ statt K 〈 E0, ∅, I 〉]Ω,I

]
Ω

each thread analysis starts in an initial environment set

E0
def
= {λV .0 }

[X ]Ω,I projects X ∈ P(E)× P(Ω)× P(I) on P(Ω)× P(I)
and interferences and errors from all threads are joined
(the output environments are ignored)

PJ prog K only outputs the set of possible run-time errors
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Construction of an interference-based analysis

Example

Example

t1 t2

while `1 0 = 0 do while `4 0 = 0 do
`2 if x < y then `5 if y < 10 then
`3 x ← x + 1 `6 y ← y + 1

Concrete interference semantics:

iteration 1
I = ∅
`1 : x = 0, y = 0
`4 : x = 0, y ∈ [0, 10]
new I = { 〈 t2, y , 1 〉, . . . , 〈 t2, y , 10 〉 }
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Construction of an interference-based analysis

Example

Example

t1 t2

while `1 0 = 0 do while `4 0 = 0 do
`2 if x < y then `5 if y < 10 then
`3 x ← x + 1 `6 y ← y + 1

Concrete interference semantics:

iteration 2
I = { 〈 t2, y , 1 〉, . . . , 〈 t2, y , 10 〉 }
`1 : x ∈ [0, 10], y = 0
`4 : x = 0, y ∈ [0, 10]
new I = { 〈 t1, x , 1 〉, . . . , 〈 t1, x , 10 〉, 〈 t2, y , 1 〉, . . . , 〈 t2, y , 10 〉 }
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Construction of an interference-based analysis

Example

Example

t1 t2

while `1 0 = 0 do while `4 0 = 0 do
`2 if x < y then `5 if y < 10 then
`3 x ← x + 1 `6 y ← y + 1

Concrete interference semantics:

iteration 3
I = { 〈 t1, x , 1 〉, . . . , 〈 t1, x , 10 〉, 〈 t2, y , 1 〉, . . . , 〈 t2, y , 10 〉 }
`1 : x ∈ [0, 10], y = 0
`4 : x = 0, y ∈ [0, 10]
new I = { 〈 t1, x , 1 〉, . . . , 〈 t1, x , 10 〉, 〈 t2, y , 1 〉, . . . , 〈 t2, y , 10 〉 }
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Construction of an interference-based analysis

Example

Example

t1 t2

while `1 0 = 0 do while `4 0 = 0 do
`2 if x < y then `5 if y < 10 then
`3 x ← x + 1 `6 y ← y + 1

Concrete interference semantics:

iteration 3
I = { 〈 t1, x , 1 〉, . . . , 〈 t1, x , 10 〉, 〈 t2, y , 1 〉, . . . , 〈 t2, y , 10 〉 }
`1 : x ∈ [0, 10], y = 0
`4 : x = 0, y ∈ [0, 10]
new I = { 〈 t1, x , 1 〉, . . . , 〈 t1, x , 10 〉, 〈 t2, y , 1 〉, . . . , 〈 t2, y , 10 〉 }

Note: we don’t get that x ≤ y at `1, only that x , y ∈ [0, 10]
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Construction of an interference-based analysis

Interference abstraction

Abstract interferences I]

P(I)
def
= P(T× V× R) is abstracted as I]

def
= (T× V)→ R]

where R] abstracts P(R) (e.g. intervals)

Abstract semantics with interferences C]tJ s K

derived from C]J s K in a generic way:

Example: C]tJX ← e K 〈R], Ω, I ] 〉

for each Y in e, get its interference Y ]
R =

⊔]
R { I ]〈 u, Y 〉 | u 6= t }

if Y ]
R 6= ⊥

]
R, replace Y in e with get〈Y , R] 〉 t]R Y ]

R
(where get(Y ,R]) extracts the abstract values in R] of a variable
Y from R] ∈ E])

compute 〈R]′, O ′ 〉 = C]J e K 〈R], O 〉

enrich I ]〈 t, X 〉 with get(X ,R]′)

course 08-A Static Analysis of Concurrent Programs Antoine Miné p. 56 / 81



Construction of an interference-based analysis

Static analysis with interferences

Abstract analysis

P]J prog K def
=[

limλ〈O, I ] 〉. 〈O, I ] 〉O
⊔]

t∈T

[
C]tJ statt K 〈 E]0, ∅, I ] 〉

]
Ω,I]

]
Ω

effective analysis by structural induction

termination ensured by a widening

parametrized by a choice of abstract domains R], E]

interferences are flow-insensitive and non-relational in R]

thread analysis remains flow-sensitive and relational in E]

[Miné12]
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Construction of an interference-based analysis Path-based semantics

Path-based semantics
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Construction of an interference-based analysis Path-based semantics

Control paths

atomic ::= X ← expr | expr ./ 0?

Control paths

π : stat → P(atomic∗)

π(X ← e)
def
= {X ← e }

π(if e ./ 0 then s)
def
= ({ e ./ 0? } · π(s)) ∪ { e 6./ 0? }

π(while e ./ 0 do s)
def
=
(⋃

i≥0({ e ./ 0? } · π(s))i
)
· { e 6./ 0? }

π(s1; s2)
def
= π(s1) · π(s2)

π(stat) is a (generally infinite) set of finite control paths
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Construction of an interference-based analysis Path-based semantics

Path-based concrete semantics of sequential programs

Join-over-all-path semantics

�JP K : (P(E)× P(Ω))→ (P(E)× P(Ω)) P ⊆ atomic∗

�JP K〈R, O 〉 def
=

⊔
s1·...·sn∈P

(CJ sn K ◦ · · · ◦ CJ s1 K )〈R, O 〉

Semantic equivalence

CJ stat K = �Jπ(stat) K
(not true in the abstract)

Advantages:

easily extended to concurrent programs (path interleavings)

able to model program transformations (weak memory models)
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Construction of an interference-based analysis Path-based semantics

Path-based concrete semantics of concurrent programs

Concurrent control paths

π∗
def
= { interleavings of π(statt), t ∈ T }
= { p ∈ atomic∗ | ∀t ∈ T, proj t(p) ∈ π(statt) }

Interleaving program semantics

P∗J prog K def
= [�Jπ∗ K〈 E0, ∅ 〉 ]Ω

(proj t(p) keeps only the atomic statement in p coming from thread t)
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Construction of an interference-based analysis Path-based semantics

Soundness of the interference semantics

Soundness theorem

P∗J prog K ⊆ PJ prog K

Proof sketch:

define �tJP KX def
=
⊔
{CtJ s1; . . . ; sn K X | s1 · . . . · sn ∈ P },

then �tJπ(s) K = CtJ s K ;

given the interference fixpoint I ⊆ I from PJ prog K ,
prove by recurrence on the length of p ∈ π∗ that:

∀t ∈ T,∀ρ ∈ [�J p K〈 E0, ∅ 〉]E ,
∃ρ′ ∈ [�tJ proj t(p) K〈 E0, ∅, I 〉]E such that
∀X ∈ V, ρ(X ) = ρ′(X ) or 〈 u, X , ρ(X ) 〉 ∈ I for some u 6= t.

[�J p K〈 E0, ∅ 〉]Ω ⊆
⋃

t∈T [�tJ proj t(p) K〈 E0, ∅, I 〉]Ω

Note: sound but not complete
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Weakly consistent memories

course 08-A Static Analysis of Concurrent Programs Antoine Miné p. 63 / 81



Construction of an interference-based analysis Weakly consistent memories

Issues with weak consistency

program written

F1 ← 1; F2 ← 1;
if F2 = 0 then if F1 = 0 then
S1 S2

−→
program executed

if F2 = 0 then if F1 = 0 then
F1 ← 1; F2 ← 1;
S1 S2

(simplified Dekker mutual exclusion algorithm)

S1 and S2 cannot execute simultaneously.

Not a sequentially consistent behavior!

Caused by:

write FIFOs, caches, distributed memory

hardware or compiler optimizations, transformations

. . .

behavior accepted by Java [Mans05]
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Construction of an interference-based analysis Weakly consistent memories

Out of thin air principle

original program

R1 ← X ; R2 ← Y ;
Y ← R1 X ← R2

−→
“optimized” program

Y ← 42;
R1 ← X ; R2 ← Y ;
Y ← R1 X ← R2

(example from causality test case #4 for Java by Pugh et al.)

We should not have R1 = 42.

Possible if we allow speculative writes!
=⇒ we disallow this kind of program transformations.

(also forbidden in Java)
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Construction of an interference-based analysis Weakly consistent memories

Atomicity and granularity

original program

X ← X + 1 X ← X + 1

−→
executed program

r1 ← X + 1 r2 ← X + 1
X ← r1 X ← r2

We assumed that assignments are atomic. . .

but that may not be the case

The second program admits more behaviors
e.g.: X = 1 at the end of the program

[Reyn04]
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Construction of an interference-based analysis Weakly consistent memories

Path-based definition of weak consistency

Acceptable control path transformations: p  q

only reduce interferences and errors

Reordering: X1 ← e1 · X2 ← e2  X2 ← e2 · X1 ← e1

(if X1 /∈ var(e2), X2 /∈ var(e1), and e1 does not stop the program)

Propagation: X ← e · s  X ← e · s[e/X ]
(if X /∈ var(e), var(e) are thread-local, and e is deterministic)

Factorization: s1 · . . . · sn  X ← e · s1[X/e] · . . . · sn[X/e]
(if X is fresh, ∀i , var(e) ∩ lval(si ) = ∅, and e has no error)

Decomposition: X ← e1 + e2  T ← e1 · X ← T + e2

(change of granularity)

. . .

but NOT:

“out-of-thin-air” writes: X ← e  X ← 42 · X ← e
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Construction of an interference-based analysis Weakly consistent memories

Soundness of the interference semantics

Interleaving semantics of transformed programs P′∗J prog K

π′(s)
def
= { p | ∃p′ ∈ π(s): p′  ∗ p }

π′∗
def
= { interleavings of π′(statt), t ∈ T }

P′∗J prog K def
= [�Jπ′∗ K〈 E0, ∅ 〉 ]Ω

Soundness theorem

P′∗J prog K ⊆ PJ prog K

=⇒ the interference semantics is sound
wrt. weakly consistent memories and changes of granularity
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Synchronisation

course 08-A Static Analysis of Concurrent Programs Antoine Miné p. 69 / 81



Construction of an interference-based analysis Synchronisation

Scheduling

Synchronization primitives

stat ::= lock(m)
| unlock(m)

m ∈ M : finite set of non-recursive mutexes

Scheduling

mutexes ensure mutual exclusion

a each time, each mutex can be locked by a single thread

mutexes enforce memory consistency and atomicity

no optimization across lock and unlock instructions

memory caches and buffer are flushed
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Construction of an interference-based analysis Synchronisation

Mutual exclusion

WW W

R RWR

lock(m) unlock(m)

p1

p2

lock(m) unlock(m)

Interleaving semantics P∗J prog K :

restrict interleavings of control paths

Interference semantics PJ prog K , P]J prog K :

partition wrt. an abstract local view of the scheduler C

E  E × C, E]  C→ E]

I
def
= T× V× R  I

def
= T× C× V× R,

I]
def
= (T× V)→ R]  I]

def
= (T× C× V)→ R]
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Construction of an interference-based analysis Synchronisation

Mutual exclusion

WW W

R RWR

lock(m) unlock(m)

lock(m) unlock(m)

p2

p1

Data-race effects

Partition wrt. mutexes M ⊆ M held by the current thread t

CtJX ← e K 〈 ρ, M, I 〉 adds
{ 〈 t, M, X , v 〉 | v ∈ EtJX K 〈 ρ, M, I 〉 } to I

EtJX K 〈 ρ, M, I 〉 =
{ ρ(X ) } ∪ { v | 〈 t ′, M ′, X , v 〉 ∈ I , t 6= t ′, M ∩M ′ = ∅ }
flow-insensitive, subject to weak memory consistency
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Construction of an interference-based analysis Synchronisation

Mutual exclusion

WW W

R RWR

lock(m) unlock(m)

p1

p2

lock(m) unlock(m)

Well-synchronized effects

last write before unlock affects first read after lock

partition interferences wrt. a protecting mutex m (and M)

CtJ unlock(m) K 〈 ρ, M, I 〉 stores ρ(X ) into I

CtJ lock(m) K 〈 ρ, M, I 〉 imports values form I into ρ

imprecision: non-relational, largely flow-insensitive

course 08-A Static Analysis of Concurrent Programs Antoine Miné p. 71 / 81



Construction of an interference-based analysis Synchronisation

Example analysis

abstract consumer/producer

t1 t2

while 0=0 do while 0=0 do
lock(m);`1 lock(m);
if X > 0 then `2 X ← X − 1; X ← X + 1;
unlock(m); if X > 10 then X ← 10;
`3 Y ← X unlock(m)

at `1, the unlock− lock effect from t2 imports {X} × [1, 10]

at `2, X ∈ [1, 10], no effect from t2: X ← X − 1 is safe

at `3, X ∈ [0, 9], and t2 has the effects {X} × [1, 10]
so, Y ∈ [0, 10]
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Limitations of the interference abstraction
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Construction of an interference-based analysis Limitations of the interference abstraction

Lack of relational lock invariants

a difficult example

E0 : X = Y = 5

while 1 do while 1 do
lock(m); lock(m);
if X > 0 then if X < 10 then

X ← X − 1; X ← X + 1;
Y ← Y − 1; Y ← Y + 1;

unlock(m) unlock(m)

Our analysis finds X ∈ [0, 10], but no bound on Y .

Actually Y ∈ [0, 10].

To prove this, we would need to infer the relational invariant
X = Y at lock boundaries.
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Construction of an interference-based analysis Limitations of the interference abstraction

Lack of inter-process flow-sensitivity

a more difficult example

while 1 do while 1 do
lock(m); lock(m);
X ← X + 1; X ← X + 1;
unlock(m); unlock(m);
lock(m); lock(m);
X ← X − 1; X ← X − 1;
unlock(m) unlock(m)

Our analysis finds no bound on X .

Actually X ∈ [−2, 2] at all program points.
To prove this we need to infer an invariant on
the history of interleaved executions:
no more than two incrementation (resp. decrementation) can
occur without a decrementation (resp. incrementation).
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Summary

Conclusion

We presented a static analysis that is:

inspired from thread-modular proof methods

sound for all interleavings

sound for weakly consistent memory semantics

aware of scheduling and synchronization

parametrized by abstract domains

Future work: leverage the connection with rely-guarantee

relational interferences
(especially for synchronized program parts)

flow-sensitive interferences and invariants
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INP Lorraine, Nancy, 1985.

[Hoar69] C. A. R. Hoare. An axiomatic basis for computer

programming. In Com. ACM, 12(10):576–580, 1969.

course 08-A Static Analysis of Concurrent Programs Antoine Miné p. 79 / 81
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