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Signalling Pathways

Eikuch, 2007
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Pathway maps

Oda, Matsuoka, Funahashi, Kitano, Molecular Systems Biology, 2005
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Differential models







































dx1
dt

= −k1 · x1 · x2 + k−1 · x3
dx2
dt

= −k1 · x1 · x2 + k−1 · x3
dx3
dt

= k1 · x1 · x2 − k−1 · x3 + 2 · k2 · x3 · x3 − k−2 · x4)
dx4
dt

= k2 · x
2
3
− k2 · x4 +

v4·x5
p4+x5

− (k3 · x4 − k−3 · x5)
dx5
dt

= · · ·

...
dxn
dt

= −k1 · x1 · c2 + k−1 · x3

− do not describe the structure of molecules;
− combinatorial explosion: forces choices that are not principled;
− a nightmare to modify.
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A gap between two worlds

Two levels of description:

1. Databases of proteins interactions in natural language
+ documented and detailed description
+ transparent description
− cannot be interpreted

2. ODE-based models
+ can be integrated
− opaque modelling process, models can hardly be modified
− there are also some scalability issues.
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Rule-based approach

We use site graph rewrite systems

1. The description level matches with both

• the observation level
• and the intervention level

of the biologist.
We can tune the model easily.

2. Model description is very compact.

3. Quantitative semantics can be defined.
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Complexity walls
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Static analysis of reachable species (I/II)

Semi-fluid medium: the notion of individual is meaningless.

Design a static analysis to approximate the set of reachable species [VMCAI’08]

which focuses on the relationships between the states of the sites of each
agent:

This analysis is efficient, suitable to our problem, and accurate.
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Static analysis of reachable species (II/II)

Applications:

1. check the consistency of a model [ICCMSE’07]

2. compute the properties to allow fast simulation [APLAS’07]

3. simplify models,

4. compute independent fragments of chemical species [PNAS’09, LICS’10,Chaos’10]

The analysis is complete (no false positif) for a significatif kernel of Kappa
[VMCAI’08].

Jérôme Feret 10 Friday, the 31rd of January, 2014



Model reduction

The ground differential system uses one variable per chemical species;
We directly compute its exact projection over independent fragments of chem-
ical species.
With a small model, 356 chemical species are reduced into 38 fragments:

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  1  2  3  4  5  6

C
on

ce
nt

ra
tio

n

Time

/home/feret/demo/egfr-compressed.ka

(reduced) [EGFR(Y48!0),SHC(Y7!1,pi!0),GRB2(a!1,b!2),SOS(d!2)]
(reduced) [EGFR(Y68!0),GRB2(a!0,b!1),SOS(d!1)]

(ground) [EGFR(Y48!0),SHC(Y7!1,pi!0),GRB2(a!1,b!2),SOS(d!2)]
(ground) [EGFR(Y68!0),GRB2(a!0,b!1),SOS(d!1)]

On a bigger model, 1019 chemical species are reduced into 180 000 frag-
ments. [PNAS’09,LICS’10,Chaos’10]
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In this talk...

We illustrate the following concepts:

• Galois connections:

-- the upper closure operator γ ◦ α,
-- the lower closure operator α ◦ γ;

• soundness:

-- the abstraction forgets no behavior;

• completeness:

-- sufficient conditions that ensure the absence of false positive;

on an abstraction of the reachable connected components in a site-graph
rewriting language.
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Joint-work with...

Walter Fontana
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Vincent Danos
Edinburgh

Russ Harmer
Paris VII

Jean Krivine
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Overview

1. Introduction

2. Language: Kappa

3. Abstraction: Local views

4. Completeness: false positives?

5. Local fragment of Kappa

6. Decontextualization

7. Conclusion
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Signaling Pathways

Eikuch, 2007
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A single story
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A concurrent story
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Overshoot

When we combine the two stories. . .

. . . we get an overshoot.
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A chemical species

E

R R

E

l

r
r

l

r
r

E(r!1), R(l!1,r!2), R(r!2,l!3), E(r!3)
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A Unbinding/Binding Rule

E

R

E

R
l

r r

l

r r

E(r), R(l,r)←→ E(r!1), R(l!1,r)

Jérôme Feret 11 Friday, the 31rd of January, 2014



Internal state

E

R

E

R
l

r

p
l

r

Y1 Y1

u

R(Y1∼u,l!1), E(r!1)←→ R(Y1∼p,l!1), E(r!1)
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Early EGF example

Ligand-receptor binding, receptor dimerisation, rtk x-phosph, & de-phosph
 01: R(l,r), E(r) <-> R(l1,r), E(r1)
 02: R(l1,r), R(l2,r) <-> R(l1,r3), R(l2,r3)
 03: R(r1,Y68) -> R(r1,Y68p)
       R(Y68p) -> R(Y68) 
 04: R(r1,Y48) -> R(r1,Y48p)
       R(Y48p) -> R(Y48) 

Sh x-phosph & de-phosph
 14: R(r2,Y48p1), Sh(π1,Y7) ->  R(r2,Y48p1), Sh(π1,Y7p)
 ??: Sh(π1,Y7p)  ->  Sh(π1,Y7)
 16: Sh(π,Y7p) -> Sh(π,Y7)

Y68-G binding
 09: R(Y68p),  G(a,b)  <-> R(Y68p1)+G(a1,b)
 11: R(Y68p),  G(a,b2) <-> R(Y68p1)+G(a1,b2)

egf rules 1

receptor type: R(l,r,Y68,Y48)

refined from 
R(Y68p)+G(a)<->R(Y68p1)+G(a1)

refined from 
Sh(Y7p)-> Sh(Y7)

protein shorthands: E:=egf, R:=egfr, So:=Sos,Sh:=Sh,G:=grb2
site abbreviations & fusions: Y68:=Y1068, Y48:=Y1148/73, Y7:=Y317, π:=PTB/SH2
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Early EGF example

G-So binding
 10: R(Y68p1), G(a1,b), So(d) <-> R(Y68p1), G(a1,b2), So(d2)
 12: G(a,b), So(d)   <->  G(a,b1), So(d1)
 22: Sh(π,Y7p2), G(a2,b), So(d)      <->  Sh(π,Y7p2), G(a2,b1), S(d1)
 19: Sh(π1,Y7p2), G(a2,b), So(d)   <->  Sh(π1,Y7p2), G(a2,b1), S(d1) 

Y48-Sh binding
13: R(Y48p), Sh(π,Y7)  <-> R(Y48p1), Sh(π1,Y7) 
15: R(Y48p), Sh(π,Y7p) <-> R(Y48p1), Sh(π1,Y7p)
18: R(Y48p), Sh(π,Y7p1), G(a1,b)  <-> R(Y48p2), Sh(π2,Y7p1), G(a1,b)
20: R(Y48p), Sh(π,Y7p1), G(a1,b3), S(d3) <-> R(Y48p2), Sh(π2,Y7p1), G(a1,b3), S(d3)

Sh-G binding
17: R(Y48p1), Sh(π1,Y7p), G(a,b)   <-> R(Y48p1), Sh(π1,Y7p2), G(a2,b)
21: Sh(π,Y7p), G(a,b)  <->  Sh(π,Y7p1), G(a1,b)
23: Sh(π,Y7p), G(a,b2) <-> Sh(π,Y7p1), G(a1,b2)
24: R(Y48p1), Sh(π1,Y7p), G(a,b3), S(d3)  <-> R(Y48p1), Sh(π1,Y7p2), G(a2, b3), S(d3)

egf rules 2

refined from 
R(Y48p)+Sh(π)<->R(Y48p1)+Sh(π1)

why not simply G(b3)??

refined from 
Sh(π), G(a)<->Sh(π1), G(a1)

interface note: highlight 
the interacting parts

refined from 
So(d)+G(b)<->So(d1)+G(b1)
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Properties of interest

1. Show the absence of modeling errors:

• detect dead rules ;
• detect overlapping rules;
• detect non exhaustive interactions;
• detect rules with ambiguous molecularity.

2. Get idiomatic description of the networks:

• capture causality;
• capture potential interactions;
• capture relationships between site states;
• simplify rules.

3. Allow fast simulation:

• capture accurate approximation of the wake-up relation.
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Overview

1. Introduction

2. Language: Kappa

3. Abstraction: Local views

4. Completeness: false positives?

5. Local fragment of Kappa

6. Decontextualization
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Embedding

RR R

Φ

Φ

E E

Z Z ′

r

l

Y48

r

l

r

r

We write Z⊳Φ Z ′ iff:

• Φ is a site-graph morphism:

-- i is less specific than Φ(i),
-- if there is a link between (i, s) and (i ′, s ′),

then there is a link between (Φ(i), s) and (Φ(i ′), s ′).

• Φ is an into map (injective):

-- Φ(i) = Φ(i ′) implies that i = i ′.
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Set of reachable chemical species

Let R = {Ri} be a set of rules.
Let Species be the set of all chemical species (C, c1, c ′

1, . . . , ck, c
′
k, . . . ∈ Species).

Let Species0 be the set of initial .
We write:

c1, . . . , cm →Rk c
′
1, . . . , c

′
n

whenever:

1. there is an embedding of the lhs of Rk in the solution c1, . . . , cm;

2. the (embedding/rule) produces the solution c ′
1, . . . , c

′
n.

We are interested in Speciesω the set of all chemical species that can be
constructed in one or several applications of rules in R starting from the set
Species0 of initial chemical species.

(We do not care about the number of occurrences of each chemical species).
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Inductive definition

We define the mapping F as follows:

F :






℘(Species) → ℘(Species)

X 7→ X ∪

{

c ′
j

∣

∣

∣

∣

∃Rk ∈ R, c1, . . . , cm ∈ X,

c1, . . . , cm →Rk c
′
1, . . . , c

′
n

}

.

The set ℘(Species) is a complete lattice.
The mapping F is an extensive ∪-complete morphism.

We define the set of reachable chemical species as follows:

Speciesω =
⋃{

F
n(Species0)

∣

∣ n ∈ N
}
.
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Local views

E

R

E

R

R

E

r

l.

l
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Y1

u

l

Y1

r.

u

α({R(Y1∼u,l!1), E(r!1)}) = {R(Y1∼u,l!r.E); E(r!l.R)}.
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Galois connection

Let Local_view be the set of all local views.

Let α ∈ ℘(Species)→ ℘(Local_view) be the function that maps any set of
chemical species into the set of their local views.

The set ℘(Local_view) is a complete lattice.
The function α is a ∪-complete morphism.

Thus, it defines a Galois connection:

℘(Species) −−→←−−
α

γ

℘(Local_view).

(The function γ maps a set of local views into the set of complexes that can
be built with these local views).
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γ ◦ α

γ ◦ α is an upper closure operator: it abstracts away some information.

Guess the image of the following set of chemical species ?

{ }a

R
rl
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α ◦ γ

α ◦ γ is a lower closure operator: it simplifies (or reduces) constraints.

Guess the image of the following set of local views ?

{ }R
a

; a

S
rl

l.r.

l

r.

r

l.R RR R
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One more question

α ◦ γ is a lower closure operator: it simplifies (or reduces) constraints.

Guess the image of the following set of local views ?

{ }R
a

; a

R
r

l. R RR
l l

r. l.

r
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Abstract reactions

#

l

R R RR
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Abstract counterpart to F

We define F
♯ as:

F
♯ :






℘(Local_view) → ℘(Local_view)

Y 7→ Y ∪

{

lv ′
j

∣

∣

∣

∣

∃Rk ∈ R, lv1, . . . , lvm ∈ Y,

lv1, . . . , lvm →
♯

Rk
lv ′

1, . . . , lv
′
n

}

.

We have:

• F
♯ is extensive;

• F
♯ is monotonic;

• F ◦ γ
.

⊆ γ ◦ F♯;

• F
♯ ◦ α = α ◦ F ◦ γ ◦ α (we will see later why).
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Soundness

Theorem 1 Let:

1. (D,⊆,∪) and (D♯,⊑,⊔) be chain-complete partial orders;

2. D −−→←−−
α

γ

D♯ be a Galois connection;

3. F ∈ D→ D and F
♯ ∈ D♯ → D♯ be monotonic mappings such that:

F ◦ γ
.

⊆ γ ◦ F♯;

4. X0 ∈ D be an element such that: X0 ⊆ F(X0);

Then:

1. both lfpX0
F and lfpα(X0)

F
♯ exist,

2. lfpX0
F ⊆ γ(lfpα(X0)

F
♯).
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Which information is abstracted away ?

Our analysis is exact (no false positive):

• for EGF cascade (356 chemical species);

• for FGF cascade (79080 chemical species);

• for SBF cascade (around 1019 chemical species).

We know how to build systems with false positives. . .
. . .but they seem to be biologically meaningless.

This raises the following issues:

• Can we characterize which information is abstracted away ?

• Which is the form of the systems, for which we have no false positive ?

• Do we learn something about the biological systems that we describe ?
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Which information is abstracted away ?

Theorem 2 We suppose that:

1. (D,⊆) be a partial order;

2. (D♯,⊑,⊔) be chain-complete partial order;

3. D −−→←−−
α

γ

D♯ be a Galois connection;

4. F ∈ D→ D and F
♯ ∈ D♯ → D♯ are monotonic;

5. F ◦ γ
.

⊆ γ ◦ F♯;

6. X0, inv ∈ D such that:

• X0 ⊆ F(X0) ⊆ F(inv) ⊆ inv,
• inv = γ(α(inv)),
• and α(F(inv)) = F

♯(α(inv));

Species

inv
γ(lfpα(Species0)

F
♯)

Speciesω

Then, lfpα(X0)
F
♯ exists and γ(lfpα(X0)

F
♯) ⊆ inv.
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Proof I/III

We have already seen (previous lectures) that:

1. lfpα(X0)
F
♯ exists;

2. there exists an ordinal δ such that lfpα(X0)
F
♯ = F

♯δ(α(X0)).
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Proof II/III

Let us show that γ(lfpα(X0)
F
♯) ⊆ inv.

Let us prove instead by induction over δ that F♯δ(α(X0)) ⊑ α(inv).

• If Y ∈ D♯ is an element such that Y ⊑ α(inv),
F
♯(Y) ⊑ F

♯(α(inv)) (F♯ is mon)
F
♯(α(inv)) = α(F(inv)) (assumption)

α(F(inv)) ⊑ α(inv). (α is mon and inv is a post)

Thus: F♯(Y) ⊑ α(inv)

• If Yi ∈ D♯I is a chain of elements such that Yi ⊑ α(inv) for any i ∈ I,
then, ⊔Yi ⊑ α(inv) (lub).

So: F♯δ(α(X0)) ⊑ α(inv).
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Proof III/III

We have:
F
♯δ(α(X0)) ⊑ α(inv).

Since γ is monotonic:

γ(F♯δ(α(X0))) ⊆ γ(α(inv)).

But, by assumption, γ(α(inv)) = inv.
Thus,

γ(F♯δ(α(X0))) ⊆ inv.
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When is there no false positive ?

Theorem 3 We suppose that:

1. (D,⊆,∪) and (D♯,⊑,⊔) are chain-complete partial orders;

2. (D,⊆) −−→←−−
α

γ

(D♯,⊑) is a Galois connection;

3. F : D→ D is a monotonic map;

4. X0 is a concrete element such that X0 ⊆ F(X0);

5. F ◦ γ
.

⊆ γ ◦ F♯;

6. F
♯ ◦ α = α ◦ F ◦ γ ◦ α.

Then:

• lfpX0
F and lfpα(X0)

F
♯ exist;

• lfpX0
F = γ(α(lfpX0

F))⇐⇒ lfpX0
F = γ(lfpα(X0)

F
♯).

Jérôme Feret 34 Friday, the 31rd of January, 2014



Proof I/V

The (transfinite) sequence (F♯o(α(X0))) is defined and increasing since:

1. F
♯ ◦ α = α ◦ F ◦ γ ◦ α, so:

• F
♯ ◦ α is monotonic;

• for any X ∈ D,
there exists X ′ ∈ D, such that F♯(α(X)) = α(X ′);

2. Moreover, α is a ∪/⊔-complete morphism, so:

• for any increasing chain (α(Xi))i∈I,
there exists X ′ ∈ D, such that ⊔α(Xi) = α(X ′).

So there exists an ordinal δ such that:

F
♯(F♯δ(α(X0))) = F

♯δ(α(X0)).
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Proof II/V
Let us show that F♯δ(α(X0)) is a least fixpoint (greater than α(X0)):

Let Y be such that F♯(Y) = Y and α(X0) ⊑ Y.
Let us prove that F♯δ(α(X0)) ⊑ Y by (transfinite) induction:

1. If α(X) ⊑ Y, we have: F♯(α(X)) ⊑ Y.
Since:
F
♯(α(X)) = α(F(γ(α(X))))

α(F(γ(α(X)))) ⊑ α(F(γ(Y))) (α ◦ F ◦ γ is mon)
α(F(γ(Y))) ⊑ α(γ(F♯(Y))) (F ◦ γ

.

⊑ γ ◦ F♯ and α mon)
α(γ(F♯(Y))) ⊑ F

♯(Y) (α ◦ γ is reductive)
F
♯(Y) = Y (fixpoint)

2. If (Xi)i∈I ∈ DI is such that:

• (α(Xi))i∈I is a chain of elements;
• α(Xi) ⊑ Y for any i ∈ I.

Then ⊔α(Xi) ⊑ Y (⊔ is a least upper bound)
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Proof III/V

By induction, we have proved that:

1. lfpα(X0)
F
♯ exists;

2. lfpα(X0)
F
♯ = F

♯δ(α(X0)).
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Proof IV/V

Let us now show that:

lfpX0
F = γ(α(lfpX0

F))⇐⇒ lfpX0
F = γ(lfpα(X0)

F
♯).

• Easy implication: ⇐.
If lfpX0

F = γ(lfpα(X0)
F
♯),

then lfpX0
F = γ(lfpα(X0)

F
♯) = γ(α(γ(lfpα(X0)

F
♯))) = γ(α(lfpX0

F)).

• Other implication:

-- (easy inclusion)
We always have lfpX0

F ⊆ γ(lfpα(X0)
F
♯).
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Proof V/V

• other inclusion
We assume that γ(α(lfpX0

F)) = lfpX0
F.

We have to prove that: γ(lfpα(X0)
F
♯) ⊆ lfpX0

F.

We have: F♯(α(lfpX0
F)) = α(lfpX0

F).
Since:
F
♯(α(lfpX0

F)) = α(F(γ(α(lfpX0
F)))) (F♯ ◦ α = α ◦ F ◦ γ ◦ α)

α(F(γ(α(lfpX0
F)))) = α(F(lfpX0

F)) (γ(α(lfpX0
F)) = lfpX0

F)
α(F(lfpX0

F)) = α(lfpX0
F) (fixpoint)

It follows that: lfpα(X0)
F
♯ ⊑ α(lfpX0

F) (lfp and α(X0) ⊑ α(lfpX0
F))

Then, since γ is mon:

γ(lfpα(X0)
F
♯) ⊑ γ(α(lfpX0

F)) = lfpX0
F.
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When is there no false positive ?

Theorem 3 We suppose that:

1. (D,⊆,∪) and (D♯,⊑,⊔) are chain-complete partial orders;

2. (D,⊆) −−→←−−
α

γ

(D♯,⊑) is a Galois connection;

3. F : D→ D is a monotonic map;

4. X0 is a concrete element such that X0 ⊆ F(X0);

5. F ◦ γ
.

⊆ γ ◦ F♯;

6. F
♯ ◦ α = α ◦ F ◦ γ ◦ α.

Then:

• lfpX0
F and lfpα(X0)

F
♯ exist;

• lfpX0
F = γ(α(lfpX0

F))⇐⇒ lfpX0
F = γ(lfpα(X0)

F
♯).

We need to understand under which assumptions lfpX0
F = γ(α(lfpX0

F)).
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Swapping relation

We define the binary relation
SWAP
∼ among tuples Species∗ of chemical species.

We say that (C1, . . . , Cm)
SWAP
∼ (D1, . . . , Dn) if and only if:

(C1, . . . , Cm) matches with

r l

r l

while (D1, . . . , Dn) matches with

r l

r l
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Swapping closure

Theorem 4 Let X ∈ ℘(Species) be a set of chemical species.

The two following assertions are equivalent:

1. X = γ(α(X));

2. for any tuples (Ci), (Dj) ∈ Species∗ such that:

• (Ci) ∈ X∗,

• and (Ci)
SWAP
∼ (Dj);

we have (Dj) ∈ X∗.
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Proof (easier implication way)

If:

• X = γ(α(X)),

• (Ci)i∈I ∈ X∗,

• and (Ci)i∈I
SWAP
∼ (Dj)j∈J;

Then:
we have α({Ci | i ∈ I}) = α({Dj | j ∈ J}) (because (Ci)

SWAP
∼ (Dj))

and α({Ci | i ∈ I}) ⊆ α(X) (because (Ci) ∈ X∗ and α mon);
so α({Dj | j ∈ J}) ⊆ α(X);
so {Dj | j ∈ J} ⊆ γ(α(X)) (by def. of Galois connections);
so {Dj | j ∈ J} ⊆ X (since X = γ(α(X)));
so (Dj)j∈J ∈ X∗.
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Proof: more difficult implication way

For any X ∈ ℘(Local_view), γ(X) is given by a rewrite system:
For any lv ∈ X, we add the following rules:

F

.

.

.

F
E

.

E

E

I
E

.

F

F

F

F
E

.

E

E

E

F Fl

p

p

Y2

Y1

u

p

u

r.

Y2

Y1 Y3

u

l

p

r

u

Y3

Y3.

r

r

r

r

l l

Y3.

r.

l.

Y3rY3

l

p

p

u

r.

Y2

Y3

u

l.

r

l.

r

l

p

p

u

r.

Y2

Y1 Y3

u

r.

r.

r.

Y1

I and semi-links are non-terminal.
I is the initial symbol.
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Proof (more difficult implication way)

We suppose that X is close with respect to
SWAP
∼ .

We want to prove that γ(α(X)) ⊆ X.

We prove, by induction, that any open complex that can be built by gathering
the views of α(X), can be embedded in a complex in X:

• By def. of α, this is satisfied for any local view in α(X);

• This remains satisfied after unfolding a semi-link with a local view;

• This remains satisfied after binding two semi-links.
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Initialization

E

F
E

.

E

F
E

.

.

I
r.

l

p

p

u

r.

Y2

Y1 Y3

u

r.

l

p

p

u

r.

Y2

Y1 Y3

u

C ∈ X
(since lv ∈ α(X))lv
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Unfolding a semi-link

.

.

E

F

F

F
E

..

.

..

F
E

.

open partial species

p

r

r

r.

l.

l.

p

u

r.

Y2

Y1 Y3

u

l

p

l

p

p

u

r.

Y2

Y1 Y3

u

r

C ∈ X C ′ ∈ X

lv
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Unfolding a semi-link

F

.

F
E

.

..

F
E

.

..

.

open partial species

l.

r

p

r

p

u

r.

Y2

Y1 Y3

u

l

p

l

p

p

u

r.

Y2

Y1 Y3

u

r

lv

C" ∈ X
(

SWAP
∼

)
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Binding two semi-links

F E

F
E

.

... ..

..

.

..

..

open partial species open partial species

l.
r.

rl lr

l.

r.

rrrr

C ∈ X C ′′ ∈ X
(

SWAP
∼

)
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Consequences

Let Y ∈ ℘(Local_view)) be a set of local views such that α(γ(Y)) = Y.

1. Each open complex C built with the local views in Y is a sub-complex of
a close complex C ′ in γ(Y).

2. When considering the rewrite system that computes γ(Y), any partial
rewriting sequence can be completed in a successful one.

Thus:

(a) γ(Y) is finite if and only if the grammar has a finite set of prefixes
(and the latter is decidable);

(b) We have F
♯ ◦ α = α ◦ F ◦ γ ◦ α.
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Overview

1. Introduction

2. Language: Kappa

3. Abstraction: Local views

4. Completeness: false positives?

5. Local fragment of Kappa

6. Decontextualization

7. Conclusion
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Outline

We have proved that:

• if the set Speciesω of reachable chemical species is close with respect

swapping
SWAP
∼ ,

• then the reachability analysis is exact (i.e. Speciesω = γ(lfpα(Species0)
F
♯)).

Now we give some sufficient conditions that ensure this property.
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Sufficient conditions

Whenever the following assumptions:

1. initial agents are not bound;

2. rules are atomic;

3. rules are local:

• only agents that interact are tested,
• no cyclic patterns (neither in lhs, nor in rhs);

4. binding rules do not interfere i.e. if both:

• A(a∼m,S),B(b∼n,T)→ A(a∼m!1,S),B(b∼n!1,T)
• and A(a∼m’,S’),B(b∼n’,T’)→ A(a∼m’!1,S’),B(b∼n’!1,T’),

then:

• A(a∼m,S),B(b∼n’,T’)→ A(a∼m!1,S),B(b∼n’!1,T’);

5. chemical species in γ(α(Speciesω)) are acyclic,

are satisfied, the set of reachable chemical species is local.
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Proof outline

We sketch a proof in order to discover sufficient conditions that ensure this
property:

• We consider tuples of complexes in which the same kind of links occur
twice.

• We want to swap these links.

• We introduce the history of their computation.

• There are several cases. . .
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First case (I/V)

..

.

.

..

.

..

rr
rr

C ∈ Speciesω C ′ ∈ Speciesω
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First case (II/V)

..

.

.

..

.

..

r r
r r

just before the links are made

C ∈ Speciesω
∗

C ′ ∈ Speciesω
∗

Jérôme Feret 56 Friday, the 31rd of January, 2014



First case (III/V)

..

.

.

..

.

.. rr
rr

C ∈ Speciesω
∗

we suppose we can swap the links
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First case (IV/V)

Then, we ensure that further computation steps:

• are always possible;

• have the same effect on local views;

• commute with the swapping relation
SWAP
∼ .

Cn

SWAP
∼ ,σ

//

R,φ

��

C ′
n

R,φ

��

Cn+1

SWAP
∼ ,σ

//C ′
n+1
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First case (V/V)

..
..

...

.

.

..

.

.. rr
rr

C ∈ Speciesω
∗

Jérôme Feret 59 Friday, the 31rd of January, 2014



Second case (I/II)

..
..

...

.

..

.

..

.

..

rr
rr

C ∈ Speciesω

we assume that the chemical species C is acyclic
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Second case (II/II)

..

.

.

..

.

..

..... ..
..

.

.

..

.

..

rr
rr

rr
rr
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Sufficient conditions

Whenever the following assumptions:

1. initial agents are not bound;

2. rules are atomic;

3. rules are local:

• only agents that interact are tested,
• no cyclic patterns (neither in lhs, nor in rhs);

4. binding rules do not interfere i.e. if both:

• A(a∼m,S),B(b∼n,T)→ A(a∼m!1,S),B(b∼n!1,T)
• and A(a∼m’,S’),B(b∼n’,T’)→ A(a∼m’!1,S’),B(b∼n’!1,T’),

then:

• A(a∼m,S),B(b∼n’,T’)→ A(a∼m!1,S),B(b∼n’!1,T’);

5. chemical species in γ(α(Speciesω)) are acyclic,

are satisfied, the set of reachable chemical species is local.
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Third case (I/III)

..
..

...

.

.

..

.

..

..

.

.

..

.

..

rr
rr

rr
rr

C ∈ Speciesω
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Third case (II/III)

..
..

...

.

.

..

.

..

.

.

..

.

rr rr

C ∈ Speciesω
∗
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Third case (II/III)

..
..

...

.

.

..

.

..

..

.

.

..

.

..

? ? ?

rr
rr

rr
rr

C ∈ SpeciesωC ∈ Speciesω
∗
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Non local systems

Species0
∆
= R(a∼u)

Rules
∆
=






R(a∼u) ↔ R(a∼p)
R(a∼u),R(a∼u) → R(a∼u!1),R(a∼u!1)
R(a∼p),R(a∼u) → R(a∼p!1),R(a∼p!1)
R(a∼p),R(a∼p) → R(a∼p!1),R(a∼p!1)






R(a∼u!1),R(a∼u!1) ∈ Speciesω
R(a∼p!1),R(a∼p!1) ∈ Speciesω
But R(a∼u!1),R(a∼p!1) 6∈ Speciesω.
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Non local systems

Species0
∆
= A(a∼u),B(a∼u)

Rules
∆
=






A(a∼u),B(a∼u)→ A(a∼u!1),B(a∼u!1)
A(a∼u!1),B(a∼u!1)→ A(a∼p!1),B(a∼u!1)
A(a∼u!1),B(a∼u!1)→ A(a∼u!1),B(a∼p!1)






A(a∼u!1),B(a∼p!1) ∈ Speciesω
A(a∼p!1),B(a∼u!1) ∈ Speciesω
But A(a∼p!1),B(a∼p!1) 6∈ Speciesω.
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Non local systems

Species0
∆
= A(a∼u)

Rules
∆
=

{
A(a∼u)↔ A(a∼p)
A(a∼u),A(a∼p)→ A(a∼u!1),A(a∼p!1)

}

A(a∼u!1),A(a∼p!1) ∈ Speciesω
But A(a∼p!1),A(a∼p!1) 6∈ Speciesω.

Jérôme Feret 68 Friday, the 31rd of January, 2014



Non local systems

Species0
∆
= R(a,b)

Rules
∆
= { R(a,b),R(a)→ R(a,b!1),R(a!1)}

R(a,b!2),R(a!2,b!1),R(a!1,b)∈ Speciesω
But R(a!1,b!1) 6∈ Speciesω.
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Overview

1. Introduction

2. Language: Kappa

3. Abstraction: Local views

4. Completeness: false positives?

5. Local fragment of Kappa

6. Decontextualization

7. Conclusion
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Outline

• we have a syntactic criterion in order to ensure that the set of reachable
chemical species of a kappa system is local ;

• we now design program transformations to help systems satisfying this
criterion ;

1. decontextualization
-- is fully automatic;
-- preserves the transition system;
-- simplifies rules thanks to reachability analysis.

2. conjugation
-- manual;
-- preserves the set of reachable chemical species;
-- uses backtrack to add new rules.
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Example

Initial rule:

R2(l!2,r),R1(l!1,r),E2(r!1),E1(r!2)→ R2(l!3,r!1),R1(l!2,r!1),E2(r!2),E1(r!3)

Decontextualized rule:

R2(l!_,r),R1(l!_,r)→ R2(l!_,r!1),R1(l!_,r!1)

We can remove redundant tests.
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Example

Initial rules:

Sh(Y7∼p!2,pi!1),G(a!2,b),R(Y48∼p!1) → Sh(Y7∼p,pi!1),G(a,b),R(Y48∼p!1)
Sh(Y7∼p!3,pi!1),G(a!3,b!2),So(d!2),R(Y48∼p!1) → Sh(Y7∼p,pi!1),G(a,b!2),So(d!2),R(Y48∼p!1)

Sh(Y7∼p!1,pi),G(a!1,b) → Sh(Y7∼p,pi),G(a,b)
Sh(Y7∼p!1,pi),G(a!1,b!_) → Sh(Y7∼p,pi),G(a,b!_)

Decontextualized rule:

Sh(Y7!1),G(a!1)→ Sh(Y7),G(a)

We can remove exhaustive enumerations.
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How does it work ?

To remove a test, we prove that:

• this test is satisfied whenever the other tests are satisfied;

• or each complex that passes all tests but this one also matches with the
left hand side of another rule that performs the same action.

Jérôme Feret 74 Friday, the 31rd of January, 2014



More formally

More formally:

• Each rule R is associated with the set S(R) of open chemical species
that can match its lhs;

• Rules are gathered in equivalence classes according to the actions they
perform;

• For each class [R], we compute:

G([R]) = ∪{S(R ′) | R ′ ∈ [R]}.

• For each class [R], Reach([R]) is an over approximation of the set of
open chemical species that may match the lhs of a rule R ′ ∈ [R].

A rule R may be decontextualized in a rule R ′ if:

S(R ′) ∩ Reach([R]) ⊆ G([R]).

Decontextualization is more efficient, if the reachability analysis is accurate.
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An undecontextualizable rule

Initial rule:

Sh(Y7∼u,pi!1),R(Y48∼p!1,r!_) -> Sh(Y7∼p,pi!1),R(Y48∼p!1,r!_)

Decontextualized rule:

Sh(Y7∼u,pi!1),R(Y48!1,r!_) -> Sh(Y7∼p,pi!1),R(Y48!1,r!_)
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Conjugation

If a rule R ′ is equivalent to a rule in the transitive closure of the system.
Then it may be included in the system without modifying reachable states.
To remove the context C of a rule, we try to apply it for another context C ′ by:

1. removing the context C ′ (backtrack) ;

2. building the context C ;

3. applying the initial rule ;

4. removing the context C (backtrack) ;

5. building the context C ′.

This is proved manually.

Jérôme Feret 77 Friday, the 31rd of January, 2014



Overview

1. Introduction

2. Language: Kappa

3. Abstraction: Local views

4. Completeness: false positives?

5. Local fragment of Kappa

6. Decontextualization

7. Conclusion
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Conclusion

• A scalable static analysis to abstract the reachable chemical species.

• A class of models for which the abstraction is complete.

• Many applications:

-- idiomatic description of reachable chemical species;
-- dead rule detection;
-- rule decontextualization;
-- computer-driven kinetic refinement.

• It can also help simulation algorithms:

-- wake up/inhibition map (agent-based simulation);
-- flat rule system generation (for bounded set of chemical species);
-- on the fly flat rule generation (for large/unbounded set)
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Syntax

Let V
∆
= {V,V1,V2, . . .} be a finite set of variables.

Let Z
∆
= {z, . . .} be the set of relative numbers.

Expressions are polynomial of variables V.

E ::= z | V | E + E | E × E

Programs are given by the following grammar:

P :== skip
| P;P

| V := E

| if (V≥0) {P} else {P}

| while (V≥0) {P}
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Semantics
We define the semantics JPK ∈ F((V → Z) ∪Ω) of a program P:

• JskipK(ρ) = ρ,

• JP1;P2K(ρ) =

{
Ω if JP1K(ρ) = Ω

JP2K(JP1K(ρ)) otherwise

• JV := EK(ρ) =

{
Ω if ρ = Ω

ρ [V 7→ ρ(E)] otherwise

• Jif (V ≥ 0) {P1} else {P2}K(ρ) =






Ω if ρ = Ω

JP1K(ρ) if ρ(V) ≥ 0

JP2K(ρ) otherwise

• Jwhile (V ≥ 0) {P}K(ρ) =






Ω if ρ = Ω

Ω if {ρ ′ ∈ Inv | ρ ′(V) < 0} = ∅

ρ ′ if ρ ′ = {ρ ′ ∈ Inv | ρ ′(V) < 0}

where Inv = lfp (X 7→ {ρ} ∪ {ρ ′′ | ∃ρ ′ ∈ X, ρ ′(V) ≥ 0 and ρ ′′ ∈ JPK(ρ ′)}).
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Flow of information

Given a program P, we say that the variable V1 flows into the variable V2 if,
and only if, the final value of V2 depends on the initial value pf V1, which is
written V1 ⇒P V2.

More formally,
V1 ⇒P V2 if and only if there exists ρ ∈ V → Z, z, z ′ ∈ Z such that one of the
following three assertions is satisfied:

1. JPK(ρ[V1 7→ z]) 6= Ω, JPK(ρ[V1 7→ z ′]) 6= Ω,
and JPK(ρ[V1 7→ z])(V2) 6= JPK(ρ[V1 7→ z ′])(V2);

2. JPK(ρ[V1 7→ z]) = Ω and JPK(ρ[V1 7→ z ′]) 6= Ω;

3. JPK(ρ[V1 7→ z]) 6= Ω and JPK(ρ[V1 7→ z ′]) = Ω.
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Syntactic approximation (tentative)

Let P be a program.

We define the following binary relation →P among variables in V:
V1 →P V2 if and only if there is an assignement in P of the form V2 := E such
that V1 occurs in E.

Does V1⇒PV2 imply that V1→∗
PV2?
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Counter-example

We consider the following progrem P:

P ::= if (V1 ≥ 0)

{V2 := 0}

else
{V2 := 1}

For any ρ ∈ V → Z,
we have JPK(ρ[V1 7→ 0])(V2) = 0;
but, JPK(ρ[V1 7→ 1])(V2) = 1;
so V1 ⇒P V2;
But V19

∗
PV2.
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Syntactic approximation (tentative)

For each program points p in P,
we denote by test(p) the set of variables which occurs in the guard of the test
and while loop the scope of which contains the program point p.

We define the following binary relation → among variables in V:
V1 →P V2 if and only if there is an assignement in P of the form V2 := E at
program point p such that:

1. either V1 occurs in E;

2. or V1 ∈ test(p).

Does V1⇒PV2 imply that V1→∗
PV2?

Jérôme Feret 7 Friday, the 7th of February, 2014



Counter-example

We consider the following progrem P:

P ::= while (V1 ≥ 0) {skip}
For any ρ ∈ V → Z,
we have JPK(ρ[V1 7→ −1]) 6= Ω;
but, JPK(ρ[V1 7→ 0]) = Ω;
so V1 ⇒P V2;
But V19

∗
PV2.
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Approximation of the information flow

So as to get a sound approximation of the information flow,
we have to consider that a variable that is tested in the guard of a loop may
flow in any variable.

We define the following binary relation →P among variables in V:
V1 → V2 if and only if there is an assignement in P of the form V2 := E at
program point p such that:

1. either V1 occurs in E;

2. or V1 is tested in the guard of a loop;

3. or V1 ∈ test(p).

Theorem 1 If V1⇒PV2, then V1→∗
PV2?
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Limitations

The approximation is highly syntax-oriented.

• It is context-insensitive;

• It is very rough in the case of while loop,
=⇒ we could show statically that some loops always terminate to avoid
fictitious dependencies;

• we could detect some invariants to avoid fictitious dependencies.

Other forms of attacks could be modeled in the semantics: an atacker could
observe:

• computation time;

• memory assumption;

• heating.

(attacks cannot be exhaustively specified).
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Overview

1. Context and motivations

2. Handmade ODEs

3. Abstract interpretation framework

4. Kappa

5. Concrete semantics

6. Abstract semantics

7. Conclusion
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Signalling Pathways

Eikuch, 2007
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Pathway maps

Oda, Matsuoka, Funahashi, Kitano, Molecular Systems Biology, 2005
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Differential models






dx1
dt

= −k1 · x1 · x2 + k−1 · x3
dx2
dt

= −k1 · x1 · x2 + k−1 · x3
dx3
dt

= k1 · x1 · x2 − k−1 · x3 + 2 · k2 · x3 · x3 − k−2 · x4
dx4
dt

= k2 · x
2
3 − k2 · x4 +

v4·x5
p4+x5

− k3 · x4 − k−3 · x5
dx5
dt

= · · ·
...

dxn
dt

= −k1 · x1 · c2 + k−1 · x3

− do not describe the structure of molecules;
− combinatorial explosion: forces choices that are not principled;
− a nightmare to modify.
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A gap between two worlds

Two levels of description:

1. Databases of proteins interactions in natural language
+ documented and detailed description
+ transparent description
− cannot be interpreted

2. ODE-based models
+ can be integrated
− opaque modelling process, models can hardly be modified
− there are also some scalability issues.
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Rule-based approach

We use site graph rewrite systems

1. The description level matches with both

• the observation level
• and the intervention level

of the biologist.
We can tune the model easily.

2. Model description is very compact.
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Semantics

Several semantics (qualititative and/or quantitative) can be defined.

G
E

R

Sh

So

r

r

Y7

pi

b

a

Y68

l

d

Y48

Interaction
map

x

y1

y2

y3

z1

z2

z3

1/2

1/3

1

1

11/3

1/3

1/2

1/2

1/2

1/2

1/2

CTMC






dx1
dt

= −k1 · x1 · x2 + k−1 · x3
dx2
dt

= −k1 · x1 · x2 + k−1 · x3
dx3
dt

= k1 · x1 · x2 − k−1 · x3 + 2 · k2 · x3 · x3 − k−2 · x4
dx4
dt

= k2 · x
2
3 − k2 · x4 +

v4·x5
p4+x5

− k3 · x4 − k−3 · x5
dx5
dt

= · · ·
...

dxn
dt

= −k1 · x1 · c2 + k−1 · x3

ODEs
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Complexity walls
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A breach in the wall(s) ?
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A simple adapter

A C

B
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A simple adapter

A C

B A , ∅B∅ ←→ AB∅ kAB,kAB
d

A , ∅BC ←→ ABC kAB,kAB
d

∅B∅ , C ←→ ∅BC kBC,kBC
d

AB∅ , C ←→ ABC kBC,kBC
d
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A simple adapter

A C

B A , ∅B∅ ←→ AB∅ kAB,kAB
d

A , ∅BC ←→ ABC kAB,kAB
d

∅B∅ , C ←→ ∅BC kBC,kBC
d

AB∅ , C ←→ ABC kBC,kBC
d






d[A]
dt

= kAB
d ·[AB∅] + kAB

d ·[ABC] − kAB·[A]·∅B∅− kAB·A·∅BC
d[C]

dt
= kBC

d · ([∅BC] + [ABC]) − [C]·kBC· ([∅B∅] + [AB∅])
d[∅B∅]
dt

= kAB
d ·[AB∅] + kBC

d ·[∅BC] − kAB·[A]·[∅B∅] − kBC·[∅B∅] · [C]
d[AB∅]
dt

= kAB·[A]·[∅B∅] + kBC
d ·[ABC] − kAB

d ·[AB∅] − kBC · [AB∅] · [C]
d[∅BC]

dt
= kAB

d ·[ABC] + kBC·[C]·[∅B∅] − [∅BC]· (kBC
d + [A]·kAB)

d[ABC]

dt
= kAB · [A]·[∅BC] + kBC · [C]·[AB∅] − [ABC]· (kAB

d + kBC
d )
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A simple adapter

A C

B A , ∅B∅ ←→ AB∅ kAB,kAB
d

A , ∅BC ←→ ABC kAB,kAB
d

∅B∅ , C ←→ ∅BC kBC,kBC
d

AB∅ , C ←→ ABC kBC,kBC
d






d[A]
dt

= kAB
d ·[AB∅] + kAB

d ·[ABC] − kAB·[A]·∅B∅ − kAB·A·∅BC
d[C]

dt
= kBC

d · ([∅BC] + [ABC]) − [C]·kBC· ([∅B∅] + [AB∅])
d[∅B∅]
dt

= kAB
d ·[AB∅] + kBC

d ·[∅BC] − kAB·[A]·[∅B∅] − kBC·[∅B∅] · [C]
d[AB∅]
dt

= kAB·[A]·[∅B∅] + kBC
d ·[ABC] − kAB

d ·[AB∅] − kBC · [AB∅] · [C]
d[∅BC]

dt
= kAB

d ·[ABC] + kBC·[C]·[∅B∅] − [∅BC]· (kBC
d + [A]·kAB)

d[ABC]

dt
= kAB · [A]·[∅BC] + kBC · [C]·[AB∅] − [ABC]· (kAB

d + kBC
d )
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Two subsystems

A C

B
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Two subsystems
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Two subsystems
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������
������
������
������
������
������

CA

BB

[A] = [A]

[AB?]
∆
= [AB∅] + [ABC]

[∅B?]
∆
= [∅B∅] + [∅BC]






d[A]
dt

= kAB
d ·[AB?] − [A]·kAB·[∅B?]

d[AB?]
dt

= [A]·kAB·[∅B?] − kAB
d ·[AB?]

d[∅B?]
dt

= kAB
d ·[AB?] − [A]·kAB·[∅B?]

[C] = [C]

[?BC]
∆
= [∅BC] + [ABC]

[?B∅]
∆
= [∅B∅] + [AB∅]






d[C]

dt
= kBC

d ·[?BC] − [C]·kBC·[?B∅]
d[?BC]

dt
= [C]·kBC·[?B∅] − kBC

d ·[?BC]
d[?B∅]
dt

= kBC
d ·[?BC] − [C]·kBC·[?B∅]
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Dependence index

The binding with A and with C would be independent if, and only if:

[ABC]

[?BC]
=

[AB?]
[∅B?] + [AB?]

.

Thus we define the dependence index as follows:

X
∆
= [ABC]·([∅B?] + [AB?]) − [AB?]·[?BC].

We have (after a short computation):

dX

dt
= −X·

(

[A]·kAB + kAB
d + [C]·kBC + kBC

d

)

.

So the property:
[ABC]

[?BC]
=

[AB?]
[∅B?] + [AB?]

.

is an invariant (i.e. if it holds at time t, it holds at any time t ′ ≥ t).
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Jérôme Feret 16 Friday, the 7th of February, 2014



A system with a switch
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A system with a switch

(u,u,u) −→ (u,p,u) kc

(u,p,u) −→ (p,p,u) kl

(u,p,p) −→ (p,p,p) kl

(u,p,u) −→ (u,p,p) kr

(p,p,u) −→ (p,p,p) kr
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A system with a switch

(u,u,u) −→ (u,p,u) kc

(u,p,u) −→ (p,p,u) kl

(u,p,p) −→ (p,p,p) kl

(u,p,u) −→ (u,p,p) kr

(p,p,u) −→ (p,p,p) kr






d[(u,u,u)]
dt

= −kc·[(u,u,u)]
d[(u,p,u)]

dt
= −kl·[(u,p,u)] + kc·[(u,u,u)] − kr·[(u,p,u)]

d[(u,p,p)]
dt

= −kl·[(u,p,p)] + kr·[(u,p,u)]
d[(p,p,u)]

dt
= kl·[(u,p,u)] − kr·[(p,p,u)]

d[(p,p,p)]
dt

= kl·[(u,p,p)] + kr·[(p,p,u)]
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Two subsystems
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Two subsystems
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Two subsystems

[(u,u,u)] = [(u,u,u)]

[(u,p,?)]
∆
= [(u,p,u)] + [(u,p,p)]

[(p,p,?)]
∆
= [(p,p,u)] + [(p,p,p)]






d[(u,u,u)]
dt

= −kc·[(u,u,u)]
d[(u,p,?)]

dt
= −kl·[(u,p,?)] + kc·[(u,u,u)]

d[(p,p,?)]
dt

= kl·[(u,p,?)]

[(u,u,u)] = [(u,u,u)]

[(?,p,u)]
∆
= [(u,p,u)] + [(p,p,u)]

[(?,p,p)]
∆
= [(u,p,p)] + [(p,p,p)]






d[(u,u,u)]
dt

= −kc·[(u,u,u)]
d[(?,p,u)]

dt
= −kr·[(?,p,u)] + kc·[(u,u,u)]

d[(?,p,p)]
dt

= kr·[(?,p,u)]
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Dependence index

The states of left site and right site would be independent if, and only if:
[(?,p,p)]

[(?,p,u)] + [(?,p,p)]
=

[(p,p,p)]
[(p,p,?)]

.

Thus we define the dependence index as follows:

X
∆
= [(p,p,p)]·([(?,p,u)] + [(?,p,p)]) − [(?,p,p)]·[(p,p,?)].

We have:

dX

dt
= −X ·

(

kl + kr
)

+ kc·[(p,p,p)]·[(u,u,u)].

So the property (X = 0) is not an invariant.
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Erroneous recombination
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Concentrations evolution with respect to time ([(u,u,u)](0) = 200).
[(p,p,p)] and 25 ·

(

[(p,p,p)] − [(p,p,?)]·[(?,p,p)]
[(?,p,?)]

)
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Conclusion

We can use the absence of flow of information to cut chemical species into
self-consistent fragments of chemical species:

− some information is abstracted away:
we cannot recover the concentration of any species;

+ flow of information is easy to abstract;

We are going to track the correlations that are read by the system.
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A model with symmetries

k1 k1

P −→ ⋆P k1 P⋆ −→ ⋆P⋆ k1
P −→ P⋆ k1

⋆P −→ ⋆P⋆ k1

k2
⋆P⋆ −→ ∅ k2
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Reduced model

2·k1

P −→ ⋆P 2·k1

k1

⋆P −→ ⋆P⋆ k1

k2
⋆P⋆ −→ ∅ k2
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Differential equations

• Initial system:

d

dt







P
⋆P
P⋆

⋆P⋆







=







−2·k1 0 0 0

k1 −k1 0 0

k1 0 −k1 0

0 k1 k1 −k2







·







P
⋆P
P⋆

⋆P⋆







• Reduced system:

d

dt







P
⋆P + P⋆

0
⋆P⋆







=







−2·k1 0 0 0

2·k1 −k1 0 0

0 0 0 0

0 k1 0 −k2







·







P
⋆P + P⋆

0
⋆P⋆
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Invariant
We wonder whether or not:

[⋆P] = [P⋆],

Thus we define the difference X as follows:
X

∆
= [⋆P] − [P⋆].

We have:

dX

dt
= −k1 · X.

So the property (X = 0) is an invariant.

Thus, if [⋆P] = [P⋆] at time t = 0, then [⋆P] = [P⋆] forever.
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Conclusion

We can abstract away the distinction between chemical species which are
equivalent up to symmetries (with respect to the reactions).

1. If the symmetries are satisfied in the initial state:
+ the abstraction is invertible:

we can recover the concentration of any species,
(thanks to the invariants).

2. Otherwise:
− some information is abstracted away:

we cannot recover the concentration of any species;
+ the system converges to a state which satisfies the symmetries.
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Differential semantics

Let V, be a finite set of variables ;
and F, be a C∞ mapping from V → R

+ into V → R,
as for instance,

• V
∆
= {[(u,u,u)], [(u,p,u)], [(p,p,u)], [(u,p,p)], [(p,p,p)]},

• F(ρ)
∆
=






[(u,u,u)] 7→ −kc·ρ([(u,u,u)])

[(u,p,u)] 7→ −kl·ρ([(u,p,u)]) + kc·ρ([(u,u,u)]) − kr·ρ([(u,p,u)])

[(u,p,p)] 7→ −kl·ρ([(u,p,p)]) + kr·ρ([(u,p,u)])

[(p,p,u)] 7→ kl·ρ([(u,p,u)]) − kr·ρ([(p,p,u)])

[(p,p,p)] 7→ kl·ρ([(u,p,p)]) + kr·ρ([(p,p,u)]).

The differential semantics maps each initial state X0 ∈ V → R
+ to the maximal

solution XX0 ∈ [0, Tmax
X0

[→ (V → R
+) which satisfies:

XX0(T) = X0 +

∫ T

t=0

F(XX0(t))·dt.
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Abstraction

An abstraction (V ♯, ψ,F♯) is given by:

• V ♯: a finite set of observables,

• ψ: a mapping from V → R into V ♯ → R,

• F
♯: a C∞ mapping from V ♯ → R

+ into V ♯ → R;

such that:

• ψ is linear with positive coefficients,

• the following diagram commutes:

(V → R
+)

F

−→ (V → R)

ψ





y





y

ψ
ℓ∗ ℓ∗

(V ♯ → R
+)

F
♯

−→ (V ♯ → R)

i.e. ψ ◦ F = F
♯ ◦ψ.
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Abstraction example

• V
∆
= {[(u,u,u)], [(u,p,u)], [(p,p,u)], [(u,p,p)], [(p,p,p)]}

• F(ρ)
∆
=






[(u,u,u)] 7→ −kc·ρ([(u,u,u)])

[(u,p,u)] 7→ −kl·ρ([(u,p,u)]) + kc·ρ([(u,u,u)]) − kr·ρ([(u,p,u)])

[(u,p,p)] 7→ −kl·ρ([(u,p,p)]) + kr·ρ([(u,p,u)])

· · ·

• V ♯ ∆= {[(u,u,u)], [(?,p,u)], [(?,p,p)], [(u,p,?)], [(p,p,?)]}

• ψ(ρ)
∆
=






[(u,u,u)] 7→ ρ([(u,u,u)])

[(?,p,u)] 7→ ρ([(u,p,u)]) + ρ([(p,p,u)])

[(?,p,p)] 7→ ρ([(u,p,p)]) + ρ([(p,p,p)])

. . .

• F
♯(ρ♯)

∆
=






[(u,u,u)] 7→ −kc·ρ♯([(u,u,u)])

[(?,p,u)] 7→ −kr·ρ♯([(?,p,u)]) + kc·ρ♯([(u,u,u)])

[(?,p,p)] 7→ kr·ρ♯([(?,p,u)])

. . .

(Completeness can be checked analytically.)
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Abstract differential semantics
Let (V,F) be a concrete system.
Let (V ♯, ψ,F♯) be an abstraction of the concrete system (V,F).
Let X0 ∈ V → R

+ be an initial (concrete) state.

We know that the following system:

Yψ(X0)(T) = ψ(X0) +

∫ T

t=0

F
♯
(

Yψ(X0)(t)
)

·dt

has a unique maximal solution Yψ(X0) such that Yψ(X0) = ψ(X0).

Theorem 1 Moreover, this solution is the projection of the maximal solution
XX0 of the system

XX0(T) = X0 +

∫ T

t=0

F

(

XX0(t)
)

·dt.

(i.e. Yψ(X0) = ψ(XX0))
Jérôme Feret 33 Friday, the 7th of February, 2014



Fluid trajectories

t

Y(t)
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Fluid trajectories

t

Y(t)

X(t)
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A species

E

R R

E

l

r
r

l

r
r

E(r!1), R(l!1,r!2), R(r!2,l!3), E(r!3)
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A Unbinding/Binding Rule

E

R

E

R
l

r r

l

r r

E(r), R(l,r)←→ E(r!1), R(l!1,r)
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Internal state

E

R

E

R
l

r

p
l

r

Y1 Y1

u

R(Y1∼u,l!1), E(r!1)←→ R(Y1∼p,l!1), E(r!1)
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Don’t care, Don’t write

R
u

R
p

Y1

r

Y1

r

6=

R
u

R
p.

Y1 Y1
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A contextual rule

R
u

R
p

e
Y1 Y1

rr

R(Y1∼u,r!_)→ R(Y1∼p,r)
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Creation/Suppression

RRR
.

rrr

u

Y1

l

R(r)→ R(r!1), R(r!1,l,Y1)

RR Rrr r

R(r!1), R(r!1)→ R(r)
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Embedding

RR R

Φ

Φ

E E

Z Z ′

r

l

Y48

r

l

r

r

We say that Φ is an embedding between Z and Z ′ iff:

• Φ is a site-graph morphism:

-- i is less specific than Φ(i),
-- there is a link between (i, s) and (i ′, s ′),

if and only if there is a link between (Φ(i), s) and (Φ(i ′), s ′).

• Φ is an into map (injective):

-- Φ(i) = Φ(i ′) implies that i = i ′.
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Differential system

Each rule rule: lhs→ rhs is associated with a rate constant k.

Such a rule is seen as a generic representation of a set of chemical reactions:

r1, . . . , rm → p1, . . . , pn k.

For each such reaction, we get the following contribution:

d[ri]

dt

−
=
k ·
∏

[ri]

SYM(lhs)
and

d[pi]

dt

+
=
k ·
∏

[ri]

SYM(lhs)
.

where SYM(E) is the number of automorphisms in E.
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Abstract domain

We are looking for suitable pair (V ♯, ψ) (such that F♯ exists).

The set of linear variable replacements is too big to be explored.

We introduce a specific shape on (V ♯, ψ) so as:

• restrict the exploration;

• drive the intuition (by using the flow of information);

• having efficient way to find suitable abstractions (V ♯, ψ)

and to compute F
♯.

Our choice might be not optimal, but we can live with that.
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Contact map

G
E
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Sh
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Annotated contact map

G
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Sh

So
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pi
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Y48

Y68

Y7
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Jérôme Feret 48 Friday, the 7th of February, 2014



Fragments and prefragments

A prefragment is a connected site
graph for which there exists a binary
relations→ between sites such that:

• Directed preorder: for any pair of
sites x and y there is a site z such
that: x→⋆z and y→⋆z.

• Compatibility: any edge → can
be projected to an edge in the
annotated contact map.

A fragment is a prefragment F such
that:

• Parsimoniousness: for any pre-
fragment F ′ such that F embeds
in F ′, F ′ also embeds into F.

GSo
abd

G
E

R

Sh

So

r

r

pi
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l
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Y48

Y68

Y7

a
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Are they fragments ?
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Are they fragments ?

GSo
abd

Thus, it is a prefragment.
Thus, it is a prefragment.
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Are they fragments ?

GSo
abd

Thus, it is a prefragment.
Thus, it is a prefragment.

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?

GSo
abd

It is maximally specified.
Thus it is a fragment.

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?

So G

Shd b a

Y7

b

Thus, it is a prefragment.
Thus, it is a prefragment.

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a

Jérôme Feret 52 Friday, the 7th of February, 2014



Are they fragments ?

So G

Shd b a

Y7

b

Thus, it is a prefragment.
Thus, it is a prefragment.

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?

So G Sh
abd bb Y7

It can be refined into another prefragment.
Thus, it is not a fragment.

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?

So G Sh
a Y7bd bb

Thus, it is a prefragment.
Thus, it is a prefragment.

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?

So G Sh
a Y7bd bb

Thus, it is a prefragment.
Thus, it is a prefragment.

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?

So G Sh
a Y7d b pi

It can be refined into another prefragment.
Thus, it is not a fragment.

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?

So G Sh
a Y7d b pi

Thus, it is a prefragment.
Thus, it is a prefragment.

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?

So G Sh
a Y7d b pi

Thus, it is a prefragment.
Thus, it is a prefragment.

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?

So G Sh
a Y7d b pi

It is maximally specified.
Thus it is a fragment.

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?

GSo
abd

yes
So G

Shd b a

Y7

b

no
So G Sh

a Y7bd bb

no
So G Sh

a Y7d b pi

yes

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Annotated contact map

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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What if we were adding this flow ?

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?
stage 2

R R ll

r r

Y68Y68

There is no way to make a path from
the first Y68 and the second one or to
make a path from the second one to
the first one.

Thus it is not even a prefragment.

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?
stage 2

R R ll

r r

Y68Y68

There is no way to make a path from
the first Y68 and the second one or to
make a path from the second one to
the first one.

Thus it is not even a prefragment.

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?
stage 2

R R ll

r r

Y68

There is no way to refine it, while
preserving the directedness.

Thus it is a fragment.

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?
stage 2

R R ll

r r

Y68

There is no way to refine it, while
preserving the directedness.

Thus it is a prefragment.

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?
stage 2

R R ll

r r

Y68

There is no way to refine it, while
preserving the directedness.

Thus it is a fragment.

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Orthogonal refinement

Property 1 (prefragment) The concentration of any prefragment can be ex-
pressed as a linear combination of the concentration of some fragments.

Which other properties do we need so that the function F
♯ can be defined ?
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Overview

1. Context and motivations

2. Handmade ODEs

3. Abstract interpretation framework

4. Kappa

5. Concrete semantics

6. Abstract semantics

(a) Fragments
(b) Soundness criteria

7. Conclusion
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Fragments consumption
Proper inter

ShRShR

ShR

r r

l

Y7 Y7

Y7

Y48pi pi

pi

Y48

Y48

u

u

p

Can we express the amount (per time unit) of this fragment (bellow) concen-
tration that is consumed by this rule (above)?
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Fragments consumption
Proper intersection

ShRShR

ShR

r r

l

Y7 Y7

Y7

Y48pi pi

pi

Y48

Y48

u

u

p

No, because we have abstracted away the correlation between the state of
the site r and the state of the site l.
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Fragments consumption
Proper intersection

ShRShR

ShR

r

r

r

l

Y7 Y7

Y7

Y48pi pi

pi

Y48

Y48

u

u

p

Whenever a fragment intersects a connected component of a lhs on a mod-
ified site, then the connected component is indeed embedded in the frag-
ment!
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Fragment consumption
Syntactic criteria

R

Sh

G
E

R

Sh

G
E

R

Sh

So

pi

Y48

Y7

r

r

pi

b

l

d

Y48

Y68

Y7

a

rb

d

a

pi

Y7

r

l

Y48

Y68

r

We reflect, in the annotated contact map, each path that stems from a site
that is tested to a site that is modified.
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Fragment consumption

R

So

G

So

G

Sh

R

Sh

b

r l

b

dd
pi

Y7

Y48

l r

pi

Y7

Y48

For any rule:
rule : C1, . . . , Cn → rhs k

and any embedding between a modified connected component Ck and a frag-
ment F, we get:

d[F]

dt

−
=

k · [F] ·
∏

i 6=k [Ci]

SYM(C1, . . . , Cn) · SYM(F)
.
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Fragment production
Proper inter

E
R

GRGR

R
G

aa

a

r

l

p
r

r

bY68bY68

p p

Y68

Can we express the amount (per time unit) of this fragment (bellow) concen-
tration that is produced by the rule (above)?
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Fragment production
Proper intersection (bis)

E
R

GRGR

R
G

E R E R

aa

a

r

l

p
r

r

bY68bY68

p p

Y68

l

r

r

r r

r
l

r

Yes, if the connected components of the lhs of the refinement are prefrag-
ments. This is already satisfied thanks to the previous syntactic criteria.
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Fragment production

GRGR

E R E R

aa bY68bY68

p p

l

r

r

r r

r
l

r

For any rule:
rule : C1, . . . , Cm → rhs k

and any overlap between a fragment F and rhs on a modified site,
we write C ′

1, . . . , C
′
n the lhs of the refined rule;

if m = n, then we get:

d[F]

dt

+
=

k ·
∏

i

[

C ′
i

]

SYM(C1, . . . , Cm) · SYM(F)
;

otherwise, we get no contribution.
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Fragment properties

If:

• an annotated contact map satisfies the syntactic criteria,

• fragments are defined by this annotated contact map,

• we know the concentration of fragments;

then:

• we can express the concentration of any connected component occur-
ing in lhss,

• we can express fragment proper consumption,

• we can express fragment proper production,

• WE HAVE A CONSTRUCTIVE DEFINITION FOR F
♯.
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Overview

1. Context and motivations

2. Handmade ODEs

3. Abstract interpretation framework

4. Kappa

5. Concrete semantics

6. Abstract semantics

7. Conclusion

Jérôme Feret 71 Friday, the 7th of February, 2014



Experimental results

Model early EGF EGF/Insulin SFB

#species 356 2899 ∼ 2.1019

#fragments
38 208 ∼ 2.105

(ODEs)

#fragments
356 618 ∼ 2.1019

(CTMC)  0

 100

 200

 300

 400

 500

 600

 700

 800

 0  1  2  3  4  5  6

C
on

ce
nt

ra
tio

n

Time

/home/feret/demo/egfr-compressed.ka

(reduced) [EGFR(Y48!0),SHC(Y7!1,pi!0),GRB2(a!1,b!2),SOS(d!2)]
(reduced) [EGFR(Y68!0),GRB2(a!0,b!1),SOS(d!1)]

(ground) [EGFR(Y48!0),SHC(Y7!1,pi!0),GRB2(a!1,b!2),SOS(d!2)]
(ground) [EGFR(Y68!0),GRB2(a!0,b!1),SOS(d!1)]

Both differential semantics
(4 curves with match pairwise)
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Related issues

1. Model reduction of the ODE semantics:
Joint work with Ferdinanda Camporesi

• Less syntactic approximation of the flow of information
• A hierarchy of abstractions tuned by the level of context-sensitivity

2. Model reduction of the stochastic semantics:
Joint work with Thomas Henzinger, Heinz Koeppl, Tatjana Petrov

• a framework that preserves the trace distribution
(lumpability, backward bisimulation, equiprobability of equivalent
concrete configurations)

• Compositionality of the framework
• Symmetry reduction
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Joint-work with...
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Bologna / ÉNS

Thomas Henzinger
IST Austria

Heinz Koeppl
ETH Zürich

Tatjana Petrov
EPFL
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Overview

1. Introduction

2. Examples of information flow

3. Symmetric sites

4. Stochastic semantics

5. Lumpability

6. Bisimulations

7. Hierarchy of semantics

8. Conclusion
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ODE fragments

In the ODE semantics, using the flow of information backward, we can detect
which correlations are not relevant for the system, and deduce a small set of
portions of chemical species (called fragments) the behavior of the concen-
tration of which can be described in a self-consistent way.

(ie. the trajectory of the reduced model are the exact projection of the trajec-
tory of the initial model).

Can we do the same for the stochastic semantics?
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Stochastic fragments ?

ConcretizationConcretization

AbstractionAbstraction
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Overview

1. Introduction

2. Examples of information flow

3. Symmetric sites

4. Stochastic semantics

5. Lumpability

6. Bisimulations

7. Hierarchy of semantics

8. Conclusion
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A model with ubiquitination

k1 k2

P
k1
−→ ⋆P P⋆ k1

−→ ⋆P⋆

P
k2
−→ P⋆ ⋆P

k2
−→ ⋆P⋆

?
k3

⋆P
k3
−→ ∅

⋆P⋆ k3
−→ ∅

?
k4 P⋆ k4

−→ ∅

⋆P⋆ k4
−→ ∅
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Statistical independence

We check numerically that:

Et (n⋆P⋆) = Et

(

(n⋆P + n⋆P⋆)(nP⋆ + n⋆P⋆)

nP + nP⋆ + n⋆P + n⋆P⋆

)

.

0

0.05

0.1

0.15
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0.25

0.3

0 1 2 3 4 5 6

ex
pe

ct
at
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n

t

Et (n⋆P⋆)

Et ((n⋆P + n⋆P⋆)(nP⋆ + n⋆P⋆)/n?P?)

-2.5e-16
-2e-16

-1.5e-16
-1e-16
-5e-17

0
5e-17
1e-16

1.5e-16
2e-16

2.5e-16
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er

ro
r
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te

t

with k1 = k2 = k3 = k4 = 1

and two instances of P at time t = 0.

Jérôme Feret 8 Friday, the 7th of February, 2014



Reduced model

k1 k2

P
k1
−→ ⋆P

P
k2
−→ P⋆

k3 ⋆P
k3
−→ ∅

+ side effect: remove one P

k4
P⋆ k4

−→ ∅

+ side effect: remove one P
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Comparison between the two models
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Coupled semi-reactions

?

kA+/kA−

A
kA+
−−⇀↽−−
kA−

A⋆, AB
kA+
−−⇀↽−−
kA−

A⋆B, AB⋆
kA+
−−⇀↽−−
kA−

A⋆B⋆

?

kB+/kB−

B
kB+
−−⇀↽−−
kB−

B⋆, AB
kB+
−−⇀↽−−
kB−

AB⋆, A⋆B
kB+
−−⇀↽−−
kB−

A⋆B⋆

kAB/kA⋆B⋆/kA..B A + B
kAB
−−⇀↽−−
kA..B

AB, A⋆ + B
kAB
−−⇀↽−−
kA..B

A⋆B,

A + B⋆
kAB
−−⇀↽−−
kA..B

AB⋆, A⋆ + B⋆
kA⋆B⋆
−−−⇀↽−−−
kA..B

A⋆B⋆
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Reduced model

?

kA+/kA−

A
kA+
−−⇀↽−−
kA−

A⋆, AB⋄
kA+
−−⇀↽−−
kA−

A⋆B⋄,

?

kB+/kB−

B
kB+
−−⇀↽−−
kB−

B⋆, A⋄B
kB+
−−⇀↽−−
kB−

A⋄B⋆,

kAB/kA⋆B⋆/kA..B

A + B
kAB

−−−−−−−−−−−⇀↽−−−−−−−−−−−
kA..B/(nA⋄B+nA⋄B⋆)

AB⋄ + A⋄B,

A⋆ + B
kAB

−−−−−−−−−−−⇀↽−−−−−−−−−−−
kA..B/(nA⋄B+nA⋄B⋆)

A⋆B⋄ + A⋄B,

A + B⋆
kAB

−−−−−−−−−−−⇀↽−−−−−−−−−−−
kA..B/(nA⋄B+nA⋄B⋆)

AB⋄ + A⋄B⋆,

A⋆ + B⋆
kA⋆B⋆

−−−−−−−−−−−⇀↽−−−−−−−−−−−
kA..B/(nA⋄B+nA⋄B⋆)

A⋆B⋄ + A⋄B⋆
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Comparison between the two models
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with kA+= kA−= kB+= kB−= kAB = kA..B = 1, kA⋆B⋆ = 10,
and two instances of A and B at time t = 0.

Although the reduction is correct in the ODE semantics.
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Degree of correlation
(in the unreduced model)

0

0.1

0.2

0.3

0.4

0.5

0 0.5 1 1.5 2 2.5 3

E
(n

A
⋆
B
⋆
)

t

Et (nA⋆B⋆)

Et ((nAB⋆ + nA⋆B⋆)(nA⋆B + nA⋆B⋆)/nA?B?)

0
0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

0.045
0.05

0 0.5 1 1.5 2 2.5 3

er
ro

r
ra

te

t

Jérôme Feret 14 Friday, the 7th of February, 2014



Distant control

?

k+/k−
A

k+

−⇀↽−
k−

A⋆

A⋆

k+

−⇀↽−
k−

A⋆
⋆

?

k+

?

A + A⋆ k+
−→ A⋆ + A⋆

A⋆ + A⋆ k+
−→ A⋆

⋆ + A⋆

A + A⋆
⋆

k+
−→ A⋆ + A⋆

⋆

A⋆ + A⋆
⋆

k+
−→ A⋆

⋆ + A⋆
⋆

?

k− A⋆
⋆

k−
−→ A⋆

A⋆
k−
−→ A
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Reduced model

k+/k− A
k+

−⇀↽−
k−

A⋆

k+
A + A⋆ k+

−→ A⋆ + A⋆

k−

A⋆
k−
−→ A
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Comparison between the two models
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with k+ = k− = k+ = k− = 1,
and two instances of A at time t = 0.
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Degree of correlation
(in the unreduced model)
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Overview

1. Introduction

2. Examples of information flow

3. Symmetric sites

4. Stochastic semantics

5. Lumpability

6. Bisimulations

7. Hierarchy of semantics

8. Conclusion

Jérôme Feret 19 Friday, the 7th of February, 2014



A model with symmetries

k1 k1

P
k1
−→ ⋆P P⋆ k1

−→ ⋆P⋆

P
k1
−→ P⋆ ⋆P

k1
−→ ⋆P⋆

k2
⋆P⋆ k2

−→ ∅

Jérôme Feret 20 Friday, the 7th of February, 2014



Degree of correlation
(in the unreduced model)

Et (n⋆P⋆) = Et

(

(n⋆P + n⋆P⋆)(nP⋆ + n⋆P⋆)

nP + nP⋆ + n⋆P + n⋆P⋆

)

.
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Equivalent chemical species

We check numerically that:

Et (nP⋆) = Et (n⋆P).
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Reduced model

2·k1

P
2·k1
−−→ ⋆P

k1

⋆P
k1
−→ ⋆P⋆

k2
⋆P⋆ k2

−→ ∅

Exponential reduction!!!
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Comparison between the two models
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Weighted Labelled Transition Systems

A weighted-labelled transition system W is given by:

• Q, a countable set of states;

• L, a set of labels;

• w : Q×L×Q → R
+
0 , a weight function;

• π0 : Q → [0, 1], an initial probability distribution.

We also assume that:

• the system is finitely branching, i.e.:

-- the set {q ∈ Q | π0(q) > 0} is finite
-- and, for any q ∈ Q, the set {l, q ′ ∈ L ×Q | w(q, l, q ′) > 0} is finite.

• the system is deterministic:
if w(q, λ, q1) > 0 and w(q, λ, q2) > 0, then: q1 = q2.

Jérôme Feret 26 Friday, the 7th of February, 2014



Trace distribution

A cylinder set of traces is defined as:

τ
∆
= q0

λ1,I1→ q1 . . . qk−1
λk,Ik→ qk

where:

• (qi)0≤i≤k ∈ Qk+1 and (λi)1≤i≤k ∈ Lk,

• (Ii)1≤i≤k is a family of open intervals in R
+
0 .

The probability of a cylinder set of traces is defined as follows:

Pr(τ)
∆
= π0(q0)

k∏

i=1

w(qi−1, li, qi)

a(qi−1)

(

e−a(qi−1)·inf(Ii) − e−a(qi−1)·sup(Ii)
)

,

where a(q)
∆
=

∑
λ,q ′ w(q, λ, q ′).
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Abstraction between WLTS
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Soundness

Given:

• two WLTS S
∆
= (Q,L,→, w, I , π0) and S♯ ∆

= (Q♯,L♯, , w♯, I♯, π
♯
0),

• two abstraction functions βQ : Q → Q♯ and βL : L → L♯,

S♯ is a sound abstraction of S , if and only if, for any cylinder set τ of traces of
S , we have:

Pr(βT(τ)) =
∑

τ ′
(Pr(τ ′) | βT(τ) = βT(τ ′)),

where,

βT(q0
λ1,I1→ q1 . . . qk−1

λk,Ik→ qk)

∆
= βQ(q0)

βL(λ1),I1→ βQ(q1) . . . β
Q(qk−1)

βL(λk),Ik→ βQ(qk).
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Completeness

Given:

• two WLTS S
∆
= (Q,L,→, w, I , π0) and S♯ ∆

= (Q♯,L♯, , w♯, I♯, π
♯
0),

• two abstraction functions βQ : Q → Q♯ and βL : L → L♯,

• a concretization function γQ : Q → R
+,

S♯ is a sound and complete abstraction of S , if and only if,

1. it is a sound abstraction;

2. for any cylinder set τ♯ of abstract traces of S♯ which ends in the abstract
state q

♯
k, we have:

γQ(s) = Pr(qk = s | τ such that βT(τ) ∈ τ♯)×
∑

{γQ(s ′) | βQ(s ′) = q
♯
k}.
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Markovian Property

We consider a stochastic process:

• T = R
+
0 : time range;

• Q: a countable set of states;

• (X t)t∈T: a family of random variables over Q;

We say that (X t) satisfies the Markovian property,
if, for any family (st)t∈T of states indexed over T, and any time t1 < t2,
we have:

Pr(Xt2 = st2 | Xt1 = st1) = Pr(Xt2 = st2 | Xt = st,∀t < t1).
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Lumpability property

Given:

• a stochastic process (X t) which satisfies the Markovian property,

• an initial distribution π0 : Q → [0, 1],

• an equivalence relation ∼ over Q,

we define the lumped process (Yt) on the state space Q/∼ as:

Pr(Yt = [xt]/∼ | Y0 = [s0]/∼)
∆
= Pr(X t ∈ [st]/∼ | X 0 ∈ [s0]/∼).

We say that (X )t is ∼-lumpable with respect to π0 if and only if, the stochastic
process (Yt) satisfies the Markovian property as well.
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Strong lumpability
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ỹ3

1

1

2/3

1/3

A stochastic process is ∼-strongly lumpable, if:
it is ∼-lumpable with respect to any initial distribution.
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Weak lumpability
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A stochastic process (X t) is ∼-weakly lumpable, if:
there exists an initial distribution with respect to which (X t) is ∼-lumpable.
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Forward bisimulation

Let ∼Q be an equivalence relation over Q and ∼L be an equivalence relation
over L.

We say that (∼Q, ∼L) is a forward bisimulation,
if and only if, for any q1, q2 ∈ Q such that q1 ∼Q q2:

• a(q1) = a(q2);

• and for any λ⋆ ∈ L, q ′
⋆ ∈ Q,

fwd(q1, [λ⋆]/∼L, [q
′
⋆]/∼Q) = fwd(q2, [λ⋆]/∼L, [q

′
⋆]/∼Q)

q1

q2

[λ⋆]/∼L

[λ⋆]/∼L
[q1]/∼Q [q ′

⋆]/∼Q

where: fwd(q, [λ⋆]/∼L, [q
′
⋆]/∼Q) =

∑

λ ′,q ′
(w(q, λ ′, q ′) | λ ′ ∼L λ⋆, q

′ ∼Q q ′
⋆).
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Backward bisimulation

Let ∼Q be an equivalence relation over Q and ∼L be an equivalence relation
over L.

We say that (∼Q, ∼L) is a backward bisimulation,
if and only if, there exists γ : Q → R

+, such that:
for any q ′

1, q
′
2 ∈ Q which satisfies q ′

1 ∼Q q ′
2:

• a(q ′
1) = a(q ′

2);

• and for any λ⋆ ∈ L, q⋆ ∈ Q,
bwd([q⋆]/∼Q, [λ⋆]∼/L, q

′
1) = bwd([q⋆]/∼Q, [λ⋆]∼/L, q

′
2)

[λ⋆]/∼L

[q ′
1]/∼Q

[λ⋆]/∼L
q ′
1

q ′
2

q1

q2

q3

q4

[q⋆]/∼Q

γ(q ′
1)

γ(q ′
2)γ(q4)

γ(q3)

γ(q2)
γ(q1)

where: bwd([q⋆]/∼Q, [λ⋆]∼/L, q
′) =

∑

q,λ ′

(

γ(q)

γ(q ′)
w(q, λ ′, q ′) |q ∼Q q⋆, λ

′ ∼L λ⋆
)

.
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Logical implications

• if (∼Q, ∼L) is a forward bisimulation, then the process is ∼Q-strongly
lumpable,
moreover, it induces a sound abstraction;

• if (∼Q, ∼L) is a backward bisimulation, then the process is ∼Q-weakly
lumpable, for the initial distributions which satisfy:

q ∼Q q ′ ⇒ [π0(q) · γ(q
′) = π0(q

′) · γ(q)];

it induces a sound and complete abstraction for these initial distribu-
tions.;

• there exist forward bisimulations which are not backward bisimulations;

• there exist backward bisimulations which are not forward bisimulations.
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Counter-example I

A forward bisimulation which is not a backward bisimulation:
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Counter-example II

A backward bisimulation which is not a forward bisimulation:
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z̃12

z̃3

1

2/3

1/3

1/2

1/2

1/2

1/2

Jérôme Feret 41 Friday, the 7th of February, 2014



Uniform backward bisimulation

Given q⋆, q
′ ∈ Q and λ⋆ ∈ L, we denote:

pred([q⋆]/∼Q, [λ⋆]∼/L, q
′)

∆
= {(q, λ) | w(q, λ, q ′) > 0, q ∼Q q⋆, λ ∼L λ⋆}.

If,

• q1 ∼Q q2 =⇒ a(q1) = a(q2);

• for any q ′
1,q

′
2 ∈ Q, such that q ′

1 ∼Q q ′
2, and any q⋆ ∈ Q and λ⋆ ∈ L,

there is a 1-to-1 mapping between pred([q⋆]/∼Q, [λ⋆]∼/L, q
′
1) and

pred([q⋆]/∼Q, [λ⋆]∼/L, q
′
2) which is compatible with w,

then:

• (∼Q, ∼L) is a backward bisimulation (with γ(q) = 1, ∀q ∈ Q).
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Abstraction algebra

(Sound) abstractions can be:

• composed: S♭

S

S♯

• factored: S♭

S

S♯

• combined with a symmetric product (c.f. lub or pushout):

∃!
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Compatibility between composition and
pushout
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ConcretizationConcretization
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From individuals to population

• Individual semantics:
In the individual semantics, each agent is tagged with a unique identifier
which can be tracked along the trace;

• Population semantics:
In the population semantics, the state of the system is seen up to injec-
tive substitution of agent identifier;
equivalently, the state of the system is a multi-set of chemical species.
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Fragments

An annotated contact map is valid with respect to the stochastic semantics,
if:

• Whenever the site x and y both occurs in the same or in distinct agent
of type A in a rule, then, there should be a bidirectional edge between
the site x and the y of A.

• Whenever there is a bond between two sites, each of which either car-
ries an internal state of, is connected to some other sites of its agent,
then the bond if oriented in both directions.
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From population to fragments

• Population of fragments:

1. In the annotated contact, each agent is fitted with a binary equiv-
alence over its sites. We split the interface of agents into equiv-
alence classes of sites. Then we abstract away which subagents
belong to the same agent.

2. Whenever an edge is not oriented in the annotated contact map,
we cut each instance of this bond into two half bonds, and abstract
away which partners are bond together.
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ConcretizationConcretization
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Symmetries among sites

Let R be a set of rules and M0 be an initial mixture.

Two sites x1 and x2 are symmetric in the agent A in the set of rules R and the
initial mixture M0
∆

⇐⇒

• R is preserved (modulo ≡) if we replace each rule with all the combina-
tions of rules which can be obtained by replacing (independently) each
occurrence of x1 and x2 with x1 or x2 (and dividing the kinetic rate by
the number of combinations, and taking care of gain/loss of automor-
phisms).

• each agent of type Ai in M0 has their sites x1 and x2 free, with the same
internal state.

Jérôme Feret 52 Friday, the 7th of February, 2014



Hierarchy of semantics

symmetries
modulo

semantics
Population

semantics
modulo

symmetries

Fragments

Population
semantics

semantics
Fragments

Individual
semantics

modulo
symmetries

Individual
semantics

Jérôme Feret 53 Friday, the 7th of February, 2014



Overview

1. Introduction

2. Examples of information flow

3. Symmetric sites

4. Stochastic semantics

5. Lumpability

6. Bisimulations

7. Hierarchy of semantics

8. Conclusion

Jérôme Feret 54 Friday, the 7th of February, 2014



Conclusion

• A framework for reducing stochastic rule-based models.

-- We use:
∗ the sites the state of which are uncorrelated;
∗ the sites having the same capabilities of interactions.

-- Algebraic operators combine these abstractions.

• We use backward bisimulations in order to prove statistical invariants,
we use them to reduce the dimension of the continuous-time Markov
chains.
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Future works

• Investigate the use of hybrid bisimulation.

• Propose approximated simulation algorithms to approximate different
scale rate reactions.

-- hybrid systems,
-- tau-leaping,
-- . . .
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