
Inferring sufficient numeric conditions with
under-approximations by abstract interpretation

Internship proposal, Master 2 MPRI, year 2013–2014

Supervisor: Antoine Miné (mine@di.ens.fr)

Internship location: Département d’informatique, École normale supérieure,
Paris, France

Relevant course: M2–6: Abstract interpretation: application to verification
and static analysis

Note: other internships are possible on the topic of numeric abstract domains, static anal-
ysis, and abstract interpretation in general. Please contact the internship supervisor for more
information.

Motivation

The goal of the internship is to infer sufficient preconditions on the numeric variables of a program
using an under-approximating backward abstract interpretation.

The theory of abstract interpretation allows the design of effective and efficient static analyzers
able to compute approximations of program semantics. However, the overwhelming majority of
analyzers compute over-approximations of the set of possible behaviors of a program: either
forward (to compute an over-approximation of the states reachable from a given set of initial
states), or backward (to refine the result of a forward analysis or to infer necessary conditions
to reach a given set of final states). For instance, the numeric abstract domains (intervals,
polyhedra, etc.) seen in the course are all over-approximating. Under-approximation in infinite-
size abstract domains remains an under-explored area of abstract interpretation, with few articles
(one being the preliminary work presented in [1]).

Propagating under-approximated semantic properties backward makes it possible to infer
sufficient conditions, i.e., conditions on the initial states of the program so that all executions
reach a given set of final states. There are numerous applications to sufficient conditions and we
mention a few of them. Firstly, the inference of counter-examples, that is, of sequences of inputs
that cause the program to always fail [3]. This should allow the automatic discovery of definitive
bugs and exploits in programs. Secondly, the inference of procedure contracts [2], that is, of
sufficient assertions to insert at the beginning of a procedure to ensure that its execution will
never fail, with application to the automatic annotation and documentation of libraries. Thirdly,
the design of smarter optimizing compilers. For instance, by inferring sufficient conditions such
that all the array bound checks in a loop are correct, one can design a faster, check-free version
of the loop and insert a dynamic test in the generated code that branches to this fast version
when the condition holds, and reverts to the slow loop otherwise.

mine@di.ens.fr


Expected work

The intern will focus primarily on numeric abstractions as these are well-understood and feature
a rich collection of existing abstract domains (such as intervals, octagons, or polyhedra) with
over-approximating operators. He will thus design under-approximating backward operators
for these existing domains. One possible basis of work is [1]. Extensions include the design
of new numeric abstract domains that may be better suited to represent under-approximated
properties, the adaptation to under-approximations of generic abstract domain functors (such as
partitioning, products, completions), and the design of domains for non-numeric properties.

Each proposed domain and operator shall be proved correct, and motivated by its usefulness
analyzing interesting properties of actual program fragments and by its tractable complexity.
While not required, implementing and evaluating the domains experimentally would be a plus.

References

[1] A. Miné. Backward under-approximations in numeric abstract domains to automatically
infer sufficient program conditions. Science of Computer Programming (SCP), 33 pages,
Oct. 2013. http://www.di.ens.fr/~mine/publi/article-mine-SCP13.pdf.

[2] P. Cousot, R. Cousot, & F. Logozzo. Precondition Inference from Intermittent Assertions
and Application to Contracts on Collections. In 12th International Conference on Verifica-
tion, Model Checking, and Abstract Interpretation (VMCAI’11), Austin, Texas, LNCS 6538,
Springer, 2011, pp. 150–168.

[3] F. Bourdoncle. Assertion-based debugging of imperative programs by abstract interpreta-
tion. In Proc. of 4th European Software Engineering Conf. (ESEC’93), pp. 501–516, vol. 717
of LNCS. Springer, 1993.

2

http://www.di.ens.fr/~mine/publi/article-mine-SCP13.pdf

