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Introduction

Towards disjunctive abstractions

disjunctions are often needed...
... but potentially costly

In this lecture, we will discuss:
precision issues that motivate the use of abstract domains able to
express disjunctions

several ways to express disjunctions using abstract domain
combiners

I disjunctive completion
I cardinal power
I state partitioning
I trace partitioning
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Introduction

Domain combinators (or combiners)

General combination of abstract domains
takes one or more abstract domains as inputs
produces a new abstract domain

Input and output abstract domains are characterized by an “interface” :
concrete domain, abstraction relation, abstract elements and operators

Advantages:
general definition, formalized and proved once
can be implemented in a separate way, e.g., in ML:

I abstract domain: module
module D = (struct ... end: Interface)

I abstract domain combinator: functor
module C = functor (D: Interface) ->
(struct ... end: Interface)
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Introduction

Example: product abstraction

Notations
for sets:

M: stores
V: values
X: variables

Assumptions:
concrete domain (P(M),⊆) with M = X→ V
we require an abstract domain D] to provide

I a concretization function γ : D] → P(M)
I an element ⊥ with empty concretization γ(⊥) = ∅

Product combinator (implemented as a functor)

Given abstract domains (D]0, γ0,⊥0) and (D]1, γ1,⊥1), the product
abstraction is (D]×, γ×,⊥×) where:

D]× = D]0 × D]1
γ×(x ]0, x

]
1) = γ0(x ]0) ∩ γ1(x ]1)

⊥× = (⊥0,⊥1)

This amounts to expressing conjunctions of elements of D]0 and D]1
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Introduction

Example: product abstraction, coalescent product

The product abstraction needs a reduction:

∀x ]0 ∈ D]0, x
]
1 ∈ D]1, γ×(⊥0, x

]
1) = γ×(x ]0,⊥1) = ∅ = γ×(⊥×)

Coalescent product

Given abstract domains (D]0, γ0,⊥0) and (D]1, γ1,⊥1), the coalescent
product abstraction is (D]×, γ×,⊥×) where:

D]× = {⊥×} ] {(x ]0, x
]
1) ∈ D]0 × D]1 | x

]
0 6= ⊥0 ∧ x ]1 6= ⊥1}

γ×(⊥×) = ∅, γ×(x ]0, x
]
1) = γ0(x ]0) ∩ γ1(x ]1)

In many cases, this is not enough to achieve reduction:
let D]0 be the interval abstraction, D]1 be the congruences abstraction
γ×({x ∈ [3, 4]}, {x ≡ 0 mod 5}) = ∅

how to define abstract domain combiners to add disjunctions ?
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Imprecisions in convex abstractions

Convex abstractions

Many numerical abstractions describe convex sets of points

interval domain

x

y

octagon domain

x

y

polyedra domain

x

y

Imprecisions inherent in the convexity, and when computing abstract
join:

x

y

x ]0 x ]1x ]0t]x
]
1

Imprecision

Such imprecisions may
impact analysis results
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Imprecisions in convex abstractions

Non convex abstractions

We consider abstractions of D = P(Z)

Congruences:
D] = Z× N
γ(n, k) = {n + k · p | p ∈ Z}
−2, 1 ∈ γ(1, 2)
but 0 6∈ γ(1, 2)

Non relational product two variables

x

y

Signs:

0 6∈ γ([6= 0]) so [6= 0] describes
a non convex set
other abstract elements
describe convex sets

⊥

[−] [0] [+]

[≤ 0] [6= 0] [≥ 0]

>
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Imprecisions in convex abstractions

Example 1: verification problem

bool b0, b1;
int x, y; (uninitialized)
b0 = x ≥ 0;
b1 = x ≤ 0;
if(b0 && b1){

y = 0;
} else {

¬ y = 100/x;
}

if ¬b0, then x < 0
if ¬b1, then x > 0
if either b0 or b1 is false, then x 6= 0
thus, if point ¬ is reached the
division is safe

How to verify the division operation ?
Non relational abstraction (e.g., intervals), at point ¬:

b0 = FALSE
b1 = FALSE
x : >

Signs, congruences do not help:
in the concrete, x may take any value but 0
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Imprecisions in convex abstractions

Example 1: program annotated with local invariants

bool b0, b1;
int x, y; (uninitialized)
b0 = x ≥ 0;

(b0 ∧ x ≥ 0) ∨ (¬b0 ∧ x < 0)
b1 = x ≤ 0;

(b0 ∧ b1 ∧ x = 0) ∨ (b0 ∧ ¬b1 ∧ x > 0) ∨ (¬b0 ∧ b1 ∧ x < 0)
if(b0 && b1){

(b0 ∧ b1 ∧ x = 0)
y = 0;

(b0 ∧ b1 ∧ x = 0 ∧ y = 0)
} else {

(b0 ∧ ¬b1 ∧ x > 0) ∨ (¬b0 ∧ b1 ∧ x < 0)
y = 100/x;

(b0 ∧ ¬b1 ∧ x > 0) ∨ (¬b0 ∧ b1 ∧ x < 0)
}

We need to add symbolic disjunctions to our abstract domain
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Imprecisions in convex abstractions

Example 2: verification problem

int x ∈ Z;
int s;
int y;
if(x ≥ 0){

s = 1;
} else {

s = −1;
}

¬ y = x/s;
­ assert(y ≥ 0);

s is either 1 or −1
thus, the division at ¬ should not
fail
moreover s has the same sign as x
thus, the value stored in y should
always be positive at ­

How to verify the division operation ?
In the concrete, s is always non null:
convex abstractions cannot establish this; congruences can
Moreover, s has always the same sign as x
expressing this would require a fairly complex numerical abstraction
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Imprecisions in convex abstractions

Example 2: program annotated with local invariants

int x ∈ Z;
int s;
int y;
if(x ≥ 0){

(x ≥ 0)
s = 1;

(x ≥ 0 ∧ s = 1)
} else {

(x < 0)
s = −1;

(x < 0 ∧ s = −1)
}

(x ≥ 0 ∧ s = 1) ∨ (x < 0 ∧ s = −1)
¬ y = x/s;

(x ≥ 0 ∧ s = 1 ∧ y ≥ 0) ∨ (x < 0 ∧ s = −1 ∧ y > 0)
­ assert(y ≥ 0);

We need to add disjunctions to our abstract domain
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Disjunctive completion

Distributive abstract domain

Principle:
1 consider concrete domain (D,v), with lower upper bound operator t
2 start with an abstract domain (D],v]) with concretization γ : D] → D
3 build a domain containing all the disjunctions of elements of D]

Definition: distributive abstract domain
Abstract domain (D],v]) with concretization function γ : D] → D is
distributive (or complete for disjunction) if and only if:

∀E ⊆ D], ∃x ] ∈ D], γ(x ]) =
⊔
y]∈E

γ(y ])

Examples:
the lattice {⊥, < 0,= 0, > 0,≤ 0, 6= 0,≥ 0,>} is distributive
the lattice of intervals is not distributive:
there is no interval with concretization γ([0, 10]) ∪ γ([12, 20])
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Disjunctive completion

Definition

Definition: disjunctive completion

The disjunctive completion of abstract domain (D],v]) with
concretization function γ : D] → D is the smallest abstract domain
(D]disj,v

]
disj) with concretization function γdisj : D]disj → D such that:

D] ⊆ D]disj

∀x ] ∈ D], γdisj(x
]) = γ(x ])

(D]disj,v
]
disj) with concretization γdisj is distributive

Building a disjunctive completion domain:
start with D]disj = D]

for all set E ⊆ D] such that there is no x ] ∈ D], such that
γ(x ]) =

⊔
y]∈E γ(y ]), add [tE ] to D]disj, and extend γdisj by

γdisj([tE ]) =
⊔

y]∈E γ(y ])

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Oct, 29th. 2014 15 / 97



Disjunctive completion

Example 1: completion of signs

We consider concrete lattice D = P(Z), with v=⊆
and (D],v]) defined by:

⊥

[−] [0] [+]

> γ : ⊥ 7−→ ∅
[< 0] 7−→ {k ∈ Z | k < 0}
[= 0] 7−→ {k ∈ Z | k = 0}
[> 0] 7−→ {k ∈ Z | k > 0}
> 7−→ Z

Then, the disjunctive completion is
defined by adding elements corresponding
to:
{[< 0], [= 0]}
{[< 0], [> 0]}
{[= 0], [> 0]}

⊥

[−] [0] [+]

[≤ 0] [ 6= 0] [≥ 0]

>
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Disjunctive completion

Example 2: completion of constants

We consider concrete lattice D = P(Z), with v=⊆
and (D],v]) defined by:

⊥

. . . [−2] [−1] [0] [1] [2] . . .

>
γ : ⊥ 7−→ ∅

{k} 7−→ {k}
> 7−→ Z

Then, the disjunctive completion is the power-set:
D]disj ≡ P(Z)

γdisj is the identity function !
this lattice contains infinite sets which are not representable
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Disjunctive completion

Example 3: completion of intervals

We consider concrete lattice D = P(Z), with v=⊆
and let (D],v]) the domain of intervals

D] = {⊥,>} ] {[a, b] | a ≤ b}
γ([a, b]) = {x ∈ Z | a ≤ x ≤ b}

Then, the disjunctive completion is the set of unions of intervals :
D]disj collects all the families of disjoint intervals
this lattice contains infinite sets which are not representable

The disjunctive completion of (D])n is not equivalent to (D]disj)
n

which is more expressive ?
show it on an example !
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Disjunctive completion

Example 3: completion of intervals and verification

We use the disjunctive completion of (D])3.
The invariants below can be expressed in the disjunctive completion:

int x ∈ Z;
int s;
int y;
if(x ≥ 0){

(x ≥ 0)
s = 1;

(x ≥ 0 ∧ s = 1)
} else {

(x < 0)
s = −1;

(x < 0 ∧ s = −1)
}

(x ≥ 0 ∧ s = 1) ∨ (x < 0 ∧ s = −1)
y = x/s;

(x ≥ 0 ∧ s = 1 ∧ y ≥ 0) ∨ (x < 0 ∧ s = −1 ∧ y > 0)
assert(y ≥ 0);
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Disjunctive completion

Static analysis with disjunctive completion

Transfer functions:

e.g. to compute abstract post-conditions (assingment, guard...):
given concrete τ : D→ D, we assume τ ] : D] → D] such that:

τ ◦ γ v γ ◦ τ ]

then, we can simply use, for the disjunctive completion domain:

τ ]disj([tE ]) = t[{τ ](x ]) | x ] ∈ E}]

Abstract join:
disjunctive completion provides an exact join (exercise !)

Inclusion check: exercise !
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Disjunctive completion

Limitations of disjunctive completion

Combinatorial explosion:
I if D] is infinite, D]

disj may have elements that cannot be represented
I even when D] is finite, D]

disj may be huge
in the worst case, if D] has n elements, D]

disj may have 2n elements

Many elements useless in practice:
disjunctive completion of intervals: may express any set of integers...

No general definition of a widening operator
most common approach to achieve that: k-limiting
bound the numbers of disjuncts
i.e., the size of the sets added to the base domain

issue: the join operator should “select” which disjoints to merge
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Cardinal power and partitioning abstractions
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Cardinal power and partitioning abstractions

Principle

disjuncts that are needed for static analysis can usually be
characterized by some property

for instance:
I sign of a variable
I value of a boolean variable
I execution path, e.g., side of a condition that was visited

solution: perform a kind of indexing of disjuncts
I use an abstraction to describe labels

e.g., sign of a variable, value of a boolean, or trace property...
I apply the abstraction that needs be completed on the images

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Oct, 29th. 2014 23 / 97



Cardinal power and partitioning abstractions

Disjuncts indexing: example

int x ∈ Z;
int s;
int y;
if(x ≥ 0){

(x ≥ 0)
s = 1;

(x ≥ 0 ∧ s = 1)
} else {

(x < 0)
s = −1;

(x < 0 ∧ s = −1)
}

(x ≥ 0 ∧ s = 1) ∨ (x < 0 ∧ s = −1)
y = x/s;

(x ≥ 0 ∧ s = 1 ∧ y ≥ 0) ∨ (x < 0 ∧ s = −1 ∧ y > 0)
assert(y ≥ 0);

natural “indexing”: sign of x
but we could also rely on the sign of s
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Cardinal power and partitioning abstractions

Cardinal power abstraction

Definition
We assume (D,v) = (P(E),⊆), and that two abstractions
(D]0,v

]
0), (D]1,v

]
1) given by their concretization functions:

γ0 : D]0 −→ D γ1 : D]1 −→ D

We let the cardinal power abstract domain be defined by:

D]cp = D]0
M→ D]1 be the set of monotone functions from D]0 into D]1

v]cp be the pointwise extension of v]1
γcp is defined by:

γcp : D]cp −→ D
X ] 7−→ {y ∈ E | ∀z] ∈ D]0, y ∈ γ0(z]) =⇒ y ∈ γ1(X ](z]))}

We sometimes denote it by D]0 ⇒ D]1, γD]
0⇒D]

1
.
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Cardinal power and partitioning abstractions

Use of cardinal power abstractions

Intuition: we can express properties of the form
p0 =⇒ p′0

∧ p1 =⇒ p′1
...

...
...

...
∧ pn =⇒ p′n

Two independent choices:
1 D]0: set of partitions (the “labels”)
2 D]1: abstraction of sets of states, e.g., a numerical abstraction

Application (x ≥ 0 ∧ s = 1 ∧ y ≥ 0) ∨ (x < 0 ∧ s = −1 ∧ y > 0)

D]0: sign of s

D]1: other constraints
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Cardinal power and partitioning abstractions

Another example, with a single variable

We consider:
concrete lattice D = P(Z), with v=⊆
(D]0,v

]
0) be the lattice of signs

(strict values only)

(D]1,v
]
1) be the lattice of intervals ⊥

[−] [0] [+]

>

A few example abstract values:

[0, 8] is expressed by:


⊥0 7−→ ⊥1
[< 0] 7−→ ⊥1
[= 0] 7−→ [0, 0]
[> 0] 7−→ [1, 8]
>0 7−→ [0, 8]

[−10,−3] ] [7, 10] is expressed by:


⊥0 7−→ ⊥1
[< 0] 7−→ [−10,−3]
[= 0] 7−→ ⊥1
[> 0] 7−→ [7, 10]
>0 7−→ [−10, 10]
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Cardinal power and partitioning abstractions

Reduction (1): tightening disjunctions

concrete lattice D = P(Z), with v=⊆
(D]0,v

]
0) be the lattice of signs

(D]1,v
]
1) be the lattice of intervals ⊥

[−] [0] [+]

>

We let: X ] =


⊥0 7−→ ⊥1
[< 0] 7−→ [−5,−1]
[= 0] 7−→ [0, 0]
[> 0] 7−→ [1, 5]
>0 7−→ [−10, 10]

Y ] =


⊥0 7−→ ⊥1
[< 0] 7−→ [−5,−1]
[= 0] 7−→ [0, 0]
[> 0] 7−→ [1, 5]
>0 7−→ [−5, 5]

Then, γcp(X ]) = γcp(Y ])
γ0([< 0]) ∪ γ0([= 0]) ∪ γ([> 0]) = γ(>0)
but γ0(X ]([< 0])) ∪ γ0(X ]([= 0])) ∪ γ(X ]([> 0]))⊂γ(X ](>0))

Tightening of mapping (t{z ] | z ] ∈ E}) 7→ x ]1⋃
{γ0(z]) | z] ∈ E} = γ0(t{z] | z] ∈ E})
∃y ],

⋃
{γ1(X ](z])) | z] ∈ E} ⊆ γ1(y ]) ⊂ γ1(X ](t{z] | z] ∈ E}))
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Cardinal power and partitioning abstractions

Reduction (2): relation between the two domains

concrete lattice D = P(Z), with v=⊆
(D]0,v

]
0) be the lattice of signs

(D]1,v
]
1) be the lattice of intervals

⊥

[−] [0] [+]

>

We let:

X ] =


⊥0 7−→ ⊥1
[< 0] 7−→ [1, 8]
[= 0] 7−→ [1, 8]
[> 0] 7−→ ⊥1
>0 7−→ [1, 8]

Y ] =


⊥0 7−→ ⊥1
[< 0] 7−→ [2, 45]
[= 0] 7−→ [−5,−2]
[> 0] 7−→ [−5,−2]
>0 7−→ >1

Z ] =


⊥0 7−→ ⊥1
[< 0] 7−→ ⊥1
[= 0] 7−→ ⊥1
[> 0] 7−→ ⊥1
>0 7−→ ⊥1

Then, γcp(X ]) = γcp(Y ]) = γcp(Z ]) = ∅

Relation between D]
0 elements and D]

1 elements

Binding y ]0 7→ y ]1 can be improved if ∃z]1 6= y ]1, γ(y ]1) ∩ γ(y ]0) ⊆ γ(z]1)
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Cardinal power and partitioning abstractions

Representation of the cardinal power

Basic ML representation:

type cp = d0 -> d1 not convenient to operate on d0
type cp = (d0,d1) map maps or functional arrays

This is not a very efficient representation:

if D]0 has N elements, then an abstract value in D]cp requires N
elements of D]1
if D]0 is infinite, and D]1 is non trivial, then D]cp has elements that
cannot be represented
the 1st reduction shows it is unnecessary to represent bindings for
all elements of D]0
example: this is the case of ⊥0
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Cardinal power and partitioning abstractions

More compact representation of the cardinal power

Principle:
keep the same data-type (most likely functional arrays)
avoid representing information attached to redundant elements

Compact representation

Reduced cardinal power of D]0 and D]1 can be represented by considering
only a subset C ⊆ D]0 where

∀x ] ∈ D]0, ∃E ⊆ C, γ0(x ]) = ∪{γ0(y ]) | y ] ∈ E}

In particular:
C should be minimal
in any case, ⊥0 6∈ C
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Cardinal power and partitioning abstractions

Example: compact cardinal power over signs

concrete lattice D = P(Z), with v=⊆
(D]0,v

]
0) be the lattice of signs

(D]1,v
]
1) be the lattice of intervals

⊥

[−] [0] [+]

>

We remark that:
⊥0 does not need be considered
γ0([< 0]) ∪ γ0([= 0]) ∪ γ([> 0]) = γ(>0) thus >0 does not need be
considered

Thus, we let C = {[< 0], [= 0], [> 0]}; then:

[0, 8] is expressed by:


[< 0] 7−→ ⊥1
[= 0] 7−→ [0, 0]
[> 0] 7−→ [1, 8]

[−10,−3] ] [7, 10] is expressed by:


[< 0] 7−→ [−10,−3]
[= 0] 7−→ ⊥1
[> 0] 7−→ [7, 10]
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Cardinal power and partitioning abstractions

Lattice operations

Infimum:
we assume that ⊥1 is the infimum of D]1
then, ⊥cp = λ(z] ∈ D]0) · ⊥1 is the infimum of D]cp

Ordering:
we let v]cp denote the pointwise ordering:

X ]
0v

]
cpX

]
1

def⇐⇒ ∀z] ∈ D]0, X
]
0(z])v]1 X

]
1(z])

then, X ]
0v

]
cpX

]
1 =⇒ γcp(X ]

0) ⊆ γcp(X ]
1)

Join operation:
we assume that t1 is a sound upper bound operator in D]1
then, tcp defined below is a sound upper bound operator in D]cp:

X ]
0 tcp X

]
1

def
::= λ(z] ∈ D]0) · (X ]

0(z]) t1 X
]
1(z]))

the same construction applies to widening, if D]0 is finite
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Cardinal power and partitioning abstractions

Composition with another abstraction

We assume three abstractions
(D]0,v

]
0), with concretization γ0 : D]0 −→ D

(D]1,v
]
1), with concretization γ1 : D]1 −→ D

(D]2,v
]
2), with concretization γ2 : D]2 −→ D]1 D = P(E)

D]0 D]1

D]2

γ0 γ1

γ2

Cardinal power abstract domains D]0 ⇒ D]1 and D]0 ⇒ D]2 can be bound by
an abstraction relation defined by concretization function γ:

γ : (D]0 ⇒ D]2) −→ (D]0 ⇒ D]1)

X ] 7−→ λ(z] ∈ D]0) · γ(X ](z]))

Applications:

start with D]1 as the identity abstraction
compose several cardinal power abstractions
(or partitioning abstractions)
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Cardinal power and partitioning abstractions

Composition with another abstraction

concrete lattice D = P(Z), with v=⊆
(D]0,v

]
0) be the lattice of signs

(D]1,v
]
1) be the identity abstraction

D]1 = P(Z), γ1 = Id

(D]2,v
]
2) be the lattice of intervals

⊥

[−] [0] [+]

>

Then, [−10,−3] ] [7, 10] is abstracted in two steps:

in D]0 ⇒ D]1,


[< 0] 7−→ [−10,−3]
[= 0] 7−→ ∅
[> 0] 7−→ [7, 10]

in D]0 ⇒ D]2,


[< 0] 7−→ [−10,−3]
[= 0] 7−→ ⊥1
[> 0] 7−→ [7, 10]
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State partitioning Definition and examples

Definition

We consider concrete domain D = P(S) where
S = L×M where L denotes the set of control states
M = X −→ V

State partitioning
A state partitioning abstraction is defined as the cardinal power of two
abstractions (D]0,v

]
0, γ0) and (D]1,v

]
1, γ1) of sets of states:

(D]0,v
]
0, γ0) defines the partitions

(D]1,v
]
1, γ1) defines the abstraction of each element of partitions

either D]1 = P(S), ordered with the inclusion
or an abstraction of sets of memory states: numerical abstraction
can be obtained by composing another abstraction on top of (P(S),⊆)
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State partitioning Definition and examples

Instantiation with a partition

We fix a partition E of P(S):
1 ∀e, e ′ ∈ E , e 6= e ′ =⇒ e ∩ e ′ = ∅
2 S =

⋃
E

e0 e1 e2 e3

We can apply cardinal power construction:

State partitioning abstraction

We let D]0 = E and γ0 : e 7→ e. Thus, D]cp = E → D]1 and:

γcp : D]cp −→ D
X ] 7−→ {s ∈ S | ∀e ∈ E , s ∈ e =⇒ s ∈ γ0(X ](e))}

each e ∈ E is attached to a piece of
information in D]1
exercise: what happens if use only a
covering, i.e., if we drop property 1 ?

e0

x ]0

e1

x ]1

e2

x ]2

e3

x ]3
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State partitioning Definition and examples

Application 1: flow sensitive abstraction

Principle: abstract separately the states at distinct control states

This is what we have been often doing already, without formalizing it
for instance, using the the interval abstract domain:

l0 : // assume x ≥ 0
l1 : if(x < 10){
l2 : y = x− 2;
l3 : }else{
l4 : y = 2− x;
l5 : }
l6 : . . .

l0 7→ x : >∧ y : >
l1 7→ x : [0,+∞[∧ y : >
l2 7→ x : [0, 9]∧ y : >
l3 7→ x : [0, 9]∧ y : [−2, 7]
l4 7→ x : [10,+∞[∧ y : >
l5 7→ x : [10,+∞[∧ y :]−∞,−2]
l6 7→ x : [0,+∞[∧ y :]−∞, 7]
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State partitioning Definition and examples

Application 1: flow sensitive abstraction

Principle: abstract separately the states at distinct control states

Flow sensitive abstraction
We apply the cardinal power based partitioning abstraction with:

D]0 = L
γ0 : l 7→ {l } ×M

It is induced by partition {{l } ×M | l ∈ L}

Then, if X ] is an element of the reduced cardinal power,

γcp(X ]) = {s ∈ S | ∀x ∈ D]0, s ∈ γ0(x) =⇒ s ∈ γ1(X ](x))}
= {(l ,m) ∈ S | m ∈ γ1(X ](l))}

after this abstraction step, D]1 only needs to represent sets of memory
states (numeric abstractions...)
this abstraction step is very common as part of the design of abstract
interpreters
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State partitioning Definition and examples

Application 1: flow insensitive abstraction

representing one set of memory states per program point may be
costly for some applications (e.g., compilation)
context insensitive abstraction simply forgets about control states

Flow sensitive abstraction
We apply the cardinal power based partitioning abstraction with:

D]0 = {·}
γ0 : · 7→ S
D]1 = P(M)

γ1 : M 7→ {(l ,m) | l ∈ L,m ∈ M}
It is induced by a trivial partition of P(S)

used for some ultra-fast pointer analyses
(very quick analyses used for, e.g., compiler optimization)
otherwise, usually too coarse
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State partitioning Definition and examples

Application 1: flow insensitive abstraction

We compare with flow sensitive abstraction:

l0 : // assume x ≥ 0
l1 : if(x < 10){
l2 : y = x− 2;
l3 : }else{
l4 : y = 2− x;
l5 : }
l6 : . . .

l0 7→ x : >∧ y : >
l1 7→ x : [0,+∞[∧ y : >
l2 7→ x : [0, 9]∧ y : >
l3 7→ x : [0, 9]∧ y : [−2, 7]
l4 7→ x : [10,+∞[∧ y : >
l5 7→ x : [10,+∞[∧ y :]−∞,−2]
l6 7→ x : [0,+∞[∧ y :]−∞, 7]

the best global information is x : >∧ y : > (very imprecise)
even if we exclude the point before the assume, we get
x : [0,+∞[∧ y : > (still very imprecise)

For a few specific applications flow insensitive is ok
In most cases (e.g., numeric programs), flow sensitive is absolutely needed
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State partitioning Definition and examples

Application 2: context sensitive abstraction

We consider programs with procedures

Example:
void main(){. . . l0 : f(); . . . l1 : f(); . . . l2 : g() . . .}
void f(){. . .}
void g(){if(. . .){l3 : f()}else{l4 : g()}}

main

f g

l0

l1

l2

l3

l4

assumption: flow sensitive abstraction used inside each function
we need to also describe the call stack state

Call string
Thus, S = K× L×M, where K is the set of call strings

κ ∈ K calling contexts
κ ::= ε empty call stack

| (f , l ) · κ call to f from stack κ at point l
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State partitioning Definition and examples

Application 2: context sensitive abstraction, ∞-CFA

Fully context sensitive abstraction (∞-CFA)

D]0 = K× L
γ0 : (κ, l ) 7→ {(κ, l ,m) | m ∈M}

void main(){. . . l0 : f(); . . . l1 : f(); . . . l2 : g() . . .}
void f(){. . .}
void g(){if(. . .){l3 : f()}else{l4 : g()}}

main

f g

l0

l1

l2

l3

l4

Contexts in function f:

(l0, f) · ε, (l1, f) · ε, (l4, f) · (l2, g) · ε,
(l4, f) · (l3, g) · (l2, g) · ε, (l4, f) · (l3, g) · (l3, g) · (l2, g) · ε, . . .

one invariant per calling context, very precise (used, e.g., in Astrée)
infinite in presence of recursion (i.e., not practical in this case)
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State partitioning Definition and examples

Application 2: context sensitive abstraction, 0-CFA

Non context sensitive abstraction (0-CFA)

D]0 = L
γ0 : l 7→ {(κ, l ,m) | κ ∈ K,m ∈M}

void main(){. . . l0 : f(); . . . l1 : f(); . . . l2 : g() . . .}
void f(){. . .}
void g(){if(. . .){l3 : f()}else{l4 : g()}}

main

f g

l0

l1

l2

l3

l4

Contexts in function f:
(?, f) · . . . ,

merges all calling contexts to a same procedure, very coarse
abstraction
but usually quite efficient to compute
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State partitioning Definition and examples

Application 2: context sensitive abstraction, k-CFA

Partially context sensitive abstraction (k-CFA)

D]0 = {κ ∈ K | length(κ) ≤ k} × L
γ0 : (κ, l ) 7→ {(κ · κ′, l ,m) | κ′ ∈ K,m ∈M}

void main(){. . . l0 : f(); . . . l1 : f(); . . . l2 : g() . . .}
void f(){. . .}
void g(){if(. . .){l3 : f()}else{l4 : g()}}

main

f g

l0

l1

l2

l3

l4

Contexts in function f, in 2-CFA:

(l0, f) · ε, (l1, f) · ε, (l4, f) · (l3, g) · (?, g) · . . . , (l4, f) · (l4, g) · (?, g) · . . .

usually intermediate level of precision and efficiency
can be applied to programs with recursive procedures
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State partitioning Definition and examples

Application 3: partitioning by a boolean condition

so far, we only used abstractions of the context to partition
we now consider abstractions of memory states properties

Function guided memory states partitioning
We let:

D]0 = P(A) for some set A, and φ : M→ A

γ0 be of the form (x ] ∈ D]0) 7→ {(l ,m) ∈ S | φ(m) ∈ x ]}

Common choice for A: the set of boolean values B
(or a variation of this)

Many choices for function φ are possible:
value of one or several variables (boolean or scalar)
sign of a variable
...
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State partitioning Definition and examples

Application 3: partitioning by a boolean condition

We assume:
X = Xbool ] Xint, where Xbool (resp., Xint) collects boolean (resp.,
integer) variables
Xbool = {b0, . . . , bk−1}
Xint = {x0, . . . , xl−1}

Thus, M = X→ V ≡ (Xbool → Vbool)× (Xint → Vint) ≡ Vk
bool × Vl

int

Boolean partitioning abstract domain
We apply the cardinal power abstraction, with a domain of partition
defined by a function, with:

A = Bk

φ(m) = (m(b0), . . . ,m(bk−1))

(D]1,v
]
1, γ1) an abstraction of P(Vl

int)
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State partitioning Definition and examples

Application 3: example

With Xbool = {b0, b1},Xint = {x, y}, we can express:


b0 ∧ b1 =⇒ x0 ∈ [−3, 0] ∧ y ∈ [0, 2]
b0 ∧ ¬b1 =⇒ x0 ∈ [−3, 0] ∧ y ∈ [0, 2]
¬b0 ∧ b1 =⇒ x0 ∈ [0, 3] ∧ y ∈ [−2, 0]
¬b0 ∧ ¬b1 =⇒ x0 ∈ [0, 3] ∧ y ∈ [−2, 0]

x

y

¬b0

b0

this abstract value expresses a relation between b0 and x, y
(which induces a relation between x and y)
alternative: partition with respect to only some variables
typical representation of abstract values:
based on some kind of decision trees (variants of BDDs)
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State partitioning Definition and examples

Application 3: example

Left side abstraction shown in blue: boolean partitioning for b0, b1

Right side abstraction shown in green: interval abstraction

bool b0, b1;
int x, y; (uninitialized)
b0 = x ≥ 0;

(b0 =⇒ x ≥ 0) ∧ (¬b0 =⇒ x < 0)
b1 = x ≤ 0;

(b0 ∧ b1 =⇒ x = 0) ∧ (b0 ∧ ¬b1 =⇒ x > 0) ∧ (¬b0 ∧ b1 =⇒ x < 0)
if(b0 && b1){

(b0 ∧ b1 =⇒ x = 0)
y = 0;

(b0 ∧ b1 =⇒ x = 0 ∧ y = 0)
}else{

(b0 ∧ ¬b1 =⇒ x > 0) ∧ (¬b0 ∧ b1 =⇒ x < 0)
y = 100/x;

(b0 ∧ ¬b1 =⇒ x > 0 ∧ y ≥ 0) ∧ (¬b0 ∧ b1 =⇒ x < 0 ∧ y ≤ 0)
}
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State partitioning Definition and examples

Application 3: partitioning by the sign of a variable

We assume:
X = Xint, i.e., all variables have integer type
Xint = {x0, . . . , xl−1}

Thus, M = X→ V ≡ Vl
int

Sign partitioning abstract domain
We apply the cardinal power abstraction, with a domain of partition
defined by a function, with:

A = {[< 0], [= 0], [> 0]}

φ(m) =


[< 0] if x0 < 0
[= 0] if x0 = 0
[> 0] if x0 > 0

(D]1,v
]
1, γ1) an abstraction of P(Vl−1

int ) (no need to abstract x0 twice)
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State partitioning Definition and examples

Application 3: example

Abstraction fixing partitions shown in blue
Right side abstraction shown in green: interval abstraction

int x ∈ Z;
int s;
int y;
if(x ≥ 0){

(x < 0⇒ ⊥) ∧ (x = 0⇒ >) ∧ (x > 0⇒ >)
s = 1;

(x < 0⇒ ⊥) ∧ (x = 0⇒ s = 1) ∧ (x > 0⇒ s = 1)
} else {

(x < 0⇒ >) ∧ (x = 0⇒ ⊥) ∧ (x > 0⇒ ⊥)
s = −1;

(x < 0⇒ s = −1) ∧ (x = 0⇒ ⊥) ∧ (x > 0⇒ ⊥)
}

(x < 0⇒ s = −1) ∧ (x = 0⇒ s = 1) ∧ (x > 0⇒ s = 1)
¬ y = x/s;

(x < 0⇒ s = −1 ∧ y > 0) ∧ (x = 0⇒ s = 1 ∧ y = 0) ∧ (x > 0⇒ s = 1 ∧ y > 0)
­ assert(y ≥ 0);
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State partitioning Control states partitioning and iteration techniques

Computation of abstract semantics and partitioning

we first consider partitioning by control states
we rely on the two steps partitioning abstraction
i.e., to be composed with an abstraction of P(M)

the techniques considered below extend to other forms of
partitioning

This abstraction corresponds to a Galois connection:

(P(L×M),⊆) −−−−−→←−−−−−
αpart

γpart
(D]part,

.
⊆)

where D]part = L→ P(M) and:

αpart : P(L×M) −→ D]part
E 7−→ λ(l ∈ L) · {m ∈M | (l ,m) ∈ E}

γpart : D]part −→ P(L×M)

X ] 7−→ {(l ,m) ∈ S | m ∈ X ](l )}
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State partitioning Control states partitioning and iteration techniques

Fixpoint form of a partitioned semantics

We consider a transition system S = (S,→,SI)
The reachable states are computed as JSKR = lfpSIF where

F : P(S) −→ P(S)
X 7−→ {s ∈ S | ∃s ′ ∈ X , s ′ → s}

Semantic function over the partitioned system

We let Fpart be defined over D]part by:

Fpart : D]part −→ D]part
X ] 7−→ λ(l ∈ L) · {m ∈M | ∃l ′ ∈ L, ∃m ′ ∈ X ](l ′),

(l ′,m ′)→ (l ,m)}

Then Fpart ◦ αpart = αpart ◦ F , and

αpart(JSKR) = lfpαpart(SI)Fpart
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State partitioning Control states partitioning and iteration techniques

Abstract equations form of a partitioned semantics

we look for a set of equivalent abstract equations
let us consider the system of semantic equations over sets of states
E1, . . . , Es ∈ P(M):

E1 =
⋃

i{m ∈M | ∃m ′ ∈ Ei , (li ,m ′)→ (l1,m)}
...

Es =
⋃

i{m ∈M | ∃m ′ ∈ Ei , (li ,m ′)→ (ls ,m)}

If we let Fi : (E1, . . . , Es) 7→
⋃

i{m ∈M | ∃m ′ ∈ Ei , (li ,m ′)→ (li ,m)},
then, we can prove that:

αpart(JSKR) is the least solution of the system


E1 = F1(E1, . . . , Es)

...
Es = Fs(E1, . . . , Es)
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State partitioning Control states partitioning and iteration techniques

Partitioned systems and fixpoint computation

How to compute an abstract invariant for a partitioned system described by
a set of abstract equations ?

(for now, we assume no convergence issue, i.e., that the abstract lattice is
of finite height)

In practice Fi depends only on a few of its arguments
i.e., Ek depends only on the predecessors of lk in the control flow
graph of the program under consideration
Example of a simple system of abstract equations:

E0 = I ∪ F0(E3)
E1 = F1(E0)
E2 = F2(E0)
E3 = F3(E1, E2)

l0

l1 l2

l3

where αpart(SI) = (SI ,⊥,⊥,⊥) (i.e., init states are at point l0)
Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Oct, 29th. 2014 57 / 97



State partitioning Control states partitioning and iteration techniques

Partitioned systems and fixpoint computation

Following the fixpoint transfer, we obtain the following abstract iterates
(E]n)n∈N:

E]0 = (I, ⊥, ⊥, ⊥)

E]1 = (I, F ]1(I), F ]2(I), ⊥)

E]2 = (I, F ]1(I), F ]2(I), F ]3(F ]1(I),F ]2(I)))

E]3 = (I t F ]0(F ]3(F ]1(I),F ]2(I))), F ]1(I), F ]2(I), F ]3(F ]1(I),F ]2(I)))

Each iteration causes the recomputation of all components
Though, each iterate differs from the previous one in only a few
components
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State partitioning Control states partitioning and iteration techniques

Chaotic iterations: principle

Fairness
Let K be a finite set. A sequence (kn)n∈N of elements of K is fair if and
only if, for all k ∈ K , the set {n ∈ N | kn = k} is infinite.

Other alternate definition: ∀k ∈ K , ∀n0 ∈ N, ∃n ∈ N, n > n0∧ kn = k

i.e., all elements of K is encountered infinitely often

Chaotic iterations

A chaotic sequence of iterates is a sequence of abstract iterates (X ]
n)n∈N in

D]part such that there exists a sequence (kn)n∈N of elements of {1, . . . s}
such that:

X ]
n+1 = λ(li ∈ L) ·

{
X ]
n(li ) if i 6= kn

X ]
n(li ) t F ](X ]

n(l1), . . . ,X ]
n(ls)) if i = kn
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State partitioning Control states partitioning and iteration techniques

Chaotic iterations: soundness

Soundness
Assuming the abstract lattice satisfies the ascending chain condition, any
sequence of chaotic iterates computes the abstract fixpoint:

lim (X ]
n)n∈N = αpart(JSKR)

Proof: exercise
Applications: we can recompute only what is necessary
Back to the example, where only the recomputed components are
colored:
E]0 = (I, ⊥, ⊥, ⊥)

E]1 = (I, F ]1(I), ⊥, ⊥)

E]2 = (I, F ]1(I), F ]2(I), ⊥)

E]3 = (I, F ]1(I), F ]2(I), F ]3(F ]1(I),F ]2(I)))

E]4 = (ItF ]0(F ]3(F ]1(I),F ]2(I))), F ]1(I), F ]2(I), F ]3(F ]1(I),F ]2(I)))
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State partitioning Control states partitioning and iteration techniques

Chaotic iterations: work-list algorithm

Work-list algorithms
Principle:

maintain a queue of partitions to update
initialize the queue with the entry label of the program
and the local invariant at that point at αnum(SI)

for each iterate, update the first partition in the queue (after
removing it), and add to the queue all its successors unless the
updated invariant is equal to the former one
terminate when the queue is empty

This algorithm implements a chaotic iteration strategy, thus it is sound

Application: only partitions that need be updated are recomputed
Implemented in many static analyzers
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State partitioning Control states partitioning and iteration techniques

Work-list algorithm

Pseudo code implementation, with δ]l ,l ′ denoting the transfer function
from l to l ′:

to_propagate← {initial states}
E]initial ← >
while(to_propagate 6= ∅){

pick l ∈ to_propagate
to_propagate = to_propagate \ {l }
for(l ′ successor of l in the CFG){

y ] ← δ]l ,l ′(E
]
l )

if(¬(y ]v]E]l ′)){
E]l ′ = E]l ′t

]y ]

to_propagate = to_propagate ∪ {l ′}
}

}
}
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State partitioning Control states partitioning and iteration techniques

Selection of a set of widening points for a partitioned system

We compose an abstraction D]num, with concretization
γnum : D]num → P(M), that may not satisfy ascending chain condition

We assume D]num provides widening operator O

How to adapt the chaotic iteration strategy, i.e. guarantee termination and
soundness ?

Enforcing termination of chaotic iterates
Let KO ⊆ {1, . . . , s} such that each cycle in the control flow graph of the
program contains at least one point in KO; we define the chaotic abstract
iterates with widening as follows:

X ]
n+1 = λ(li ∈ L)·


X ]
n(li ) if i 6= kn

X ]
n(li ) t F ](X ]

n(l1), . . . ,X ]
n(ls)) if i = kn ∧ li 6∈ KO

X ]
n(li )OF ](X

]
n(l1), . . . ,X ]

n(ls)) if i = kn ∧ li ∈ KO
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State partitioning Control states partitioning and iteration techniques

Selection of a set of widening points for a partitioned system

Soundness and termination

Under the assumption of a fair iteration strategy, sequence (X ]
n)n∈N

terminates and computes a sound abstract post-fixpoint:

∃n0 ∈ N,
{
∀n ≥ n0, X

]
n0 = X ]

n

JSKR ⊆ γpart(Xn0)

Proof: exercise

Algorithm for iteration with widening: exercise
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State partitioning Abstract interpretation with boolean partitioning

Computation of abstract semantics and partitioning

We now compose two forms of partitioning
by control states (as previously), using a chaotic iteration strategy
by the values of the boolean variables

Thus, the abstract domain is of the form

L −→ (Vk
bool −→ D]0)

we could do a partitioning by L× Vk
bool

yet, it is not practical, as transitions from “boolean states” are not
know before the analysis
data types skeleton:

type abs0 = ... (* abstract elements of D]0 *)
type abs_state = ... (*

boolean trees with elements of type abs0 at the leaves *)
type abs_cp = (labels, abs_state) Map.t
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State partitioning Abstract interpretation with boolean partitioning

Abstract operations

Transfer functions:
we seek, for all pair l , l ′ ∈ L for an approximation δ]l ,l ′ of

δl ,l ′ : M −→ P(M)
m 7−→ {m ′ ∈M | (l ,m)→ (l ′,m ′)}

that includes
I scalar assignment, e.g., x = 1− x;
I scalar test, e.g., if(x ≥ 8) . . .
I boolean test, e.g., if(¬b1) . . .
I mixed assignment, e.g., b0 = x ≤ 7

Lattice operations: inclusion check, join, widening
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State partitioning Abstract interpretation with boolean partitioning

Transfer functions: scalar assignment

Assignment l0 : x = e; l1 affecting only integer variables (i.e., e depends
only on x0, . . . , xl):

example: x = 1− x;

concrete transition δl0,l1 defined by
δl0,l1(m) = {m[x← JeK(m)]}

the values of the boolean variables are unchanged
thus the partitions are preserved (pointwise transfer function):

assign→(x, e,X ]) = λ(z] ∈ D]0) · assign1(x, e,X ](z]))

Soundness
If assign1 is sound, so is assign→, in the sense that:

∀X ] ∈ D]cp, ∀m ∈ γcp(X ]), m[x← JeK(m)] ∈ γcp(assign→(x, e,X ]))
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State partitioning Abstract interpretation with boolean partitioning

Transfer functions: scalar assignment, example

abstract precondition:{
b ⇒ x ≥ 0

∧ ¬b ⇒ x ≤ 0

}
statement:

x = 1− x;

abstract post-condition:

assign→
(
x, 1− x,

{
b ⇒ x ≥ 0

∧ ¬b ⇒ x ≤ 0

})
=

{
b ⇒ x ≥ 8

∧ ¬b ⇒ >

}
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State partitioning Abstract interpretation with boolean partitioning

Transfer functions: scalar test

Condition test l0 : if(c){l1 : . . .} affecting only scalar variables (i.e., c
depends only on x0, . . . , xl):

example: if(x ≥ 8) . . .

concrete transition δl0,l1 defined by

δl0,l1(m) =

{
{m} if JcK(m) = TRUE
∅ if JcK(m) = FALSE

the partitions are preserved, thus we get a pointwise transfer function:
test→(c,X ]) = λ(z] ∈ D]0) · test1(c,X ](z]))

Soundness
If test1 is sound, so is test→, in the sense that:

∀X ] ∈ D]cp, ∀m ∈ γcp(X ]), JcK(m) = TRUE =⇒ m ∈ γcp(test→(x, e,X ]))
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State partitioning Abstract interpretation with boolean partitioning

Transfer functions: scalar test, example

abstract pre-condition:{
b ⇒ x ≥ 0

∧ ¬b ⇒ x ≤ 0

}
statement:

if(x ≥ 8) . . .

abstract post-condition:

test→
(
x ≥ 8,

{
b ⇒ x ≥ 0

∧ ¬b ⇒ x ≤ 0

})
=

{
b ⇒ x ≥ 8

∧ ¬b ⇒ ⊥

}
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State partitioning Abstract interpretation with boolean partitioning

Transfer functions: boolean condition test

Condition test l0 : if(c){l1 : . . .} affecting only boolean variables (i.e., c
depends only on b0, . . . , bk):

example: if(¬b1) . . .

then, we simply need to filter the boolean partitions satisfying c:

test→(c,X ]) = λ(z] ∈ D]0) ·
{

X ](z]) if test0(c,X ](z])) 6= ⊥0
⊥1 otherwise

Soundness
If test0 is sound, so is test→, in the sense that:

∀X ] ∈ D]cp, ∀m ∈ γcp(X ]), JcK(m) = TRUE =⇒ m ∈ γcp(test→(x, e,X ]))
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State partitioning Abstract interpretation with boolean partitioning

Transfer functions: boolean condition test, example

abstract pre-condition:


b0 ∧ b1 ⇒ 15 ≤ x

∧ b0 ∧ ¬b1 ⇒ 9 ≤ x ≤ 14
∧ ¬b0 ∧ b1 ⇒ 6 ≤ x ≤ 8
∧ ¬b0 ∧ ¬b1 ⇒ x ≤ 5


statement: if(¬b1) . . .

abstract post-condition:

test→

¬b1,


b0 ∧ b1 ⇒ 15 ≤ x

∧ b0 ∧ ¬b1 ⇒ 9 ≤ x ≤ 14
∧ ¬b0 ∧ b1 ⇒ 6 ≤ x ≤ 8
∧ ¬b0 ∧ ¬b1 ⇒ x ≤ 5




=


b0 ∧ b1 ⇒ ⊥1

∧ b0 ∧ ¬b1 ⇒ 9 ≤ x ≤ 14
∧ ¬b0 ∧ b1 ⇒ ⊥1
∧ ¬b0 ∧ ¬b1 ⇒ x ≤ 5


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State partitioning Abstract interpretation with boolean partitioning

Transfer functions: mixed assignment

Assignment l0 : b = e; l1 to a boolean variable, where the right hand
side contains only integer variables (i.e., e depends only on x0, . . . , xl):

example: b0 = x ≤ 7
let z] ∈ D]0, such that z](b) = TRUE
assign→(b, e[x0, . . . , xi ],X ])(z]) should account for all states where b
becomes true, other boolean variables remaining unchanged:

assign→(b, e,X ])(z]) =

{
test1(e,X ](z]))

t1 test1(e,X ](z][b← FALSE]))

same computation for cases where z](b) = FALSE

The partitions get modified (this is a costly step, involving join)
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State partitioning Abstract interpretation with boolean partitioning

Transfer functions: mixed assignment, example

abstract pre-condition:


b0 ∧ b1 ⇒ 15 ≤ x

∧ b0 ∧ ¬b1 ⇒ 9 ≤ x ≤ 14
∧ ¬b0 ∧ b1 ⇒ 6 ≤ x ≤ 8
∧ ¬b0 ∧ ¬b1 ⇒ x ≤ 5


statement: b0 = x ≤ 7
abstract post-condition:

assign→

b0, x ≤ 7,


b0 ∧ b1 ⇒ 15 ≤ x

∧ b0 ∧ ¬b1 ⇒ 9 ≤ x ≤ 14
∧ ¬b0 ∧ b1 ⇒ 6 ≤ x ≤ 8
∧ ¬b0 ∧ ¬b1 ⇒ x ≤ 5




=


b0 ∧ b1 ⇒ 6 ≤ x ≤ 7

∧ b0 ∧ ¬b1 ⇒ x ≤ 5
∧ ¬b0 ∧ b1 ⇒ 8 ≤ x
∧ ¬b0 ∧ ¬b1 ⇒ 9 ≤ x ≤ 14


The partitions get modified (this is a costly step, involving join)
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State partitioning Abstract interpretation with boolean partitioning

Choice of boolean partitions

Boolean partitioning allows to express relations between boolean
and scalar variables
These relations are expensive:

1 Partitioning with respect to N boolean variables translates into a 2N

space cost factor
2 After assignments, partitions need be recomputed

Packing addresses the first issue:
I select groups of variables for which relations would be useful
I can be based on syntactic or semantic criteria

Whatever the packs, the transfer functions will produce a sound result
(but possibly not the most precise one)

How to alleviate the second issue ?
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Trace partitioning

Outline
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Trace partitioning

Definition of trace partitioning

Assumptions: we start from a trace semantics
and use an abstraction of execution history for partitioning
concrete domain: D = P(S?)

left side abstraction γ0 : D]0 → D: a trace abstraction
right side abstraction, as a composition of two abstractions:

I the final state abstraction defined by (D]
1,v

]
1) = (P(S),⊆) and:

γ1 : D]
1 −→ P(S?)

M 7−→ {〈s0, . . . , sk , (l ,m)〉 | m ∈ M, l ∈ L, s0, . . . , sk ∈ S}
I a store abstraction applied to the traces final memory state
γ2 : D]

2 → D]
1

Trace partitioning
Cardinal power abstraction defined by the above, and by an abstraction
of sets of traces γ0 : D]0 −→ P(S?)
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Trace partitioning

Application 1: partitioning by control states

Flow sensitive abstraction

We let D]0 = L
Concretization is defined by:

γ0 : D]0 −→ P(S?)
l 7−→ S? · ({l } ×M)

This produces the same flow sensitive abstraction as with state
partitioning; in the following we always compose context sensitive
abstraction with other abstractions

Trace partitioning is more general than state partitioning
It can also express

context-sensitivity, partial context sensitivity
partitioning guided by a boolean condition...

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Oct, 29th. 2014 79 / 97



Trace partitioning

Application 2: partitioning guided by a condition

We consider a program with a conditional statement:
l0 : if(c){
l1 : . . .
l2 : }else{
l3 : . . .
l4 : }
l5 : . . .

Domain of partitions

The partitions are defined by D]0 = {ift, iff ,>} and:

γ0 : ift 7−→ {〈(l0,m), (l1,m ′), . . .〉 | m ∈M,m ′ ∈M}
iff 7−→ {〈(l0,m), (l3,m ′), . . .〉 | m ∈M,m ′ ∈M}
> 7−→ S?

Application: discriminate the executions depending on the branch
they visited
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Trace partitioning

Application 2: partitioning guided by a condition

This partitioning resolves the second example (we do not represent >
when it gives no information):

int x ∈ Z;
int s;
int y;
if(x ≥ 0){

ift ⇒ (0 ≤ x) ∧ iff ⇒ ⊥
s = 1;

ift ⇒ (0 ≤ x ∧ s = 1) ∧ iff ⇒ ⊥
} else {

iff ⇒ (x < 0) ∧ ift ⇒ ⊥
s = −1;

iff ⇒ (x < 0 ∧ s = −1) ∧ ift ⇒ ⊥
} {

ift ⇒ (0 ≤ x ∧ s = 1)
∧ iff ⇒ (x < 0 ∧ s = −1)

y = x/s; {
ift ⇒ (0 ≤ x ∧ s = 1 ∧ 0 ≤ y)

∧ iff ⇒ (x < 0 ∧ s = −1 ∧ 0 < y)
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Trace partitioning

Application 3: partitioning guided by a loop

We consider a program with a conditional statement:

l0 : while(c){
l1 : . . .
l2 : }
l3 : . . .

Domain of partitions
For a given k ∈ N, the partitions are defined by
D]0 = {loop0, loop1, . . . , loopk ,>} and:

γ0 : loopi 7−→ traces that visit l1 i times
> 7−→ S?

Application: discriminate executions depending on the number of
iterations in a loop
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Trace partitioning

Application 3: partitioning guided by a loop

An interpolation function:

y =


−1 if x ≤ −1
−1

2 + x
2 if x ∈ [−1, 1]

−1 + x if x ∈ [1, 3]
2 if 3 ≤ x

Typical implementation:

x

y

use tables of coefficients and loops to search for the range of x
int i = 0;
while(i < 4 && x > tx [i + 1]){

i + +;
} 

loop0 ⇒ x ≤ −1
loop1 ⇒ −1 ≤ x ≤ 1
loop2 ⇒ 1 ≤ x ≤ 3
loop3 ⇒ 3 ≤ x

y = tc [i]× (x− tx [i]) + ty [i]
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Trace partitioning

Application 4: partitioning guided by the value of a variable

We consider a program with an integer variable x, and a program point l :

int x; . . . ; l : . . .

Domain of partitions: partitioning by the value of a variable
For a given E ⊆ Vint finite set of integer values, the partitions are defined
by D]0 = {vali | i ∈ E} ] {>} and:

γ0 : valk 7−→ {〈. . . , (l ,m), . . .〉 | m(x) = k}
> 7−→ S?

Domain of partitions: partitioning by the property of a variable

For a given abstraction γ : (V ],v])→ (P(Vint),⊆), the partitions are
defined by D]0 = {varv] | v ] ∈ V ]} and:

γ0 : valv] 7−→ {〈. . . , (l ,m), . . .〉 | m(x) ∈ varv]}
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Trace partitioning

Application 4: partitioning guided by the value of a variable

Left side abstraction shown in blue: sign of x at entry
Right side abstraction shown in green:
non relational abstraction (we omit the information about x)
Same precision and similar results as boolean partitioning,
but very different abstraction, fewer partitions, no re-partitioning

bool b0, b1;
int x, y; (uninitialized)

¬ (x < 0@¬⇒ >) ∧ (x = 0@¬⇒ >) ∧ (x > 0@¬⇒ >)
b0 = x ≥ 0;

(x < 0@¬⇒ ¬b0) ∧ (x = 0@¬⇒ b0) ∧ (x > 0@¬⇒ b0)
b1 = x ≤ 0;

(x < 0@¬⇒ ¬b0 ∧ b1) ∧ (x = 0@¬⇒ b0 ∧ b1) ∧ (x > 0@¬⇒ b0 ∧ ¬b1)
if(b0 && b1){

(x < 0@¬⇒ ⊥) ∧ (x = 0@¬⇒ b0 ∧ b1) ∧ (x > 0@¬⇒ ⊥)
y = 0;

(x < 0@¬⇒ ⊥) ∧ (x = 0@¬⇒ b0 ∧ b1 ∧ y = 0) ∧ (x > 0@¬⇒ ⊥)
} else {

(x < 0@¬⇒ ¬b0 ∧ b1) ∧ (x = 0@¬⇒ ⊥) ∧ (x > 0@¬⇒ b0 ∧ ¬b1)
y = 100/x;

(x < 0@¬⇒ ¬b0 ∧ b1 ∧ y ≤ 0) ∧ (x = 0@¬⇒ ⊥) ∧ (x > 0@¬⇒ b0 ∧ ¬b1 ∧ y ≥ 0)
}
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Trace partitioning

Trace partitioning induced by a refined transition system

Let us consider the partitions induced by a condition:
we may never merge traces from both branches
we may merge them right after the condition
(this amounts to doing no partitioning at all)
we may merge them at some point

l0 if(x < 0){
l1 s = −1;
l2 } else {
l3 s = 1;
l4 }
l5 y = x/s;
l6 . . .

P0

(l0,>)

(l1,>)

(l2,>)

(l3,>)

(l4,>)

(l5,>)

(l6,>)

P1

(l0,>)

(l1, ift)

(l2, ift)

(l3, iff)

(l4, iff)

(l5, ift) (l5, iff)

(l6,>)

P0

(l0,>)

(l1, ift)

(l2, ift)

(l3, iff)

(l4, iff)

(l5, ift) (l5, iff)

(l6, ift) (l6, iff)

Thus, we can view this form of trace partitioning as the use of a
refined control flow graph
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Trace partitioning

Trace partitioning induced by a refined transition system

We now formalize this intuition:
we augment control states with partitioning tokens: L′ = L× D]0
and let S′ = L′ ×M
let →′⊆ S′ × S′ be an extended transition relation

Partition of a transition system
System S ′ = (S′,→′,S′I) is a partition of transition system
S = (S,→, SI) (and note S ′ ≺ S) if and only if

∀(l ,m) ∈ SI , ∃tok ∈ D]0, ((l , tok),m) ∈ S′I
∀(l ,m), (l ′,m ′) ∈ S, ∀tok ∈ D]0,

(l ,m)→ (l ′,m ′) =⇒ ∃tok′ ∈ D]0, ((l , tok),m)→ ((l ′, tok′),m ′)

Then:

∀〈(l0,m0), . . . , (ln,mn)〉 ∈ JSKR,
∃tok0, . . . , tokn ∈ D]0, 〈((l0, tok0),m0), . . . , ((ln, tokn),mn)〉 ∈ JS ′KR,
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Trace partitioning

Trace partitioning induced by a refined transition system

we assume (S′,→′, S′I) ≺ (S,→,SI)

erasure function: Ψ : (S′)? → S? removes the tokens

Definition of a trace partitioning
The abstraction defining partitions is defined by:

γ0 : D]0 −→ P(S?)
tok 7−→ {σ ∈ S? | ∃σ′ = 〈. . . , ((l , tok),m)〉 ∈ (S′)?, Ψ(σ′) = σ}

not all instances of trace partitionings can be expressed that way
... but many interesting instances can
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Trace partitioning

Trace partitioning induced by a refined transition system

Example of the partitioning guided by a condition:

l0 if(x < 0){
l1 s = −1;
l2 } else {
l3 s = 1;
l4 }
l5 y = x/s;
l6 . . .

P0

(l0,>)

(l1,>)

(l2,>)

(l3,>)

(l4,>)

(l5,>)

(l6,>)

P1

(l0,>)

(l1, ift)

(l2, ift)

(l3, iff)

(l4, iff)

(l5, ift) (l5, iff)

(l6,>)

P0

(l0,>)

(l1, ift)

(l2, ift)

(l3, iff)

(l4, iff)

(l5, ift) (l5, iff)

(l6, ift) (l6, iff)

each system induces a partitioning, with different merging points:
P1 ≺ P0 P2 ≺ P1

these systems induce hierarchy of refining control structures
P2 ≺ P1

this approach also applies to:
I partitioning induced by a loop
I partitioning induced by the value of a variable at a given point...
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Trace partitioning

Abstract interpretation of a partitioned transition system

let S = (S,→,SI), and a refining system S ′ = (S′,→′, S′I), with
S = L×M, S′ = (L× D]0)×M
transfer functions of S ′:
δl ,l ′ : (D]0 → D]1) −→ (D]0 → D]1) over-approximating →′

Partition irrelevant transfer function
l , l ′ induces a partition irrelevant transfer function if and only if:

∀tok, tok′ ∈ D]0, ∀m ,m ′ ∈M,
((l , tok),m)→′ ((l ′, tok′),m ′) =⇒ tok = tok′

partition irrelevant transfer functions: pointwise operators of D]1
for our examples of partitioning: this is the most common case
other transfer functions: usually for partition creation or fusion
or simple composition of a creation / fusion + partition irrelevant t.f.
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Trace partitioning

Transfer functions: example

int x ∈ Z;
int s;
int y;
if(x ≥ 0){

ift ⇒ (0 ≤ x) ∧ iff ⇒ ⊥ partition creation: ift
s = 1;

ift ⇒ (0 ≤ x ∧ s = 1) ∧ iff ⇒ ⊥ no modification of partitions
} else {

iff ⇒ (x < 0) ∧ ift ⇒ ⊥ partition creation: iff
s = −1;

iff ⇒ (x < 0 ∧ s = −1) ∧ ift ⇒ ⊥ no modification of partitions
} {

ift ⇒ (0 ≤ x ∧ s = 1)
∧ iff ⇒ (x < 0 ∧ s = −1)

no modification of partitions

y = x/s; {
ift ⇒ (0 ≤ x ∧ s = 1 ∧ 0 ≤ y)

∧ iff ⇒ (x < 0 ∧ s = −1 ∧ 0 < y)
no modification of partitions

. . .
_⇒ s ∈ [−1, 1] ∧ 0 ≤ y fusion of partitions

In general, partitions are rarely modified (only some branching points)
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Trace partitioning

Transfer functions: partition creation

Analysis of an if statement, with partitioning

l0 : if(c){
l1 : . . .
l2 : }else{
l3 : . . .
l4 : }
l5 : . . .

δ]l0,l1(X ]) = [ift 7→ test(c,tX ](l0)(t)),> 7→ ⊥]

δ]l0,l3(X ]) = [ift 7→ test(¬c,ttX
](l0)(t)),> 7→ ⊥]

δ]l2,l5(X ]) = X ]

δ]l4,l5(X ]) = X ]

in the body of the condition: either ift or iff
effect at point l5: both ift and iff exist
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Trace partitioning

Transfer functions: partition fusion

When partitions are not useful anymore, they can be merged

δ]l0,l1(X ]) = [_ 7→ ttX
](l0)(t)]

at this point, all partitions are effectively collapsed into just one set
example: fusion of the partition of a condition when not useful
choice of fusion point:

I precision: merge point should not occur as long as partitions are useful
I efficiency: merge point should occur as early as partitions are not

needed anymore
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Trace partitioning

Choice of partitions

How are the partitions chosen ?

Static partitioning

a fixed partitioning abstraction D]0, γ0 is fixed before the analysis

usually D]0, γ0 are chosen by a pre-analysis

static partitioning is rather easy to formalize and implement
but it might be limiting, when the choice of partitions is hard

Dynamic partitioning

the partitioning abstraction D]0, γ0 is not fixed before the analysis
instead, it is computed as part of the analysis
i.e., the analysis uses on a lattice of partitioning abstractions D] and
computes (D]0, γ0) as an element of this lattice
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Conclusion

Adding disjunctions in static analyses

Disjunctive completion is too expensive in practice
The cardinal power abstraction expresses collections of implications
between abstract facts in two abstract domains
State partitioning and trace partitioning are particular cases of
cardinal power abstraction
State partitioning is easier to use when the criteria for partitioning
can be easily expressed at the state level
Trace partitioning is more expressive in general
it can also allow the use of simpler partitioning criteria, with less
“re-partitioning”
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Conclusion

Assignment: paper reading

Abstract interpretation by dynamic partitioning,
François Bourdoncle,
Journal of Functional Programming, 2(4) 407–423, 1992.
Extended report available at:
http://www.hpl.hp.com/techreports/Compaq-DEC/PRL-RR-18.pdf
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