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Introduction

Concurrent programming

Idea:

Decompose a program into a set of (loosely) interacting processes.

Why concurrent programs?

exploit parallelism in current computers
(multi-processors, multi-cores, hyper-threading)

“Free lunch is over”
change in Moore’s law (×2 transistors every 2 years)

exploit several computers
(distributed computing)

ease of programming
(GUI, network code, reactive programs)
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Introduction

Models of concurrent programs

Many models:

process calculi: CSP, π−calculus, join calculus

message passing

shared memory (threads)

transactional memory

combination of several models

Example implementations:

C, C++ with a thread library (POSIX threads, Win32)

C, C++ with a message library (MPI, OpenMP)

Java (native threading API)

Erlang (based on π−calculus)

JoCaml (OCaml + join calculus)

processor-level (interrupts, test-and-set instructions)
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Introduction

Scope

In this course: static thread model

implicit communication through shared memory

explicit communication through synchronisation primitives

fixed number of threads (no dynamic creation of threads)

numeric programs (real-valued variables)

Goal: static analysis

infer numeric program invariants

discover possible run-time errors (e.g., division by 0)

parametrized by a choice of numeric abstract domains
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Introduction

Outline

State-based analyses

sequential programs (reminders)

concurrent programs

Toward thread-modular analyses

detour through proof methods
(Floyd–Hoare, Owicki–Gries, Jones)

rely-guarantee in abstract interpretation form

Interference-based abstract analyses

denotational-style analysis

weakly consistent memory models

synchronisation
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Introduction

Simple structured numeric language

finite set of (toplevel) threads: prog1 to progn

finite set of numeric program variables V ∈ V

finite set of statement locations ` ∈ L
finite set of potential error locations ω ∈ Ω

Structured language syntax

parprog ::= `prog1
` || . . . || `progn` (parallel composition)

`prog` ::= `V := exp` (assignment)

| `if exp ./ 0 then `prog` fi` (conditional)

| `while `exp ./ 0 do `prog` done` (loop)

| `prog; `prog` (sequence)

exp ::= V | [c1, c2] | − exp | exp �ω exp

c1, c2 ∈ R ∪ {+∞,−∞}, � ∈ {+,−,×, / }, ./∈ {=, <, . . . }
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State-based analyses

State-based analyses
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State-based analyses Sequential program semantics (reminders)

Sequential program semantics (reminders)
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State-based analyses Sequential program semantics (reminders)

Transition systems

Transition system: (Σ, τ, I)

Σ: set of program states

τ ⊆ Σ× Σ: transition relation
we note (σ, σ′) ∈ τ as σ →τ σ

′

I ⊆ Σ: set of initial states

Traces: sequences of states σ0, . . . , σn, . . .

Σ∗: finite traces

Σω: infinite countable traces

Σ∞
def
= Σ∗ ∪ Σω: finite or infinite countable traces

u � t : u is a prefix of t

We view program semantics and properties as sets of traces.
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State-based analyses Sequential program semantics (reminders)

Traces of a transition system

Maximal trace semantics: M∞ ∈ P(Σ∞)

set of total executions σ0, . . . , σn, . . .

starting in an initial state σ0 ∈ I and either

ending in a blocking state in B def
= {σ | ∀σ′:σ 6→τ σ

′ }
or infinite

M∞
def
= {σ0, . . . , σn |σ0 ∈ I ∧ σn ∈ B ∧ ∀i < n:σi →τ σi+1 } ∪
{σ0, . . . , σn . . . |σ0 ∈ I ∧ ∀i < ω:σi →τ σi+1 }

able to express many properties of programs, e.g.:

state safety: M∞ ⊆ S∞ (executions stay in S)

ordering: M∞ ⊆ S∞1 · S∞2 (S2 can only occur after S1)

termination: M∞ ⊆ Σ∗ (executions are finite)

inevitability: M∞ ⊆ Σ∗ · S · Σ∞ (executions pass through S)
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State-based analyses Sequential program semantics (reminders)

Traces of a transition system

Finite prefix trace semantics: Tp ∈ P(Σ∗)

set of finite prefixes of executions:

Tp
def
= {σ0, . . . , σn | n ≥ 0, σ0 ∈ I, ∀i < n:σi →τ σi+1 }

Tp is an abstraction of the maximal trace semantics

Tp = α∗�(M∞) where α∗�(X )
def
= { t ∈ Σ∗ | ∃u ∈ X : t � u }

Tp can prove state safety properties: Tp ⊆ S∗
(executions stay in S)

Tp can prove ordering properties: Tp ⊆ S∗1 · S∗2
(if S1 and S2 occur, S2 occurs after S1)

Tp cannot prove termination nor inevitability properties

fixpoint characterisation: Tp = lfpFp where
Fp(X ) = I ∪ {σ0, . . . , σn+1 |σ0, . . . , σn ∈ X ∧ σn →τ σn+1 }
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State-based analyses Sequential program semantics (reminders)

State abstraction

Reachable state semantics: R ∈ P(Σ)

set of states reachable in any execution:
R def

= {σ | ∃n ≥ 0, σ0, . . . , σn:σ0 ∈ I, ∀i < n:σi →τ σi+1 ∧ σ = σn }

R is an abstraction of the finite trace semantics: R = αp(Tp)

where αp(X )
def
= {σ | ∃σ0, . . . , σn ∈ X :σ = σn }

R can prove state safety properties: R ⊆ S
(executions stay in S)

R cannot prove ordering, termination, inevitability properties

fixpoint characterisation: R = lfpFR where
FR(X ) = I ∪ {σ | ∃σ′ ∈ X :σ′ →τ σ }
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State-based analyses Sequential program semantics (reminders)

States of a sequential program

Simple sequential numeric programs: parprog ::= `iprog`
x
.

Program states: Σ
def
= (L × E) ∪ Ω

a control state in L, and

either a memory state: an environment in E def
= V→ R

or an error state in Ω

Initial states:

start at the first control point `i with variables set to 0:

I def
= { (`i , λV.0) }

Note that P(Σ) ' (L → P(E))× P(Ω):

a state property in P(E) at each program point in L
and a set of errors in P(Ω)
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State-based analyses Sequential program semantics (reminders)

Expression semantics with errors

Expression semantics: EJ exp K : E → (P(R)× P(Ω))

EJ V K ρ def
= 〈 { ρ(V) }, ∅ 〉

EJ [c1, c2] K ρ def
= 〈 { x ∈ R | c1 ≤ x ≤ c2 }, ∅ 〉

EJ−e K ρ def
= let 〈V , O 〉 = EJ e K ρ in

〈 {−v | ∈ V }, O 〉

EJ e1 �ω e2 K ρ def
= let 〈V1, O1 〉 = EJ e1 K ρ in

let 〈V2, O2 〉 = EJ e2 K ρ in
〈 { v1 � v2 | vi ∈ Vi , � 6= / ∨ v2 6= 0 },
O1 ∪ O2 ∪ {ω if � = / ∧ 0 ∈ V2 } 〉

defined by structural induction on the syntax

evaluates in an environment ρ to a set of values

also returns a set of accumulated errors
(here, only divisions by zero)
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State-based analyses Sequential program semantics (reminders)

Reminders: semantics in equational form

Principle: (without handling errors in Ω)

see lfp f as the least solution of an equation x = f (x)
partition states by control: P(L × E) ' L → P(E)
X` ∈ P(E): invariant at ` ∈ L
∀` ∈ L:X`

def
= {m ∈ E | (`,m) ∈ R}

=⇒ set of (recursive) equations on X`

Example:
`1
i:=2;

`2
n:=[−∞,+∞];

`3
while `4

i < n do
`5
if [0, 1] = 0 then

`6
i:=i+1

fi
`7
done

`8

X1 = I
X2 = CJ i := 2 KX1

X3 = CJ n := [−∞,+∞] KX2

X4 = X3 ∪ X7

X5 = CJ i < n KX4

X6 = X5

X7 = X5 ∪ CJ i := i + 1 KX6

X8 = CJ i ≥ n KX4
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State-based analyses Sequential program semantics (reminders)

Semantics in denotational form

Input-output function CJ prog K

CJ prog K : (P(E)× P(Ω))→ (P(E)× P(Ω))

CJ X :=e K 〈R, O 〉 def
= 〈 ∅, O 〉 t

⊔
ρ∈R 〈 { ρ[X 7→ v ] | v ∈ Vρ }, Oρ 〉

CJ e ./ 0? K 〈R, O 〉 def
= 〈 ∅, O 〉 t

⊔
ρ∈R 〈 { ρ | ∃v ∈ Vρ: v ./ 0 }, Oρ 〉

where 〈Vρ, Oρ 〉
def
= EJ e K ρ

CJ if e ./ 0 then s fi KX def
= (CJ s K ◦ CJ e ./ 0? K )X t CJ e 6./ 0? KX

CJ while e ./ 0 do s done KX def
=

CJ e 6./ 0? K (lfpλY .X t (CJ s K ◦ CJ e ./ 0? K )Y )

CJ s1; s2 K def
= CJ s2 K ◦ CJ s1 K

mutate memory states in E , accumulate errors in Ω
(t is the element-wise ∪ in P(E)× P(Ω))

structured: nested loops yield nested fixpoints
big-step: forget information on intermediate locations `
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State-based analyses Sequential program semantics (reminders)

Abstract semantics in denotational form

Extend a numeric abstract domain E] abstracting P(E)

to D] def
= E] × P(Ω).

C]J prog K : D] → D]

C]J X :=e K 〈R], O 〉 and C]J e ./ 0? K 〈R], O 〉 are given

C]J if e ./ 0 then s fi KX ] def
=

(C]J s K ◦ C]J e ./ 0? K )X ] t] C]J e 6./ 0? KX ]

C]J while e ./ 0 do s done KX ] def
=

C]J e 6./ 0? K (limλY ].Y ] O (X ] t (C]J s K ◦ C]J e ./ 0? K )Y ]))

C]J s1; s2 K def
= C]J s2 K ◦ C]J s1 K

the abstract interpreter mimicks an actual interpreter

efficient in memory (intermediate invariants are not kept)

less flexibility in the iteration scheme
(iteration order, widening points, etc.)
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State-based analyses Concurrent program semantics

Concurrent program semantics
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State-based analyses Concurrent program semantics

Labelled transition systems

Labelled transition system: (Σ,A, τ, I)

Σ: set of program states

A: set of actions

τ ⊆ Σ×A× Σ: transition relation
we note (σ, a, σ′) ∈ τ as σ

a→τ σ
′

I ⊆ Σ: set of initial states

Labelled traces: sequences of states interspersed with actions

denoted as σ0
a0→ σ1

a1→ · · ·σn
an→ σn+1
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State-based analyses Concurrent program semantics

From concurrent programs to labelled transition systems

Notations:

concurrent program:
parprog ::= `i1prog1

`x1 || · · · || `inprogn`
x
n

threads identifiers: T
def
= { 1, . . . , n }

Program states: Σ
def
= ((T→ L)× E) ∪ Ω

a control state L(t) ∈ L for each thread t ∈ T and

a single shared memory state ρ ∈ E
or an error state ω ∈ Ω

Initial states:

threads start at their first control point `it , variables are set to 0:

I def
= { (λt.`it , λV.0) }

Actions: thread identifiers: A def
= T
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State-based analyses Concurrent program semantics

From concurrent programs to labelled transition systems

Transition relation: τ ⊆ Σ×A× Σ

(L, ρ)
t→τ (L′, ρ′)

def⇐⇒ (L(t), ρ)→τ [progt ]
(L′(t), ρ′) ∧

∀u 6= t: L(u) = L′(u)

(L, ρ)
t→τ ω

def⇐⇒ (L(t), ρ)→τ [progt ]
ω

based on the transition relation of individual threads
seen as sequential processes progt :
τ [prog] ⊆ (L × E)× ((L × E) ∪ Ω)

choose a thread t to run
update ρ and L(t)
leave L(u) intact for u 6= t

(See course 3 for the full definition of τ [prog].)

each σ → σ′ in τ [progt ] leads to many transitions in τ !
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State-based analyses Concurrent program semantics

Interleaved trace semantics

Maximal and finite prefix trace semantics are as before:

Blocking states: B def
= {σ | ∀σ′: ∀t:σ

t
6→τ σ

′ }

Maximal traces: M∞ (finite or infinite)

M∞
def
= {σ0

t0→ · · ·
tn−1→ σn | n ≥ 0 ∧ σ0 ∈ I ∧ σn ∈ B ∧ ∀i < n:σi

ti→τ σi+1 } ∪
{σ0

t0→ σ1 . . . | n ≥ 0 ∧ σ0 ∈ I ∧ ∀i < ω:σi
ti→τ σi+1 }

Finite prefix traces: Tp

Tp
def
= {σ0

t0→ · · · tn−1→ σn | n ≥ 0 ∧ σ0 ∈ I ∧ ∀i < n:σi
ti→τ σi+1 }

Fixpoint form: Tp = lfpFp where

Fp(X ) = I ∪ {σ0
t0→ · · · tn→ σn+1 | n ≥ 0 ∧ σ0

t0→ · · ·
tn−1→ σn ∈ X ∧ σn

tn→τ σn+1 }

Abstraction: Tp = α∗�(M∞)
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State-based analyses Concurrent program semantics

Fairness

Fairness conditions: avoid threads being denied to run

Given enabled(σ, t)
def⇐⇒ ∃σ′ ∈ Σ:σ

t→τ σ
′,

an infinite trace σ0
t0→ · · ·σn

tn→ · · · is:

weakly fair if ∀t ∈ T:
(∃i : ∀j ≥ i : enabled(σj , t)) =⇒ (∀i :∃j ≥ i : aj = t)
(no thread can be continuously enabled without running)

strongly fair if ∀t ∈ T:
(∀i : ∃j ≥ i : enabled(σj , t)) =⇒ (∀i : ∃j ≥ i : aj = t)
(no thread can be infinitely often enabled without running)

Proofs under fairness conditions given:

the maximal traces M∞ of a program

a property X to prove (as a set of traces)

the set F of all (weakly or strongly) fair and of finite traces

=⇒ prove M∞ ∩ F ⊆ X instead of M∞ ⊆ X
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State-based analyses Concurrent program semantics

Fairness (cont.)

Example: while x ≥ 0 do x:=x+1 done || x:=-1
may not terminate without fairness

always terminates under weak and strong fairness

Finite prefix trace abstraction

M∞ ∩ F ⊆ X is abstracted into testing α∗�(M∞ ∩ F ) ⊆ α∗�(X )

for all fairness conditions F , α∗�(M∞ ∩ F ) = α∗�(M∞) = Tp
=⇒ fairness-dependent properties cannot be proved with finite prefixes only

In the following, we ignore fairness conditions.
(see [Cous85])
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State-based analyses Concurrent program semantics

Equational state semantics

State abstraction R: as before

R def
= {σ | ∃n ≥ 0, σ0

t0→ · · ·σn:σ0 ∈ I ∀i < n:σi
ti→τ σi+1 ∧ σ = σn }

R = αp(Tp) where αp(X )
def
= {σ | ∃n ≥ 0, σ0

t0→ · · ·σn ∈ X :σ = σn }

R = lfpFR where FR(X ) = I ∪ {σ | ∃σ′ ∈ X , t ∈ T:σ′
t→τ σ }

Equational form: (without handling errors in Ω)

for each L ∈ T→ L, a variable XL with value in E
equations are derived from thread equations eq(progt) as:
XL1 =

⋃
t∈T{F (XL2 , . . . ,XLN ) |

∃(X`1 = F (X`2 , . . . ,X`N )) ∈ eq(progt):
∀i ≤ N: Li (t) = `i , ∀u 6= t: Li (u) = L1(u) }

Join with ∪ equations from eq(progt) updating a single thread t ∈ T.

(See course 3 for the full definition of eq(prog).)
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State-based analyses Concurrent program semantics

Equational state semantics (example)

Example: inferring 0 ≤ x ≤ y ≤ 102

t1 t2

while `10 = 0 do`2 while `40 = 0 do`5

if x<y then if y<100 then
`3x:=x+1 `6y:=y+[1,3]

fi fi

done done
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State-based analyses Concurrent program semantics

Equational state semantics (example)

Example: inferring 0 ≤ x ≤ y ≤ 102

t1 t2

while `10 = 0 do`2 while `40 = 0 do`5

if x<y then if y<100 then
`3x:=x+1 `6y:=y+[1,3]

fi fi

done done

(Simplified) equation system:
X1,4 = I ∪ CJ x := x + 1 KX3,4 ∪ CJ x ≥ y KX2,4

∪ CJ y := y + [1, 3] KX1,6 ∪ CJ y ≥ 100 KX1,5

X2,4 = X1,4 ∪ CJ y := y + [1, 3] KX2,6 ∪ CJ y ≥ 100 KX2,5

X3,4 = CJ x < y KX2,4 ∪ CJ y := y + [1, 3] KX3,6 ∪ CJ y ≥ 100 KX3,5

X1,5 = CJ x := x + 1 KX3,5 ∪ CJ x ≥ y KX2,5 ∪ X1,4

X2,5 = X1,5 ∪ X2,4

X3,5 = CJ x < y KX2,5 ∪ X3,4

X1,6 = CJ x := x + 1 KX3,6 ∪ CJ x ≥ y KX2,6 ∪ CJ y < 100 KX1,5

X2,6 = X1,6 ∪ CJ y < 100 KX2,5

X3,6 = CJ x < y KX2,6 ∪ CJ y < 100 KX3,5
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State-based analyses Concurrent program semantics

Equational state semantics (example)

Example: inferring 0 ≤ x ≤ y ≤ 102

t1 t2

while `10 = 0 do`2 while `40 = 0 do`5

if x<y then if y<100 then
`3x:=x+1 `6y:=y+[1,3]

fi fi

done done

Pros:

easy to construct
easy to further abstract in an abstract domain E]

Cons:

explosion of the number of variables and equations
explosion of the size of equations
=⇒ efficiency issues
the equation system does not reflect the program structure
(not defined by induction on the concurrent program)
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State-based analyses Concurrent program semantics

Wish-list

We would like to:

keep information attached to syntactic program locations
(control points in L, not control point tuples in T→ L)

be able to abstract away control information
(precision/cost trade-off control)

avoid duplicating thread instructions

have a computation structure based on the program syntax
(denotational style)

Ideally: thread-modular denotational-style semantics

(analyze each thread independently by induction on its syntax)
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Towards thread-modular analyses Detour through proof methods

Detour through proof methods
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Towards thread-modular analyses Detour through proof methods

Floyd–Hoare logic

Logic to prove properties about sequential programs [Hoar69].

Hoare triples: {P} prog {Q}
annotate programs with logic assertions {P} prog {Q}
(if P holds before prog, then Q holds after prog)

check that {P}prog{Q} is derivable with the following rules
(the assertions are program invariants)

{P[e/X]} X := e {P}
{P ∧ e ./ 0} s {Q} P ∧ e 6./ 0⇒ Q

{P} if e ./ 0 then s fi {Q}

{P} s1 {Q} {Q} s2 {R}
{P} s1; s2 {R}

{P ∧ e ./ 0} s {P}
{P} while e ./ 0 do s done {P ∧ e 6./ 0}

{P′} s {Q′} P ⇒ P′ Q′ ⇒ Q

{P} s {Q}
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Towards thread-modular analyses Detour through proof methods

Floyd–Hoare logic as abstract interpretation

Link with the equational state semantics:

Correspondence between `prog`
′

and {P} prog {Q}:
if P (resp. Q) models exactly the points in X` (resp. X`′)
then {P} prog {Q} is a derivable Hoare triple

if {P} prog {Q} is derivable, then X` |= P and X`′ |= Q
(all the points in X` (resp. X`′ ) satisfy P (resp. Q))

=⇒ X` provide the most precise Hoare assertions
in a constructive form

γ(X ]) provide (less precise) Hoare assertions
in a computable form

Link with the denotational semantics:

both CJ prog K and the proof tree for {P} prog {Q}
reflect the syntactic structure of prog
(compositional methods)
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Towards thread-modular analyses Detour through proof methods

Owicki–Gries proof method

Extension of Floyd–Hoare to concurrent programs [Owic76].

Principle: add a new rule, for ||

{P1} s1 {Q1} {P2} s2 {Q2}
{P1 ∧ P2} s1 || s2 {Q1 ∧ Q2}

This rule is not always sound!
e.g., we have {X = 0, Y = 0} X := 1 {X = 1, Y = 0}

and {X = 0, Y = 0} if X = 0 then Y := 1 fi {X = 0, Y = 1}
but not {X = 0, Y = 0} X := 1 || if X = 0 then Y := 1 fi {false}

=⇒ we need a side-condition to the rule:
{P1} s1 {Q1} and {P2} s2 {Q2} must not interfere
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Towards thread-modular analyses Detour through proof methods

Owicki–Gries proof method (cont.)

interference freedom

given proofs ∆1 and ∆2 of {P1} s1 {Q1} and {P2} s2 {Q2}

∆1 does not interfere with ∆2 if:
for any Φ appearing before a statement in ∆1

for any {P′2} s′2 {Q′2} appearing in ∆2

{Φ ∧ P′2} s′2 {Φ} holds
and moreover {Q1 ∧ P′2} s′2 {Q1}

i.e.: the assertions used to prove {P1} s1 {Q1} are stable by s2

e.g., {X = 0, Y ∈ [0, 1]} X := 1 {X = 1, Y ∈ [0, 1]}
{X ∈ [0, 1], Y = 0} if X = 0 then Y := 1 fi {X ∈ [0, 1], Y ∈ [0, 1]}

=⇒ {X = 0, Y = 0} X := 1 || if X = 0 then Y := 1 fi {X = 1, Y ∈ [0, 1]}

Summary:

pros: the invariants are local to threads

cons: the proof is not compositional
(proving one thread requires delving into the proof of other threads)

=⇒ not satisfactory
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Towards thread-modular analyses Detour through proof methods

Jones’ rely-guarantee proof method

Idea: explicit interferences with (more) annotations [Jone81].

Rely-guarantee “quintuples”: R,G ` {P} prog {Q}
if P is true before prog is executed

and the effect of other threads is included in R (rely)

then Q is true after prog

and the effect of prog is included in G (guarantee)

where:

P and Q are assertions on states (in P(Σ))

R and G are assertions on transitions (in P(Σ×A× Σ))

The parallel composition rule becomes:

R ∨ G2,G1 ` {P1} s1 {Q1} R ∨ G1,G2 ` {P2} s2 {Q2}
R,G1 ∨ G2 ` {P1 ∧ P2} s1 || s2 {Q1 ∧ Q2}
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Towards thread-modular analyses Detour through proof methods

Rely-guarantee example

Example: proving 0 ≤ x ≤ y ≤ 102

checking t1

while `10 = 0 do`2

x unchanged

if x<y then

y incremented

`3x:=x+1

0 ≤ y ≤ 102

fi

done

at `1, `2 : x, y ∈ [0, 102], x ≤ y

at `3 : x ∈ [0, 101], y ∈ [1, 102], x < y

checking t2

y unchanged

while `40 = 0 do`5

0 ≤ x ≤ y

if y<100 then
`6y:=y+[1,3]

fi

done

at `4, `5 : x, y ∈ [0, 102], x ≤ y

at `6 : x ∈ [0, 99], y ∈ [0, 99], x ≤ y

In this example:

guarantee exactly what is relied on (R1 = G1 and R2 = G2)

rely and guarantee are global assertions

Benefits of rely-guarantee:

invariants are still local to threads
checking a thread does not require looking at other threads,
only at an abstraction of their semantics
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Towards thread-modular analyses Detour through proof methods

Auxiliary variables

Example

t1 t2

`1 x := x + 1 `2 `3 x := x + 1 `4

Goal: prove {x = 0} t1 || t2 {x = 2}.

we must rely on and guarantee that
each thread increments x exactly once!

Solution: auxiliary variables
do not change the semantics but store extra information:

past values of variables (history of the computation)

program counter of other threads (pct)

Example: for t1: {(pc2 = `3 ∧ x = 0) ∨ (pc2 = `4 ∧ x = 1)}
x := x + 1

{(pc2 = `3 ∧ x = 1) ∨ (pc2 = `4 ∧ x = 2)}
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Towards thread-modular analyses Rely-guarantee as abstract interpretation

Rely-guarantee as abstract interpretation
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Towards thread-modular analyses Rely-guarantee as abstract interpretation

Local states

State projection: on a thread t ∈ T

add auxiliary variables Vt
def
= V ∪ { pct′ | t ′ ∈ T, t ′ 6= t }

enriched environments for t: Et
def
= Vt → R

(for simplicity, pct′ are numeric variables, i.e., L ⊆ R)

local states: Σt
def
= (L × Et) ∪ Ω

recall that Σ
def
= ((T→ L)× E) ∪ Ω

Σt has a simpler, sequential control state

projection: πt(L, ρ)
def
= (L(t), ρ [∀t ′ 6= t: pct′ 7→ L(t ′)])

from Σ to Σt : shift control state to auxiliary variables
extended naturally to πt : P(Σ)→ P(Σt)

πt is a bijection, no information is lost
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Towards thread-modular analyses Rely-guarantee as abstract interpretation

Local invariants

a

a

b

a

b

bb

Abstraction steps to local reachable states:

concrete (prefix) labelled trace semantics: Tp

state reachability abstraction: R = αp(Tp) ∈ P(Σ)

local state reachability: Rl(t)
def
= πt(R) ∈ P(Σt)

thread’s view of reachable states
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Towards thread-modular analyses Rely-guarantee as abstract interpretation

Interferences

a

a

a

b

a

b

bb

Interference: A ∈ T→ P(Σ× Σ) caused by a thread t ∈ T

A(t)
def
= αitf (Tp)(t)

where αitf (X )(t)
def
= { (σ, σ′) | ∃ · · ·σ t→ σ′ · · · ∈ X }

Subset of the transition system τ :

spawned by t

and actually observed in some execution trace (in Tp)
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Towards thread-modular analyses Rely-guarantee as abstract interpretation

Fixpoint form

Local state fixpoint:

we express Rl(t) as a function of A and thread t ∈ T:

Rl(t) = lfpRt(A) where

Rt : (T→ P(Σ× Σ))→ P(Σt)→ P(Σt)

Rt(Y )(X )
def
= πt(I) ∪

{πt(σ′) | ∃πt(σ) ∈ X :σ
t→τ σ

′ ∨ ∃u 6= t: (σ, σ′) ∈ Y (u) }

A state is reachable if it is initial,
or reachable by transitions from t or from the environment A.

Rt only looks into the syntax of thread t.
Rt is parameterized by the interferences from other threads Y .
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Towards thread-modular analyses Rely-guarantee as abstract interpretation

Fixpoint form

Local state fixpoint: illustration

bThread

x = 0

while x<y

  x++;

/* bla bla */

a

lfpRt(A) interleaves:

transitions in πt from thread t

transitions in A from interferences
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Towards thread-modular analyses Rely-guarantee as abstract interpretation

Fixpoint form (cont.)

Interferences:

a

a b b a

x = 0

while x<y

  x++;

/* bla bla */

Thread

we express A(t) as a function of Rl and thread t ∈ T:

A(t) = B(Rl)(t) where

B : (
∏

t∈T {t} → P(Σt))→ T→ P(Σ× Σ)

B(Z )(t)
def
= { (σ, σ′) |πt(σ) ∈ Z (t) ∧ σ t→τ σ

′ }

Collect transitions starting from reachable states.

No fixpoint needed.
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Towards thread-modular analyses Rely-guarantee as abstract interpretation

Fixpoint form (cont.)

Nested fixpoint characterization:

1 Rl(t) = lfpRt(A)

2 A(t) = B(Rl)(t)

3 mutual dependency between Rl and A

=⇒ solved using a fixpoint:

Rl = lfp H where

H : (
∏

t∈T {t} → P(Σt))→ (
∏

t∈T {t} → P(Σt))

H(Z )(t)
def
= lfpRt(B(Z ))

Completeness: ∀t:Rl(t) ' R (πt is bijective thanks to auxiliary variables)
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Towards thread-modular analyses Rely-guarantee as abstract interpretation
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Towards thread-modular analyses Rely-guarantee as abstract interpretation

Fixpoint form (cont.)

Constructive fixpoint form:

Use Kleene’s iteration to construct fixpoints:

Rl = lfp H =
⊔

n∈N Hn(λt.∅)
in the pointwise powerset lattice

∏
t∈T {t} → P(Σt)

H(Z )(t) = lfp Rt(B(Z )) =
⋃

n∈N(Rt(B(Z )))n(∅)
in the powerset lattice P(Σt)

(similar to the sequential semantics of thread t in isolation)

=⇒ nested iterations
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Towards thread-modular analyses Rely-guarantee as abstract interpretation

Abstract rely-guarantee

Suggested algorithm: nested iterations with acceleration

once abstract domains for states and interferences are chosen

start from Rl ]0
def
= A]0

def
= λt.⊥]

while A]n is not stable

compute ∀t ∈ T:Rl]n+1(t)
def
= lfp R]t (A]n)

by iteration with widening O

(' separate analysis of each thread)

compute A]n+1
def
= A]n O B](Rl]n+1)

when A]n = A]n+1, return Rl ]n

=⇒ thread-modular analysis
parameterized by abstract domains
able to easily reuse existing sequential analyses
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Towards thread-modular analyses Rely-guarantee as abstract interpretation

Flow-insensitive abstraction

Idea:

reduce as much control information as possible

but keep flow-sensitivity on each thread’s control location

Local state abstraction: remove auxiliary variables

αnf
R : P(Σt)→ P((L × E) ∪ Ω)

αnf
R (X )

def
= { (`, ρ|V) | (`, ρ) ∈ X } ∪ (X ∩ Ω)

Interference abstraction: remove all control state

αnf
A : P(Σ× Σ)→ P(E × E)

αnf
A (Y )

def
= { (ρ, ρ′) | ∃L, L′ ∈ T→ L: ((L, ρ), (L′, ρ′)) ∈ Y }
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Towards thread-modular analyses Rely-guarantee as abstract interpretation

Flow-insensitive abstraction (cont.)

Flow-insensitive fixpoint semantics: (omitting errors Ω)

We apply αnf
R and αnf

A to the nested fixpoint semantics.

Rlnf def
= lfpλZ .λt. lfpRnf

t(Bnf (Z)), where

Bnf (Z)(t)
def
= { (ρ, ρ′) | ∃`, `′ ∈ L: (`, ρ) ∈ Z(t) ∧ (`, ρ)→t (`′, ρ′) }

(extract interferences from reachable states)

Rnf
t (Y )(X )

def
= R loc

t (X ) ∪ Anf
t (Y )(X ) (interleave steps)

R loc
t (X )

def
= {(`it , λV.0)} ∪ { (`′, ρ′) | ∃(`, ρ) ∈ X : (`, ρ)→t (`′, ρ′) } (thread step)

Anf
t (Y )(X )

def
= { (`, ρ′) | ∃ρ, u 6= t: (`, ρ) ∈ X ∧ (ρ, ρ′) ∈ Y (u) } (interference step)

where →t is the transition relation for thread t alone: τ [progt ]

Cost/precision trade-off:

less variables
=⇒ subsequent numeric abstractions are more efficient

sufficient to analyze our first example (slide 26)

insufficient to analyze x := x + 1 || x := x + 1 (slide 35)
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Towards thread-modular analyses Rely-guarantee as abstract interpretation

Non-relational interference abstraction

Idea: simplify further flow-insensitive interferences

numeric relations are more costly than numeric sets
=⇒ remove input sensitivity

relational domains are more costly than non-relational
=⇒ abstract the interference on each variable separately

Non-relational interference abstraction:

αnr
A : P(E × E)→ (V→ P(R))

αnr
A (Y )

def
= λV.{ x ∈ V | ∃(ρ, ρ′) ∈ Y : ρ(V) 6= x ∧ ρ′(V) = x }

(remember which variables are modified and their new values)

To apply interferences, we get, in the nested fixpoint form:

Anr
t (Y )(X )

def
=

{ (`, ρ[V 7→ v ]) | (`, ρ) ∈ X , V ∈ V, ∃u 6= t: v ∈ Y (u)(V) }
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Towards thread-modular analyses Rely-guarantee as abstract interpretation

A note on unbounded threads

Extension: relax the finiteness constraint on T

there is still a finite syntactic set of threads Ts

some threads T∞ ⊆ Ts can have several instances

(possibly an unbounded number)

Flow-insensitive analysis:

local state and interference domains have finite dimensions
(Et and (L × E)× (L × E), as opposed to E and E × E)

all instances of a thread t ∈ Ts are isomorphic
=⇒ iterate the analysis on the finite set Ts (instead of T)

we must handle self-interferences for threads in T∞:

Anf
t (Y )(X )

def
=

{ (`, ρ′) | ∃ρ, u: (u 6= t∨ t ∈ T∞)∧ (`, ρ) ∈ X ∧ (ρ, ρ′) ∈ Y (u) }
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Towards thread-modular analyses Rely-guarantee as abstract interpretation

From traces to thread-modular analyses

abstract states

(T× L)→ E]
abstract interferences

T→ E]
static analyzer

non-relational interferences

T→ P(E)

αE
OO

local states

(T× L)→ P(E)

αE

OO

flow-insensitive interferences

T→ P(E × E)

αnr
A

OO

rely-guarantee
(without aux. variables)

local states

Rl :
∏

t∈T {t} → P(Σt )

αnf
R

OO

interferences

A : T→ P(Σ× Σ)

αnf
A

OO

rely-guarantee
(with aux. variables)

πt

OO
αitf
OO

interleaved execution trace prefixes test
Tp ∈ P(Σ∗)
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Towards thread-modular analyses Rely-guarantee as abstract interpretation

Compare with sequential analyses

abstract states

L → E] static analyzer

states

R ∈ P(Σ)

αE

OO

reachability

execution trace prefixes

Tp ∈ P(Σ∗)

αp

OO

test
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Construction of an interference-based analysis

Construction of an interference-based analysis
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Construction of an interference-based analysis

Reminder: sequential analysis in denotational form

Expression semantics: EJ exp K : E → (P(R)× P(Ω))

EJ X K ρ def
= 〈 { ρ(X) }, ∅ 〉

EJ [c1, c2] K ρ def
= 〈 { x ∈ R | c1 ≤ x ≤ c2 }, ∅ 〉

EJ−e K ρ def
= let 〈V , O 〉 = EJ e K ρ in 〈 {−v | v ∈ V }, O 〉

EJ e1 �ω e2 K ρ def
=

let 〈V1, O1 〉 = EJ e1 K ρ in
let 〈V2, O2 〉 = EJ e2 K ρ in
〈 { v1 � v2 | vi ∈ Vi , � 6= / ∨ v2 6= 0 }, O1 ∪ O2 ∪ {ω if � = / ∧ 0 ∈ V2 } 〉

Statement semantics: CJ prog K : (P(E)× P(Ω))→ (P(E)× P(Ω))

CJ X := e K 〈R, O 〉 def
= 〈 ∅, O 〉 t

⊔
ρ∈R 〈 { ρ[X 7→ v ] | v ∈ Vρ }, Oρ 〉

CJ e ./ 0? K 〈R, O 〉 def
= 〈 ∅, O 〉 t

⊔
ρ∈R 〈 { ρ | ∃v ∈ Vρ: v ./ 0 }, Oρ 〉

CJ if e ./ 0 then s fi KX def
= (CJ s K ◦ CJ e ./ 0? K )X t CJ e 6./ 0? KX

CJ while e ./ 0 do s done KX def
=

CJ e 6./ 0? K (lfpλY .X t (CJ s K ◦ CJ e ./ 0? K )Y )

CJ s1; s2 K def
= CJ s2 K ◦ CJ s1 K

where 〈Vρ, Oρ 〉
def
= EJ e K ρ
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Construction of an interference-based analysis

Denotational semantics with interferences

Interferences in I
def
= T× V× R

〈 t, X, v 〉 means: t can store the value v into the variable X

We define the analysis of a thread t
with respect to a set of interferences I ⊆ I.

Expressions with interference: for thread t

EtJ exp K : (E × P(I))→ (P(R)× P(Ω))

Apply interferences to read variables:

EtJ X K 〈 ρ, I 〉 def
= 〈 { ρ(X) } ∪ { v | ∃u 6= t: 〈 u, X, v 〉 ∈ I }, ∅ 〉

Pass recursively I down to sub-expressions:

EtJ−e K 〈 ρ, I 〉 def
=

let 〈V , O 〉 = EtJ e K 〈 ρ, I 〉 in 〈 {−v | v ∈ V }, O 〉
. . .
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Construction of an interference-based analysis

Denotational semantics with interferences (cont.)

Statements with interference: for thread t

CtJ prog K : (P(E)× P(Ω)× P(I))→ (P(E)× P(Ω)× P(I))

pass interferences to expressions

collect new interferences due to assignments

accumulate interferences from inner statements

CtJ X := e K 〈R, O, I 〉 def
=

〈 ∅, O, I 〉 t
⊔
ρ∈R 〈 { ρ[X 7→ v ] | v ∈ Vρ }, Oρ, { 〈 t, X, v 〉 | v ∈ Vρ } 〉

CtJ s1; s2 K def
= CtJ s2 K ◦ CtJ s1 K

· · ·

noting 〈Vρ, Oρ 〉
def
= EtJ e K 〈 ρ, I 〉

t is now the element-wise ∪ in P(E)× P(Ω)× P(I)
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Construction of an interference-based analysis

Denotational semantics with interferences (cont.)

Program semantics: PJ parprog K ⊆ Ω

Given parprog ::= prog1 || · · · || progn, we compute:

PJ parprog K def
=
[
lfpλ〈O, I 〉.

⊔
t∈T [CtJ progt K 〈 E0, ∅, I 〉]Ω,I

]
Ω

each thread analysis starts in an initial environment set

E0
def
= {λV.0 }

[X]Ω,I projects X ∈ P(E)× P(Ω)× P(I) on P(Ω)× P(I)
and interferences and errors from all threads are joined
(the output environments are ignored)

PJ parprog K only outputs the set of possible run-time errors
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Construction of an interference-based analysis

Example

Example

t1 t2

while `10 = 0 do`2 while `40 = 0 do`5

if x<y then if y<100 then
`3x:=x+1 `6y:=y+[1,3]

fi fi

done done

Concrete interference semantics:

iteration 1
I = ∅
`1 : x = 0, y = 0
`4 : x = 0, y ∈ [0, 102]
new I = { 〈 t2, y, 1 〉, . . . , 〈 t2, y, 102 〉 }
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Construction of an interference-based analysis

Example

Example

t1 t2

while `10 = 0 do`2 while `40 = 0 do`5

if x<y then if y<100 then
`3x:=x+1 `6y:=y+[1,3]

fi fi

done done

Concrete interference semantics:

iteration 3
I = { 〈 t1, x, 1 〉, . . . , 〈 t1, x, 102 〉, 〈 t2, y, 1 〉, . . . , 〈 t2, y, 102 〉 }
`1 : x ∈ [0, 102], y = 0
`4 : x = 0, y ∈ [0, 102]
new I = { 〈 t1, x, 1 〉, . . . , 〈 t1, x, 102 〉, 〈 t2, y, 1 〉, . . . , 〈 t2, y, 102 〉 }

Note: we don’t get that x ≤ y at `1, only that x, y ∈ [0, 102]
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Construction of an interference-based analysis

Interference abstraction

Abstract interferences I]

P(I)
def
= P(T× V× R) is abstracted as I]

def
= (T× V)→ R]

where R] abstracts P(R) (e.g. intervals)

Abstract semantics with interferences C]tJ s K

derived from C]J s K in a generic way:

Example: C]t J X := e K 〈R], Ω, I ] 〉

for each Y in e, get its interference Y
]
R =

⊔]
R { I

]〈 u, Y 〉 | u 6= t }

if Y]R 6= ⊥
]
R, replace Y in e with get〈 Y, R] 〉 t]R Y

]
R

(where get(Y,R]) extracts the abstract values in R] of a variable Y from
R] ∈ E])
compute 〈R]′, O′ 〉 = C]J e K 〈R], O 〉
enrich I ]〈 t, X 〉 with get(X,R]′)
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Construction of an interference-based analysis

Static analysis with interferences

Abstract analysis

P]J parprog K def
=[

limλ〈O, I ] 〉.〈O, I ] 〉O
⊔]

t∈T

[
C]tJ progt K 〈 E]0, ∅, I ] 〉

]
Ω,I]

]
Ω

effective analysis by structural induction

termination ensured by a widening

parametrized by a choice of abstract domains R], E]

interferences are flow-insensitive and non-relational in R]

thread analysis remains flow-sensitive and relational in E]

(reminder: [X ]Ω, [Y ]Ω,I] keep only X ’s component in Ω, Y ’s components in Ω and I])
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Path-based semantics
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Construction of an interference-based analysis Path-based semantics

Control paths

atomic ::= X := exp | exp ./ 0?

Control paths

π : prog→ P(atomic∗)

π(X :=e)
def
= { X :=e }

π(if e ./ 0 then s fi)
def
= ({ e ./ 0? } · π(s)) ∪ { e 6./ 0? }

π(while e ./ 0 do s done)
def
=
(⋃

i≥0({ e ./ 0? } · π(s))i
)
· { e 6./ 0? }

π(s1; s2)
def
= π(s1) · π(s2)

π(prog) is a (generally infinite) set of finite control paths
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Construction of an interference-based analysis Path-based semantics

Path-based concrete semantics of sequential programs

Join-over-all-path semantics

�JP K : (P(E)× P(Ω))→ (P(E)× P(Ω)) P ⊆ atomic∗

�JP K〈R, O 〉 def
=

⊔
s1·...·sn∈P

(CJ sn K ◦ · · · ◦ CJ s1 K )〈R, O 〉

Semantic equivalence

CJ prog K = �Jπ(prog) K
(not true in the abstract)

Advantages:

easily extended to concurrent programs (path interleavings)

able to model program transformations (weak memory models)
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Construction of an interference-based analysis Path-based semantics

Path-based concrete semantics of concurrent programs

Concurrent control paths

π∗
def
= { interleavings of π(progt), t ∈ T }
= { p ∈ atomic∗ | ∀t ∈ T, proj t(p) ∈ π(progt) }

Interleaving program semantics

P∗J parprog K def
= [�Jπ∗ K〈 E0, ∅ 〉 ]Ω

(proj t(p) keeps only the atomic statement in p coming from thread t)
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Construction of an interference-based analysis Path-based semantics

Soundness of the interference semantics

Soundness theorem

P∗J parprog K ⊆ PJ parprog K

Proof sketch:

define �tJP KX def
=

⊔
{CtJ s1; . . . ; sn K X | s1 · . . . · sn ∈ P },

then �tJπ(s) K = CtJ s K ;

given the interference fixpoint I ⊆ I from PJ parprog K ,

prove by recurrence on the length of p ∈ π∗ that:

∀t ∈ T,∀ρ ∈ [�J p K〈 E0, ∅ 〉]E ,
∃ρ′ ∈ [�tJ proj t(p) K〈 E0, ∅, I 〉]E such that
∀X ∈ V, ρ(X) = ρ′(X) or 〈 u, X, ρ(X) 〉 ∈ I for some u 6= t.

[�J p K〈 E0, ∅ 〉]Ω ⊆
⋃

t∈T [�tJ proj t(p) K〈 E0, ∅, I 〉]Ω

Note: sound but not complete
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Weakly consistent memories
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Construction of an interference-based analysis Weakly consistent memories

Issues with weak consistency

program written

F1:=1; F2:=1;
if F2 = 0 then if F1 = 0 then

S1 S2

fi fi

−→
program executed

if F2 = 0 then if F1 = 0 then

F1:=1; F2:=1;
S1 S2

fi fi

(simplified Dekker mutual exclusion algorithm)

S1 and S2 cannot execute simultaneously.

Not a sequentially consistent behavior!

Caused by:

write FIFOs, caches, distributed memory

hardware or compiler optimizations, transformations

. . .

behavior accepted by Java [Mans05]
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Construction of an interference-based analysis Weakly consistent memories

Out of thin air principle

original program

R1:=X ; R2:=Y ;
Y :=R1 X :=R2

−→
“optimized” program

Y :=42;
R1:=X ; R2:=Y ;
Y :=R1 X :=R2

(example from causality test case #4 for Java by Pugh et al.)

We should not have R1 = 42.

Possible if we allow speculative writes!
=⇒ we disallow this kind of program transformations.

(also forbidden in Java)
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Construction of an interference-based analysis Weakly consistent memories

Out of thin air principle

original program

R1:=X ; R2:=Y ;
Y :=R1 X :=R2

−→
“optimized” program

Y :=42;
R1:=X ; R2:=Y ;
Y :=R1 X :=R2

(example from causality test case #4 for Java by Pugh et al.)

We should not have R1 = 42.

Possible if we allow speculative writes!
=⇒ we disallow this kind of program transformations.

(also forbidden in Java)

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 67 / 81



Construction of an interference-based analysis Weakly consistent memories

Atomicity and granularity

original program

X := X + 1 X := X + 1

−→
executed program

r1:= X + 1 r2:= X + 1

X :=r1 X :=r2

We assumed that assignments are atomic. . .

but that may not be the case

The second program admits more behaviors
e.g.: X = 1 at the end of the program

[Reyn04]
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Construction of an interference-based analysis Weakly consistent memories

Path-based definition of weak consistency

Acceptable control path transformations: p  q

only reduce interferences and errors

Reordering: X1:=e1 · X2:=e2  X2:=e2 · X1:=e1

(if X1 /∈ var(e2), X2 /∈ var(e1), and e1 does not stop the program)

Propagation: X:=e · s  X:=e · s[e/X]
(if X /∈ var(e), var(e) are thread-local, and e is deterministic)

Factorization: s1 · . . . · sn  X:=e · s1[X/e] · . . . · sn[X/e]
(if X is fresh, ∀i , var(e) ∩ lval(si ) = ∅, and e has no error)

Decomposition: X:=e1 + e2  T:=e1 · X:=T + e2

(change of granularity)

. . .

but NOT:

“out-of-thin-air” writes: X:=e  X:=42 · X:=e

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 69 / 81



Construction of an interference-based analysis Weakly consistent memories

Soundness of the interference semantics

Interleaving semantics of transformed programs P′∗J parprog K

π′(s)
def
= { p | ∃p′ ∈ π(s): p′  ∗ p }

π′∗
def
= { interleavings of π′(progt), t ∈ T }

P′∗J parprog K def
= [�Jπ′∗ K〈 E0, ∅ 〉 ]Ω

Soundness theorem

P′∗J parprog K ⊆ PJ parprog K

=⇒ the interference semantics is sound
wrt. weakly consistent memories and changes of granularity
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Synchronisation
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Construction of an interference-based analysis Synchronisation

Scheduling

Synchronization primitives

prog ::= lock(m)
| unlock(m)

m ∈ M : finite set of non-recursive mutexes

Scheduling

mutexes ensure mutual exclusion
at each time, each mutex can be locked by a single thread

mutexes enforce memory consistency and atomicity
no optimization across lock and unlock instructions
memory caches and buffer are flushed
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Construction of an interference-based analysis Synchronisation

Mutual exclusion

WW W

R RWR

lock(m) unlock(m)

p1

p2

lock(m) unlock(m)

Interleaving semantics P∗J parprog K :

restrict interleavings of control paths

Interference semantics PJ parprog K , P]J parprog K :

partition wrt. an abstract local view of the scheduler C

E  E × C, E]  C→ E]

I
def
= T× V× R  I

def
= T× C× V× R,

I]
def
= (T× V)→ R]  I]

def
= (T× C× V)→ R]
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Construction of an interference-based analysis Synchronisation

Mutual exclusion

WW W

R RWR

lock(m) unlock(m)

lock(m) unlock(m)

p2

p1

Data-race effects

Partition wrt. mutexes M ⊆ M held by the current thread t

CtJ X :=e K 〈 ρ, M, I 〉 adds
{ 〈 t, M, X, v 〉 | v ∈ EtJX K 〈 ρ, M, I 〉 } to I

EtJ X K 〈 ρ, M, I 〉 =
{ ρ(X) } ∪ { v | 〈 t ′, M ′, X, v 〉 ∈ I , t 6= t ′, M ∩M ′ = ∅ }
flow-insensitive, subject to weak memory consistency

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 73 / 81



Construction of an interference-based analysis Synchronisation

Mutual exclusion

WW W

R RWR

lock(m) unlock(m)

p1

p2

lock(m) unlock(m)

Well-synchronized effects

last write before unlock affects first read after lock

partition interferences wrt. a protecting mutex m (and M)

CtJ unlock(m) K 〈 ρ, M, I 〉 stores ρ(X) into I

CtJ lock(m) K 〈 ρ, M, I 〉 imports values form I into ρ

imprecision: non-relational, largely flow-insensitive
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Construction of an interference-based analysis Synchronisation

Example analysis

abstract consumer/producer

t1 t2

while 0=0 do while 0=0 do

lock(m);`1 lock(m);

if X>0 then `2X:=X-1 fi; X:=X+1;

unlock(m); if X>10 then X:=10 fi;
`3Y:=X unlock(m)

done done

at `1, the unlock-lock effect from t2 imports {X} × [1, 10]

at `2, X ∈ [1, 10], no effect from t2: X:=X-1 is safe

at `3, X ∈ [0, 9], and t2 has the effects {X} × [1, 10]
so, X ∈ [0, 10]
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Limitations of the interference abstraction
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Construction of an interference-based analysis Limitations of the interference abstraction

Lack of relational lock invariants

a difficult example

E0 : X = Y = 5

while 0=0 do while 0=0 do

lock(m); lock(m);

if X>0 then if X<10 then

X:=X-1; X:=X+1;

Y:=Y-1; Y:=Y+1;

fi; fi;

unlock(m) unlock(m)

done done

Our analysis finds X ∈ [0, 10], but no bound on Y.

Actually Y ∈ [0, 10].

To prove this, we would need to infer the relational invariant X = Y

at lock boundaries.
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Construction of an interference-based analysis Limitations of the interference abstraction

Lack of inter-process flow-sensitivity

a more difficult example

while 0=0 do while 0=0 do

lock(m); lock(m);

X:=X+1; X:= X+1;

unlock(m); unlock(m);

lock(m); lock(m);

X:=X-1; X:=X-1;

unlock(m) unlock(m)

done done

Our analysis finds no bound on X.

Actually X ∈ [−2, 2] at all program points.

To prove this we need to infer an invariant on
the history of interleaved executions:

no more than two incrementation (resp. decrementation) can occur
without a decrementation (resp. incrementation).
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