
Static Analysis of Concurrent Programs
MPRI 2–6: Abstract Interpretation,

application to verification and static analysis

Antoine Miné

year 2014–2015

course 11
12 November 2013

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 1 / 81

Introduction

Concurrent programming

Idea:

Decompose a program into a set of (loosely) interacting processes.

Why concurrent programs?

exploit parallelism in current computers
(multi-processors, multi-cores, hyper-threading)

“Free lunch is over”
change in Moore’s law (×2 transistors every 2 years)

exploit several computers
(distributed computing)

ease of programming
(GUI, network code, reactive programs)

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 2 / 81

Introduction

Models of concurrent programs

Many models:

process calculi: CSP, π−calculus, join calculus

message passing

shared memory (threads)

transactional memory

combination of several models

Example implementations:

C, C++ with a thread library (POSIX threads, Win32)

C, C++ with a message library (MPI, OpenMP)

Java (native threading API)

Erlang (based on π−calculus)

JoCaml (OCaml + join calculus)

processor-level (interrupts, test-and-set instructions)

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 3 / 81

Introduction

Scope

In this course: static thread model

implicit communication through shared memory

explicit communication through synchronisation primitives

fixed number of threads (no dynamic creation of threads)

numeric programs (real-valued variables)

Goal: static analysis

infer numeric program invariants

discover possible run-time errors (e.g., division by 0)

parametrized by a choice of numeric abstract domains

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 4 / 81

Introduction

Outline

State-based analyses

sequential programs (reminders)

concurrent programs

Toward thread-modular analyses

detour through proof methods
(Floyd–Hoare, Owicki–Gries, Jones)

rely-guarantee in abstract interpretation form

Interference-based abstract analyses

denotational-style analysis

weakly consistent memory models

synchronisation

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 5 / 81

Introduction

Simple structured numeric language

finite set of (toplevel) threads: prog1 to progn

finite set of numeric program variables V ∈ V

finite set of statement locations ` ∈ L
finite set of potential error locations ω ∈ Ω

Structured language syntax

parprog ::= `prog1
` || . . . || `progn` (parallel composition)

`prog` ::= `V := exp` (assignment)

| `if exp ./ 0 then `prog` fi` (conditional)

| `while `exp ./ 0 do `prog` done` (loop)

| `prog; `prog` (sequence)

exp ::= V | [c1, c2] | − exp | exp �ω exp

c1, c2 ∈ R ∪ {+∞,−∞}, � ∈ {+,−,×, / }, ./∈ {=, <, . . . }

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 6 / 81

State-based analyses

State-based analyses

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 7 / 81

State-based analyses Sequential program semantics (reminders)

Sequential program semantics (reminders)

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 8 / 81

State-based analyses Sequential program semantics (reminders)

Transition systems

Transition system: (Σ, τ, I)

Σ: set of program states

τ ⊆ Σ× Σ: transition relation
we note (σ, σ′) ∈ τ as σ →τ σ

′

I ⊆ Σ: set of initial states

Traces: sequences of states σ0, . . . , σn, . . .

Σ∗: finite traces

Σω: infinite countable traces

Σ∞
def
= Σ∗ ∪ Σω: finite or infinite countable traces

u � t : u is a prefix of t

We view program semantics and properties as sets of traces.

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 9 / 81

State-based analyses Sequential program semantics (reminders)

Traces of a transition system

Maximal trace semantics: M∞ ∈ P(Σ∞)

set of total executions σ0, . . . , σn, . . .

starting in an initial state σ0 ∈ I and either

ending in a blocking state in B def
= {σ | ∀σ′:σ 6→τ σ

′ }
or infinite

M∞
def
= {σ0, . . . , σn |σ0 ∈ I ∧ σn ∈ B ∧ ∀i < n:σi →τ σi+1 } ∪
{σ0, . . . , σn . . . |σ0 ∈ I ∧ ∀i < ω:σi →τ σi+1 }

able to express many properties of programs, e.g.:

state safety: M∞ ⊆ S∞ (executions stay in S)

ordering: M∞ ⊆ S∞1 · S∞2 (S2 can only occur after S1)

termination: M∞ ⊆ Σ∗ (executions are finite)

inevitability: M∞ ⊆ Σ∗ · S · Σ∞ (executions pass through S)

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 10 / 81

State-based analyses Sequential program semantics (reminders)

Traces of a transition system

Finite prefix trace semantics: Tp ∈ P(Σ∗)

set of finite prefixes of executions:

Tp
def
= {σ0, . . . , σn | n ≥ 0, σ0 ∈ I, ∀i < n:σi →τ σi+1 }

Tp is an abstraction of the maximal trace semantics

Tp = α∗�(M∞) where α∗�(X)
def
= { t ∈ Σ∗ | ∃u ∈ X : t � u }

Tp can prove state safety properties: Tp ⊆ S∗
(executions stay in S)

Tp can prove ordering properties: Tp ⊆ S∗1 · S∗2
(if S1 and S2 occur, S2 occurs after S1)

Tp cannot prove termination nor inevitability properties

fixpoint characterisation: Tp = lfpFp where
Fp(X) = I ∪ {σ0, . . . , σn+1 |σ0, . . . , σn ∈ X ∧ σn →τ σn+1 }

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 11 / 81

State-based analyses Sequential program semantics (reminders)

State abstraction

Reachable state semantics: R ∈ P(Σ)

set of states reachable in any execution:
R def

= {σ | ∃n ≥ 0, σ0, . . . , σn:σ0 ∈ I, ∀i < n:σi →τ σi+1 ∧ σ = σn }

R is an abstraction of the finite trace semantics: R = αp(Tp)

where αp(X)
def
= {σ | ∃σ0, . . . , σn ∈ X :σ = σn }

R can prove state safety properties: R ⊆ S
(executions stay in S)

R cannot prove ordering, termination, inevitability properties

fixpoint characterisation: R = lfpFR where
FR(X) = I ∪ {σ | ∃σ′ ∈ X :σ′ →τ σ }

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 12 / 81

State-based analyses Sequential program semantics (reminders)

States of a sequential program

Simple sequential numeric programs: parprog ::= `iprog`
x
.

Program states: Σ
def
= (L × E) ∪ Ω

a control state in L, and

either a memory state: an environment in E def
= V→ R

or an error state in Ω

Initial states:

start at the first control point `i with variables set to 0:

I def
= { (`i , λV.0) }

Note that P(Σ) ' (L → P(E))× P(Ω):

a state property in P(E) at each program point in L
and a set of errors in P(Ω)

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 13 / 81

State-based analyses Sequential program semantics (reminders)

Expression semantics with errors

Expression semantics: EJ exp K : E → (P(R)× P(Ω))

EJ V K ρ def
= 〈 { ρ(V) }, ∅ 〉

EJ [c1, c2] K ρ def
= 〈 { x ∈ R | c1 ≤ x ≤ c2 }, ∅ 〉

EJ−e K ρ def
= let 〈V , O 〉 = EJ e K ρ in

〈 {−v | ∈ V }, O 〉

EJ e1 �ω e2 K ρ def
= let 〈V1, O1 〉 = EJ e1 K ρ in

let 〈V2, O2 〉 = EJ e2 K ρ in
〈 { v1 � v2 | vi ∈ Vi , � 6= / ∨ v2 6= 0 },
O1 ∪ O2 ∪ {ω if � = / ∧ 0 ∈ V2 } 〉

defined by structural induction on the syntax

evaluates in an environment ρ to a set of values

also returns a set of accumulated errors
(here, only divisions by zero)

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 14 / 81

State-based analyses Sequential program semantics (reminders)

Reminders: semantics in equational form

Principle: (without handling errors in Ω)

see lfp f as the least solution of an equation x = f (x)
partition states by control: P(L × E) ' L → P(E)
X` ∈ P(E): invariant at ` ∈ L
∀` ∈ L:X`

def
= {m ∈ E | (`,m) ∈ R}

=⇒ set of (recursive) equations on X`

Example:
`1
i:=2;

`2
n:=[−∞,+∞];

`3
while `4

i < n do
`5
if [0, 1] = 0 then

`6
i:=i+1

fi
`7
done

`8

X1 = I
X2 = CJ i := 2 KX1

X3 = CJ n := [−∞,+∞] KX2

X4 = X3 ∪ X7

X5 = CJ i < n KX4

X6 = X5

X7 = X5 ∪ CJ i := i + 1 KX6

X8 = CJ i ≥ n KX4

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 15 / 81

State-based analyses Sequential program semantics (reminders)

Semantics in denotational form

Input-output function CJ prog K

CJ prog K : (P(E)× P(Ω))→ (P(E)× P(Ω))

CJ X :=e K 〈R, O 〉 def
= 〈 ∅, O 〉 t

⊔
ρ∈R 〈 { ρ[X 7→ v] | v ∈ Vρ }, Oρ 〉

CJ e ./ 0? K 〈R, O 〉 def
= 〈 ∅, O 〉 t

⊔
ρ∈R 〈 { ρ | ∃v ∈ Vρ: v ./ 0 }, Oρ 〉

where 〈Vρ, Oρ 〉
def
= EJ e K ρ

CJ if e ./ 0 then s fi KX def
= (CJ s K ◦ CJ e ./ 0? K)X t CJ e 6./ 0? KX

CJ while e ./ 0 do s done KX def
=

CJ e 6./ 0? K (lfpλY .X t (CJ s K ◦ CJ e ./ 0? K)Y)

CJ s1; s2 K def
= CJ s2 K ◦ CJ s1 K

mutate memory states in E , accumulate errors in Ω
(t is the element-wise ∪ in P(E)× P(Ω))

structured: nested loops yield nested fixpoints
big-step: forget information on intermediate locations `

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 16 / 81

State-based analyses Sequential program semantics (reminders)

Abstract semantics in denotational form

Extend a numeric abstract domain E] abstracting P(E)

to D] def
= E] × P(Ω).

C]J prog K : D] → D]

C]J X :=e K 〈R], O 〉 and C]J e ./ 0? K 〈R], O 〉 are given

C]J if e ./ 0 then s fi KX] def
=

(C]J s K ◦ C]J e ./ 0? K)X] t] C]J e 6./ 0? KX]

C]J while e ./ 0 do s done KX] def
=

C]J e 6./ 0? K (limλY].Y] O (X] t (C]J s K ◦ C]J e ./ 0? K)Y]))

C]J s1; s2 K def
= C]J s2 K ◦ C]J s1 K

the abstract interpreter mimicks an actual interpreter

efficient in memory (intermediate invariants are not kept)

less flexibility in the iteration scheme
(iteration order, widening points, etc.)

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 17 / 81

State-based analyses Concurrent program semantics

Concurrent program semantics

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 18 / 81

State-based analyses Concurrent program semantics

Labelled transition systems

Labelled transition system: (Σ,A, τ, I)

Σ: set of program states

A: set of actions

τ ⊆ Σ×A× Σ: transition relation
we note (σ, a, σ′) ∈ τ as σ

a→τ σ
′

I ⊆ Σ: set of initial states

Labelled traces: sequences of states interspersed with actions

denoted as σ0
a0→ σ1

a1→ · · ·σn
an→ σn+1

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 19 / 81

State-based analyses Concurrent program semantics

From concurrent programs to labelled transition systems

Notations:

concurrent program:
parprog ::= `i1prog1

`x1 || · · · || `inprogn`
x
n

threads identifiers: T
def
= { 1, . . . , n }

Program states: Σ
def
= ((T→ L)× E) ∪ Ω

a control state L(t) ∈ L for each thread t ∈ T and

a single shared memory state ρ ∈ E
or an error state ω ∈ Ω

Initial states:

threads start at their first control point `it , variables are set to 0:

I def
= { (λt.`it , λV.0) }

Actions: thread identifiers: A def
= T

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 20 / 81

State-based analyses Concurrent program semantics

From concurrent programs to labelled transition systems

Transition relation: τ ⊆ Σ×A× Σ

(L, ρ)
t→τ (L′, ρ′)

def⇐⇒ (L(t), ρ)→τ [progt]
(L′(t), ρ′) ∧

∀u 6= t: L(u) = L′(u)

(L, ρ)
t→τ ω

def⇐⇒ (L(t), ρ)→τ [progt]
ω

based on the transition relation of individual threads
seen as sequential processes progt :
τ [prog] ⊆ (L × E)× ((L × E) ∪ Ω)

choose a thread t to run
update ρ and L(t)
leave L(u) intact for u 6= t

(See course 3 for the full definition of τ [prog].)

each σ → σ′ in τ [progt] leads to many transitions in τ !

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 21 / 81

State-based analyses Concurrent program semantics

Interleaved trace semantics

Maximal and finite prefix trace semantics are as before:

Blocking states: B def
= {σ | ∀σ′: ∀t:σ

t
6→τ σ

′ }

Maximal traces: M∞ (finite or infinite)

M∞
def
= {σ0

t0→ · · ·
tn−1→ σn | n ≥ 0 ∧ σ0 ∈ I ∧ σn ∈ B ∧ ∀i < n:σi

ti→τ σi+1 } ∪
{σ0

t0→ σ1 . . . | n ≥ 0 ∧ σ0 ∈ I ∧ ∀i < ω:σi
ti→τ σi+1 }

Finite prefix traces: Tp

Tp
def
= {σ0

t0→ · · · tn−1→ σn | n ≥ 0 ∧ σ0 ∈ I ∧ ∀i < n:σi
ti→τ σi+1 }

Fixpoint form: Tp = lfpFp where

Fp(X) = I ∪ {σ0
t0→ · · · tn→ σn+1 | n ≥ 0 ∧ σ0

t0→ · · ·
tn−1→ σn ∈ X ∧ σn

tn→τ σn+1 }

Abstraction: Tp = α∗�(M∞)

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 22 / 81

State-based analyses Concurrent program semantics

Fairness

Fairness conditions: avoid threads being denied to run

Given enabled(σ, t)
def⇐⇒ ∃σ′ ∈ Σ:σ

t→τ σ
′,

an infinite trace σ0
t0→ · · ·σn

tn→ · · · is:

weakly fair if ∀t ∈ T:
(∃i : ∀j ≥ i : enabled(σj , t)) =⇒ (∀i :∃j ≥ i : aj = t)
(no thread can be continuously enabled without running)

strongly fair if ∀t ∈ T:
(∀i : ∃j ≥ i : enabled(σj , t)) =⇒ (∀i : ∃j ≥ i : aj = t)
(no thread can be infinitely often enabled without running)

Proofs under fairness conditions given:

the maximal traces M∞ of a program

a property X to prove (as a set of traces)

the set F of all (weakly or strongly) fair and of finite traces

=⇒ prove M∞ ∩ F ⊆ X instead of M∞ ⊆ X
course 11 Static Analysis of Concurrent Programs Antoine Miné p. 23 / 81

State-based analyses Concurrent program semantics

Fairness (cont.)

Example: while x ≥ 0 do x:=x+1 done || x:=-1
may not terminate without fairness

always terminates under weak and strong fairness

Finite prefix trace abstraction

M∞ ∩ F ⊆ X is abstracted into testing α∗�(M∞ ∩ F) ⊆ α∗�(X)

for all fairness conditions F , α∗�(M∞ ∩ F) = α∗�(M∞) = Tp
=⇒ fairness-dependent properties cannot be proved with finite prefixes only

In the following, we ignore fairness conditions.
(see [Cous85])

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 24 / 81

State-based analyses Concurrent program semantics

Equational state semantics

State abstraction R: as before

R def
= {σ | ∃n ≥ 0, σ0

t0→ · · ·σn:σ0 ∈ I ∀i < n:σi
ti→τ σi+1 ∧ σ = σn }

R = αp(Tp) where αp(X)
def
= {σ | ∃n ≥ 0, σ0

t0→ · · ·σn ∈ X :σ = σn }

R = lfpFR where FR(X) = I ∪ {σ | ∃σ′ ∈ X , t ∈ T:σ′
t→τ σ }

Equational form: (without handling errors in Ω)

for each L ∈ T→ L, a variable XL with value in E
equations are derived from thread equations eq(progt) as:
XL1 =

⋃
t∈T{F (XL2 , . . . ,XLN) |

∃(X`1 = F (X`2 , . . . ,X`N)) ∈ eq(progt):
∀i ≤ N: Li (t) = `i , ∀u 6= t: Li (u) = L1(u) }

Join with ∪ equations from eq(progt) updating a single thread t ∈ T.

(See course 3 for the full definition of eq(prog).)

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 25 / 81

State-based analyses Concurrent program semantics

Equational state semantics (example)

Example: inferring 0 ≤ x ≤ y ≤ 102

t1 t2

while `10 = 0 do`2 while `40 = 0 do`5

if x<y then if y<100 then
`3x:=x+1 `6y:=y+[1,3]

fi fi

done done

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 26 / 81

State-based analyses Concurrent program semantics

Equational state semantics (example)

Example: inferring 0 ≤ x ≤ y ≤ 102

t1 t2

while `10 = 0 do`2 while `40 = 0 do`5

if x<y then if y<100 then
`3x:=x+1 `6y:=y+[1,3]

fi fi

done done

(Simplified) equation system:
X1,4 = I ∪ CJ x := x + 1 KX3,4 ∪ CJ x ≥ y KX2,4

∪ CJ y := y + [1, 3] KX1,6 ∪ CJ y ≥ 100 KX1,5

X2,4 = X1,4 ∪ CJ y := y + [1, 3] KX2,6 ∪ CJ y ≥ 100 KX2,5

X3,4 = CJ x < y KX2,4 ∪ CJ y := y + [1, 3] KX3,6 ∪ CJ y ≥ 100 KX3,5

X1,5 = CJ x := x + 1 KX3,5 ∪ CJ x ≥ y KX2,5 ∪ X1,4

X2,5 = X1,5 ∪ X2,4

X3,5 = CJ x < y KX2,5 ∪ X3,4

X1,6 = CJ x := x + 1 KX3,6 ∪ CJ x ≥ y KX2,6 ∪ CJ y < 100 KX1,5

X2,6 = X1,6 ∪ CJ y < 100 KX2,5

X3,6 = CJ x < y KX2,6 ∪ CJ y < 100 KX3,5

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 26 / 81

State-based analyses Concurrent program semantics

Equational state semantics (example)

Example: inferring 0 ≤ x ≤ y ≤ 102

t1 t2

while `10 = 0 do`2 while `40 = 0 do`5

if x<y then if y<100 then
`3x:=x+1 `6y:=y+[1,3]

fi fi

done done

Pros:

easy to construct
easy to further abstract in an abstract domain E]

Cons:

explosion of the number of variables and equations
explosion of the size of equations
=⇒ efficiency issues
the equation system does not reflect the program structure
(not defined by induction on the concurrent program)

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 26 / 81

State-based analyses Concurrent program semantics

Wish-list

We would like to:

keep information attached to syntactic program locations
(control points in L, not control point tuples in T→ L)

be able to abstract away control information
(precision/cost trade-off control)

avoid duplicating thread instructions

have a computation structure based on the program syntax
(denotational style)

Ideally: thread-modular denotational-style semantics

(analyze each thread independently by induction on its syntax)

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 27 / 81

Towards thread-modular analyses Detour through proof methods

Detour through proof methods

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 28 / 81

Towards thread-modular analyses Detour through proof methods

Floyd–Hoare logic

Logic to prove properties about sequential programs [Hoar69].

Hoare triples: {P} prog {Q}
annotate programs with logic assertions {P} prog {Q}
(if P holds before prog, then Q holds after prog)

check that {P}prog{Q} is derivable with the following rules
(the assertions are program invariants)

{P[e/X]} X := e {P}
{P ∧ e ./ 0} s {Q} P ∧ e 6./ 0⇒ Q

{P} if e ./ 0 then s fi {Q}

{P} s1 {Q} {Q} s2 {R}
{P} s1; s2 {R}

{P ∧ e ./ 0} s {P}
{P} while e ./ 0 do s done {P ∧ e 6./ 0}

{P′} s {Q′} P ⇒ P′ Q′ ⇒ Q

{P} s {Q}

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 29 / 81

Towards thread-modular analyses Detour through proof methods

Floyd–Hoare logic as abstract interpretation

Link with the equational state semantics:

Correspondence between `prog`
′

and {P} prog {Q}:
if P (resp. Q) models exactly the points in X` (resp. X`′)
then {P} prog {Q} is a derivable Hoare triple

if {P} prog {Q} is derivable, then X` |= P and X`′ |= Q
(all the points in X` (resp. X`′) satisfy P (resp. Q))

=⇒ X` provide the most precise Hoare assertions
in a constructive form

γ(X]) provide (less precise) Hoare assertions
in a computable form

Link with the denotational semantics:

both CJ prog K and the proof tree for {P} prog {Q}
reflect the syntactic structure of prog
(compositional methods)

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 30 / 81

Towards thread-modular analyses Detour through proof methods

Owicki–Gries proof method

Extension of Floyd–Hoare to concurrent programs [Owic76].

Principle: add a new rule, for ||

{P1} s1 {Q1} {P2} s2 {Q2}
{P1 ∧ P2} s1 || s2 {Q1 ∧ Q2}

This rule is not always sound!
e.g., we have {X = 0, Y = 0} X := 1 {X = 1, Y = 0}

and {X = 0, Y = 0} if X = 0 then Y := 1 fi {X = 0, Y = 1}
but not {X = 0, Y = 0} X := 1 || if X = 0 then Y := 1 fi {false}

=⇒ we need a side-condition to the rule:
{P1} s1 {Q1} and {P2} s2 {Q2} must not interfere

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 31 / 81

Towards thread-modular analyses Detour through proof methods

Owicki–Gries proof method

Extension of Floyd–Hoare to concurrent programs [Owic76].

Principle: add a new rule, for ||

{P1} s1 {Q1} {P2} s2 {Q2}
{P1 ∧ P2} s1 || s2 {Q1 ∧ Q2}

This rule is not always sound!
e.g., we have {X = 0, Y = 0} X := 1 {X = 1, Y = 0}

and {X = 0, Y = 0} if X = 0 then Y := 1 fi {X = 0, Y = 1}
but not {X = 0, Y = 0} X := 1 || if X = 0 then Y := 1 fi {false}

=⇒ we need a side-condition to the rule:
{P1} s1 {Q1} and {P2} s2 {Q2} must not interfere

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 31 / 81

Towards thread-modular analyses Detour through proof methods

Owicki–Gries proof method (cont.)

interference freedom

given proofs ∆1 and ∆2 of {P1} s1 {Q1} and {P2} s2 {Q2}

∆1 does not interfere with ∆2 if:
for any Φ appearing before a statement in ∆1

for any {P′2} s′2 {Q′2} appearing in ∆2

{Φ ∧ P′2} s′2 {Φ} holds
and moreover {Q1 ∧ P′2} s′2 {Q1}

i.e.: the assertions used to prove {P1} s1 {Q1} are stable by s2

e.g., {X = 0, Y ∈ [0, 1]} X := 1 {X = 1, Y ∈ [0, 1]}
{X ∈ [0, 1], Y = 0} if X = 0 then Y := 1 fi {X ∈ [0, 1], Y ∈ [0, 1]}

=⇒ {X = 0, Y = 0} X := 1 || if X = 0 then Y := 1 fi {X = 1, Y ∈ [0, 1]}

Summary:

pros: the invariants are local to threads

cons: the proof is not compositional
(proving one thread requires delving into the proof of other threads)

=⇒ not satisfactory

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 32 / 81

Towards thread-modular analyses Detour through proof methods

Jones’ rely-guarantee proof method

Idea: explicit interferences with (more) annotations [Jone81].

Rely-guarantee “quintuples”: R,G ` {P} prog {Q}
if P is true before prog is executed

and the effect of other threads is included in R (rely)

then Q is true after prog

and the effect of prog is included in G (guarantee)

where:

P and Q are assertions on states (in P(Σ))

R and G are assertions on transitions (in P(Σ×A× Σ))

The parallel composition rule becomes:

R ∨ G2,G1 ` {P1} s1 {Q1} R ∨ G1,G2 ` {P2} s2 {Q2}
R,G1 ∨ G2 ` {P1 ∧ P2} s1 || s2 {Q1 ∧ Q2}

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 33 / 81

Towards thread-modular analyses Detour through proof methods

Rely-guarantee example

Example: proving 0 ≤ x ≤ y ≤ 102

checking t1

while `10 = 0 do`2

x unchanged

if x<y then

y incremented

`3x:=x+1

0 ≤ y ≤ 102

fi

done

at `1, `2 : x, y ∈ [0, 102], x ≤ y

at `3 : x ∈ [0, 101], y ∈ [1, 102], x < y

checking t2

y unchanged

while `40 = 0 do`5

0 ≤ x ≤ y

if y<100 then
`6y:=y+[1,3]

fi

done

at `4, `5 : x, y ∈ [0, 102], x ≤ y

at `6 : x ∈ [0, 99], y ∈ [0, 99], x ≤ y

In this example:

guarantee exactly what is relied on (R1 = G1 and R2 = G2)

rely and guarantee are global assertions

Benefits of rely-guarantee:

invariants are still local to threads
checking a thread does not require looking at other threads,
only at an abstraction of their semantics

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 34 / 81

Towards thread-modular analyses Detour through proof methods

Rely-guarantee example

Example: proving 0 ≤ x ≤ y ≤ 102

checking t1

while `10 = 0 do`2 x unchanged
if x<y then y incremented
`3x:=x+1 0 ≤ y ≤ 102

fi

done

at `1, `2 : x, y ∈ [0, 102], x ≤ y

at `3 : x ∈ [0, 101], y ∈ [1, 102], x < y

checking t2

y unchanged while `40 = 0 do`5

0 ≤ x ≤ y if y<100 then
`6y:=y+[1,3]

fi

done

at `4, `5 : x, y ∈ [0, 102], x ≤ y

at `6 : x ∈ [0, 99], y ∈ [0, 99], x ≤ y

In this example:

guarantee exactly what is relied on (R1 = G1 and R2 = G2)

rely and guarantee are global assertions

Benefits of rely-guarantee:

invariants are still local to threads
checking a thread does not require looking at other threads,
only at an abstraction of their semantics

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 34 / 81

Towards thread-modular analyses Detour through proof methods

Auxiliary variables

Example

t1 t2

`1 x := x + 1 `2 `3 x := x + 1 `4

Goal: prove {x = 0} t1 || t2 {x = 2}.

we must rely on and guarantee that
each thread increments x exactly once!

Solution: auxiliary variables
do not change the semantics but store extra information:

past values of variables (history of the computation)

program counter of other threads (pct)

Example: for t1: {(pc2 = `3 ∧ x = 0) ∨ (pc2 = `4 ∧ x = 1)}
x := x + 1

{(pc2 = `3 ∧ x = 1) ∨ (pc2 = `4 ∧ x = 2)}

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 35 / 81

Towards thread-modular analyses Detour through proof methods

Auxiliary variables

Example

t1 t2

`1 x := x + 1 `2 `3 x := x + 1 `4

Goal: prove {x = 0} t1 || t2 {x = 2}.
we must rely on and guarantee that
each thread increments x exactly once!

Solution: auxiliary variables
do not change the semantics but store extra information:

past values of variables (history of the computation)

program counter of other threads (pct)

Example: for t1: {(pc2 = `3 ∧ x = 0) ∨ (pc2 = `4 ∧ x = 1)}
x := x + 1

{(pc2 = `3 ∧ x = 1) ∨ (pc2 = `4 ∧ x = 2)}
course 11 Static Analysis of Concurrent Programs Antoine Miné p. 35 / 81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Rely-guarantee as abstract interpretation

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 36 / 81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Local states

State projection: on a thread t ∈ T

add auxiliary variables Vt
def
= V ∪ { pct′ | t ′ ∈ T, t ′ 6= t }

enriched environments for t: Et
def
= Vt → R

(for simplicity, pct′ are numeric variables, i.e., L ⊆ R)

local states: Σt
def
= (L × Et) ∪ Ω

recall that Σ
def
= ((T→ L)× E) ∪ Ω

Σt has a simpler, sequential control state

projection: πt(L, ρ)
def
= (L(t), ρ [∀t ′ 6= t: pct′ 7→ L(t ′)])

from Σ to Σt : shift control state to auxiliary variables
extended naturally to πt : P(Σ)→ P(Σt)

πt is a bijection, no information is lost

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 37 / 81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Local invariants

a

a

b

a

b

bb

Abstraction steps to local reachable states:

concrete (prefix) labelled trace semantics: Tp

state reachability abstraction: R = αp(Tp) ∈ P(Σ)

local state reachability: Rl(t)
def
= πt(R) ∈ P(Σt)

thread’s view of reachable states

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 38 / 81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Local invariants

a

a

b

a

b

bb

Abstraction steps to local reachable states:

concrete (prefix) labelled trace semantics: Tp
state reachability abstraction: R = αp(Tp) ∈ P(Σ)

local state reachability: Rl(t)
def
= πt(R) ∈ P(Σt)

thread’s view of reachable states

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 38 / 81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Local invariants

a

a

a

b

a

b

bb

Abstraction steps to local reachable states:

concrete (prefix) labelled trace semantics: Tp
state reachability abstraction: R = αp(Tp) ∈ P(Σ)

local state reachability: Rl(t)
def
= πt(R) ∈ P(Σt)

thread’s view of reachable states

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 38 / 81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Interferences

a

a

a

b

a

b

bb

Interference: A ∈ T→ P(Σ× Σ) caused by a thread t ∈ T

A(t)
def
= αitf (Tp)(t)

where αitf (X)(t)
def
= { (σ, σ′) | ∃ · · ·σ t→ σ′ · · · ∈ X }

Subset of the transition system τ :

spawned by t

and actually observed in some execution trace (in Tp)

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 39 / 81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Fixpoint form

Local state fixpoint:

we express Rl(t) as a function of A and thread t ∈ T:

Rl(t) = lfpRt(A) where

Rt : (T→ P(Σ× Σ))→ P(Σt)→ P(Σt)

Rt(Y)(X)
def
= πt(I) ∪

{πt(σ′) | ∃πt(σ) ∈ X :σ
t→τ σ

′ ∨ ∃u 6= t: (σ, σ′) ∈ Y (u) }

A state is reachable if it is initial,
or reachable by transitions from t or from the environment A.

Rt only looks into the syntax of thread t.
Rt is parameterized by the interferences from other threads Y .

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 40 / 81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Fixpoint form

Local state fixpoint: illustration

bThread

x = 0

while x<y

 x++;

/* bla bla */

a

lfpRt(A) interleaves:

transitions in πt from thread t

transitions in A from interferences

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 41 / 81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Fixpoint form

Local state fixpoint: illustration

bThread

x = 0

while x<y

 x++;

/* bla bla */

a b b

lfpRt(A) interleaves:

transitions in πt from thread t

transitions in A from interferences

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 41 / 81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Fixpoint form

Local state fixpoint: illustration

bThread

x = 0

while x<y

 x++;

/* bla bla */

a b b a

lfpRt(A) interleaves:

transitions in πt from thread t

transitions in A from interferences

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 41 / 81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Fixpoint form (cont.)

Interferences:

a

a b b a

x = 0

while x<y

 x++;

/* bla bla */

Thread

we express A(t) as a function of Rl and thread t ∈ T:

A(t) = B(Rl)(t) where

B : (
∏

t∈T {t} → P(Σt))→ T→ P(Σ× Σ)

B(Z)(t)
def
= { (σ, σ′) |πt(σ) ∈ Z (t) ∧ σ t→τ σ

′ }

Collect transitions starting from reachable states.

No fixpoint needed.

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 42 / 81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Fixpoint form (cont.)

Nested fixpoint characterization:

1 Rl(t) = lfpRt(A)

2 A(t) = B(Rl)(t)

3 mutual dependency between Rl and A

=⇒ solved using a fixpoint:

Rl = lfp H where

H : (
∏

t∈T {t} → P(Σt))→ (
∏

t∈T {t} → P(Σt))

H(Z)(t)
def
= lfpRt(B(Z))

Completeness: ∀t:Rl(t) ' R (πt is bijective thanks to auxiliary variables)

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 43 / 81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Fixpoint form (cont.)

Nested fixpoint characterization:

1 Rl(t) = lfpRt(A)

2 A(t) = B(Rl)(t)

3 mutual dependency between Rl and A
=⇒ solved using a fixpoint:

Rl = lfp H where

H : (
∏

t∈T {t} → P(Σt))→ (
∏

t∈T {t} → P(Σt))

H(Z)(t)
def
= lfpRt(B(Z))

Completeness: ∀t:Rl(t) ' R (πt is bijective thanks to auxiliary variables)

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 43 / 81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Fixpoint form (cont.)

Nested fixpoint characterization:

1 Rl(t) = lfpRt(A)

2 A(t) = B(Rl)(t)

3 mutual dependency between Rl and A
=⇒ solved using a fixpoint:

Rl = lfp H where

H : (
∏

t∈T {t} → P(Σt))→ (
∏

t∈T {t} → P(Σt))

H(Z)(t)
def
= lfpRt(B(Z))

Completeness: ∀t:Rl(t) ' R (πt is bijective thanks to auxiliary variables)

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 43 / 81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Fixpoint form (cont.)

Constructive fixpoint form:

Use Kleene’s iteration to construct fixpoints:

Rl = lfp H =
⊔

n∈N Hn(λt.∅)
in the pointwise powerset lattice

∏
t∈T {t} → P(Σt)

H(Z)(t) = lfp Rt(B(Z)) =
⋃

n∈N(Rt(B(Z)))n(∅)
in the powerset lattice P(Σt)

(similar to the sequential semantics of thread t in isolation)

=⇒ nested iterations

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 44 / 81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Abstract rely-guarantee

Suggested algorithm: nested iterations with acceleration

once abstract domains for states and interferences are chosen

start from Rl]0
def
= A]0

def
= λt.⊥]

while A]n is not stable

compute ∀t ∈ T:Rl]n+1(t)
def
= lfp R]t (A]n)

by iteration with widening O

(' separate analysis of each thread)

compute A]n+1
def
= A]n O B](Rl]n+1)

when A]n = A]n+1, return Rl]n

=⇒ thread-modular analysis
parameterized by abstract domains
able to easily reuse existing sequential analyses

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 45 / 81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Flow-insensitive abstraction

Idea:

reduce as much control information as possible

but keep flow-sensitivity on each thread’s control location

Local state abstraction: remove auxiliary variables

αnf
R : P(Σt)→ P((L × E) ∪ Ω)

αnf
R (X)

def
= { (`, ρ|V) | (`, ρ) ∈ X } ∪ (X ∩ Ω)

Interference abstraction: remove all control state

αnf
A : P(Σ× Σ)→ P(E × E)

αnf
A (Y)

def
= { (ρ, ρ′) | ∃L, L′ ∈ T→ L: ((L, ρ), (L′, ρ′)) ∈ Y }

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 46 / 81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Flow-insensitive abstraction (cont.)

Flow-insensitive fixpoint semantics: (omitting errors Ω)

We apply αnf
R and αnf

A to the nested fixpoint semantics.

Rlnf def
= lfpλZ .λt. lfpRnf

t(Bnf (Z)), where

Bnf (Z)(t)
def
= { (ρ, ρ′) | ∃`, `′ ∈ L: (`, ρ) ∈ Z(t) ∧ (`, ρ)→t (`′, ρ′) }

(extract interferences from reachable states)

Rnf
t (Y)(X)

def
= R loc

t (X) ∪ Anf
t (Y)(X) (interleave steps)

R loc
t (X)

def
= {(`it , λV.0)} ∪ { (`′, ρ′) | ∃(`, ρ) ∈ X : (`, ρ)→t (`′, ρ′) } (thread step)

Anf
t (Y)(X)

def
= { (`, ρ′) | ∃ρ, u 6= t: (`, ρ) ∈ X ∧ (ρ, ρ′) ∈ Y (u) } (interference step)

where →t is the transition relation for thread t alone: τ [progt]

Cost/precision trade-off:

less variables
=⇒ subsequent numeric abstractions are more efficient

sufficient to analyze our first example (slide 26)

insufficient to analyze x := x + 1 || x := x + 1 (slide 35)

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 47 / 81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Non-relational interference abstraction

Idea: simplify further flow-insensitive interferences

numeric relations are more costly than numeric sets
=⇒ remove input sensitivity

relational domains are more costly than non-relational
=⇒ abstract the interference on each variable separately

Non-relational interference abstraction:

αnr
A : P(E × E)→ (V→ P(R))

αnr
A (Y)

def
= λV.{ x ∈ V | ∃(ρ, ρ′) ∈ Y : ρ(V) 6= x ∧ ρ′(V) = x }

(remember which variables are modified and their new values)

To apply interferences, we get, in the nested fixpoint form:

Anr
t (Y)(X)

def
=

{ (`, ρ[V 7→ v]) | (`, ρ) ∈ X , V ∈ V, ∃u 6= t: v ∈ Y (u)(V) }

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 48 / 81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

A note on unbounded threads

Extension: relax the finiteness constraint on T

there is still a finite syntactic set of threads Ts

some threads T∞ ⊆ Ts can have several instances

(possibly an unbounded number)

Flow-insensitive analysis:

local state and interference domains have finite dimensions
(Et and (L × E)× (L × E), as opposed to E and E × E)

all instances of a thread t ∈ Ts are isomorphic
=⇒ iterate the analysis on the finite set Ts (instead of T)

we must handle self-interferences for threads in T∞:

Anf
t (Y)(X)

def
=

{ (`, ρ′) | ∃ρ, u: (u 6= t∨ t ∈ T∞)∧ (`, ρ) ∈ X ∧ (ρ, ρ′) ∈ Y (u) }

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 49 / 81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

From traces to thread-modular analyses

abstract states

(T× L)→ E]
abstract interferences

T→ E]
static analyzer

non-relational interferences

T→ P(E)

αE
OO

local states

(T× L)→ P(E)

αE

OO

flow-insensitive interferences

T→ P(E × E)

αnr
A

OO

rely-guarantee
(without aux. variables)

local states

Rl :
∏

t∈T {t} → P(Σt)

αnf
R

OO

interferences

A : T→ P(Σ× Σ)

αnf
A

OO

rely-guarantee
(with aux. variables)

πt

OO
αitf
OO

interleaved execution trace prefixes test
Tp ∈ P(Σ∗)

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 50 / 81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Compare with sequential analyses

abstract states

L → E] static analyzer

states

R ∈ P(Σ)

αE

OO

reachability

execution trace prefixes

Tp ∈ P(Σ∗)

αp

OO

test

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 51 / 81

Construction of an interference-based analysis

Construction of an interference-based analysis

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 52 / 81

Construction of an interference-based analysis

Reminder: sequential analysis in denotational form

Expression semantics: EJ exp K : E → (P(R)× P(Ω))

EJ X K ρ def
= 〈 { ρ(X) }, ∅ 〉

EJ [c1, c2] K ρ def
= 〈 { x ∈ R | c1 ≤ x ≤ c2 }, ∅ 〉

EJ−e K ρ def
= let 〈V , O 〉 = EJ e K ρ in 〈 {−v | v ∈ V }, O 〉

EJ e1 �ω e2 K ρ def
=

let 〈V1, O1 〉 = EJ e1 K ρ in
let 〈V2, O2 〉 = EJ e2 K ρ in
〈 { v1 � v2 | vi ∈ Vi , � 6= / ∨ v2 6= 0 }, O1 ∪ O2 ∪ {ω if � = / ∧ 0 ∈ V2 } 〉

Statement semantics: CJ prog K : (P(E)× P(Ω))→ (P(E)× P(Ω))

CJ X := e K 〈R, O 〉 def
= 〈 ∅, O 〉 t

⊔
ρ∈R 〈 { ρ[X 7→ v] | v ∈ Vρ }, Oρ 〉

CJ e ./ 0? K 〈R, O 〉 def
= 〈 ∅, O 〉 t

⊔
ρ∈R 〈 { ρ | ∃v ∈ Vρ: v ./ 0 }, Oρ 〉

CJ if e ./ 0 then s fi KX def
= (CJ s K ◦ CJ e ./ 0? K)X t CJ e 6./ 0? KX

CJ while e ./ 0 do s done KX def
=

CJ e 6./ 0? K (lfpλY .X t (CJ s K ◦ CJ e ./ 0? K)Y)

CJ s1; s2 K def
= CJ s2 K ◦ CJ s1 K

where 〈Vρ, Oρ 〉
def
= EJ e K ρ

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 53 / 81

Construction of an interference-based analysis

Denotational semantics with interferences

Interferences in I
def
= T× V× R

〈 t, X, v 〉 means: t can store the value v into the variable X

We define the analysis of a thread t
with respect to a set of interferences I ⊆ I.

Expressions with interference: for thread t

EtJ exp K : (E × P(I))→ (P(R)× P(Ω))

Apply interferences to read variables:

EtJ X K 〈 ρ, I 〉 def
= 〈 { ρ(X) } ∪ { v | ∃u 6= t: 〈 u, X, v 〉 ∈ I }, ∅ 〉

Pass recursively I down to sub-expressions:

EtJ−e K 〈 ρ, I 〉 def
=

let 〈V , O 〉 = EtJ e K 〈 ρ, I 〉 in 〈 {−v | v ∈ V }, O 〉
. . .

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 54 / 81

Construction of an interference-based analysis

Denotational semantics with interferences (cont.)

Statements with interference: for thread t

CtJ prog K : (P(E)× P(Ω)× P(I))→ (P(E)× P(Ω)× P(I))

pass interferences to expressions

collect new interferences due to assignments

accumulate interferences from inner statements

CtJ X := e K 〈R, O, I 〉 def
=

〈 ∅, O, I 〉 t
⊔
ρ∈R 〈 { ρ[X 7→ v] | v ∈ Vρ }, Oρ, { 〈 t, X, v 〉 | v ∈ Vρ } 〉

CtJ s1; s2 K def
= CtJ s2 K ◦ CtJ s1 K

· · ·

noting 〈Vρ, Oρ 〉
def
= EtJ e K 〈 ρ, I 〉

t is now the element-wise ∪ in P(E)× P(Ω)× P(I)

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 55 / 81

Construction of an interference-based analysis

Denotational semantics with interferences (cont.)

Program semantics: PJ parprog K ⊆ Ω

Given parprog ::= prog1 || · · · || progn, we compute:

PJ parprog K def
=
[
lfpλ〈O, I 〉.

⊔
t∈T [CtJ progt K 〈 E0, ∅, I 〉]Ω,I

]
Ω

each thread analysis starts in an initial environment set

E0
def
= {λV.0 }

[X]Ω,I projects X ∈ P(E)× P(Ω)× P(I) on P(Ω)× P(I)
and interferences and errors from all threads are joined
(the output environments are ignored)

PJ parprog K only outputs the set of possible run-time errors

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 56 / 81

Construction of an interference-based analysis

Example

Example

t1 t2

while `10 = 0 do`2 while `40 = 0 do`5

if x<y then if y<100 then
`3x:=x+1 `6y:=y+[1,3]

fi fi

done done

Concrete interference semantics:

iteration 1
I = ∅
`1 : x = 0, y = 0
`4 : x = 0, y ∈ [0, 102]
new I = { 〈 t2, y, 1 〉, . . . , 〈 t2, y, 102 〉 }

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 57 / 81

Construction of an interference-based analysis

Example

Example

t1 t2

while `10 = 0 do`2 while `40 = 0 do`5

if x<y then if y<100 then
`3x:=x+1 `6y:=y+[1,3]

fi fi

done done

Concrete interference semantics:

iteration 2
I = { 〈 t2, y, 1 〉, . . . , 〈 t2, y, 102 〉 }
`1 : x ∈ [0, 102], y = 0
`4 : x = 0, y ∈ [0, 102]
new I = { 〈 t1, x, 1 〉, . . . , 〈 t1, x, 102 〉, 〈 t2, y, 1 〉, . . . , 〈 t2, y, 102 〉 }

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 57 / 81

Construction of an interference-based analysis

Example

Example

t1 t2

while `10 = 0 do`2 while `40 = 0 do`5

if x<y then if y<100 then
`3x:=x+1 `6y:=y+[1,3]

fi fi

done done

Concrete interference semantics:

iteration 3
I = { 〈 t1, x, 1 〉, . . . , 〈 t1, x, 102 〉, 〈 t2, y, 1 〉, . . . , 〈 t2, y, 102 〉 }
`1 : x ∈ [0, 102], y = 0
`4 : x = 0, y ∈ [0, 102]
new I = { 〈 t1, x, 1 〉, . . . , 〈 t1, x, 102 〉, 〈 t2, y, 1 〉, . . . , 〈 t2, y, 102 〉 }

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 57 / 81

Construction of an interference-based analysis

Example

Example

t1 t2

while `10 = 0 do`2 while `40 = 0 do`5

if x<y then if y<100 then
`3x:=x+1 `6y:=y+[1,3]

fi fi

done done

Concrete interference semantics:

iteration 3
I = { 〈 t1, x, 1 〉, . . . , 〈 t1, x, 102 〉, 〈 t2, y, 1 〉, . . . , 〈 t2, y, 102 〉 }
`1 : x ∈ [0, 102], y = 0
`4 : x = 0, y ∈ [0, 102]
new I = { 〈 t1, x, 1 〉, . . . , 〈 t1, x, 102 〉, 〈 t2, y, 1 〉, . . . , 〈 t2, y, 102 〉 }

Note: we don’t get that x ≤ y at `1, only that x, y ∈ [0, 102]

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 57 / 81

Construction of an interference-based analysis

Interference abstraction

Abstract interferences I]

P(I)
def
= P(T× V× R) is abstracted as I]

def
= (T× V)→ R]

where R] abstracts P(R) (e.g. intervals)

Abstract semantics with interferences C]tJ s K

derived from C]J s K in a generic way:

Example: C]t J X := e K 〈R], Ω, I] 〉

for each Y in e, get its interference Y
]
R =

⊔]
R { I

]〈 u, Y 〉 | u 6= t }

if Y]R 6= ⊥
]
R, replace Y in e with get〈 Y, R] 〉 t]R Y

]
R

(where get(Y,R]) extracts the abstract values in R] of a variable Y from
R] ∈ E])
compute 〈R]′, O′ 〉 = C]J e K 〈R], O 〉
enrich I]〈 t, X 〉 with get(X,R]′)

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 58 / 81

Construction of an interference-based analysis

Static analysis with interferences

Abstract analysis

P]J parprog K def
=[

limλ〈O, I] 〉.〈O, I] 〉O
⊔]

t∈T

[
C]tJ progt K 〈 E]0, ∅, I] 〉

]
Ω,I]

]
Ω

effective analysis by structural induction

termination ensured by a widening

parametrized by a choice of abstract domains R], E]

interferences are flow-insensitive and non-relational in R]

thread analysis remains flow-sensitive and relational in E]

(reminder: [X]Ω, [Y]Ω,I] keep only X ’s component in Ω, Y ’s components in Ω and I])

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 59 / 81

Construction of an interference-based analysis Path-based semantics

Path-based semantics

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 60 / 81

Construction of an interference-based analysis Path-based semantics

Control paths

atomic ::= X := exp | exp ./ 0?

Control paths

π : prog→ P(atomic∗)

π(X :=e)
def
= { X :=e }

π(if e ./ 0 then s fi)
def
= ({ e ./ 0? } · π(s)) ∪ { e 6./ 0? }

π(while e ./ 0 do s done)
def
=
(⋃

i≥0({ e ./ 0? } · π(s))i
)
· { e 6./ 0? }

π(s1; s2)
def
= π(s1) · π(s2)

π(prog) is a (generally infinite) set of finite control paths

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 61 / 81

Construction of an interference-based analysis Path-based semantics

Path-based concrete semantics of sequential programs

Join-over-all-path semantics

�JP K : (P(E)× P(Ω))→ (P(E)× P(Ω)) P ⊆ atomic∗

�JP K〈R, O 〉 def
=

⊔
s1·...·sn∈P

(CJ sn K ◦ · · · ◦ CJ s1 K)〈R, O 〉

Semantic equivalence

CJ prog K = �Jπ(prog) K
(not true in the abstract)

Advantages:

easily extended to concurrent programs (path interleavings)

able to model program transformations (weak memory models)

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 62 / 81

Construction of an interference-based analysis Path-based semantics

Path-based concrete semantics of concurrent programs

Concurrent control paths

π∗
def
= { interleavings of π(progt), t ∈ T }
= { p ∈ atomic∗ | ∀t ∈ T, proj t(p) ∈ π(progt) }

Interleaving program semantics

P∗J parprog K def
= [�Jπ∗ K〈 E0, ∅ 〉]Ω

(proj t(p) keeps only the atomic statement in p coming from thread t)

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 63 / 81

Construction of an interference-based analysis Path-based semantics

Soundness of the interference semantics

Soundness theorem

P∗J parprog K ⊆ PJ parprog K

Proof sketch:

define �tJP KX def
=

⊔
{CtJ s1; . . . ; sn K X | s1 · . . . · sn ∈ P },

then �tJπ(s) K = CtJ s K ;

given the interference fixpoint I ⊆ I from PJ parprog K ,

prove by recurrence on the length of p ∈ π∗ that:

∀t ∈ T,∀ρ ∈ [�J p K〈 E0, ∅ 〉]E ,
∃ρ′ ∈ [�tJ proj t(p) K〈 E0, ∅, I 〉]E such that
∀X ∈ V, ρ(X) = ρ′(X) or 〈 u, X, ρ(X) 〉 ∈ I for some u 6= t.

[�J p K〈 E0, ∅ 〉]Ω ⊆
⋃

t∈T [�tJ proj t(p) K〈 E0, ∅, I 〉]Ω

Note: sound but not complete

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 64 / 81

Construction of an interference-based analysis Weakly consistent memories

Weakly consistent memories

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 65 / 81

Construction of an interference-based analysis Weakly consistent memories

Issues with weak consistency

program written

F1:=1; F2:=1;
if F2 = 0 then if F1 = 0 then

S1 S2

fi fi

−→
program executed

if F2 = 0 then if F1 = 0 then

F1:=1; F2:=1;
S1 S2

fi fi

(simplified Dekker mutual exclusion algorithm)

S1 and S2 cannot execute simultaneously.

Not a sequentially consistent behavior!

Caused by:

write FIFOs, caches, distributed memory

hardware or compiler optimizations, transformations

. . .

behavior accepted by Java [Mans05]

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 66 / 81

Construction of an interference-based analysis Weakly consistent memories

Issues with weak consistency

program written

F1:=1; F2:=1;
if F2 = 0 then if F1 = 0 then

S1 S2

fi fi

−→
program executed

if F2 = 0 then if F1 = 0 then

F1:=1; F2:=1;
S1 S2

fi fi

(simplified Dekker mutual exclusion algorithm)

S1 and S2 can execute simultaneously.
Not a sequentially consistent behavior!

Caused by:

write FIFOs, caches, distributed memory

hardware or compiler optimizations, transformations

. . .

behavior accepted by Java [Mans05]

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 66 / 81

Construction of an interference-based analysis Weakly consistent memories

Out of thin air principle

original program

R1:=X ; R2:=Y ;
Y :=R1 X :=R2

−→
“optimized” program

Y :=42;
R1:=X ; R2:=Y ;
Y :=R1 X :=R2

(example from causality test case #4 for Java by Pugh et al.)

We should not have R1 = 42.

Possible if we allow speculative writes!
=⇒ we disallow this kind of program transformations.

(also forbidden in Java)

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 67 / 81

Construction of an interference-based analysis Weakly consistent memories

Out of thin air principle

original program

R1:=X ; R2:=Y ;
Y :=R1 X :=R2

−→
“optimized” program

Y :=42;
R1:=X ; R2:=Y ;
Y :=R1 X :=R2

(example from causality test case #4 for Java by Pugh et al.)

We should not have R1 = 42.

Possible if we allow speculative writes!
=⇒ we disallow this kind of program transformations.

(also forbidden in Java)

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 67 / 81

Construction of an interference-based analysis Weakly consistent memories

Atomicity and granularity

original program

X := X + 1 X := X + 1

−→
executed program

r1:= X + 1 r2:= X + 1

X :=r1 X :=r2

We assumed that assignments are atomic. . .

but that may not be the case

The second program admits more behaviors
e.g.: X = 1 at the end of the program

[Reyn04]

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 68 / 81

Construction of an interference-based analysis Weakly consistent memories

Atomicity and granularity

original program

X := X + 1 X := X + 1

−→
executed program

r1:= X + 1 r2:= X + 1

X :=r1 X :=r2

We assumed that assignments are atomic. . .
but that may not be the case

The second program admits more behaviors
e.g.: X = 1 at the end of the program

[Reyn04]

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 68 / 81

Construction of an interference-based analysis Weakly consistent memories

Path-based definition of weak consistency

Acceptable control path transformations: p q

only reduce interferences and errors

Reordering: X1:=e1 · X2:=e2 X2:=e2 · X1:=e1

(if X1 /∈ var(e2), X2 /∈ var(e1), and e1 does not stop the program)

Propagation: X:=e · s X:=e · s[e/X]
(if X /∈ var(e), var(e) are thread-local, and e is deterministic)

Factorization: s1 · . . . · sn X:=e · s1[X/e] · . . . · sn[X/e]
(if X is fresh, ∀i , var(e) ∩ lval(si) = ∅, and e has no error)

Decomposition: X:=e1 + e2 T:=e1 · X:=T + e2

(change of granularity)

. . .

but NOT:

“out-of-thin-air” writes: X:=e X:=42 · X:=e

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 69 / 81

Construction of an interference-based analysis Weakly consistent memories

Soundness of the interference semantics

Interleaving semantics of transformed programs P′∗J parprog K

π′(s)
def
= { p | ∃p′ ∈ π(s): p′ ∗ p }

π′∗
def
= { interleavings of π′(progt), t ∈ T }

P′∗J parprog K def
= [�Jπ′∗ K〈 E0, ∅ 〉]Ω

Soundness theorem

P′∗J parprog K ⊆ PJ parprog K

=⇒ the interference semantics is sound
wrt. weakly consistent memories and changes of granularity

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 70 / 81

Construction of an interference-based analysis Synchronisation

Synchronisation

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 71 / 81

Construction of an interference-based analysis Synchronisation

Scheduling

Synchronization primitives

prog ::= lock(m)
| unlock(m)

m ∈ M : finite set of non-recursive mutexes

Scheduling

mutexes ensure mutual exclusion
at each time, each mutex can be locked by a single thread

mutexes enforce memory consistency and atomicity
no optimization across lock and unlock instructions
memory caches and buffer are flushed

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 72 / 81

Construction of an interference-based analysis Synchronisation

Mutual exclusion

WW W

R RWR

lock(m) unlock(m)

p1

p2

lock(m) unlock(m)

Interleaving semantics P∗J parprog K :

restrict interleavings of control paths

Interference semantics PJ parprog K , P]J parprog K :

partition wrt. an abstract local view of the scheduler C

E E × C, E] C→ E]

I
def
= T× V× R I

def
= T× C× V× R,

I]
def
= (T× V)→ R] I]

def
= (T× C× V)→ R]

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 73 / 81

Construction of an interference-based analysis Synchronisation

Mutual exclusion

WW W

R RWR

lock(m) unlock(m)

lock(m) unlock(m)

p2

p1

Data-race effects

Partition wrt. mutexes M ⊆ M held by the current thread t

CtJ X :=e K 〈 ρ, M, I 〉 adds
{ 〈 t, M, X, v 〉 | v ∈ EtJX K 〈 ρ, M, I 〉 } to I

EtJ X K 〈 ρ, M, I 〉 =
{ ρ(X) } ∪ { v | 〈 t ′, M ′, X, v 〉 ∈ I , t 6= t ′, M ∩M ′ = ∅ }
flow-insensitive, subject to weak memory consistency

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 73 / 81

Construction of an interference-based analysis Synchronisation

Mutual exclusion

WW W

R RWR

lock(m) unlock(m)

p1

p2

lock(m) unlock(m)

Well-synchronized effects

last write before unlock affects first read after lock

partition interferences wrt. a protecting mutex m (and M)

CtJ unlock(m) K 〈 ρ, M, I 〉 stores ρ(X) into I

CtJ lock(m) K 〈 ρ, M, I 〉 imports values form I into ρ

imprecision: non-relational, largely flow-insensitive

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 73 / 81

Construction of an interference-based analysis Synchronisation

Example analysis

abstract consumer/producer

t1 t2

while 0=0 do while 0=0 do

lock(m);`1 lock(m);

if X>0 then `2X:=X-1 fi; X:=X+1;

unlock(m); if X>10 then X:=10 fi;
`3Y:=X unlock(m)

done done

at `1, the unlock-lock effect from t2 imports {X} × [1, 10]

at `2, X ∈ [1, 10], no effect from t2: X:=X-1 is safe

at `3, X ∈ [0, 9], and t2 has the effects {X} × [1, 10]
so, X ∈ [0, 10]

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 74 / 81

Construction of an interference-based analysis Limitations of the interference abstraction

Limitations of the interference abstraction

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 75 / 81

Construction of an interference-based analysis Limitations of the interference abstraction

Lack of relational lock invariants

a difficult example

E0 : X = Y = 5

while 0=0 do while 0=0 do

lock(m); lock(m);

if X>0 then if X<10 then

X:=X-1; X:=X+1;

Y:=Y-1; Y:=Y+1;

fi; fi;

unlock(m) unlock(m)

done done

Our analysis finds X ∈ [0, 10], but no bound on Y.

Actually Y ∈ [0, 10].

To prove this, we would need to infer the relational invariant X = Y

at lock boundaries.

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 76 / 81

Construction of an interference-based analysis Limitations of the interference abstraction

Lack of inter-process flow-sensitivity

a more difficult example

while 0=0 do while 0=0 do

lock(m); lock(m);

X:=X+1; X:= X+1;

unlock(m); unlock(m);

lock(m); lock(m);

X:=X-1; X:=X-1;

unlock(m) unlock(m)

done done

Our analysis finds no bound on X.

Actually X ∈ [−2, 2] at all program points.

To prove this we need to infer an invariant on
the history of interleaved executions:

no more than two incrementation (resp. decrementation) can occur
without a decrementation (resp. incrementation).

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 77 / 81

Bibliography

Bibliography

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 78 / 81

Bibliography

Bibliography

[Bour93] F. Bourdoncle. Efficient chaotic iteration strategies with

widenings. In Proc. FMPA’93, LNCS vol. 735, pp. 128–141, Springer,

1993.

[Carr09] J.-L. Carré & C. Hymans. From single-thread to

multithreaded: An efficient static analysis algorithm. In

arXiv:0910.5833v1, EADS, 2009.

[Cous84] P. Cousot & R. Cousot. Invariance proof methods and

analysis techniques for parallel programs. In Automatic Program

Construction Techniques, chap. 12, pp. 243–271, Macmillan, 1984.

[Cous85] R. Cousot. Fondements des méthodes de preuve d’invariance

et de fatalité de programmes parallèles. In Thèse d’Etat es sc. math.,

INP Lorraine, Nancy, 1985.

[Hoar69] C. A. R. Hoare. An axiomatic basis for computer

programming. In Com. ACM, 12(10):576–580, 1969.

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 79 / 81

Bibliography

Bibliography (cont.)

[Jone81] C. B. Jones. Development methods for computer programs

including a notion of interference. In PhD thesis, Oxford University, 1981.

[Lamp77] L. Lamport. Proving the correctness of multiprocess

programs. In IEEE Trans. on Software Engineering, 3(2):125–143, 1977.

[Lamp78] L. Lamport. Time, clocks, and the ordering of events in a

distributed system. In Comm. ACM, 21(7):558–565, 1978.

[Mans05] J. Manson, B. Pugh & S. V. Adve. The Java memory

model. In Proc. POPL’05, pp. 378–391, ACM, 2005.

[Miné12] A. Miné. Static analysis of run-time errors in embedded

real-time parallel C programs. In LMCS 8(1:26), 63 p., arXiv, 2012.

[Owic76] S. Owicki & D. Gries. An axiomatic proof technique for

parallel programs I. In Acta Informatica, 6(4):319–340, 1976.

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 80 / 81

Bibliography

Bibliography (cont.)

[Reyn04] J. C. Reynolds. Toward a grainless semantics for

shared-variable concurrency. In Proc. FSTTCS’04, LNCS vol. 3328,

pp. 35–48, Springer, 2004.

[Sara07] V. A. Saraswat, R. Jagadeesan, M. M. Michael & C. von

Praun. A theory of memory models. In Proc. PPoPP’07, pp. 161–172,

ACM, 2007.

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 81 / 81

	Introduction
	State-based analyses
	Sequential program semantics (reminders)
	Concurrent program semantics

	Towards thread-modular analyses
	Towards thread-modular analyses
	Detour through proof methods
	Rely-guarantee as abstract interpretation

	Construction of an interference-based analysis
	Path-based semantics
	Weakly consistent memories
	Synchronisation
	Limitations of the interference abstraction

	Bibliography

