
Shape analysis based on separation logic
MPRI — Cours “Interprétation abstraite :

application à la vérification et à l’analyse statique”

Xavier Rival

INRIA

Dec, 17th, 2014

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 1 / 82

Overview of the lecture

How to reason about memory properties

Last lecture:

analyses specific to several kinds of structures
concrete and abstract memory models
an introduction to shape analysis with TVLA

Today:

a logic to describe properties of memory states
abstract domain
static analysis algorithms
combination with numerical domains
widening operators...

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 2 / 82

An introduction to separation logic

Outline

1 An introduction to separation logic

2 A shape abstract domain relying on separation

3 Combination with a numerical domain

4 Standard static analysis algorithms

5 Inference of inductive definitions / call-stack summarization

6 Conclusion

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 3 / 82

An introduction to separation logic

Our model

Environment + Heap
Addresses are values: Vaddr ⊆ V
Environments e ∈ E map variables into their addresses
Heaps (h ∈ H) map addresses into values

E = X→ Vaddr
H = Vaddr → V

h is actually only a partial function
Memory states:

M = E×H

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 4 / 82

An introduction to separation logic

Example of a concrete memory state (variables)

x and z are two list elements containing values 64 and 88, and where
the former points to the latter
y stores a pointer to z

Memory layout
(pointer values underlined)

address

&x = 300
304

&y = 308
&z = 312

316 0x0
88
312
312
64

e : x 7→ 300
y 7→ 308
z 7→ 312

h : 300 7→ 64
304 7→ 312
308 7→ 312
312 7→ 88
316 7→ 0

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 5 / 82

An introduction to separation logic

Example of a concrete memory state (variables + heap)

same configuration
+ z points to a heap allocated list element (in purple)

Memory layout

address

&x = 300
304

&y = 308
&z = 312

316

0x0
25

508
88
312
312
64

e : x 7→ 300
y 7→ 308
z 7→ 312

h : 300 7→ 64
304 7→ 312
308 7→ 312
312 7→ 88
316 7→ 508
508 7→ 25
512 7→ 0

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 6 / 82

An introduction to separation logic

Weak update problems

x ∈ [−10,−5]; y ∈ [5, 10]
int ? p;
if(?)

p = &x;
else

p = &y;
?p = 0;

What is the final range for x ?
What is the final range for y ?

After the if statement, p may contain any address in {&x, &y}
Thus, the assignment must consider all cases, in a conservative way
Thus, x may receive a new value (0) or keep its old value
Conclusion: x ∈ [−10, 0], y ∈ [0, 10]

Weak updates
Any imprecision in the analysis may lead to weak updates...

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 7 / 82

An introduction to separation logic

Separation logic principle: avoid weak updates

How to deal with weak updates ?
Avoid them !

Always materialize exactly the cell that needs be modified
Can be very costly to achieve, and not always feasible

Notion of property that holds over a memory region
Use a special separating conjunction operator ∗
Local reasoning:
powerful principle, which allows to consider only part of the program
memory
Separation logic has been used in many contexts, including manual
verification, static analysis, etc...

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 8 / 82

An introduction to separation logic

Separation logic

Logic made of a set of formulas
inference rules...

Pure formulas
Set of pure formulas, similar to first order logics

e ::= n (n ∈ N)
| l l-value
| e ′ + e ′′ binary
| . . .

P ::= e = e ′ | P ′ ∨ P ′′ | P ′ ∧ P ′′ . . .

Denote numerical properties among the values

Heap formulas (syntax on the next slide)
Set of formulas to describe concrete heaps
Concretization relation of the form (e, h) ∈ γ(F)

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 9 / 82

An introduction to separation logic

Heap formulas

Main connectors
Each formula describes a heap region

F ::= emp empty region
| true complete heap
| l 7→ v memory cell
| F ′ ∗ F ′′ separating conjunction
| F ′ ∧ F ′′ classical conjunction
| . . . many other connectors (see biblio)

Denotations: the usual stuff...
γ(emp) = ∅; γ(true) = M
(e, h) ∈ γ(F ′ ∧ F ′′) if and only if (e, h) ∈ γ(F ′) and (e, h) ∈ γ(F ′′)

Separating conjunction: next slide...
Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 10 / 82

An introduction to separation logic

The separating conjunction

Single cells
(e, h) ∈ γ(l 7→ v) if and only if h = [JlK(e, h) 7→ v]

Merge of concrete stores
Let h0, h1 ∈ (Vaddr → V), such that dom(h0) ∩ dom(h1) = ∅.
Then, we let h0 � h1 be defined by:

h0 � h1 : dom(h0) ∪ dom(h1) −→ V
x ∈ dom(h0) 7−→ h0(x)
x ∈ dom(h1) 7−→ h1(x)

Concretization of separating conjunction
Logical formulas denote sets of heaps; concretization γ
Binary logical connector on formulas ∗ defined by:

γ(F0 ∗ F1) = {(e, h0 � h1) | (e, h0) ∈ γ(F0) ∧ (e, h1) ∈ γ(F1)}

Exercise: concretization of a 7→ &b ∧ b 7→ &a ? of a 7→ &b ∗ b 7→ &a ?
Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 11 / 82

An introduction to separation logic

Separating conjunction vs non separating conjunction

Classical conjunction: properties for the same memory region
Separating conjunction: properties for disjoint memory regions

a 7→ &b ∧ b 7→ &a
the same heap verifies a 7→ &b
and b 7→ &a

there can be only one cell
thus a = b

a 7→ &b ∗ b 7→ &a
two separate sub-heaps
respectively satisfy a 7→ &b
and b 7→ &a

thus a 6= b

Separating conjunction and non-separating conjunction have very
different properties
Both express very different properties
e.g., no ambiguity on weak / strong updates

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 12 / 82

An introduction to separation logic

An example

Concrete memory layout
(pointer values underlined)

address

&x = 300
304

&y = 308
&z = 312

316 0x0
88
312
312
64

e : x 7→ 300
y 7→ 308
z 7→ 312

h : 300 7→ 64
304 7→ 312
308 7→ 312
312 7→ 88
316 7→ 0

A formula that abstracts away the addresses:

x 7→ 〈64, &z〉 ∗ y 7→ &z ∗ z 7→ 〈88, 0〉

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 13 / 82

An introduction to separation logic

Separating and non separating conjunction

There are two conjunction operators ∧ and ∗
How to relate them ?

Separating conjunction vs normal conjunction
(e, h0) ∈ γ(F0) (e, h1) ∈ γ(F1)

(e, h0 � h1) ∈ γ(F0 ∗ F1)

(e, h) ∈ γ(F0) (e, h) ∈ γ(F1)

(e, h) ∈ γ(F0 ∧ F1)

Reminiscent of Linear Logic [Girard87]:
resource aware / non resource aware conjunction operators

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 14 / 82

An introduction to separation logic

Programs with pointers: syntax

Syntax extension: quite a few additional constructions

l ::= l-valules
| x (x ∈ X)
| . . .
| ∗e pointer dereference
| l · f field read

e ::= expressions
| l
| . . .
| &l "address of" operator

s ::= statements
| . . .
| x = malloc(c) allocation of c bytes
| free(x) deallocation of the block pointed to by x

We do not consider pointer arithmetics here
Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 15 / 82

An introduction to separation logic

Programs with pointers: semantics

Case of l-values:

JxK(e, h) = e(x)

J∗eK(e, h) =

{
h(JeK(e, h)) if JeK(e, h) 6= 0∧JeK(e, h) ∈ Dom(h)
Ω otherwise

Jl · fK(e, heap) = JlK(e, h) + offset(f) (numeric offset)

Case of expressions:

JlK(e, heap) = h(JlK(e, heap))
J&lK(e, heap) = JlK(e, heap)

Case of statements:
memory allocation x = malloc(c): (e, h)→ (e, h ′) where
h ′ = h[e(x)← k]] {k 7→ vk , k + 1 7→ vk+1, . . . , k + c − 1 7→ vk+c−1}
and k , . . . , k + c − 1 are fresh in h
memory deallocation free(x): (e, h)→ (e, h ′) where k = e(x) and
h = h ′] {k 7→ vk , k + 1 7→ vk+1, . . . , k + c − 1 7→ vk+c−1}

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 16 / 82

An introduction to separation logic

Separating logic triple

Program proofs based on triples
Notation: {F}p{F ′} if and only if:

∀s, s ′ ∈ S, s ∈ γ(F) ∧ s ′ ∈ JpK(s) =⇒ s ′ ∈ γ(F ′)

Hoare triples
Application: formalize proofs of programs

A few rules (straightforward proofs):
F0 =⇒ F ′0 {F ′0}p{F ′1} F ′1 =⇒ F ′0

{F0}p{F1}
consequence

{x 7→?}x := e{x 7→ e} mutation

{x 7→? ∗ F}x := e{x 7→ e ∗ F} mutation − 2

(we assume that e does not allocate memory)
Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 17 / 82

An introduction to separation logic

The frame rule

What about the resemblance between rules “mutation” and “mutation-2” ?

Theorem: the frame rule
{F0}s{F1}

{F0 ∗ F}s{F1 ∗ F} frame

Proof by induction on the rules
(see biblio for a more complete set of rules)
Rules are proved by case analysis on the program syntax

We can reason locally about programs

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 18 / 82

An introduction to separation logic

Application of the frame rule

Let us consider the program below:

int i;
int ? x;
int ? y; {i 7→? ∗ x 7→? ∗ y 7→?}
x = &i; {i 7→? ∗ x 7→ &i ∗ y 7→?}
y = &i; {i 7→? ∗ x 7→ &i ∗ y 7→ &i}
? x = 42; {i 7→ 42 ∗ x 7→ &i ∗ y 7→ &i}

Each step impacts a disjoint memory region
This case is easy
See biblio for more complex applications
(verification of the Deutsch-Shorr-Waite algorithm)

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 19 / 82

An introduction to separation logic

Summarization and inductive definitions

What do we still miss ?
So far, formulas denote fixed sets of cells
Thus, no summarization of unbounded regions...

Example all lists pointed to by x, such as:
&x 0x0

&x 0x0

&x 0x0

&x 0x0

How to precisely abstract these stores with one formula i.e., no
infinite disjunction ?

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 20 / 82

An introduction to separation logic

Inductive definitions in separation logic

List definition
α · list := α = 0 ∧ emp

∨ α 6= 0 ∧ α · next 7→ γ ∗ α · data 7→ β ∗ γ · list

Formula abstracting our set of structures:
&x 7→ α ∗ α · list

Summarization: this formula is finite and describe infinitely many
heaps
Concretization: next slide...

Practical implementation in verification/analysis tools
Verification: hand-written definitions
Analysis: either built-in or user-supplied, or partly inferred

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 21 / 82

An introduction to separation logic

Concretization by unfolding

Intuitive semantics of inductive predicates
Inductive predicates can be unfolded, by unrolling their definitions
Syntactic unfolding is noted U−→
A formula F with inductive predicates describes all stores described by
all formulas F ′ such that F U−→ F ′

Example:
Let us start with x 7→ α0 ∗ α0 · list; we can unfold it as follows:
&x 7→ α0 ∗ α0 · list

U−→ &x 7→ α0 ∗ α0 · next 7→ α1 ∗ α0 · data 7→ β1 ∗ α1 · list
U−→ &x 7→ α0 ∗ α0 · next 7→ α1 ∗ α0 · data 7→ β1 ∗ emp ∧ α1 = 0x0

We get the concrete state below:
&x 0x0

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 22 / 82

An introduction to separation logic

Example: tree

Example:

0x0
0x0

0x0
0x0

Inductive definition
Two recursive calls instead of one:

α · tree := α = 0 ∧ emp
∨ α 6= 0 ∧ α · left 7→ β ∗ α · right 7→ γ

∗ β · tree ∗ γ · tree

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 23 / 82

An introduction to separation logic

Example: doubly linked list

Example:
0x0

0x0

Inductive definition
We need to propagate the prev pointer as an additional parameter:

α · dll(p) := α = 0 ∧ emp
∨ α 6= 0 ∧ α · next 7→ γ ∗ α · prev 7→ p ∗ γ · dll(α)

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 24 / 82

An introduction to separation logic

Example: sortedness

Example: sorted list
&x

8 9 33
0x0

Inductive definition
Each element should be greater than the previous one
The first element simply needs be greater than −∞...
We need to propagate the lower bound, using a scalar parameter

α · lsortaux(n) := α = 0 ∧ emp
∨ α 6= 0 ∧ β ≤ n ∧ α · next 7→ γ

∗ α · data 7→ β ∗ γ · lsortaux(β)

α · lsort() := α · lsortaux(−∞)

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 25 / 82

An introduction to separation logic

A new overview of the remaining part of the lecture

How to apply separation logic to static analysis and design abstract
interpretation algorithms based on it ?

In this lecture, we will:
choose a small but expressive set of separation logic formulas
define wide families of abstract domains
study algorithms for local concretization (equivalent to focus) and
global abstraction (widening...)

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 26 / 82

A shape abstract domain relying on separation

Outline

1 An introduction to separation logic

2 A shape abstract domain relying on separation

3 Combination with a numerical domain

4 Standard static analysis algorithms

5 Inference of inductive definitions / call-stack summarization

6 Conclusion

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 27 / 82

A shape abstract domain relying on separation

Choice of a set of formulas

Our set of predicates
An abstract value is a separating conjunction of terms
Each term describes

I either a contiguous region
I or a summarized region, described by an inductive defintion

Abstract elements have a straightforward interpretation as a shape
graph
Unless necessary, we omit environments (concretization into sets of
heaps)

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 28 / 82

A shape abstract domain relying on separation

Abstraction into separating shape graphs

Memory splitting into regions

&t 0x...
0x...
24

0x...
42

0x0
32

Graph abstraction:
{

values, addresses −→ nodes
cells −→ edges

&t

24 42

0x0

32

next

data

next

data

next

data

Region summarization:

&t

24

next

data

list

I abstraction parameterized by a set of inductive definitions

Defines a concretization relation
Let us formalize this...

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 29 / 82

A shape abstract domain relying on separation

Contiguous regions

Shape graphs
Edges: denote memory regions
Nodes: denote values, i.e. addresses or cell contents

Points-to edge, denote contiguous memory regions
Separation logic formula: α · f 7→ β

Abstract and concrete views:

α β
f

ν(α)

offset(f) ν(β)

Concretization:
γS(α · f 7→ β) =

{([ν(α) + offset(f) 7→ ν(β)], ν) | ν : {α, β, . . .} → N}
I ν: bridge between memory and values

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 30 / 82

A shape abstract domain relying on separation

Separation

A graph = a set of edges
Denotes the separating conjunction of the edges

Empty graph emp
γS(emp) = {(∅, ν) | ν : nodes→ V} i.e., empty store

Separating conjunction

γS(S]
0 ∗ S

]
1) = {(h0 � h1, ν) | (h0, ν) ∈ γS(S]

0) ∧ (h1, ν) ∈ γS(S]
1)}

S]
0 S]

1

γ(S]
0) γ(S]

1)

γ γ

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 31 / 82

A shape abstract domain relying on separation

Separation example

Field splitting model
Separation impacts edges / fields, not pointers
Shape graph

α
β0

β1

f

g

accounts for both abstract states below:
ν(α)

offset(f)

offset(g)

ν(β)

ν(γ)

ν(α)
offset(f)

offset(g)

ν(β) = ν(γ)

In other words, separation
asserts addresses are distinct
says nothing about contents

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 32 / 82

A shape abstract domain relying on separation

Inductive edges

List definition
α · list ::= (emp, α = 0)

| (α · next 7→ β0 ∗ α · data 7→ β1 ∗ β0 · list, α 6= 0)

where emp denotes the empty heap

Concretization as a least fixpoint
Given an inductive def ι

γS(α · ι) =
⋃{

γS(F) | α · ι U−→ F
}

Alternate approach:
index inductive applications with induction depth
allows to reason on length of structures

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 33 / 82

A shape abstract domain relying on separation

Inductive structures IV: a few instances

More complex shapes: trees

α
tree U−→ι α

β0

β1

left

right

tree

tree

Relations among pointers: doubly-linked lists

α
dll(δ) U−→ι α

β

δ

next

prev

dll(α)

Relations between pointers and numerical: sorted lists

α
lsort(δ) U−→ι

α

β0

β1

next

data

lsort(β1)

δ ≤ β1

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 34 / 82

A shape abstract domain relying on separation

Inductive segments

A frequent pattern:

&x

&y

0x0

Could be expressed directly as an inductive with a parameter:
α · list_endp(π) ::= (emp, α = π)

| (α · next 7→ β0 ∗ α · data 7→ β1

∗ β0 · list_endp(π), α 6= 0)

This definition would derive from list
Thus, we make segments part of the fundamental predicates of
the domain

&x

&y

list

list

list

Multi-segments: possible, but harder for analysis

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 35 / 82

Combination with a numerical domain

Outline

1 An introduction to separation logic

2 A shape abstract domain relying on separation

3 Combination with a numerical domain

4 Standard static analysis algorithms

5 Inference of inductive definitions / call-stack summarization

6 Conclusion

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 36 / 82

Combination with a numerical domain

Example

How to express both shape and numerical properties ?

List of even elements:

68 24 0 112
&x 0x0

Sorted list:

8 9 34
&x 0x0

Many other examples:
I list of open filed descriptors
I tries
I balanced trees: red-black, AVL...

Note: inductive definitions also talk about data

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 37 / 82

Combination with a numerical domain

A first approach to domain combination

Basis

Graphs form a shape domain D]
S

abstract stores together with a physical mapping of nodes
γS : D]

S → P((D]
S →M)× (nodes→ V))

Numerical values are taken in a numerical domain D]
num

abstracts physical mapping of nodes
γnum : D]

num → P((nodes→ V))

Concretization of the combined domain [CR]

γ(S],N]) = {σ ∈M | ∃ν ∈ γnum(N]), (σ, ν) ∈ γS(S])}

Quite similar to a reduced product

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 38 / 82

Combination with a numerical domain

Combination by reduced product

Reduced product

Product abstraction: D] = D]
0 × D]

1
γ(x0, x1) = γ(x0) ∩ γ(x1)

Reduction: D]
r is the quotient of D] by the equivalence relation ≡

defined by (x0, x1) ≡ (x ′0, x
′
1) ⇐⇒ γ(x0, x1) = γ(x ′0, x

′
1)

Domain operations (join, transfer functions) are pairwise (are usually
composed with reduction)
Why not to use a product of the shape domain with a numerical
domain ?

How to compare / join the following two elements ?

&t

α is even
α

next

data

leven

and &t
leven

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 39 / 82

Combination with a numerical domain

Towards a more adapted combination operator

Why does this fail here ?
The set of nodes / symbolic variables is not fixed
Variables represented in the numerical domain depend on the shape
abstraction

⇒ Thus the product is not symmetric

Intuitions

Graphs form a shape domain D]
S

For each graph S] ∈ D]
S, we have a numerical lattice D]

num〈S]〉
I example: if graph S] contains nodes α0, α1, α2, D]num〈S]〉 should

abstract {α0, α1, α2} → V
An abstract value is a pair (S],N]), such that N] ∈ D]

num〈N]〉

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 40 / 82

Combination with a numerical domain

Cofibered domain

Definition [AV]

Basis: abstract domain (D]
0,v

]
0), with

concretization γ0 : D]
0 → D

Function: φ : D]
0 → D1, where each element of D1

is an abstract domain (D]
1,v

]
1), with a

concretization γD]
1

: D]
1 → D

Lift functions: ∀x], y] ∈ D]
0, such that x]v]

0y
],

there exists a function Πx],y] : φ(x])→ φ(y]), that
is monotone for γx] and γy]

Domain: D] is the set of pairs (x]0, x
]
1) where

x]1 ∈ φ(x]0)

S0

S1

S2

D]
num〈S0〉

D]
num〈S1〉

D]
num〈S2〉

Generic product, where the second lattice depends on the first
Provides a generic scheme for widening, comparison

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 41 / 82

Combination with a numerical domain

Domain operations

Lift functions allow to switch domain when needed

Comparison of (x]0, x
]
1) and (y]

0, y
]
1)

1 First, compare x]0 and y]0 in D]
0

2 If x]0v
]
0y

]
0, compare Π

x]0 ,y
]
0
(x]1) and y]1

Widening of (x]0, x
]
1) and (y]

0, y
]
1)

1 First, compute the widening in the basis z]0 = x]0Oy
]
0

2 Then move to φ(z]0), by computing x]2 = Π
x]0 ,z

]
0
(x]1) and

y]2 = Π
y]
0 ,z

]
0
(y]1)

3 Last widen in φ(z]0): z]1 = x]2Oz]0
y]2

(x]0, x
]
1)O(y]0, y

]
1) = (z]0, z

]
1)

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 42 / 82

Combination with a numerical domain

Domain operations

Transfer functions, e.g., assignment
Require memory location be materialized in the graph

I i.e., the graph may have to be modified
I the numerical component should be updated with lift functions

Require update in the graph and the numerical domain
I i.e., the numerical component should be kept coherent with the graph

Proofs of soundness of transfer functions rely on:
the soundness of the lift functions
the soundness of both domain transfer functions

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 43 / 82

Standard static analysis algorithms Overview of the analysis

Outline

1 An introduction to separation logic

2 A shape abstract domain relying on separation

3 Combination with a numerical domain

4 Standard static analysis algorithms
Overview of the analysis
Post-conditions and unfolding
Folding: widening and inclusion checking

5 Inference of inductive definitions / call-stack summarization

6 Conclusion

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 44 / 82

Standard static analysis algorithms Overview of the analysis

Static analysis overview

A list insertion function:

list ? l assumed to point to a list
list ? t assumed to point to a list element
list ? c = l;
while(c != NULL && c -> next != NULL && (. . .)){

c = c -> next;
}
t -> next = c -> next;
c -> next = t;

list inductive structure def.
Abstract precondition:

&l

&c

&t

next

data

list

Result of the (interprocedural) analysis
Over-approximations of reachable concrete states
e.g., after the insertion:

&l

&c

&t

next

data

listlist next

data

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 45 / 82

Standard static analysis algorithms Overview of the analysis

Transfer functions

Abstract interpreter design
Follows the semantics of the language under consideration
The abstract domain should provide sound transfer functions

Transfer functions
Assignment: x→ f = y→ g or x→ f = earith

Test: analysis of conditions (if, while)
Variable creation and removal
Memory management: malloc, free

Should be sound i.e., not forget any concrete behavior

Abstract operators
Join and widening: over-approximation
Inclusion checking: check stabilization of abstract iterates

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 46 / 82

Standard static analysis algorithms Overview of the analysis

Abstract operations

Denotational style abstract interpreter
Concrete denotational semantics JpK : s 7→ P(s ′)

Abstract semantics JpK](S) = S′, computed by the analysis:
s ∈ γ(S) =⇒ JpK(s) ⊆ γ(JpK](S))

Analysis by induction on the syntax using domain operators

Jp0; p1K](S) = Jp1K] ◦ Jp0K](S)
Jl = eK](S) = assign(l , e,S)

Jl = malloc(n)K](S) = alloc(l , n,S)

Jfree(l)K](S) = free(l , n,S)

Jif(e) pt else pfK](S) =

{ join(JptK](guard(e,S)),

JpfK](guard(e = false,S)))

Jwhile(e)pK](S) = guard(e = false, lfp]SF])

where, F] : S0 7→ JpK](guard(e,S0))

. . .

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 47 / 82

Standard static analysis algorithms Overview of the analysis

The algorithms underlying the transfer functions

Unfolding: cases analysis on summaries

x y
list list =⇒

x y
list next

data

list
∨ x y

0x0
list

Abstract postconditions, on “exact” regions, e.g. insertion

x y

0x0

list next

data

list

next

data

=⇒
x y

list
next

data

listnext

data

Widening: builds summaries and ensures termination

x y
list list O

x y
list

next

data

list

=⇒
x y

list list

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 48 / 82

Standard static analysis algorithms Post-conditions and unfolding

Outline

1 An introduction to separation logic

2 A shape abstract domain relying on separation

3 Combination with a numerical domain

4 Standard static analysis algorithms
Overview of the analysis
Post-conditions and unfolding
Folding: widening and inclusion checking

5 Inference of inductive definitions / call-stack summarization

6 Conclusion

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 49 / 82

Standard static analysis algorithms Post-conditions and unfolding

Analysis of an assignment in the graph domain

Steps for analyzing x = y -> next (local reasoning)
1 Evaluate l-value x into points-to edge α 7→ β

2 Evaluate r-value y -> next into node β′

3 Replace points-to edge α 7→ β with points-to edge α 7→ β′

With pre-condition:
&x α0 β0

&y α1 β1 β2
next

Step 1 produces α0 7→ β0

Step 2 produces β2

End result:
&x α0 β0

&y α1 β1 β2next

With pre-condition:
&x α0 β0

&y α1 β1
list

Step 1 produces α0 7→ β0

Step 2 fails

Abstract state too abstract
We need to refine it

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 50 / 82

Standard static analysis algorithms Post-conditions and unfolding

Unfolding as a local case analysis

Unfolding principle
Case analysis, based on the inductive definition
Generates symbolic disjunctions
analysis performed in a disjunction domain

Example, for lists:
α

list U−→ α = 0
α

α
list U−→ α 6= 0

α α′

β

next

data

list

Numeric predicates: approximated in the numerical domain

Soundness: by definition of the concretization of inductive structures

γS(S]) ⊆
⋃
{γS(S]

0) | S] U−→ S]
0}

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 51 / 82

Standard static analysis algorithms Post-conditions and unfolding

Analysis of an assignment, with unfolding

Principle

We have γS(α · ι) =
⋃
{γS(S]) | α · ι U−→ S]}

Replace α · ι with a finite number of disjuncts and continue

Disjunct 1:

&x α0 β0

&y α1
= 0

β1

Step 1 produces α0 7→ β0

Step 2 fails:
Null pointer dereference !

Disjunct 2:

&x α0 β0

&y α1 β1

β2

β3

next

data

list

Step 1 produces α0 7→ β0

Step 2 produces β2

End result:

&x α0 β0

&y α1 β1

β2

β3

next

data

list

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 52 / 82

Standard static analysis algorithms Post-conditions and unfolding

Unfolding and degenerated cases

assume(l points to a dll)
c = l;
¬ while(c 6= NULL && condition)

c = c -> next;
 if(c 6= 0 && c -> prev 6= 0)

c = c -> prev→ prev;

at ¬: l, c
α0

dll(δ1)

at :
l
α0

c
α1

dll(δ0)

dll(δ1)

dll(δ1)

⇒ non trivial unfolding

Materialization of c -> prev:
α α′ α′′

β′

dll(β)

dll(β′)
next

prev

dll(β′)

Segment splitting lemma: basis for segment unfolding
α α′

ι i + j

ι′ describes the same set of stores as α α′′ α′
ι i

ι′′

ι′′ j

ι′

Materialization of c -> prev -> prev:
α β′ α′ α′′

β′′

dll(β)

dll(β′′)
nextnext

prev
prev

dll(β′)

Implementation issue: discover which inductive edge to unfold
very hard !

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 53 / 82

Standard static analysis algorithms Post-conditions and unfolding

Analysis of an assignment in the combined domain

shape
domain

numeric
domain

cofibered layer
shape + num

environment layer
shape + num + env

&x α0 α1

&y α2 α3
lpos

N = α1 ≥ 0 ∧ α3 6= 0x0

y -> d = x + 1

Abstract post-condition ?

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 54 / 82

Standard static analysis algorithms Post-conditions and unfolding

Analysis of an assignment in the combined domain

shape
domain

numeric
domain

cofibered layer
shape + num

environment layer
shape + num + env

&x α0 α1

&y α2 α3
lpos

N = α1 ≥ 0 ∧ α3 6= 0x0

y -> d = x+ 1 ⇒ (?α2) · d = (?α0) + 1

Abstract post-condition ?

Stage 1: environment resolution

replaces x with ?e](x)

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 54 / 82

Standard static analysis algorithms Post-conditions and unfolding

Analysis of an assignment in the combined domain

shape
domain

numeric
domain

cofibered layer
shape + num

environment layer
shape + num + env

&x α0 α1

&y α2 α3
lpos

N = α1 ≥ 0 ∧ α3 6= 0x0

(?α2) · d = (?α0) + 1

Abstract post-condition ?

Stage 2: propagate into the shape + numerics domain
only symbolic nodes appear

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 54 / 82

Standard static analysis algorithms Post-conditions and unfolding

Analysis of an assignment in the combined domain

shape
domain

numeric
domain

cofibered layer
shape + num

environment layer
shape + num + env

&x α0 α1

&y α2 α3
lpos

N = α1 ≥ 0 ∧ α3 6= 0x0

(?α2) · d = (?α0) + 1

Abstract post-condition ?

Stage 3: resolve cells in the shape graph abstract domain
?α0 evaluates to α1; ?α2 evaluates to α3

(?α2) · d fails to evaluate: no points-to out of α3

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 54 / 82

Standard static analysis algorithms Post-conditions and unfolding

Analysis of an assignment in the combined domain

shape
domain

numeric
domain

cofibered layer
shape + num

environment layer
shape + num + env

&x α0 α1

&y α2 α3

α4

α5

d

n
lpos

N = α1 ≥ 0 ∧ α3 6= 0x0 ∧ α4 ≥ 0

(?α2) · d = (?α0) + 1

Abstract post-condition ?

Stage 4: unfolding (several steps, skipped here)
locally materialize α3 · lpos; update keys / relations in the numerics
l-value α3 · d now evaluates into edge α3 · d 7→ α4

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 54 / 82

Standard static analysis algorithms Post-conditions and unfolding

Analysis of an assignment in the combined domain

shape
domain

numeric
domain

cofibered layer
shape + num

environment layer
shape + num + env

&x α0 α1

&y α2 α3

α4

α5

d

n
lpos

N = α1 ≥ 0 ∧ α3 6= 0x0 ∧ α4 ≥ 0

create node α6

&x α0 α1

&y α2 α3

α4

α5

α6d

n
lpos

N = α1 ≥ 0 ∧ α3 6= 0x0 ∧ α4 ≥ 0

Stage 5: create a new node
new node α6 denotes a new value
will store the new value

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 54 / 82

Standard static analysis algorithms Post-conditions and unfolding

Analysis of an assignment in the combined domain

shape
domain

numeric
domain

cofibered layer
shape + num

environment layer
shape + num + env

&x α0 α1

&y α2 α3

α4

α5

d

n
lpos

N = α1 ≥ 0 ∧ α3 6= 0x0 ∧ α4 ≥ 0

α6 ← α1 + 1 in numerics

&x α0 α1

&y α2 α3

α4

α5

α6d

n
lpos

N = α1 ≥ 0 ∧ α3 6= 0x0 ∧ α4 ≥ 0 ∧ α6 ≥ 1

Stage 6: perform numeric assignment
numeric assignment completely ignores pointer structures
to the new node

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 54 / 82

Standard static analysis algorithms Post-conditions and unfolding

Analysis of an assignment in the combined domain

shape
domain

numeric
domain

cofibered layer
shape + num

environment layer
shape + num + env

mutate (α3 · d) 7→ α4 into α6

&x α0 α1

&y α2 α3

α4

α5

α6d

n
lpos

N = α1 ≥ 0 ∧ α3 6= 0x0 ∧ α4 ≥ 0 ∧ α6 ≥ 1

Stage 7: perform the update in the graph
classic strong update in a pointer aware domain
symbolic node α4 becomes redundant and can be removed

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 54 / 82

Standard static analysis algorithms Folding: widening and inclusion checking

Outline

1 An introduction to separation logic

2 A shape abstract domain relying on separation

3 Combination with a numerical domain

4 Standard static analysis algorithms
Overview of the analysis
Post-conditions and unfolding
Folding: widening and inclusion checking

5 Inference of inductive definitions / call-stack summarization

6 Conclusion

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 55 / 82

Standard static analysis algorithms Folding: widening and inclusion checking

Need for a folding operation

Back to the list traversal example... assume(l points to a list)
c = l;
while(c 6= NULL){
c = c→ next;
}

First iterates in the loop:
I at iteration 0 (before entering the loop):

l, c
α0

list

I at iteration 1:
l c

β1

next

data

list

I at iteration 2:
l
α0 α1

c
α2

β1 β2

next

data

next

data

list

How to guarantee termination of the analysis ?
How to introduce segment edges / perform abstraction ?

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 56 / 82

Standard static analysis algorithms Folding: widening and inclusion checking

Widening

The lattice of shape abstract values has infinite height
Thus iteration sequences may not terminate

Definition of a widening operator O
Over-approximates join:{

X] ⊆ γ(X]OY])
Y] ⊆ γ(X]OY])

Enforces termination: for all sequence (X]
n)n∈N, the sequence

(Y]
n)n∈N defined below is ultimately stationary{

Y]
0 = X]

0
∀n ∈ N, Y]

n+1 = Y]
nOX

]
n+1

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 57 / 82

Standard static analysis algorithms Folding: widening and inclusion checking

Canonicalization

Upper closure operator

ρ : D] −→ D]
can ⊆ D] is an upper closure operator (uco) iff it is

monotone, extensive and idempotent.

Canonicalization

Disjunctive completion: D]
∨ = finite disjunctions over D]

Canonicalization operator ρ∨ defined by ρ∨ : D]
∨ −→ D]

can∨ and
ρ∨(X]) = {ρ(x]) | x] ∈ X]} where ρ is an uco and D]

can has finite
height

Usually more simple to compute
Canonicalization is used in many shape analysis tools:
TVLA, most separation logic based analysis tools
However less powerful than widening: does not exploit history of
computation

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 58 / 82

Standard static analysis algorithms Folding: widening and inclusion checking

Per region weakening

The weakening principles shown in the following apply both in
canonicalization and widening approaches

We can apply the local reasoning principle to weakening
inclusion test (comparison)
canonicalization
join / widening

Application: inclusion test

Operator v] should satisfy X]v]Y] =⇒ γ(X]) ⊆ γ(Y])

If S]
0v]S]

0,weak and S]
1v]S]

1,weak

S]
0 S]

1
α0 α1 α2 v]

S]
0,weak S]

1,weakα0 α1 α2

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 59 / 82

Standard static analysis algorithms Folding: widening and inclusion checking

Inductive weakening

Weakening identity

X]v]X]...
Trivial, but useful, when a graph region appears in both widening
arguments

Weakening unfolded region

If S]
0
U−→ S]

1, γS(S]
1) ⊆ γS(S]

0)

Soundness follows the the soundness of unfolding

Application to a simple example:

l
α0 α1

β1

next

data

list

v]
l
α0

list

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 60 / 82

Standard static analysis algorithms Folding: widening and inclusion checking

Comparison operator in the shape domain

Algorithm structure
Based on separation and local reasoning:

γS(S]
0) ⊆ γS(S]

1) =⇒ γS(S]
0 ∗ S]) ⊆ γS(S]

1 ∗ S])

Algorithm:
I applies local rules and “consumes” graph regions proved weaker
I keeps discovering new rule applications

Structural rules such as:
I segment splitting:

S]v] α
ι

=⇒ S] ∗ β α
ι

ι v] β
ι

I inductive folding: α
ι U−→ S]0

S]v]S]0

}
=⇒ S]v] α

ι

Correctness:

S]
0v]S]

1 =⇒ γS(S]
0) ⊆ γS(S]

1)

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 61 / 82

Standard static analysis algorithms Folding: widening and inclusion checking

Comparison operator in the combined domain

We need to tackle the fact nodes names may differ (cofibered domain)

&t α0 α1

α2 is even

α2

next

data

leven &t β0
leven

Instrumented comparison in the shape domain

Comparison S]
0v]S]

1: rules should compute a physical mapping
Ψ : nodes1 −→ nodes0
Soundness condition: (σ, ν) ∈ γS(S]

0) =⇒ (σ, ν ◦Ψ) ∈ γS(S]
0)

Comparison in the cofibered domain

Lift function for numerical abstract values: Π
S]
0 ,S

]
1
(N]

0) = N]
0 ◦Ψ

Thus, we simply need to compare N]
0 ◦Ψ and N]

1
Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 62 / 82

Standard static analysis algorithms Folding: widening and inclusion checking

Join operator

Similar iterative scheme, based on local rules
But needs to reason locally on two graphs in the same time:
each rule maps two regions into a common over-approximation

Graph partitioning and mapping

Inputs: S]
0, S

]
1

Performed by a function Ψ : nodes0 × nodes1 → nodest
Ψ is computed at the same time as the join

If ∀i ∈ {0, 1}, ∀s ∈ {lft, rgh}, S]
i ,sv]S]

s ,

S]
0,lft S]

1,lftα0 α1 α2

S]
0,rgh S]

1,rghβ0 β1 β2

Ψ Ψ Ψ v S]
0 S]

1
γ0 γ1 γ2

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 63 / 82

Standard static analysis algorithms Folding: widening and inclusion checking

Segment introduction

Rule

if
S]

rgh

α

β0 β1 β0 β1
ι

ι

Ψ Ψ

S]
lft

v

then

S]

lftOS
]
rgh = γ0 γ1

ι

ι

(α, β0)
Ψ←→ γ0

(α, β1)
Ψ←→ γ1

Application to list traversal, at the end of iteration 1:
before iteration 0:

l, c
α0

list

end of iteration 0:

l
β0

c
β1

β2

next

data

list

join, before iteration 1:

l
β0

c
β1

β2

next

data

list
{

Ψ(α0, β0) = γ0
Ψ(α0, β1) = γ1

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 64 / 82

Standard static analysis algorithms Folding: widening and inclusion checking

Segment extension

Rule

if
S]

rgh

α0 α1

β0 β1 β0 β1

ι

ι

ι

ι

Ψ Ψ

S]
lft

v
then

S]

lftOS
]
rgh =

γ0 γ1
ι

ι

(α0, β0)
Ψ←→ γ0

(α1, β1)
Ψ←→ γ1

Application to list traversal, at the end of iteration 1:
previous invariant before iteration 1:

l
α0

c
α1

list

list

list

end of iteration 1:

l
β0

c
β1 β2

β3

list

list
next

data

list

join, before iteration 1:

l

γ0

c
γ1

list

list

list

{
Ψ(α0, β0) = γ0
Ψ(α1, β2) = γ1

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 65 / 82

Standard static analysis algorithms Folding: widening and inclusion checking

Rewrite system properties

Comparison, canonicalization and widening algorithms can be
considered rewriting systems over tuples of graphs
Each step applies a rule / computation step

Termination
The systems are terminating
This ensures comparison, canonicalization, widening are computable

Non confluence !
The results depends on the order of application of the rules
Implementation requires the choice of an adequate strategy

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 66 / 82

Standard static analysis algorithms Folding: widening and inclusion checking

Properties

Inclusion checking is sound

If S]
0v]S]

1, then γ(S]
0) ⊆ γ(S]

1)

Canonicalization is sound
γ(S]) ⊆ γ(ρcan(S]))

Widening is sound and terminating

γ(S]
0) ⊆ γ(S]

0OS
]
1)

γ(S]
1) ⊆ γ(S]

0OS
]
1)

O ensures termination of abstract iterates

Soundness of local reasoning and of local rules
Termination of widening: O can introduce only segments, and may
not introduce infintely many of them

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 67 / 82

Standard static analysis algorithms Folding: widening and inclusion checking

Widening / join in the combined domain

shape
domain

numeric
domain

cofibered layer
shape + num

environment layer
shape + num + env &x α0 α1

α2

α3

&y α4 α5

d

n
lpos

N = α2 ≥ α5 ≥ 2

&x β0 β1

&y β2 β3

lpos

N ′ = β3 ≥ 1

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 68 / 82

Standard static analysis algorithms Folding: widening and inclusion checking

Widening / join in the combined domain

shape
domain

numeric
domain

cofibered layer
shape + num

environment layer
shape + num + env &x α0 α1

α2

α3

&y α4 α5

d

n
lpos

N = α2 ≥ α5 ≥ 2

&x β0 β1

&y β2 β3

lpos

N ′ = β3 ≥ 1

&x δ0

&y δ1

δ0 ≡ (α0, β0)
δ1 ≡ (α4, β2)

Stage 1: abstract environment
compute new abstract environment and initial node relation
e.g., α0, β0 both denote &x

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 68 / 82

Standard static analysis algorithms Folding: widening and inclusion checking

Widening / join in the combined domain

shape
domain

numeric
domain

cofibered layer
shape + num

environment layer
shape + num + env &x α0 α1

α2

α3

&y α4 α5

d

n
lpos

N = α2 ≥ α5 ≥ 2

&x β0 β1

&y β2 β3

lpos

N ′ = β3 ≥ 1

&x δ0

&y δ1

δ0 ≡ (α0, β0)
δ1 ≡ (α4, β2)

Stage 2: join in the “cofibered” layer
operations to perform:

1 compute the join in the graph
2 convert value abstractions, and join the resulting lattice

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 68 / 82

Standard static analysis algorithms Folding: widening and inclusion checking

Widening / join in the combined domain

shape
domain

numeric
domain

cofibered layer
shape + num

environment layer
shape + num + env &x α0 α1

α2

α3

&y α4 α5

d

n
lpos

N = α2 ≥ α5 ≥ 2

&x β0 β1

&y β2 β3

lpos

N ′ = β3 ≥ 1

&x δ0

&y δ1

δ2 δ0 ≡ (α0, β0)
δ1 ≡ (α4, β2)
δ2 ≡ (α1, β1)

Stage 2: graph join
apply local join rules
ex: points-to matching, weakening to inductive...
incremental algorithm

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 68 / 82

Standard static analysis algorithms Folding: widening and inclusion checking

Widening / join in the combined domain

shape
domain

numeric
domain

cofibered layer
shape + num

environment layer
shape + num + env &x α0 α1

α2

α3

&y α4 α5

d

n
lpos

N = α2 ≥ α5 ≥ 2

&x β0 β1

&y β2 β3

lpos

N ′ = β3 ≥ 1

&x δ0

&y δ1

δ2

δ3

δ0 ≡ (α0, β0)
δ1 ≡ (α4, β2)
δ2 ≡ (α1, β1)
δ3 ≡ (α5, β3)

Stage 2: graph join
apply local join rules
ex: points-to matching, weakening to inductive...
incremental algorithm

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 68 / 82

Standard static analysis algorithms Folding: widening and inclusion checking

Widening / join in the combined domain

shape
domain

numeric
domain

cofibered layer
shape + num

environment layer
shape + num + env &x α0 α1

α2

α3

&y α4 α5

d

n
lpos

N = α2 ≥ α5 ≥ 2

&x β0 β1

&y β2 β3

lpos

N ′ = β3 ≥ 1

&x δ0

&y δ1

δ2

δ3

lpos δ0 ≡ (α0, β0)
δ1 ≡ (α4, β2)
δ2 ≡ (α1, β1)
δ3 ≡ (α5, β3)

Stage 2: graph join
apply local join rules
ex: points-to matching, weakening to inductive...
incremental algorithm

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 68 / 82

Standard static analysis algorithms Folding: widening and inclusion checking

Widening / join in the combined domain

shape
domain

numeric
domain

cofibered layer
shape + num

environment layer
shape + num + env &x α0 α1

α2

α3

&y α4 α5

d

n
lpos

N = α2 ≥ α5 ≥ 2

&x β0 β1

&y β2 β3

lpos

N ′ = β3 ≥ 1

&x δ0

&y δ1

δ2

δ3

lpos

Nt = [δ3 ≥ 2] t [δ3 ≥ 1]

δ0 ≡ (α0, β0)
δ1 ≡ (α4, β2)
δ2 ≡ (α1, β1)
δ3 ≡ (α5, β3)

Stage 3: conversion function application in numerics
remove nodes that were abstracted away
rename other nodes

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 68 / 82

Standard static analysis algorithms Folding: widening and inclusion checking

Widening / join in the combined domain

shape
domain

numeric
domain

cofibered layer
shape + num

environment layer
shape + num + env &x α0 α1

α2

α3

&y α4 α5

d

n
lpos

N = α2 ≥ α5 ≥ 2

&x β0 β1

&y β2 β3

lpos

N ′ = β3 ≥ 1

&x δ0

&y δ1

δ2

δ3

lpos

Nt = [δ3 ≥ 1]

δ0 ≡ (α0, β0)
δ1 ≡ (α4, β2)
δ2 ≡ (α1, β1)
δ3 ≡ (α5, β3)

Stage 4: join in the numeric domain
apply t for regular join, O for a widening

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 68 / 82

Inference of inductive definitions / call-stack summarization

Outline

1 An introduction to separation logic

2 A shape abstract domain relying on separation

3 Combination with a numerical domain

4 Standard static analysis algorithms

5 Inference of inductive definitions / call-stack summarization

6 Conclusion

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 69 / 82

Inference of inductive definitions / call-stack summarization

Interprocedural analysis

Analysis of programs that consist in several functions (or procedures)
Difficulty: how to cope with multiple (possibly recursive) calls

Relational approach
analyze each function once
compute function summaries
abstraction of input-output
relations
analysis of a function call:
instantiate the function
summary (hard)

Inlining approach
inline functions at function
calls
just an extension of
intraprocedural analysis

In this section, we study the inlining approach for recursion
Side result: a widening for inductive definitions

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 70 / 82

Inference of inductive definitions / call-stack summarization

Approaches to interprocedural analysis

“relational” approach “inlining” approach

analyze each definition
abstracts P(S̄→ S̄)

analyze each call
abstracts P(S)

+ modularity - not modular
+ reuse of invariants - re-analysis in 6= contexts

- deals with state relations + deals with states
- complex higher order + straightforward iteration

iteration strategy

challenge: frame problem challenge: unbounded calls

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 71 / 82

Inference of inductive definitions / call-stack summarization

Challenges in interprocedural analysis

void main(){
dll ? l ; //assume l points to a sll
l = fix(l , NULL);
}
dll ? fix(dll ? c ,dll ? p){
dll ? ret;
if(c != NULL){
c -> prev = p;
¬c -> next = fix(c -> next, c);
if(check(c -> data)){
ret = c -> next;
remove(c);

} else ret = c ;
}
return ret;
}

{
turns a linked list into a doubly linked list
removes some elements

main l

p
c
ret ?

fp

fix

p
c
ret ?

fp

fix

p
c
ret ?

fp

fix
∅

2

11

8

3∅

∅ ?

main l

p
c
ret

fp

fix

p
c
ret

fp

fix

p
c
ret

fp

fix

?

?

∅

2

11

8

3

11

∅

∅

Heap is unbounded, needs abstraction (shape analysis)
But stack may also grow unbounded, needs abstraction
Complex relations between both stack and heap

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 72 / 82

Inference of inductive definitions / call-stack summarization

Calling contexts as shape graphs

main l

p
c
ret ?

fp

fix

p
c
ret ?

fp

fix

p
c
ret ?

fp

fix
∅

2

11

8

3∅

∅ ?

main

fix

fix

fix

fp

fp

fp

0x0l
p

c
p

c
p

c

prev

nextprev

nextprev

next list

stack heap

Concrete assembly call stack modelled in a separating shape
graph together with the heap

I one node per activation record address

I explicit edges for frame pointers
I local variables turn into activation record fields

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 73 / 82

Inference of inductive definitions / call-stack summarization

Calling contexts as shape graphs

main l

p
c
ret ?

fp

fix

p
c
ret ?

fp

fix

p
c
ret ?

fp

fix
∅

2

11

8

3∅

∅ ?

main

fix

fix

fix

fp

fp

fp

0x0l
p

c
p

c
p

c

prev

nextprev

nextprev

next list

stack heap

Concrete assembly call stack modelled in a separating shape
graph together with the heap

I one node per activation record address

I explicit edges for frame pointers
I local variables turn into activation record fields

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 73 / 82

Inference of inductive definitions / call-stack summarization

Calling contexts as shape graphs

main l

p
c
ret ?

fp

fix

p
c
ret ?

fp

fix

p
c
ret ?

fp

fix
∅

2

11

8

3∅

∅ ?

main

fix

fix

fix

fp

fp

fp

0x0l
p

c
p

c
p

c

prev

nextprev

nextprev

next list

stack heap

Concrete assembly call stack modelled in a separating shape
graph together with the heap

I one node per activation record address
I explicit edges for frame pointers

I local variables turn into activation record fields

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 73 / 82

Inference of inductive definitions / call-stack summarization

Calling contexts as shape graphs

main l

p
c
ret ?

fp

fix

p
c
ret ?

fp

fix

p
c
ret ?

fp

fix
∅

2

11

8

3∅

∅ ?

main

fix

fix

fix

fp

fp

fp

0x0l
p

c
p

c
p

c

prev

nextprev

nextprev

next list

stack heap

Concrete assembly call stack modelled in a separating shape
graph together with the heap

I one node per activation record address
I explicit edges for frame pointers
I local variables turn into activation record fields

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 73 / 82

Inference of inductive definitions / call-stack summarization

Calling contexts as shape graphs

main l

p
c
ret ?

fp

fix

p
c
ret ?

fp

fix

p
c
ret ?

fp

fix
∅

2

11

8

3∅

∅ ?

main

fix

fix

fix

fp

fp

fp

0x0l
p

c
p

c
p

c

prev

nextprev

nextprev

next list

stack heap

Concrete assembly call stack modelled in a separating shape
graph together with the heap

I one node per activation record address
I explicit edges for frame pointers
I local variables turn into activation record fields

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 73 / 82

Inference of inductive definitions / call-stack summarization

Calling contexts as shape graphs

main l

p
c
ret ?

fp

fix

p
c
ret ?

fp

fix

p
c
ret ?

fp

fix
∅

2

11

8

3∅

∅ ?

main

fix

fix

fix

fp

fp

fp

0x0l
p

c
p

c
p

c

prev

nextprev

nextprev

next list

stack heap

Concrete assembly call stack modelled in a separating shape
graph together with the heap

I one node per activation record address
I explicit edges for frame pointers
I local variables turn into activation record fields

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 73 / 82

Inference of inductive definitions / call-stack summarization

Inference of a call-stack inductive structure

Second and third iterates: a repeating pattern
main

fix

fix

fp

fp

0x0l
p

c
p

c

prev

nextprev

next list

main

fix

fix

fix

fp

fp

fp

0x0l
p

c
p

c
p

c

prev

nextprev

nextprev

next list

Computing an inductive rule for summarization: subtraction

Inferred inductive rule

stk(β1, β2)

fix::ctx

β1 β2

U−→
fix

fp

stk(β0, β1)

ctx
β0

β1

β2

c
p prev

next

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 74 / 82

Inference of inductive definitions / call-stack summarization

Inference of a call-stack inductive structure

Second and third iterates: a repeating pattern
main

fix

fix

fp

fp

0x0l
p

c
p

c

prev

nextprev

next list

main

fix

fix

fix

fp

fp

fp

0x0l
p

c
p

c
p

c

prev

nextprev

nextprev

next list

Computing an inductive rule for summarization: subtraction

I subtract top-most activation record

I subtract common stack region

I gather relations with next activation records: additional parameters

I collect numerical constraints

Inferred inductive rule

stk(β1, β2)

fix::ctx

β1 β2

U−→
fix

fp

stk(β0, β1)

ctx
β0

β1

β2

c
p prev

next

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 74 / 82

Inference of inductive definitions / call-stack summarization

Inference of a call-stack inductive structure

Second and third iterates: a repeating pattern
main

fix

fix

fp

fp

0x0l
p

c
p

c

prev

nextprev

next list

main

fix

fix

fix

fp

fp

fp

0x0l
p

c
p

c
p

c

prev

nextprev

nextprev

next list

Computing an inductive rule for summarization: subtraction

I subtract top-most activation record

I subtract common stack region

I gather relations with next activation records: additional parameters

I collect numerical constraints

Inferred inductive rule

stk(β1, β2)

fix::ctx

β1 β2

U−→
fix

fp

stk(β0, β1)

ctx
β0

β1

β2

c
p prev

next

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 74 / 82

Inference of inductive definitions / call-stack summarization

Inference of a call-stack inductive structure

Second and third iterates: a repeating pattern
main

fix

fix

fp

fp

0x0l
p

c
p

c

prev

nextprev

next list

main

fix

fix

fix

fp

fp

fp

0x0l
p

c
p

c
p

c

prev

nextprev

nextprev

next list

Computing an inductive rule for summarization: subtraction

I subtract top-most activation record

I subtract common stack region

I gather relations with next activation records: additional parameters

I collect numerical constraints

Inferred inductive rule

stk(β1, β2)

fix::ctx

β1 β2

U−→
fix

fp

stk(β0, β1)

ctx
β0

β1

β2

c
p prev

next

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 74 / 82

Inference of inductive definitions / call-stack summarization

Inference of a call-stack inductive structure

Second and third iterates: a repeating pattern
main

fix

fix

fp

fp

0x0l
p

c
p

c

prev

nextprev

next list

main

fix

fix

fix

fp

fp

fp

0x0l
p

c
p

c
p

c

prev

nextprev

nextprev

next list

Computing an inductive rule for summarization: subtraction

Inferred inductive rule

stk(β1, β2)

fix::ctx

β1 β2

U−→
fix

fp

stk(β0, β1)

ctx
β0

β1

β2

c
p prev

next

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 74 / 82

Inference of inductive definitions / call-stack summarization

Inference of a call-stack summary: widening iterates

Fixpoint at function entry:

first iterate:
main

fix

fix

fp

fp

0x0l
p

c
p

c

prev

nextprev

next list

second iterate:
main

fix

fix

fix

fp

fp

fp

0x0l
p

c
p

c
p

c

prev

nextprev

nextprev

next list

widened iterate:
main

fix

fix

fp

fp

stk(β2, β3)stk(β0, β1)

fix?

0x0

β0

β1

β2

β3

l

c
p

c

p

prev

next

prev

next list

Fixpoint reached

Fixpoint upon function return:
I function return involves unfolding of stack summaries
I simpler widening sequence: no rule to infer

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 75 / 82

Inference of inductive definitions / call-stack summarization

Widening over inductive definitions

Domain structure
An abstract value should comprise:

a set S of unfolding rules for the stack inductive
a shape graph G

a numeric abstract value N

Shape graph G is defined in a lattice specified by S ,
thus, this is an instance of the cofibered abstraction

Lift functions are trivial:
I adding rules simply weakens shape graphs
I i.e., no need to change them syntactically, their concretization just gets

weaker
Termination in the lattice of rules:
limiting of the number of rules that can be generated to some given
bound

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 76 / 82

Conclusion

Outline

1 An introduction to separation logic

2 A shape abstract domain relying on separation

3 Combination with a numerical domain

4 Standard static analysis algorithms

5 Inference of inductive definitions / call-stack summarization

6 Conclusion

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 77 / 82

Conclusion

Abstraction choices

Many families of symbolic abstractions including TVLA and separation
logic based approaches

Variants: region logic, ownership, fractional permissions

Common ingredients
Splitting of the heap in regions

I TVLA: covering, via embedding
I Separation logic: partitioning, enforced at the concrete level

Use of induction in order to summarize large regions

More limited pointer analyses: no inductives, no summarization...

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 78 / 82

Conclusion

Algorithms

Rather different process, compared to numerical domains

From abstract to concrete (locally)
Unfold abstract properties in a local maner
Allows quasi-exact analysis of usual operations (assignment,
condition test...)

From concrete to abstract (globally)
Guarantees termination
Allows to infer pieces of code build complex structures
Intuition:

I static analysis involves post-fixpoint computations (over program
traces)

I widening produces a fixpoint over memory cells

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 79 / 82

Conclusion

Open problems

Many opportunities for research:
Improving expressiveness
e.g., sharing in data-structures

I new abstractions
I combining several abstractions into more powerful ones

Improving scalability
I shape analyses remain expensive analyses, with few “cheap” and useful

abstractions
I cut down the cost of complex algorithms
I isolate smaller families of predicates

Applications, beyond software safety:
I security
I verification of functional properties

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 80 / 82

Conclusion

Internships

Several topics possible, soon to be announced on the lecture webpage:

Internal reduction operator
inductive definitions are very expressive thus tricky to reason about
design of an internal reduction operator on abstract elements with
inductive definitions

Modular inter-procedural analysis
a relation between pre-conditions and post-conditions can be
formalized in a single shape graph
design of an abstract domain for relations between states

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 81 / 82

Conclusion

Bibliography

[SRW]: Parametric Shape Analysis via 3-Valued Logic.
Shmuel Sagiv, Thomas W. Reps et Reinhard Wilhelm.
In POPL’99, pages 105–118, 1999.
[JR]: Separation Logic: A Logic for Shared Mutable Data
Structures.
John C. Reynolds. In LICS’02, pages 55–74, 2002.
[DHY]: A Local Shape Analysis Based on Separation Logic.
Dino Distefano, Peter W. O’Hearn et Hongseok Yang.
In TACAS’06, pages 287–302.
[AV]: Abstract Cofibered Domains: Application to the Alias
Analysis of Untyped Programs.
Arnaud Venet. In SAS’96, pages 366–382.
[CR]: Relational inductive shape analysis.
Bor-Yuh Evan Chang et Xavier Rival.
In POPL’08, pages 247–260, 2008.

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 82 / 82

	An introduction to separation logic
	A shape abstract domain relying on separation
	Combination with a numerical domain

