Program Transformations as Abstract Interpretation

MPRI - Cours 2.6 "Interprétation abstraite : application à la vérification et à l'analyse statique"

Xavier Rival
INRIA, ENS, CNRS
Jan, 21st. 2015

Program transformations and static analysis

Previous lectures: focus on static analysis techniques, i.e.
(1) take one program as argument
(2) compute some semantic properties of the program e.g., compute an over-approximation of the reachable states e.g., verify the absence of runtime errors

Today: we consider program transformations

- functions that compute a program from another program
- thus, we will consider not a single program but two
- different set of issues
- abstract interpretation to reason about and verify the transformation
- static analysis to enable the transformation

Compilation

- Transforms programs in high level languages (OCaml, C, Java) into assembly
- Verifies (e.g., types) and Optimizes

Source code:

```
int f( int a, int b ){
```

int f(int a, int b){
int x0 = a - b;
int x0 = a - b;
int x0 = a - b;
if(x0 > 0)
if(x0 > 0)
if(x0 > 0)
return x0 * (a + b);
return x0 * (a + b);
return x0 * (a + b);
else return 0;
else return 0;
else return 0;
}

```
}
```

}

```

\section*{Compiled code:}
```

```
```

.file "foo.c"

```
```

```
.file "foo.c"
```

```
```

.file "foo.c"
.text
.text
.text
.globl f
.globl f
.globl f
.type f, @function
.type f, @function
.type f, @function
f:
f:
f:
.LFBO:
.LFBO:
.LFBO:
.cfi_startproc
.cfi_startproc
.cfi_startproc
pushl %ebp
pushl %ebp
pushl %ebp
.cfi_def_cfa_offset 8
.cfi_def_cfa_offset 8
.cfi_def_cfa_offset 8
.cfi_offset 5, -8
.cfi_offset 5, -8
.cfi_offset 5, -8
movl %esp, %ebp
movl %esp, %ebp
movl %esp, %ebp
.cfi_def_cfa_register 5
.cfi_def_cfa_register 5
.cfi_def_cfa_register 5
subl \$16, %esp

```
```

```
subl $16, %esp
```

```
```

subl \$16, %esp

```
```

```
```

movl 12(%ebp), %eax
movl 8(%ebp), %edx
movl %edx, %ecx
subl %eax, %ecx
movl %ecx, %eax
movl %eax, -4(%ebp)
cmpl \$0, -4(%ebp)
jle .L2
movl 12(%ebp), %eax
movl 8(%ebp), %edx
addl %edx, %eax
imull -4(%ebp), %eax
jmp .L3

```
.L2:
movl \$0, \%eax
.L3:
leave
.cfi_restore 5
.cfi_def_cfa 4, 4
ret
.cfi_endproc
. LFEO:
.size f, .-f
.ident
"GCC: (Gentoo 4.7.3-r1 p1.4, pie-0.5 .section
.note.GNU-stack," ", @progbits

\section*{Compilation phases}

- Parsing: can be considered a static analysis
- Typing: static analysis
- Optimizations: enabled by static analysis
e.g., code removed if proved dead e.g., expressions shared if common
- Code generation: by induction on syntax...

\section*{Slicing}

\section*{Slice extraction}
- a slice \(\mathcal{S}\) is a syntactic subset of a program \(\mathcal{P}\)
- it is usually extracted following a criterion that describes an observation of the program that is under study
- there are many definitions of slicing criteria: a specific statement, a specific variable, the conjunction of both...

\section*{Applications:}
- program understanding: you are given a program, and need to understand how it works...
- program debugging: a bug was identified, where x stores an unexpected value at line \(N .\).
- program maintenance:
a legacy code needs to be extended; what will intended changes do ?

\section*{Slicing}

Example: slice to understand the value of a at line 5
\[
\begin{aligned}
& \text { 1: input(x); } \\
& 2 \text { : input(y); } \\
& \text { 3: } \mathrm{a}=4 * \mathrm{x}+8 ; \quad \rightarrow \quad 3: \quad \mathrm{a}=4 * \mathrm{x}+8 \text {; } \\
& \text { 4: } b=3-2 * y+a \text {; } \\
& \text { 5: } c=a+b ; \\
& 5 \text { : }
\end{aligned}
\]

Algorithm:
(1) compute dependences: usually, a dependence graph describes what x immediately depends on, at line \(N\)
(2) extract a set of slice dependences from the slicing criterion
(3) collect the corresponding statements and produce the slice Effectively, 1 and 2 are a static analysis

\section*{Partial evaluation}

\section*{Specialization and optimization of programs}
- start from a very general program
- + possibly some assumptions on the input values
- compute a program that behaves similarly on those programs that satisfy the inputs
- partial evaluation of all program statements that can be, but may also involve unrolling of loop, duplication of functions...

Applications:
- practical: design a software for several products, and specialize it for each product
- theoretical: Futamura's projections compilation \(=\) specialization of an interpreter to a program

\section*{Partial evaluation}
```

while(c) \{
if(b) $\{$
$\mathrm{x}=1$;
\}else\{ \quad hyp: $b=$ true
$x=f(x) ;$
\}
b = false;
\}

```
(1) unfolding of the loop for a number of iterations
(2) propagation of the value of \(b\) through the loop
(3) simplification of conditions and removal of \(b\)

\section*{Questions about program transformations}

Soundness:
- in what sense can we say a transformation is sound ?
- what properties should it preserves ? what properties should it modify ?
- how to semantically specify a transformation ?

Use of semantic information:
- transformations often need semantic properties of programs, to decide what code to generate...
e.g., for compiler optimizations, dependence information...
- in some cases the transformation itself may be potentially non terminating, and require a widening for convergence e.g., partial evaluation

\section*{Example: semantics of C volatile variables}

\section*{From the ANSI C'99 / C'11 standards}

For every read from or write to a volatile variable that would be performed by a straightforward interpreter for C, exactly one load or store from/to the memory location allocated to the variable should be performed.

In other words:
- volatile variables should be assumed to be modifiable by the external world at any time (this is a worst case assumption)
- multiple accesses to a single volatile variable should never be optimized into a single read (this is a very strong constraint on the optimizers)

Do compilers follow this semantics ? NO...

\section*{Example: C compiler and volatile variables}

Study by E. Eide and J. Regher, "Volatiles are Miscompiled, and What to Do about it" (EMSOFT'2008)
- 13 compilers tested
- none of them is exempt of volatile bugs
- possible consequences:
- incorrect computations
- more serious crashes, such as system hangs
- one example on the next slide, more in the paper...

Since then, the CompCert compiler was tested free of volatile bugs using the same technique...

\section*{Example: C compiler and volatile variables}

\section*{Compiler: LLVM GCC 2.2 (IA 32)}

\section*{Buggy optimization:}
```

const volatile int a;
void foo(void){
int i;
for(i = 0; i< 3; i + +){
a+ = 7;
}
}

$$
\begin{array}{ll}
\text { foo: } \\
\text { movl } & \mathrm{a}, \% \mathrm{eax} \\
\text { leal } & 7(\% \mathrm{eax}), \% \mathrm{ecx} \\
\text { movl } & \% \text { ecx, a } \\
\text { leal } & 14(\% \text { eax }), \% \mathrm{ecx} \\
\text { movl } & \% \text { ecx, a } \\
\text { addl } & \$ 21, \% \text { eax } \\
\text { movl } \% \text { eax,a } \\
\text { ret } &
\end{array}
$$

```

Only ONE store to a
- loop unrolled three times
- three stores (correct), but only one load (incorrect)

\section*{Main points of the lecture}

Formalize soundness of program transformations:
- compare the semantics of two programs
- select the semantics to be compared by abstraction

Consider some verification techniques:
- invariant verification approach
- local equivalence proof...

These are partly inspired from static analysis techniques

\section*{Compilation correctness}

\section*{Outline}

\section*{Formalizing correctness: assumptions}

Source language: C like imperative language
- very simplified: no procedure, library functions, etc

Assembly language: RISC style (similar to Power-PC)
- registers: diffentiated dep on types (floating-point, integers)
- memory access: direct, indirect, stack-based
- condition register:

Tests and branchings are separate operations
Conditional branching: tests the value of the condition register
Compiler:
- the lecture is not about showing a compiler...
- we first assume no optimization and consider optimizations later

\section*{Transition systems}

We assume a (source or compiled) program is a transition system \(\mathcal{S}=\left(\mathbb{S}, \rightarrow, \mathbb{S}_{\mathcal{I}}\right)\) :
- \(\mathbb{S}=\mathbb{L} \times \mathbb{M}\) is the set of states, where \(\mathbb{M}=\mathbb{X} \rightarrow \mathbb{V}\)
- \(\rightarrow \subseteq \mathbb{S} \times \mathbb{S}\) is the transition relation
- \(\mathbb{S}_{\mathcal{I}} \subseteq \mathbb{S}\) is the set of initial states

We consider their finite traces semantics:
- \(\llbracket \mathcal{S} \rrbracket=\left\{\left\langle s_{0}, \ldots, s_{n}\right\rangle \in \mathbb{S}^{\star} \mid \forall i, s_{i} \rightarrow s_{i+1}\right\}\)
- it can be defined as a least fix-point: \(\llbracket \mathcal{S} \rrbracket=\) Ifp \(F\)
\[
\begin{array}{rlrl}
F: \mathcal{P}\left(\mathbb{S}^{\star}\right) & \longrightarrow & \mathcal{P}\left(\mathbb{S}^{\star}\right) \\
X & \longmapsto & \left\{\left\langle s_{0}\right\rangle \mid s \in \mathbb{S}_{\mathcal{I}}\right\} \\
& \cup\left\{\left\langle s_{0}, \ldots, s_{n}, s_{n+1}\right\rangle\right. \\
& & \left.\mid\left\langle s_{0}, \ldots, s_{n}\right\rangle \in X \wedge s_{n} \rightarrow s_{n+1}\right\}
\end{array}
\]
(exercise)

\section*{A very minimal imperative language}
\(1::=\) |-valules
\begin{tabular}{|c|c|c|}
\hline | & x & \((x \in \mathbb{X})\) \\
\hline \multirow[t]{4}{*}{e} & expressions & \\
\hline & C & \((c \in \mathbb{V})\) \\
\hline & 1 & (lvalue) \\
\hline & \(\mathrm{e} \oplus \mathrm{e}\) & (arithoperation, comparison) \\
\hline
\end{tabular}
s \(::=\) statements
\(\mathrm{l}=\mathrm{e} \quad\) (assignment)
s;...s; (sequence)
if(e) \(\{\mathrm{s}\} \quad\) (condition)
while(e) \(\{\mathrm{s}\}\) (loop)

Other extensions, not considered at this stage:
- functions
- collection of arithmetic data types, structures, unions, pointers
- compilation units...

\section*{A basic, PPC-like assembly language: principles}

We now consider a (very simplified) assembly language
- machine integers: sequences of 32 -bits (set: \(\mathbb{B}^{32}\) )
- instructions are encoded over 32-bits (set: \(\mathbb{I}_{\text {MIPS }}\) ) and stored into the same space as data (i.e., \(\mathbb{I}_{\text {MIPS }} \subseteq \mathbb{B}^{32}\) )
- loads and store instructions, with relative addressing instructions
- conditional branching is indirect: comparison instruction sets condition register cr (comparison flag) conditional branching instruction reads cr and branches accordingly

\section*{Memory locations}
- program counter pc (current instruction address)
- general purpose registers \(\mathbf{r}_{0}, \ldots, \mathbf{r}_{31}\)
- main memory (RAM) Addrs \(\rightarrow \mathbb{B}^{32}\) where Addrs \(\subseteq \mathbb{B}^{32}\)
- condition register cr

Then: \(\mathbb{X}^{c}=\left\{\mathbf{p c}, \mathbf{c r}, \mathbf{r}_{0}, \ldots, \mathbf{r}_{31}\right\} \uplus\) Addrs

\section*{A basic, PPC-like assembly language: instruction set} Instruction encoded into 32-bits words:

\section*{Instruction set}
\[
\begin{aligned}
& v, d s t, o \in \mathbb{B}^{32}, \quad c r \in\{L T, E Q, G T\} \\
& i::=\left(\in \mathbb{I}_{\text {MIPS }}\right) \\
& \text { li } r_{d}, v \quad \text { load } v \in \mathbb{B}^{32} \\
& \text { add } \mathbf{r}_{d}, \mathbf{r}_{50}, \mathbf{r}_{s 1} \text { addition } \\
& \text { addi } r_{d}, r_{s 0}, v \quad \text { add. } v \in \mathbb{B}^{32} \\
& \text { sub } \boldsymbol{r}_{d}, \boldsymbol{r}_{s 0}, \boldsymbol{r}_{s 1} \text { subtraction } \\
& \text { cmp } r_{s 0}, r_{s 1} \text { comparison } \\
& \text { b dst branch } \\
& \text { blt }\langle\text { cr }\rangle \text { dst cond. branch } \\
& \text { Id } \boldsymbol{r}_{\boldsymbol{r}}, \mathbf{O} \text { absolute load } \\
& \text { st } r_{d}, o \quad \text { absolute store } \\
& \text { ldx } \mathbf{r}_{d}, o, \mathbf{r}_{x} \quad \text { relative load (aka indeXed load) } \\
& \text { stx } \mathbf{r}_{d}, o, r_{x} \quad \text { relative store (aka indeXed store) }
\end{aligned}
\]

A basic, PPC-like assembly language: states

\section*{Definition: state}

A state is a tuple \(s=(p c, \rho, c r, \mu)\) which comprises:
- a program counter value \(p c \in \mathbb{B}^{32}\)
- a function mapping each general purpose register to its value \(\rho:\{0, \ldots, 31\} \rightarrow \mathbb{B}^{32}\)
- a condition register value \(c r \in\{\mathrm{LT}, \mathrm{EQ}, \mathrm{GT}\}\)
- a function mapping each memory cell to its value \(\mu\) : Addrs \(\rightarrow \mathbb{B}^{32}\)

Equivalently, we can also write \(s=(\ell, m)\), where
- the control state \(l\) is the current \(p c\) value
- the memory state \(m\) is the triple \((\rho, c r, \mu)\) (we use both notations in the following)

\section*{A basic, PPC-like assembly language: instruction set}

We assume a state \(s=(p c, \rho, c r, \mu)\) and that \(\mu(p c)=i\).
Then:
- if \(i=\operatorname{li} \mathbf{r}_{d}, v\), then:
\[
s \rightarrow(p c+4, \rho[d \mapsto v], c r, \mu)
\]
- if \(i=\operatorname{add} \mathbf{r}_{d}, \mathbf{r}_{s 0}, \mathbf{r}_{s 1}\), then:
\[
s \rightarrow(p c+4, \rho[d \mapsto(\rho(s 0)+\rho(s 1))], c r, \mu)
\]
- if \(i=\) addi \(\mathbf{r}_{d}, \mathbf{r}_{s 0}, v\), then:
\[
s \rightarrow(p c+4, \rho[d \mapsto(\rho(s 0)+v)], c r, \mu)
\]
- if \(i=\operatorname{sub} \mathbf{r}_{d}, \mathbf{r}_{s 0}, \mathbf{r}_{s 1}\), then:
\[
s \rightarrow(p c+4, \rho[d \mapsto(\rho(s 0)-\rho(s 1))], c r, \mu)
\]

\section*{A basic, PPC-like assembly language: instruction set}

We assume a state \(s=(p c, \rho, c r, \mu)\) and that \(\mu(p c)=i\).
Then:
- if \(i=\mathbf{c m p} \mathbf{r}_{s 0}, \mathbf{r}_{s 1}\), then:
\[
s \rightarrow \begin{cases}(p c+4, \rho, \mathrm{LT}, \mu) & \text { if } \rho(s 0)<\rho(s 1) \\ (p c+4, \rho, \mathrm{EQ}, \mu) & \text { if } \rho(s 0)=\rho(s 1) \\ (p c+4, \rho, \mathrm{GT}, \mu) & \text { if } \rho(s 0)>\rho(s 1)\end{cases}
\]
- if \(i=\mathbf{b l t}\langle\) cond \(\rangle d s t\), then:
\[
s \rightarrow \begin{cases}(d s t, \rho, \mathbf{c r}, \mu) & \text { if } c r=\text { cond } \\ (p c+4, \rho, \mathbf{c r}, \mu) & \text { otherwise }\end{cases}
\]
- if \(i=\mathbf{b} d s t\), then:
\[
s \rightarrow(d s t, \rho, c r, \mu)
\]

\section*{A basic, PPC-like assembly language: instruction set}

We assume a state \(s=(p c, \rho, c r, \mu)\) and that \(\mu(p c)=i\).
Then:
- if \(i=\mathbf{l d} \mathbf{x} \mathbf{r}_{d}, o, \mathbf{r}_{x}\), then:
\[
s \rightarrow \begin{cases}(p c+4, \rho[d \mapsto \mu(\rho(x)+o)], \mathbf{c r}, \mu) & \text { if } \mu(\rho(x)+o) \text { is defined } \\ \Omega & \text { otherwise }\end{cases}
\]
- if \(i=\mathbf{l d} \mathbf{r}_{d}, o\), then:
\[
s \rightarrow \begin{cases}(p c+4, \rho[d \mapsto \mu(o)], \mathrm{cr}, \mu) & \text { if } \mu(o) \text { is defined } \\ \Omega & \text { otherwise }\end{cases}
\]
- if \(i=\boldsymbol{s t x} \mathbf{r}_{d}, o, \mathbf{r}_{x}\), then:
\[
s \rightarrow \begin{cases}(p c+4, \rho, \mathbf{c r}, \mu[\rho(x)+o) \mapsto \rho(d)]) & \text { if } \mu(\rho(x)+o) \text { is defined } \\ \Omega & \text { otherwise }\end{cases}
\]
- if \(i=\mathbf{l d} \mathbf{r}_{d}, o\), then effect can be deduced from the above cases

\section*{Output of a non optimizing compiler}

Assumptions and conventions:
- t is an array of integers initialized to \(\mathrm{t}=\{0 ; 1 ; 4 ;-1\}\)
- i, \(x\) are integer variables
- in the assembly, \(\underline{x}\) denotes the address of \(x\)
\begin{tabular}{|c|c|}
\hline source code & compiled code \\
\hline \(4_{0}^{\text {s }}\) i \(\quad=\mathrm{i}+1\); & \(r_{0}^{c}\) ld \(r_{0}, \underline{i}\) \\
\hline & \(\zeta_{1}^{c}\) addi \(r_{0}, r_{0}, 1\) \\
\hline & \(反_{2}^{c}\) st \(r_{0}\), í \\
\hline \(\zeta_{1}^{s} \quad \mathrm{x}:=\mathrm{x}+\mathrm{t}[\mathrm{i}] ;\) & \(r_{3}^{c}\) ld \(\mathrm{r}_{0}, \underline{\mathrm{x}}\) \\
\hline & \(\mathrm{f}_{4}^{c} \quad\) ld \(\mathrm{r}_{1}, \underline{\mathrm{i}}\) \\
\hline & \(r_{5}^{c} \quad \mathrm{ldx} \mathrm{r}_{2}, \underline{t}, \mathrm{r}_{1}\) \\
\hline & \(r_{6}^{c}\) add \(\mathrm{r}_{0}, \mathrm{r}_{0}, \mathrm{r}_{2}\) \\
\hline & \(\zeta_{7}^{c}\) st \(\mathrm{r}_{0}, \underline{\mathrm{x}}\) \\
\hline \(\zeta_{2}^{5}\) & \(¢_{8}^{c} \ldots\) \\
\hline
\end{tabular}

Is it sound ? What property does it preserve ?

\section*{A source level execution}
\[
\left\langle\left(\begin{array}{l}
\mathrm{i} \mapsto 1 ; \\
\mathrm{x} \mapsto 1 ; \\
\varepsilon_{0}^{s}, \mathrm{t}[0] \mapsto 0 ; \\
\mathrm{t}[1] \mapsto 1 ; \\
\mathrm{t}[2] \mapsto 4 ; \\
\mathrm{t}[3] \mapsto-1 ;
\end{array}\right),\left(\begin{array}{l}
\mathrm{i} \mapsto 2 ; \\
\mathrm{x} \mapsto 1 ; \\
\mathcal{c}_{1}^{s}, \\
\mathrm{t}[0] \mapsto 0 ; \\
\mathrm{t}[1] \mapsto 1 ; \\
\mathrm{t}[2] \mapsto 4 ; \\
\mathrm{t}[3] \mapsto-1 ;
\end{array}\right),\left(\begin{array}{l}
\mathrm{i} \mapsto 2 ; \\
\mathrm{x} \mapsto 5 ; \\
\mathcal{L}_{2}^{s}, \\
\mathrm{t}[0] \mapsto 0 ; \\
\mathrm{t}[1] \mapsto 1 ; \\
\mathrm{t}[2] \mapsto 4 ; \\
\mathrm{t}[3] \mapsto-1 ;
\end{array}\right),\right\rangle
\]

Correctness of compilation:
- we cannot find the same execution in the assembly: as memory locations are not the same at all
- thus, we expect a "similar" trace

\section*{Corresponding assembly level execution}
\begin{tabular}{|c|c|c|c|}
\hline \(c_{0}^{c}\) & ld \(\mathrm{r}_{0}\), i & \(r_{4}^{c}\) & Id \(\mathrm{r}_{1}\), \({ }_{\text {i }}\) \\
\hline \(\zeta_{1}^{c}\) & addi \(r_{0}, r_{0}, 1\) & \(c_{5}^{c}\) & \(l d x r_{2}, \underline{t}, r_{1}\) \\
\hline \(\zeta_{2}^{c}\) & st \(\mathrm{r}_{0}\), i & \(c_{6}^{c}\) & add \(r_{0}, r_{0}, r_{2}\) \\
\hline \(\digamma_{3}^{c}\) & Id \(\mathrm{r}_{0}, \underline{x}\) & \(4_{7}^{c}\) & st \(\mathrm{r}_{0}\), \(\underline{\mathrm{x}}\) \\
\hline
\end{tabular}

We consider an assembly level trace starting from a similar state:
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|}
\hline state \(s_{i}^{c}\) & \(s_{0}^{c}\) & \(s_{1}^{c}\) & \(s_{2}^{c}\) & \(s_{3}^{c}\) & \(s_{4}^{c}\) & \(s_{5}^{c}\) & \(s_{6}^{c}\) & \(s_{7}^{c}\) & \(s_{8}^{c}\) \\
\hline \hline control state \(p c_{i}\) & \(\varsigma_{0}^{c}\) & \(\varsigma_{1}^{c}\) & \(\varsigma_{2}^{c}\) & \(\zeta_{3}^{c}\) & \(\zeta_{4}^{c}\) & \(\varsigma_{5}^{c}\) & \(\varsigma_{6}^{c}\) & \(\varsigma_{7}^{c}\) & \(\varsigma_{8}^{c}\) \\
\hline \hline register state \(\rho_{i}(0)\) & 45 & 1 & 2 & 2 & 1 & 1 & 1 & 5 & 5 \\
\hline register state \(\rho_{i}(1)\) & -5 & -5 & -5 & -5 & -5 & 2 & 2 & 2 & 2 \\
\hline register state \(\rho_{i}(2)\) & 89 & 89 & 89 & 89 & 89 & 89 & 4 & 4 & 4 \\
\hline memory state \(\mu_{i}(\underline{\mathrm{i}})\) & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 2 \\
\hline memory state \(\mu_{i}(\underline{\mathrm{x}})\) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 5 \\
\hline memory state \(\mu_{i}(\underline{\mathrm{t}}+0)\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline memory state \(\mu_{i}(\underline{\mathrm{t}}+1)\) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline memory state \(\mu_{i}(\underline{\mathrm{t}}+2)\) & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
\hline memory state \(\mu_{i}(\underline{\mathrm{t}}+3)\) & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
\hline
\end{tabular}

\section*{Source and assembly executions compared}
\begin{tabular}{|l|c|c|c|}
\hline state \(s_{i}^{s}\) & \(s_{0}^{s}\) & \(s_{1}^{s}\) & \(s_{2}^{s}\) \\
\hline \hline control state \({l_{i}^{s}}^{s}\) & \({c_{0}^{s}}^{s}\) & \({l_{1}^{s}}^{s}\) & \({l_{2}^{s}}^{s}\) \\
\hline \hline memory state \(m_{i}^{s}(\mathrm{i})\) & 1 & 2 & 2 \\
\hline memory state \(m_{i}^{s}(\mathrm{x})\) & 1 & 1 & 5 \\
\hline memory state \(m_{i}^{s}(\mathrm{t}[0])\) & 0 & 0 & 0 \\
\hline memory state \(m_{i}^{s}(\mathrm{t}[1])\) & 1 & 1 & 1 \\
\hline memory state \(m_{i}^{s}(\mathrm{t}[2])\) & 4 & 4 & 4 \\
\hline memory state \(m_{i}^{s}(\mathrm{t}[3])\) & -1 & -1 & -1 \\
\hline
\end{tabular}

\section*{Much more information in the assembly trace:}
- registers values
- more control states
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|}
\hline state \(s_{i}^{c}\) & \(s_{0}^{c}\) & \(s_{1}^{c}\) & \(s_{2}^{c}\) & \(s_{3}^{c}\) & \(s_{4}^{c}\) & \(s_{5}^{c}\) & \(s_{6}^{c}\) & \(s_{7}^{c}\) & \(s_{8}^{c}\) \\
\hline \hline control state \(p c_{i}\) & \(\varsigma_{0}^{c}\) & \(\zeta_{1}^{c}\) & \(\zeta_{2}^{c}\) & \(\zeta_{3}^{c}\) & \(\zeta_{4}^{c}\) & \(\zeta_{5}^{c}\) & \(\zeta_{6}^{c}\) & \(\zeta_{7}^{c}\) & \(\zeta_{8}^{c}\) \\
\hline \hline register state \(\rho_{i}(0)\) & 45 & 1 & 2 & 2 & 1 & 1 & 1 & 5 & 5 \\
\hline register state \(\rho_{i}(1)\) & -5 & -5 & -5 & -5 & -5 & 2 & 2 & 2 & 2 \\
\hline register state \(\rho_{i}(2)\) & 89 & 89 & 89 & 89 & 89 & 89 & 4 & 4 & 4 \\
\hline memory state \(\mu_{i}(\underline{\mathrm{i}})\) & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 2 \\
\hline memory state \(\mu_{i}(\underline{\mathrm{x}})\) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 5 \\
\hline memory state \(\mu_{i}(\underline{\mathrm{t}}+0)\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline memory state \(\mu_{i}(\underline{\mathrm{t}}+1)\) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline memory state \(\mu_{i}(\underline{\mathrm{t}}+2)\) & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
\hline memory state \(\mu_{i}(\underline{\mathrm{t}}+3)\) & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
\hline
\end{tabular}

\section*{An abstraction approach}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline state \(s_{i}^{s}\) & \(s_{0}^{s}\) & & & \(s_{1}^{s}\) & & & & & \(s_{2}^{s}\) \\
\hline control state \(l_{i}^{\text {s }}\) & \(6_{0}^{\text {s }}\) & & & \(l_{1}^{s}\) & & & & & \(l_{2}^{s}\) \\
\hline memory state \(m_{i}^{s}(\mathrm{i})\) & 1 & & & 2 & & & & & 2 \\
\hline memory state \(m_{i}^{s}(\mathrm{x})\) & 1 & & & 1 & & & & & 5 \\
\hline memory state \(m_{i}^{s}(\mathrm{t}[0])\) & 0 & & & 0 & & & & & 0 \\
\hline memory state \(m_{i}^{s}(\mathrm{t}[1])\) & 1 & & & 1 & & & & & 1 \\
\hline memory state \(m_{i}^{s}(\mathrm{t}[2])\) & 4 & & & 4 & & & & & 4 \\
\hline memory state \(m_{i}^{s}(\mathrm{t}[3])\) & -1 & & & -1 & & & & & -1 \\
\hline state \(s_{i}^{c}\) & \(s_{0}^{c}\) & \(s_{1}^{c}\) & \(s_{2}^{c}\) & \(s_{3}^{c}\) & \(s_{4}^{c}\) & \(s_{5}^{c}\) & \(\mathrm{s}_{6}^{c}\) & \(5_{7}^{c}\) & \(\mathrm{s}_{8}^{c}\) \\
\hline control state \(p c_{i}\) & \(c_{0}^{c}\) & \(\mathfrak{L}_{1}^{c}\) & \(\mathfrak{l}_{2}^{c}\) & \(¢_{3}^{c}\) & \(\ell_{4}^{c}\) & \(¢_{5}^{c}\) & \(C_{6}^{c}\) & \(\square_{7}^{c}\) & \(f_{8}^{c}\) \\
\hline register state \(\rho_{i}(0)\) & 45 & 1 & 2 & 2 & 1 & 1 & 1 & 5 & 5 \\
\hline register state \(\rho_{i}(1)\) & -5 & -5 & -5 & -5 & -5 & 2 & 2 & 2 & 2 \\
\hline register state \(\rho_{i}(2)\) & 89 & 89 & 89 & 89 & 89 & 89 & 4 & 4 & 4 \\
\hline memory state \(\mu_{i}(\underline{\mathrm{i}})\) & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 2 \\
\hline memory state \(\mu_{i}(\underline{\underline{\mathrm{x}}})\) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 5 \\
\hline memory state \(\mu_{i}(\underline{\mathrm{t}}+0)\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline memory state \(\mu_{i}(\underline{\mathrm{t}}+1)\) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline memory state \(\mu_{i}(\underline{\mathrm{t}}+2)\) & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
\hline memory state \(\mu_{i}(\underline{\mathrm{t}}+3)\) & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
\hline
\end{tabular}
- We can abstract away intermediate control states

\section*{An abstraction approach}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline state \(s_{i}^{\text {s }}\) & \(s_{0}^{5}\) & & & \(s_{1}^{s}\) & & & & & \(s_{2}^{5}\) \\
\hline control state \(l_{i}^{\text {s }}\) & \(4_{0}^{5}\) & & & \(4_{1}^{s}\) & & & & & \(l_{2}^{s}\) \\
\hline memory state \(m_{i}^{s}\) (i) & 1 & & & 2 & & & & & 2 \\
\hline memory state \(m_{i}^{s}(\mathrm{x})\) & 1 & & & 1 & & & & & 5 \\
\hline memory state \(m_{i}^{s}(\mathrm{t}[0])\) & 0 & & & 0 & & & & & 0 \\
\hline memory state \(m_{i}^{s}(\mathrm{t}[1])\) & 1 & & & 1 & & & & & 1 \\
\hline memory state \(m_{i}^{s}(\mathrm{t}[2])\) & 4 & & & 4 & & & & & 4 \\
\hline memory state \(m_{i}^{s}(\mathrm{t}[3])\) & -1 & & & -1 & & & & & -1 \\
\hline state \(s_{i}^{c}\) & \(s_{0}^{c}\) & 5 & 5 & \(\mathrm{s}_{3}^{c}\) & \(5_{4}^{C}\) & \(S_{5}\) & 5 & 57 & \(s_{8}^{c}\) \\
\hline control state \(p c_{i}\) & \(\zeta_{0}^{c}\) & 1 & \({ }_{2}\) & \(¢_{3}^{c}\) & \(4_{4}\) & 15 & 16 & \({ }_{7}\) & \(\iota_{8}^{c}\) \\
\hline register state \(\rho_{i}(0)\) & 45 & 1 & 2 & 2 & 1 & 1 & 1 & 5 & 5 \\
\hline register state \(\rho_{i}(1)\) & -5 & -5 & -5 & -5 & -5 & 2 & 2 & 2 & 2 \\
\hline register state \(\rho_{i}(2)\) & 89 & 89 & 89 & 89 & 39 & 89 & 4 & 4 & 4 \\
\hline memory state \(\mu_{i}(\underline{\underline{\mathrm{i}}})\) & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 2 \\
\hline memory state \(\mu_{i}(\underline{\underline{\mathrm{x}})}\) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 5 \\
\hline memory state \(\mu_{i}(\underline{\mathrm{t}}+0)\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline memory state \(\mu_{i}(\underline{\mathrm{t}}+1)\) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline memory state \(\mu_{i}(\underline{\mathrm{t}}+2)\) & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
\hline memory state \(\mu_{i}(\underline{\mathrm{t}}+3)\) & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
\hline
\end{tabular}
- Intermedate control states abstracted; we can forget registers

\section*{An abstraction approach}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline state \(s_{i}^{s}\) & \(s_{0}^{5}\) & & & \(s_{1}^{s}\) & & & & & \(s_{2}^{5}\) \\
\hline control state \(l_{i}^{\text {s }}\) & \(c_{0}^{5}\) & & & \(¢_{1}^{s}\) & & & & & \(\iota_{2}^{5}\) \\
\hline memory state \(m_{i}^{s}\) (i) & 1 & & & 2 & & & & & 2 \\
\hline memory state \(m_{i}^{s}(\mathrm{x})\) & 1 & & & 1 & & & & & 5 \\
\hline memory state \(m_{i}^{s}(\mathrm{t}[0])\) & 0 & & & 0 & & & & & 0 \\
\hline memory state \(m_{i}^{s}(\mathrm{t}[1])\) & 1 & & & 1 & & & & & 1 \\
\hline memory state \(m_{i}^{s}(\mathrm{t}[2])\) & 4 & & & 4 & & & & & 4 \\
\hline memory state \(m_{i}^{s}(\mathrm{t}[3])\) & -1 & & & -1 & & & & & -1 \\
\hline state \(s_{i}^{c}\) & \(s_{0}^{c}\) & \(5_{1}^{c}\) & 5 & \(s_{3}^{c}\) & & \(s_{5}^{5}\) & & 57 & \(s_{8}^{c}\) \\
\hline control state \(p c_{i}\) & \(c_{0}^{c}\) & \({ }_{1}\) & \({ }_{2}\) & \(C_{3}^{c}\) & \({ }_{4}\) & 15 & 6 & \({ }_{7}\) & \({ }_{8}{ }^{\text {c }}\) \\
\hline register state \(\rho_{i}(0)\) & 45 & 1 & 2 & 2 & 1 & 1 & 1 & 5 & 5 \\
\hline register state \(\rho_{i}(1)\) & 5 & -5 & - & -5 & 5 & 2 & 2 & 2 & 2 \\
\hline register state \(\rho_{i}(2)\) & 89 & 89 & 39 & 89 & 89 & 89 & 4 & 4 & 4 \\
\hline memory state \(\mu_{i}(\underline{\mathrm{i}})\) & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 2 \\
\hline memory state \(\mu_{i}(\underline{\underline{x}})\) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 5 \\
\hline memory state \(\mu_{i}(\underline{\mathrm{t}}+0)\) & 0 & 0 & 0 & 0 & 0 & U & 0 & 0 & 0 \\
\hline memory state \(\mu_{i}(\underline{\mathrm{t}}+1)\) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline memory state \(\mu_{i}(\underline{\mathrm{t}}+2)\) & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
\hline memory state \(\mu_{i}(\underline{\mathrm{t}}+3)\) & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
\hline
\end{tabular}
- Registers and intermediate control states removed We get very similar traces !

\section*{Syntactic relations}

What we did remove:
- intermediate control states
- memory locations associated to registers

What we did preserve:
- control states in correspondence:
\[
\zeta_{0}^{s} \leftrightarrow \zeta_{0}^{c} \quad \zeta_{1}^{s} \leftrightarrow \zeta_{3}^{c} \quad \zeta_{2}^{s} \leftrightarrow \zeta_{8}^{c}
\]
- memory location in correspondence:
\[
\begin{array}{ccc}
\mathrm{i} \leftrightarrow \underline{\mathrm{i}} & \mathrm{x} \leftrightarrow \underline{\mathrm{x}} & \mathrm{i} \leftrightarrow \underline{\mathrm{i}} \\
\mathrm{t}[0] \leftrightarrow \underline{\mathrm{t}}+0 & \mathrm{t}[1] \leftrightarrow \underline{\mathrm{t}}+1 & \mathrm{t}[2] \leftrightarrow \underline{\mathrm{t}}+2 \\
\mathrm{t}[3] \leftrightarrow \underline{\mathrm{t}}+3 & &
\end{array}
\]

Intuitively, we did apply an abstraction (to a single trace)

\section*{Syntactic relations}

\section*{Definition}

We define two syntactic mappings:
- Between control points: \(\pi_{l}: \mathbb{L}_{s}^{\prime} \rightarrow \mathbb{L}_{c}^{\prime}\left(\right.\) where \(\left.\mathbb{L}_{i}^{\prime} \subseteq \mathbb{L}_{i}\right)\)
- Between memory locations: \(\pi_{x}: \mathbb{X}_{s}^{\prime} \rightarrow \mathbb{X}_{c}^{\prime}\left(\right.\) where \(\left.\mathbb{X}_{i}^{\prime} \subseteq \mathbb{X}_{i}\right)\)

We consider only subsets \(\mathbb{X}^{\prime}, \ldots\) of \(\mathbb{X}, \ldots\) For instance:
- Some variables in the source code may be removed
- Registers in \(P_{c}\) may not correspond to variables of \(P_{s}\)
- One statement in \(P_{s}\) corresponds to several instructions in \(P_{c}\) In practice, \(\pi_{I}, \pi_{x}\) are provided by the compiler:
- Linking information
- Line table
- Debugging information: Stabs, COFF...

\section*{Syntactic relations}

\section*{Definition}

We define two syntactic mappings:
- Between control points: \(\pi_{l}: \mathbb{L}_{s}^{\prime} \rightarrow \mathbb{L}_{c}^{\prime}\left(\right.\) where \(\left.\mathbb{L}_{i}^{\prime} \subseteq \mathbb{L}_{i}\right)\)
- Between memory locations: \(\pi_{x}: \mathbb{X}_{s}^{\prime} \rightarrow \mathbb{X}_{c}^{\prime}\left(\right.\) where \(\left.\mathbb{X}_{i}^{\prime} \subseteq \mathbb{X}_{i}\right)\)

For our example:
- Control points:
- \(\mathbb{L}_{s}^{\prime}=\left\{I_{0}^{s}, I_{1}^{s}, I_{2}^{s}\right\}\) and \(\mathbb{L}_{c}^{\prime}=\left\{I_{0}^{c}, I_{3}^{c}, I_{7}^{c}\right\}\)
- \(\pi_{I}: I_{0}^{s} \mapsto I_{0}^{c} ; I_{1}^{s} \mapsto I_{3}^{c} ; I_{2}^{s} \mapsto I_{7}^{c}\)
- Memory locations:
- \(\mathbb{X}_{s}^{\prime}=\{\mathrm{i}, \mathrm{x}, \mathrm{t}[0], \mathrm{t}[1], \mathrm{t}[2], \mathrm{t}[3]\}\) and \(\mathbb{X}_{c}^{\prime}=\{\underline{\mathrm{i}}, \underline{\mathrm{x}}, \underline{\mathrm{t}}, \underline{t}+1, \underline{\mathrm{t}}+2, \underline{t}+3\}\)
\(\pi_{x}: \begin{cases}\mathrm{i} & \mapsto \underline{i} \\ \mathrm{x} & \mapsto \underline{x} \\ \mathrm{t}[n] & \mapsto \\ \underline{t}+n\end{cases}\)

\section*{State observational abstraction}

We now formalize the process to project out irrelevant behaviors:
- in states
- in traces
- in the semantics

We consider the assembly level first:

\section*{Definition: state abstraction}

We let the compiled code-level memory state abstraction \(\pi_{c}^{\mathrm{m}}\) be defined by:
\[
\begin{array}{rlll}
\pi_{c}^{\mathbf{m}}:\left(\mathbb{X}_{c} \rightarrow \mathbb{V}\right) & \longrightarrow\left(\mathbb{X}_{c}^{\prime} \rightarrow \mathbb{V}\right) \\
m & \longmapsto \lambda\left(x \in \mathbb{X}_{c}^{\prime}\right) \cdot m(x)
\end{array}
\]

Similar definition at the source level... (though no variable needs to be abstracted at this point, we will make use of that possibility further in this course)

\section*{State observational abstraction: example}

We recall that
\[
\begin{aligned}
\mathbb{X}_{s}^{\prime} & =\{\mathrm{i}, \mathrm{x}, \mathrm{t}[0], \mathrm{t}[1], \mathrm{t}[2], \mathrm{t}[3]\} \\
\mathbb{X}_{c}^{\prime} & =\{\underline{\mathrm{i}}, \underline{\mathrm{x}}, \underline{\mathrm{t}}, \underline{t}+1, \underline{\mathrm{t}}+2, \underline{t}+3
\end{aligned}
\]

Then \(\pi_{c}^{\mathbf{m}}:(p c, \rho, \mathbf{c r}, \mu) \longmapsto \mu\)
So, in particular:
\[
\pi_{c}^{\mathbf{m}}:\left(\begin{array}{rlll}
p c & & \mapsto & c_{0}^{c} \\
\rho: & 0 & \mapsto & 45 \\
1 & \mapsto & -5 \\
& \mapsto & & 4 \\
\mu: & \underline{\mathrm{i}} & \mapsto & 1 \\
\underline{\mathrm{x}} & \mapsto & 1 \\
\underline{\mathrm{t}}+0 & \mapsto & 0 \\
\underline{\mathrm{t}}+1 & \mapsto & 1
\end{array}\right) \longmapsto\left(\begin{array}{rlll}
\mu: & \underline{\mathrm{i}} & \mapsto & 1 \\
\underline{\mathrm{x}} & \mapsto & 1 \\
\underline{\mathrm{t}}+0 & \mapsto & 0 \\
\underline{\mathrm{t}}+1 & \mapsto & 1 \\
\underline{\mathrm{t}}+2 & \mapsto & 4 \\
\underline{\mathrm{t}}+3 & \mapsto & -1
\end{array}\right)
\]

\section*{Trace observational abstraction}

We can now lift the same abstraction principle to traces:

\section*{Definition: trace abstraction}

We let the compiled code-level trace abstraction \(\pi_{c}^{\text {tr }}\) be defined by:
\[
\begin{aligned}
\pi_{c}^{\mathrm{tr}}: & \left(\mathbb{L}_{c} \times\left(\mathbb{X}_{c} \rightarrow \mathbb{V}\right)\right)^{\star} \quad \longrightarrow\left(\mathbb{L}_{c}^{\prime} \times\left(\mathbb{X}_{c}^{\prime} \rightarrow \mathbb{V}\right)\right)^{\star} \\
& \left\langle\left(\mathcal{L}_{0}, m_{0}\right), \ldots,\left(\mathcal{l}_{n}, m_{n}\right)\right\rangle \\
\text { where: } & \begin{cases} & \left.\left.\longmapsto k_{0}, \ldots, k_{m}\right\}=\left\{k \mid 0 \leq k \leq n \wedge l_{k}, \pi_{c}^{\mathbf{m}}\left(m_{k_{0}}\right)\right), \ldots,\left(\ell_{k_{m}}, \pi_{c}^{\mathbf{m}}\left(m_{k_{m}}\right)\right)\right\rangle \\
k_{0}<\ldots<k_{m}\end{cases}
\end{aligned}
\]

Similar definition at the source level...
(though no control state / variable needs to be abstracted at this point, we will make use of that possibility further in this course)

\section*{Trace observational abstraction: example}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{10}{*}{\[
\pi^{\mathbf{t r}}
\]} & control state \(p c_{i}\) & \(5_{0}^{c}\) & \(\square_{1}^{c}\) & \(¢_{2}^{c}\) & \(\vdash_{3}^{c}\) & \(r_{4}^{c}\) & \(c_{5}^{c}\) & \(l_{6}^{c}\) & \({ }_{7}^{c}\) & \({ }_{8}^{\text {c }}\) \\
\hline & register state \(\rho_{i}(0)\) & 45 & 1 & 2 & 2 & 1 & 1 & 1 & 5 & 5 \\
\hline & register state \(\rho_{i}(1)\) & -5 & -5 & -5 & -5 & -5 & 2 & 2 & 2 & 2 \\
\hline & register state \(\rho_{i}(2)\) & 89 & 89 & 89 & 89 & 89 & 89 & 4 & 4 & 4 \\
\hline & memory state \(\mu_{i}(\underline{(\underline{i}})\) & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 2 \\
\hline & memory state \(\mu_{i}(\underline{\underline{(x)}}\) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 5 \\
\hline & memory state \(\mu_{i}(\underline{\mathrm{t}}+0)\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & memory state \(\mu_{i}(\underline{\mathrm{t}}+1)\) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline & memory state \(\mu_{i}(\underline{\mathrm{t}}+2)\) & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
\hline & memory state \(\mu_{i}(\underline{\mathrm{t}}+3)\) & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
\hline
\end{tabular}
\(\longmapsto\)\begin{tabular}{|l|c|c|c|}
\hline control state \(p c_{i}\) & \(\int_{0}^{c}\) & \(\int_{3}^{c}\) & \(\int_{8}^{c}\) \\
\hline \hline memory state \(\mu_{i}(\underline{\mathrm{i}})\) & 1 & 2 & 2 \\
\hline memory state \(\mu_{i}(\underline{\mathrm{x}})\) & 1 & 1 & 5 \\
\hline memory state \(\mu_{i}(\underline{\mathrm{t}}+0)\) & 0 & 0 & 0 \\
\hline memory state \(\mu_{i}(\underline{\mathrm{t}}+1)\) & 1 & 1 & 1 \\
\hline memory state \(\mu_{i}(\underline{\mathrm{t}}+2)\) & 4 & 4 & 4 \\
\hline memory state \(\mu_{i}(\underline{\mathrm{t}}+3)\) & -1 & -1 & -1 \\
\hline
\end{tabular}

\section*{Observable behaviors inclusions}

Applying this systematically to all traces results into an abstraction:

\section*{Result: compiled code observational abstraction}

We let \(\alpha_{c}^{r}\) be the compiled code observational abstraction:
\[
\begin{aligned}
\alpha_{c}^{r}: & \mathcal{P}\left(\left(\mathbb{L}_{c} \times\left(\mathbb{X}_{c} \rightarrow \mathbb{V}\right)\right)^{\star}\right) \\
& \longrightarrow \mathcal{P}\left(\left(\mathbb{L}_{c}^{\prime} \times\left(\mathbb{X}_{c}^{\prime} \rightarrow \mathbb{V}\right)\right)^{\star}\right) \\
& \longmapsto\left\{\pi_{c}^{\left.\mathrm{tr}_{c}(\sigma) \mid \sigma \in \mathcal{E}\right\}}\right.
\end{aligned}
\]

It defines a Galois connection with an adjoint concretization \(\gamma_{c}^{r}\) :
\[
\left(\mathcal{P}\left(\left(\mathbb{L}_{c} \times\left(\mathbb{X}_{c} \rightarrow \mathbb{V}\right)\right)^{\star}\right), \subseteq\right) \underset{\alpha_{c}^{r}}{\stackrel{\gamma_{c}^{r}}{\leftrightarrows}}\left(\mathcal{P}\left(\left(\mathbb{L}_{c}^{\prime} \times\left(\mathbb{X}_{c}^{\prime} \rightarrow \mathbb{V}\right)\right)^{\star}\right), \subseteq\right)
\]
- \(\alpha_{c}^{r}\) is monotone and the concrete domain is a complete lattice; the concretization function follows and is defined by
\[
\gamma_{c}^{r}\left(\mathcal{E}^{\prime}\right)=\bigcup_{\mathcal{E}}\left\{\mathcal{E} \mid \alpha_{c}^{r}(\mathcal{E}) \subseteq \mathcal{E}^{\prime}\right\}=\left\{\sigma \mid \pi^{\operatorname{tr} r}(\sigma) \in \mathcal{E}^{\prime}\right\}
\]
- The observational semantics is defined by: \(\llbracket P_{c} \rrbracket_{\text {obs }}=\alpha_{c}^{r}\left(\llbracket P_{c} \rrbracket\right)\)

\section*{Correctness by semantic equivalence}
- The same construction holds at the source level
- The resulting traces are very similar, up-to a basic renaming
- To define it, we assume the syntactic mappings \(\pi_{I}, \pi_{x}\) are bijective

\section*{Memory state renaming}

We let the memory state renaming function be defined by:
\[
\begin{aligned}
\pi_{m}:\left(\mathbb{X}_{s}^{\prime} \rightarrow \mathbb{V}\right) & \longrightarrow\left(\mathbb{X}_{c}^{\prime} \rightarrow \mathbb{V}\right) \\
m & \longmapsto m \circ \pi_{x}^{-1}
\end{aligned}
\]

Trace renaming
We let the trace renaming function be defined by:
\[
\begin{array}{rll}
\pi_{t}: & \mathbb{L}_{s}^{\prime} \times\left(\mathbb{X}_{s}^{\prime} \rightarrow \mathbb{V}\right) & \longrightarrow \mathbb{L}_{c}^{\prime} \times\left(\mathbb{X}_{c}^{\prime} \rightarrow \mathbb{V}\right) \\
& \left\langle\left(\varphi_{0}, m_{0}\right), \ldots,\left(\mathcal{l}_{n}, m_{n}\right)\right\rangle & \longmapsto\left\langle\left(\pi_{l}\left(\wp_{0}\right), \pi_{m}\left(m_{0}\right)\right), \ldots,\left(\pi_{l}\left(\mathcal{l}_{n}\right), \pi_{m}\left(m_{n}\right)\right)\right\rangle
\end{array}
\]

\section*{Correctness by semantic equivalence}

We can now state the compilation correctness definition

\section*{Definition: compilation correctness}

Compilation of \(P_{s}\) into \(P_{c}\) is correct with respect to \(\pi_{l}, \pi_{x}\) if and only if \(\pi_{t}\) establishes a bijection between \(\alpha_{s}^{r}\left(\llbracket P_{s} \rrbracket\right)\) and \(\alpha_{c}^{r}\left(\llbracket P_{c} \rrbracket\right)\).

This definition can be illustrated by the diagram:
\[
\alpha_{s}^{r}\left(\llbracket P_{s} \rrbracket\right) \Longrightarrow \pi_{t} \alpha_{c}^{r}\left(\llbracket P_{c} \rrbracket\right)
\]


\section*{Correctness by semantic equivalence}

\section*{This approach generalizes to other program transformations}

This definition can be illustrated by the diagram:


\section*{Choice of another concrete semantics: consequences}

New compilation correctness definition
\[
\forall \rho \in \mathbb{M}, \llbracket P_{c} \rrbracket_{\mathrm{rel}} \equiv \llbracket P_{s} \rrbracket_{\text {rel }} \text { modulo } \pi_{l}, \pi_{x}
\]

This new definition is much weaker:
- Correctness assumes no relation about
- intermediate control states
- non terminating executions
- More compilers are considered correct
- Weaker relation between source and compiled programs This new definition really misses something, and impedes verification

Ways to circumvent the limitation:
(1) Include the whole trace into the final state!

Back to the previous definition, hard to formalize, says nothing about \(\infty\)...
(2) Better way: get it right first and choose the right semantics!

\section*{Choice of another concrete semantics}

We have built our definition of compilation correctness upon operational (trace) semantics.
What if we abstracted into another observational semantics ?
Alternate choice: let us consider a more abstract semantics
For instance, relational semantics (equivalent to denotational semantics)
- Notation fornitial (resp. final) control states: \(\mathscr{l}_{\vdash}\) (resp. \(\zeta_{\dashv}\) )
- Notation for non-termination written \(\infty\);
- Observational semantics: relations between \(\mathbb{M}\) and \(\mathbb{M} \cup\{\infty\}\)
- Observational abstraction defined by collecting for all traces:
\[
\begin{array}{rlc}
\left\langle\left(\mathfrak{l}_{-}, \rho\right), \ldots,\left(\epsilon_{-}, \rho^{\prime}\right)\right\rangle & \mapsto & \left(\rho, \rho^{\prime}\right) \\
\left.\sigma=\left\langle\left(\mathcal{l}_{+}, \rho\right), \ldots\right\rangle\right\rangle & \mapsto(\rho, \infty) \text { if } \sigma \text { infinite }
\end{array}
\]
- Denotational semantics defined by:
\[
\llbracket P \rrbracket_{\mathrm{rel}}=\left\{\left(\rho, \rho^{\prime}\right) \mid \ldots\right\} \uplus\{(\rho, \infty) \mid \ldots\}
\]

\section*{Outline}

\section*{Optimizations}

\section*{Until now we focused on non-optimizing compilation}

In practice, compilers perform various optimizations
- Elimination: dead code, dead variables...
- Instruction scheduling: Instruction-Level-Parallelism...
- Global transformations: Propagation of common expressions...
- Structural transformations: Loop unrolling...

Consequences: \(\pi_{l}, \pi_{x}, \mathbb{L}_{i}^{\prime}\), \(\mathbb{X}_{i}^{\prime}\) may not be defined
Framework extension:
- Redefine the "most precise observation preserved by compilation"
- Would be more difficult with bissimulations
- Next slides: consider a few optimizations...

\section*{Dead-code elimination definition}

\section*{Principle}

\section*{Do not compile statements of the source program that provably never are executed}
- This saves space as smaller executables get generated
- It also improves runtime as some tests may be removed (when they always produce the same result)

Example:
\[
\begin{aligned}
& \text { source code } \\
& t_{0}^{s} \quad \mathrm{x}:=4 \text {; } \\
& {q_{1}^{s}}^{s} \quad i f(x<0)\{ \\
& \zeta_{2}^{s} \quad \mathrm{x}=-\mathrm{x} \text {; } \\
& \left\{_{3}^{s}\right\} \\
& \int_{4}^{s} \quad \mathrm{x}=\mathrm{x}+1
\end{aligned}
\]
compiled code
\(r_{0}^{c}\) li \(r_{0}, 4\)
\(\zeta_{1}^{c} \quad\) st \(r_{0}, \underline{x}\)
\%\% no code generated
\(\% \%\) no code generated \%\% no code generated
\(\zeta_{2}^{c} \quad \operatorname{ld} r_{1}, \underline{x}\)

\section*{Dead-code elimination correctness}

How to set up a formal definition of compilation, that considers dead-code elimination correct ?
- we have to abstract away all labels removed by the optimizations
- this is trivial:
we should simply not include them in \(\mathbb{L}_{s}^{\prime}\)
- thus, our previous definition of compilation correctness already accomodates dead-code eliminiation

Compilation correctness in presence of dead-code elimination
Same definition as before

\section*{Dead-variable elimination definition}

\section*{Principle}

Discard entirely the variables that are never used anymore (the compiler may reuse cells of dead local variables as well)
- This obviously both saves space and improves runtime
- There is a caveat though: this may change the error semantics indeed, expressions may be optimized away, so a program that normally fails (e.g., on a division by zero) may not fail after optimization
- x read after the loop, but not \(y\)
```

x := y;
while(i<10){
x := x + 1;
y:= y - x - 1;
i}:=\textrm{i}+1
}
use(x);

```
- thus, y can be removed with no observable change
- the purple statement disappears
- but y does not disappear everywhere

\section*{Dead-variable elimination correctness}

How to set up a formal definition of compilation, that considers dead-variable elimination correct ?
- variables may need be removed at certain program points
- it is not possible to simply remove the dead variables from \(\mathbb{X}_{s}\) alltogether: in the example, this would not be correct, as y would be completely lost
- thus, \(\pi_{x}\) should be relational

\section*{Compilation correctness in presence of variable-code elimination}

Similar definition as before, but with \(\pi_{x}: \mathbb{L}_{s} \times \mathbb{X}_{s} \rightarrow \mathbb{X}_{C}\) instead.
Exercise: formalize the new definition, inspired from the previous one, and with \(\pi_{x}: \mathbb{L}_{s} \times \mathbb{X}_{s} \rightarrow \mathbb{X}_{c}\) instead

\section*{Path modifying optimizations}

Some optimization deeply modify the control flow paths:
- loop unrolling
- loop exchange
- loop tiling
- loop interchange
- flattening of conditions

\section*{Gains:}
- more efficient code, due to fewer conditions (unrolling, tiling)
- enabling of other optimizations, e.g., vectorization (tiling, interchange...)
In the next few slides, we consider the case of loop unrolling

\section*{Loop unrolling example}

Assumption: a for loop run an even number of times (loop unrolling may also apply to loops run a non statically known number of times, but it is more complex in that case)
source code
\begin{tabular}{|c|c|}
\hline & \[
\begin{aligned}
& \text { i }:=0 ; \\
& \text { while }(i<1000)
\end{aligned}
\] \\
\hline \(L_{2}\) & \(\mathrm{x}:=\mathrm{x} * \mathrm{y}\); \\
\hline \(c_{3}{ }^{5}\) & \(\mathrm{y}:=\mathrm{y}-1\); \\
\hline \(\stackrel{1}{4}^{5}\) & \(\mathrm{i}:=\mathrm{i}+1\); \\
\hline \(5_{5}^{5}\) & \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { optimized code } \\
& 5_{0}^{\circ} \text { i }:=0 \text {; } \\
& \varsigma_{1}^{\circ} \quad \text { while }(i<500) \\
& \zeta_{2}^{\circ} \quad \mathrm{x}:=\mathrm{x} * \mathrm{y} \text {; } \\
& 5_{3}^{0} \quad \mathrm{y}:=\mathrm{y}-1 \text {; } \\
& c_{4}^{s} \quad \mathrm{x}:=\mathrm{x} * \mathrm{y} \text {; } \\
& l_{5}^{s} \quad y:=y-1 \text {; } \\
& \text { l }_{6}^{s} \quad i:=i+1 \text {; } \\
& \left\{_{7}^{s}\right\}
\end{aligned}
\]

Control state correspondance \(\pi_{/}\)is clearly broken:
\[
\pi_{l}:\left\{\begin{array}{lll}
\mathcal{C}_{2}^{s} & \leftrightarrow & \digamma_{2}^{o} \\
\mathcal{C}_{2}^{s} & \leftrightarrow & \digamma_{4}^{o}
\end{array}\right.
\]

\section*{Loop unrolling source and assembly traces}

We consider executions in the source and the optimized code, and only display control states at the assignment to \(x\) and the values of \(i, y\) :
- At the source code level:
\begin{tabular}{|l|c|c|c|c|}
\hline control state & \(\mathfrak{l}_{2}^{s}\) & \(\mathfrak{l}_{2}^{s}\) & \(\mathfrak{l}_{2}^{s}\) & \(\mathfrak{l}_{2}^{s}\) \\
\hline value of i & 0 & 1 & 2 & 3 \\
\hline value of y & 1200 & 1199 & 1198 & 1197 \\
\hline
\end{tabular}
- At the compiled code level:
\begin{tabular}{|l|c|c|c|c|}
\hline control state & \(\zeta_{2}^{o}\) & \(\zeta_{4}^{o}\) & \(\zeta_{2}^{o}\) & \(\zeta_{4}^{o}\) \\
\hline value of i & 0 & 1 & 2 & 3 \\
\hline value of y & 1200 & 1199 & 1198 & 1197 \\
\hline
\end{tabular}

As expected:
- the correlation between the values of \(i\) and the other variables is lost
- the real correspondence is between values of other variables and iterations even-ness

\section*{Loop unrolling observational abstractions}

How to set up a formal definition of compilation, that accpets loop unrolling as correct ?
- the loop counter variable i should be excluded from \(\mathbb{X}_{s}, \mathbb{X}_{0}\)
- each control state in the source loop should be divided into a pair of labels, that carry an even-ness tab:
\[
\left.\begin{array}{rl}
\mathcal{L}_{2}^{s} & \mapsto \\
\mathcal{L}_{2}^{s, e}, \mathcal{L}_{2}^{s, o} \\
\mathcal{C}_{3}^{s} & \mapsto \\
\mathcal{I}_{3}^{s, e}, \mathcal{I}_{3}^{s, o} \\
\ldots & \mapsto
\end{array}\right] .
\]
- the trace abstraction function \(\pi_{s}^{\mathrm{tr}}\) should map each loop body state into a state with a consistent iteration even-ness

This amounts to doing an even-ness based trace partitioning

\section*{Loop unrolling observational abstractions}

We can consider the traces again:
\begin{tabular}{|l|l|c|c|c|c|}
\hline source code & control state & \(\zeta_{2}^{s}\) & \(\zeta_{2}^{s}\) & \(\zeta_{2}^{s}\) & \(\zeta_{2}^{s}\) \\
\hline & value of i & 0 & 1 & 2 & 3 \\
\hline & value of y & 1200 & 1199 & 1198 & 1197 \\
\hline \hline source code, abstract & control state & \(\zeta_{2}^{s, e}\) & \(\zeta_{2}^{s, o}\) & \(\zeta_{2}^{s, e}\) & \(\zeta_{2}^{s, o}\) \\
\hline & value of i & 0 & 1 & 2 & 3 \\
\hline & value of y & 1200 & 1199 & 1198 & 1197 \\
\hline \hline optimized code & control state & \(\zeta_{2}^{o}\) & \(\zeta_{4}^{o}\) & \(\zeta_{2}^{o}\) & \(\zeta_{4}^{o}\) \\
\hline & value of i & 0 & 1 & 2 & 3 \\
\hline & value of y & 1200 & 1199 & 1198 & 1197 \\
\hline
\end{tabular}

We observe the following control state correspondance:


\section*{Loop unrolling correctness}

Then, the definition follows a very similar form as before:
Compilation correctness in presence of loop unrolling
Similar definition as before, but with:
- trace partitioning \(\alpha_{s}^{r}\) abstraction
- a mapping \(\pi_{\text {/ }}\) that preserves even-ness

\section*{Instruction scheduling: instruction level parallelism}

We now consider optimizations that modify the code locally, and take instruction scheduling as an example.

Instruction-level parallelism is a feature of modern processors:
- one instruction \(=\) one or several cycles
- memory typically slow: load, store take several cycles speed depends on the content of cache (hit/miss); can be 100 cycles!
- arithmetic operations are usually faster
- Pipeline: run several instructions in parallel
- Some instructions cannot be evaluated in parallel due to dependences
- Scheduling: re-ordering of instructions so as to limit the number of stall cycles

\section*{Instruction level parallelism example}

Assumptions:
- arith. instructions: 1 cycle instruction decoding, 1 cycle op.
- load/store instructions: 1 cycle instruction decoding, 3 cycle op. We consider the code below:


Then, we observe a two cycles stall after the load
Consequence of this observation: instruction scheduling More efficient code is generated if there are more instructions between load/store instruction and uses of the values loaded/stored

\section*{Instruction scheduling example}
\begin{tabular}{|c|c|}
\hline source code & non optimized code \\
\hline \(¢_{0}^{s} \quad i \quad=i+1 ;\) & \(c_{0}^{a} \quad l d r_{0}\), i \\
\hline & \(\zeta_{1}^{a}\) addi \(r_{0}, r_{0}, 1\) \\
\hline & \(\zeta_{2}^{a}\) st \(r_{0}\), \(\underline{i}\) \\
\hline \(\zeta_{1}^{s} \quad \mathrm{x}:=\mathrm{x}+\mathrm{t}[\mathrm{i}] ;\) & \(¢_{3}{ }^{\text {a }}\) Id \(\mathrm{r}_{1}, \underline{\mathrm{x}}\) \\
\hline & \(l_{4}^{a} \quad l d x r_{2}, \underline{t}, r_{0}\) \\
\hline & \(l_{5}^{a}\) add \(\mathbf{r}_{1}, \mathbf{r}_{1}, \mathbf{r}_{2}\) \\
\hline & \(¢_{6}^{a}{ }^{\text {a }}\) st \(\mathrm{r}_{1}, \underline{\mathrm{x}}\) \\
\hline \(\zeta_{2}^{s}\) & \(¢_{7}^{a} \ldots\) \\
\hline
\end{tabular}
optimized code \(5_{0}^{0}\) ld \(r_{0}\), is
\(h_{1}^{0} \quad\) Id \(\mathrm{r}_{1}, \underline{\mathrm{x}}\) \(\zeta_{2}^{o}\) addi \(r_{0}, r_{0}, 1\)
\(r_{3}^{o} \quad\) Idx \(r_{2}, \underline{t}, r_{0}\)
\(r_{4}^{o}\) st \(r_{0}, \underline{i}\)
\(5_{5}^{o}\) add \(\mathbf{r}_{1}, \mathbf{r}_{1}, \mathbf{r}_{2}\)
\(\varliminf_{6}^{\circ} \quad\) st \(r_{1}, \underline{x}\) \(\wp_{7}^{\circ} \ldots\)

Without optimization:
4 stall cycles, 14 cycles total
\begin{tabular}{llllll}
\(I_{0}^{s}\) & \(\leftrightarrow\) & \(I_{0}^{a}\) & \(I_{0}^{s}\) & \(\leftrightarrow\) & \(I_{0}^{0}\) \\
\(I_{1}^{s}\) & \(\leftrightarrow\) & \(l_{3}^{a}\) & \(I_{1}^{s}\) & \(\leftrightarrow\) & \(? ? ?\) \\
\(I_{2}^{s}\) & \(\leftrightarrow\) & \(I_{7}^{a}\) & \(I_{2}^{s}\) & \(\leftrightarrow\) & \(I_{7}^{\circ}\)
\end{tabular}

\section*{Instruction scheduling observational abstractions}

Issues to fix our definition:
- Instructions execution order modified:
\(I_{1}^{a} \rightarrow I_{2}^{a}\) and \(I_{2}^{a} \rightarrow I_{3}^{a}\) are postponed
- Mapping \(\pi_{l}\) is broken:
- The intermediate state \(l_{1}^{s}\) has no clear counterpart in the assembly
- For i, it corresponds to \(\mathscr{L}_{5}^{\circ}\)
- For x , it corresponds to \(4_{1}^{\circ}\)
- In general: this happens for all control points!
(except for initial points, final points)
Thus, we need a relational mapping \(\left(\pi_{/}, \pi_{x}\right)\),
i.e., a single function taking care of both variables and control states:

\section*{Relational syntactic mapping}

A relational syntactic mapping is defined by an injective function
\[
\pi_{\mathbb{X} \times \mathbb{X}}:\left(\mathbb{L}_{s}^{\prime} \times \mathbb{X}_{s}^{\prime}\right) \longrightarrow\left(\mathbb{L}_{c} \times \mathbb{X}_{c}\right)
\]

\section*{Instruction scheduling observational abstractions}

\section*{Intuition}

A source control state \({ }^{s}\) corresponds to a fictitious control state where values of corresponding locations are gathered at different points in the execution of the optimized, compiled code
source code
\[
\zeta_{0}^{s} \quad i:=i+1 ;
\]
\(\mathrm{f}_{1}^{s} \quad \mathrm{x}:=\mathrm{x}+\mathrm{t}[\mathrm{i}]\);
\(\ell_{2}^{5} \ldots\)
optimized code
\(50_{0}^{\circ} \quad\) ld \(r_{0}\), i
\(f_{1}^{0}\) ld \(r_{1}, \underline{\underline{x}}\)
\(f_{2}^{\circ}\) addi \(r_{0}, r_{0}, 1\)
\(5_{3}^{\circ} \quad \mathrm{Id} \times \mathrm{r}_{2}, \mathrm{t}, \mathrm{r}_{0}\)
\(r_{4}^{o} \quad\) st \(r_{0}, \underline{i}\)
\(5_{5}^{\circ}\) add \(\mathbf{r}_{1}, \mathbf{r}_{1}, \mathbf{r}_{2}\)
\(\mathfrak{C}_{6}^{\circ}\) st \(r_{1}, \underline{\underline{x}}\)
\(5_{7}^{\circ} \ldots\)

We then have:
\[
\begin{aligned}
& \pi_{\mathbb{X} \times \mathbb{X}}: \quad\left(\mathcal{L}_{0}^{s}, \mathrm{i}\right) \mapsto\left(\mathcal{L}_{0}^{o}, \underline{\underline{\mathbf{i}}}\right) \\
& \left(\mathcal{L}_{0}^{s}, \mathrm{x}\right) \mapsto\left(\mathcal{L}_{0}^{0}, \underline{\mathrm{x}}\right) \\
& \left(\mathcal{C}_{1}^{s}, \mathbf{i}\right) \mapsto\left(\mathscr{L}_{5}^{\circ}, \underline{\underline{\mathbf{x}}}\right) \\
& \left(\mathcal{1}_{1}^{s}, \mathrm{x}\right) \mapsto\left(\zeta_{1}^{o}, \underline{\mathrm{x}}\right) \\
& \left(\mathcal{L}_{2}^{s}, \mathrm{i}\right) \mapsto\left(\varsigma_{7}^{o}, \underline{\mathrm{i}}\right) \\
& \left(\mathscr{L}_{2}^{s}, \mathrm{x}\right) \mapsto\left(\wp_{7}^{\circ}, \underline{\mathrm{x}}\right)
\end{aligned}
\]

\section*{Instruction scheduling correctness}

The source level observational abstraction is unchanged.
Optimized level observational abstraction
Optimized code observational abstraction \(\alpha_{s}^{r}\) abstracts traces into sequences of states observed at fictitious points

We now obtain:
Compilation correctness in presence of instruction scheduling Similar definition as before, but with:
- optimized code observational abstraction \(\alpha_{s}^{r}\) derived from \(\pi_{\mathbb{X} \times \mathbb{X}}\)
- semantic mapping \(\pi_{t}\) derived from \(\pi_{\mathbb{X} \times \mathbb{X}}\)

\section*{Compilation correctness}

\section*{Definition: compilation correctness}

Compilation of \(P_{s}\) into \(P_{c}\) is correct with respect to \(\pi_{/}, \pi_{x}\) (resp., \(\left.\pi_{\mathbb{X} \times \mathbb{X}}\right)\) if and only if \(\pi_{t}\) establishes a bijection between \(\alpha_{s}^{r}\left(\llbracket P_{s} \rrbracket\right)\) and \(\alpha_{c}^{r}\left(\llbracket P_{c} \rrbracket\right)\).


Main idea: optimizations handled as standard compilation, but with more complex mappings, and observational abstractions

\section*{On the formalization of program transformations}

Methodology:
(1) Set up the standard semantics
(2) Define the observation preserved by the transformation
(3) Derive the corresponding abstractions
(9) Establish the correctness at the abstract level

Advantages of this approach:
- The framework can be extended (e.g., with more complex abstractions)
- Abstract Interpretation theorems apply (e.g., fix-point transfers)

Other extensions:
- Define the transformation at the semantic level
- Derive an implementation of the transformation, from the definition

\section*{Outline}

\section*{Verifying compiled code}

Kinds of properties:
- safety (no runtime errors, no overflows, no NaN...)
- security (no undesired information flow, in the sence of non-interference)

Two benefits:
- of course, verifying the generated code...
- but also, that the compiler does not turn a correct (already verified) program into an incorrect assembly one...

In the following, we consider safety properties and invariants

\section*{The invariant translation approach}

\section*{Process}
(1) Analyze the source program \(P_{s}\) and compute an invariant \(\mathcal{I}_{s}\)
(2) Translate \(\mathcal{I}_{s}\) into assembly level candidate invariant \(\mathcal{I}_{t}\)
- Perform an assembly level check of \(\mathcal{I}_{t}\)

\section*{Motivation:}
- inferring invariants is hard in general...
- and even more so at the assembly level due to an important loss of structure at compile time (data-structures flattened, control flow more complex, additional steps to perform an arithmetic assignment -with separate load and store- or a test -with separate test and branching instructions)

\section*{Example 1: Proof Carrying Codes (PCC)}

\section*{Principle:}
- "Code producer": provides code and proof annotations in binaries (i.e., proof of correctness),
- "Code consumer": checks the safety of the code
(1) consistance of annotations: very quick proof search, from invariants
(2) annotations \(\Rightarrow\) the safety property we wish to enforce

Code producer
Correctness property Proof (ELF)

Code Invariants, hints

Code consumer


Context: execution of non-trusted code downloaded in the Internet e.g., it could contain a security bug (information leak, buffer overflow)

Examples: TAL, compiled code certification by abstract interpretation

Typed and type safe assembly language:
- Java bytecode: interpreted (rather slow at runtime)
- TALx86: annotations for an assembly language closed to Intel \(80 \times 86\)
- Removing types \(\Rightarrow\) executable code
- A specific compiler translate source level types

Advantages:
- Ensure the safety of linkage thanks to types Linkage of object files usually not sound
- Improve the reliability of optimizations

Constraint: they should preserve types!
- Compilation of type-safe versions of C (CCured, CClone)

Certification of assembly code
Principle similar to PCC and TAL
but computation of invariants by abstract interpretation

\section*{Example}

- Start with invariants on the source code

\section*{Example}

- Translates those invariants but not all control states are decorated

\section*{Example}

- Propagates the invariants and computes refined local invariants

\section*{Example}

- Propagates the invariants and computes refined local invariants

\section*{Example}

- Propagates the invariants and computes refined local invariants

\section*{Example}

- Checks invariance at the end of the computation

\section*{Source static analysis: assumptions}
- We assume an abstraction of sets of stores defined by an abstraction function for sets of stores
\[
\alpha_{\text {num }}:\left(\mathcal{P}\left(\mathbb{M}_{s}\right), \subseteq\right) \rightarrow\left(\mathbb{D}_{\text {num }}^{\sharp}, \sqsubseteq\right)
\]
- We derive an abstraction for sets of executions:
\[
\begin{aligned}
\alpha_{i, s}: & \mathcal{P}\left(\mathbb{S}_{P^{\star}}\right) \\
& \longrightarrow \mathbb{L}_{s} \rightarrow \mathbb{D}_{\text {num }}^{\#} \\
& \longmapsto\left(\ell \in \mathbb{L}_{s}\right) \mapsto \alpha_{\text {num }}(\{m \mid\langle\ldots,(\ell, m), \ldots\rangle \in X\})
\end{aligned}
\]
- We assume also a source code static analysis, that computes a sound over-approximation of the behaviors of the program:
\[
\alpha_{i, s}\left(\llbracket P_{s} \rrbracket\right) \sqsubseteq \llbracket P_{s} \rrbracket_{i}^{\sharp}
\]

\section*{Abstract invariant translation}

Two abstractions have been defined:
- Abstraction for static analysis of \(P_{s}\)
- Abstraction for defining compilation correcntess


Those abstractions are in general not comparable

\section*{Abstract invariant translation}

We can derive another abstraction, more abstract than both \(\alpha_{s}^{r}\) and \(\alpha_{i, s}\) :
- theoretical result: Galois-connections of a concrete domain form a lattice
- in practice, this common abstraction should abstract away all the elements that are not in \(\mathbb{L}_{s}^{\prime}, \mathbb{X}_{s}^{\prime}\) :
e.g., all dead variables, all unreachable control states...
e.g., in case of loop unrolling, it should perform the same trace partitioning

Moreover, \(\pi_{l}, \pi_{x}\) induce a safe abstract invariant translation function \(\pi^{\sharp}:\left(\mathbb{L}_{s}^{\prime} \rightarrow \mathbb{D}_{\text {num }}^{\sharp}\right) \rightarrow\left(\mathbb{L}_{c}^{\prime} \rightarrow \mathbb{D}_{\text {num }}^{\sharp}\right)\)
- for each pair of control points in correspondance in \(\pi_{1}\)
- it maps numerical invariants among variables of \(P_{s}\) into numerical invariants among variables of \(P_{c}\)

\section*{Abstract invariant translation}

\section*{Invariant translation process:}
(1) Apply \(\pi^{\sharp}\) to an abstract invariant \(\llbracket P_{s} \rrbracket_{i}^{\sharp}\) computed for \(P_{s}\)
(2) Result: a candidate invariant \(\pi^{\sharp}\left(\llbracket P_{s} \rrbracket_{i}^{\sharp}\right)\) for \(P_{c}\)


\section*{Invariant translation: soundness}

\section*{Soundness lemma}

If:
- the compilation \(P_{s} \rightarrow P_{c}\) is sound with respect to \(\pi_{I}, \pi_{x}\);
- the analysis of \(P_{s}\) computes a sound \(\llbracket P_{s} \rrbracket_{i}^{\sharp} \alpha_{i, s}\left(\llbracket P_{s} \rrbracket\right) \sqsubseteq \llbracket P_{s} \rrbracket_{i}^{\sharp}\) Then, \(\pi^{\sharp}\left(\left(\alpha_{s}^{r}\right)^{\sharp}\left(\llbracket P_{s} \rrbracket_{i}^{\sharp}\right)\right)\) is a sound approximation of \(\llbracket P_{c} \rrbracket\) :
\[
\alpha_{i, r, c}\left(\llbracket P_{c} \rrbracket\right) \sqsubseteq \pi^{\sharp}\left(\left(\alpha_{s}^{r}\right)^{\sharp}\left(\llbracket P_{s} \rrbracket_{i}^{\sharp}\right)\right)
\]

Consequence of the choice of another observational semantics for compilation correctness:
If \(\alpha_{s}^{r}\left(\llbracket P_{s} \rrbracket\right), \alpha_{c}^{r}\left(\llbracket P_{c} \rrbracket\right)\) are weakened, then the invariants that can be translated are also weakened

\section*{Invariant translation: soundness}

\section*{Proof summarized:}


Assumptions are very strong:
compilation, analysis, translation need to be correct
We need an independent verification of translated invariants

\section*{Independent verification of translated invariants}

Principle of invariant checking: post-fixpoint checking
Theorem: invariant verification
Using a concretization function \(\gamma\),
- The concrete function \(F\) is montone,
- \(F \circ \gamma \subseteq \gamma \circ F^{\sharp}\),
- \(F^{\sharp}(x) \sqsubseteq x\),

Then, Ifp \(F \sqsubseteq \gamma(x)\)
Proof left as exercise
- Only the verifier needs to be sound even if the assumptions of the translation soundness lemma are not met i.e., we can have an incorrect compiler, translate an incorrect invariant, and still obtain and check a correct translated invariant!
- In turn, invariant checking is incomplete

\section*{Independent verification of translated invariants}

Principle of invariant checking: post-fixpoint checking
Theorem: invariant verification
Using a concretization function \(\gamma\),
- The concrete function \(F\) is montone,
- \(F \circ \gamma \subseteq \gamma \circ F^{\sharp}\),
- \(F^{\sharp}(x) \sqsubseteq x\),

Then, Ifp \(F \sqsubseteq \gamma(x)\)
Invariant checking refines abstract predicates: this phase also produces more precise abstract properties about:
- memory locations in \(\mathbb{X}_{c} \backslash \mathbb{X}_{c}^{\prime}\)
- program points in \(\mathbb{L}_{c} \backslash \mathbb{L}_{c}^{\prime}\)

In practice, every cycle of the compiled code control flow graph should contain an element of \(\mathbb{X}_{s}\)

\section*{Invariant checking and difficulties}

We consider the verification of invariants around a condition test Assumptions:
- \(\mathrm{x} \in[0,12]\) at the entry point;
- we wish to verify the assert in the compiled code;
- we use a non relational abstract domain: intervals

Source code:
\[
\begin{aligned}
& \text { if }(x \leq 5)\{ \\
& \quad \text { assert }(x \leq 5) \text {; } \\
& \ldots \\
& \text { \}else }\{ \\
& \quad \ldots \\
& \text { \} }
\end{aligned}
\]

\section*{Compiled code:}
```

0 ld r_{0}, \underline{x}
4 li $r_{1}, 5$
$8 \mathrm{cmp} \mathrm{r}_{0}, \mathrm{r}_{1}$
12 blt $\langle\mathrm{GT}\rangle$ l \# (jump point)
16 ...\# true branch contents
ℓ : \# false branch contents

```

\section*{Invariant checking and difficulties}
```

$0: \quad \underline{x} \in[0,12]$
Id $\mathrm{r}_{0}, \underline{\mathrm{x}}$
4 :
li $r_{1}, 5$
8 :
cmp $\mathbf{r}_{0}, \mathbf{r}_{1}$
12 :
blt $\langle\mathrm{GT}\rangle$ l \# (jump point)
16 :

```

\section*{Invariant checking and difficulties}
```

$0: \quad \underline{x} \in[0,12]$
Id r_{0}, \underline{x}
4: $\quad \underline{x} \in[0,12] \wedge r_{0} \in[0,12]$
li $r_{1}, 5$
8 :
cmp $\mathbf{r}_{0}, \mathbf{r}_{1}$
12 :
blt $\langle\mathrm{GT}\rangle$ ᄃ \# (jump point)
16 :

```

\section*{Invariant checking and difficulties}
```

$0: \quad \underline{x} \in[0,12]$
Id r_{0}, \underline{x}
4: $\quad \underline{x} \in[0,12] \wedge r_{0} \in[0,12]$
li $r_{1}, 5$
8 :
$\underline{x} \in[0,12] \wedge r_{0} \in[0,12] \wedge r_{1} \in[5,5]$
cmp $\mathbf{r}_{0}, \mathbf{r}_{1}$
12 :
blt $\langle\mathrm{GT}\rangle$ ᄃ \# (jump point)
16 :

```

\section*{Invariant checking and difficulties}
```

$0: \quad \underline{x} \in[0,12]$
Id r_{0}, \underline{x}
4: $\quad \underline{x} \in[0,12] \wedge r_{0} \in[0,12]$
li $r_{1}, 5$
8 :
$\underline{x} \in[0,12] \wedge r_{0} \in[0,12] \wedge r_{1} \in[5,5]$
cmp $\mathbf{r}_{0}, \mathbf{r}_{1}$
12 :
$\underline{x} \in[0,12] \wedge \mathbf{r}_{0} \in[0,12] \wedge \mathbf{r}_{1} \in[5,5] \wedge \mathbf{c r} \in\{L T, E Q, G T\}$
blt $\langle\mathrm{GT}\rangle$ \& (jump point)
16 :

```

\section*{Invariant checking and difficulties}
```

$0: \quad \underline{x} \in[0,12]$
Id r_{0}, \underline{x}
4: $\quad \underline{x} \in[0,12] \wedge r_{0} \in[0,12]$
li $r_{1}, 5$
8 :
$\underline{x} \in[0,12] \wedge r_{0} \in[0,12] \wedge r_{1} \in[5,5]$
cmp $\mathbf{r}_{0}, \mathbf{r}_{1}$
12 :
$\underline{x} \in[0,12] \wedge \mathbf{r}_{0} \in[0,12] \wedge \mathbf{r}_{1} \in[5,5] \wedge \mathbf{c r} \in\{L T, E Q, G T\}$
blt $\langle\mathrm{GT}\rangle$ \& (jump point)
16: $\quad \underline{x} \in[0,12] \wedge r_{0} \in[0,12] \wedge \mathbf{r}_{1} \in[5,5] \wedge \mathbf{c r} \in\{L T, E Q\}$

```

\section*{Invariant checking and difficulties}
```

$0: \quad \underline{x} \in[0,12]$
Id r_{0}, \underline{x}
4: $\quad \underline{x} \in[0,12] \wedge r_{0} \in[0,12]$
li $r_{1}, 5$
8 :
$\underline{x} \in[0,12] \wedge r_{0} \in[0,12] \wedge r_{1} \in[5,5]$
cmp $\mathbf{r}_{0}, \mathbf{r}_{1}$
12: $\underline{x} \in[0,12] \wedge \mathbf{r}_{0} \in[0,12] \wedge \mathbf{r}_{1} \in[5,5] \wedge \mathbf{c r} \in\{$ LT, EQ, GT $\}$
blt $\langle\mathrm{GT}\rangle$ \# (jump point)
16: $\quad \underline{x} \in[0,12] \wedge r_{0} \in[0,12] \wedge \mathbf{r}_{1} \in[5,5] \wedge \mathbf{c r} \in\{L T, E Q\}$

```

The condition at the branch point is not precise
The range of \(x\) was not refined by the test:
- the test and branching are independent relations between test results and values need be tracked
- the test is made on a copy of \(x\) equalities between copies need be tracked by the verifier

\section*{Refinement of the verifier}

Relation between test and branching:
- each value in \(\{\mathrm{LT}, \mathrm{EQ}, \mathrm{GT}\}\) should be bound to the ranges of the other location
- this is obtained by a value partitioning, based on the value of cr:
\[
\begin{aligned}
\gamma:\left(\{\mathrm{LT}, \mathrm{EQ}, \mathrm{GT}\} \rightarrow \mathbb{D}_{\mathrm{num}}^{\sharp}\right) & \longrightarrow \mathcal{P}(\mathbb{M}) \\
& \longmapsto\left\{m \mid m \in \gamma_{\mathrm{num}} \circ \phi^{\sharp} \circ m(\mathbf{c r})\right\}
\end{aligned}
\]

Equalities between copies, e.g., of \(\underline{x}\) and \(r_{0}\) :
- an equality abstraction abstracts partitions of \(\mathbb{X}_{c}\)
- replacement of \(\mathbb{D}_{\text {num }}^{\sharp}\) with a reduced product of \(\mathbb{D}_{\text {num }}^{\#}\) and an equality abstraction

\section*{Invariant checking: fixed}
```

0: }\quadx\in[0,12
ld r
4:
li r
8:
cmp ro, r
12 :
blt\GT\rangle ¢ \# (jump point)
16:

```

In general, invariant checking is incomplete... It may require some refinement in the verifier

\section*{Invariant checking: fixed}
```

0:
ld r
4:}\quadx\in[0,12]\wedge (ro\in[0,12]^x=\mp@subsup{r}{0}{
li r
8:
cmp ro, r
12:
blt}\langle\textrm{GT}\rangle< \# (jump point
16:

```

In general, invariant checking is incomplete... It may require some refinement in the verifier

\section*{Invariant checking: fixed}
\begin{tabular}{|c|c|}
\hline 0 & \(\underline{\mathrm{x}} \in[0,12]\) \\
\hline & ld \(\mathrm{r}_{0}, \underline{\mathrm{x}}\) \\
\hline 4 : & \(\underline{x} \in[0,12] \wedge r_{0} \in[0,12] \wedge \underline{x}=r_{0}\) \\
\hline & li \(r_{1}, 5\) \\
\hline 8 & \[
\underset{\underline{\mathrm{x}} \in[0,12] \wedge \mathbf{r}_{0} \in[0,12] \wedge \mathbf{r}_{1} \in[5,5] \wedge \underline{x}=\mathbf{r}_{0}}{\mathbf{c m p} \mathbf{r}_{0}, \mathbf{r}_{1}}
\] \\
\hline 12 : & \\
\hline & blt \(\langle\mathrm{GT}\rangle\) ¢ \# (jump point) \\
\hline
\end{tabular}

In general, invariant checking is incomplete... It may require some refinement in the verifier

\section*{Invariant checking: fixed}
\(0:\)
4 :
\(8:\)
12 :
16 :
```

 \(\underline{\mathrm{x}} \in[0,12]\)
 ld \(r_{0}, \underline{x}\)
 \(\underline{x} \in[0,12] \wedge r_{0} \in[0,12] \wedge \underline{x}=r_{0}\)
 li \(r_{1}, 5\)
 \(\underline{x} \in[0,12] \wedge r_{0} \in[0,12] \wedge r_{1} \in[5,5] \wedge \underline{x}=r_{0}\)
 cmp \(\mathbf{r}_{0}, \mathbf{r}_{1}\)
    ```

16 :

In general, invariant checking is incomplete... It may require some refinement in the verifier

\section*{Invariant checking: fixed}

0 :
\[
\underline{\mathrm{x}} \in[0,12]
\]

Id \(\mathrm{r}_{\mathrm{o}}, \underline{\mathrm{x}}\)
4: \(\quad \underline{x} \in[0,12] \wedge r_{0} \in[0,12] \wedge \underline{x}=r_{0}\)
li \(r_{1}, 5\)
\(8: \quad \underline{x} \in[0,12] \wedge r_{0} \in[0,12] \wedge r_{1} \in[5,5] \wedge \underline{x}=r_{0}\)
cmp \(\mathbf{r}_{0}, \mathbf{r}_{1}\)
12: \(\quad\left\{\begin{aligned} \mathrm{cr}=\mathrm{LT} & \Longrightarrow \underline{x} \in[0,4] \wedge r_{0} \in[0,4] \wedge \underline{x}=r_{0} \wedge r_{1} \in[5,5] \\ \mathrm{cr}=\mathrm{EQ} & \Longrightarrow \underline{x} \in[5,5] \wedge r_{0} \in[5,5] \wedge \underline{x}=r_{0} \wedge \mathbf{r}_{1} \in[5,5]\end{aligned}\right.\) \(\mathrm{cr}=\mathrm{GT} \Longrightarrow \underline{x} \in[6,12] \wedge r_{0} \in[6,12] \wedge \underline{x}=r_{0} \wedge r_{1} \in[5,5]\)
blt \(\langle\mathrm{GT}\rangle\) ¢ \# (jump point)
16: \(\quad\left\{\begin{aligned} \mathrm{cr}=\mathrm{LT} & \Longrightarrow \underline{x} \in[0,4] \wedge r_{0} \in[0,4] \wedge \underline{x}=r_{0} \wedge r_{1} \in[5,5] \\ \mathrm{cr}=\mathrm{EQ} & \Longrightarrow \underline{x} \in[5,5] \wedge \mathrm{r}_{0} \in[5,5] \wedge \underline{x}=r_{0} \wedge r_{1} \in[5,5] \\ \mathrm{cr}=\mathrm{EQ} & \Longrightarrow \perp\end{aligned}\right.\)

In general, invariant checking is incomplete... It may require some refinement in the verifier

\section*{Outline}

\section*{Verifying a compiler result}

Principle: verify the semantic equivalence between source and compiled programs

Verification process: translation validation
(1) Establish mappings \(\pi_{1}, \pi_{x}\) between source and compiled programs
(3) Prove (with a specialized prover) the semantic equivalence of each basic block

\section*{Process:}


\section*{A technique based on fixpoint transfer}

Foundation: fixpoint transfer
Theorem
Let \(F_{s}: \mathcal{P}\left(\mathbb{S}_{s}{ }^{\star}\right) \rightarrow \mathcal{P}\left(\mathbb{S}_{s}{ }^{\star}\right)\) and \(F_{c}: \mathcal{P}\left(\mathbb{S}_{c}{ }^{\star}\right) \rightarrow \mathcal{P}\left(\mathbb{S}_{c}{ }^{\star}\right)\) and \(\pi_{t}: \mathbb{S}_{s}{ }^{\star} \rightarrow \mathbb{S}_{c}{ }^{\star}\) (complete for join), such that:
- \(F_{s}, F_{c}\) are monotone
- \(\pi_{t}(\emptyset)=\emptyset\) ( \(\emptyset\) least element);
- \(\pi_{t} \circ F_{s}=F_{c} \circ \pi_{t}\)
then both functions have a least fixpoint and:
\[
\operatorname{Ifp} F_{c}=\pi_{t}\left(\operatorname{Ifp} F_{s}\right)
\]

Proof: exercise
But the theorem does not apply directly:
source and compiled executions are not correlated step-by-step

\section*{A technique based on fixpoint transfer}

Equivalence of source and assembly traces:
source code trace

- standard semantics \(\llbracket P_{s} \rrbracket\) and \(\llbracket P_{c} \rrbracket\) are expressed as least fixpoints, but not directly correlated by \(\pi_{x}, \pi_{I}\)
- observational semantics \(\alpha_{s}^{r}\left(\llbracket P_{s} \rrbracket\right)\) and \(\alpha_{c}^{r}\left(\llbracket P_{c} \rrbracket\right)\) are directly correlated by not expressed as least fixpoint

We need fixpoint definitions for \(\alpha_{s}^{r}\left(\llbracket P_{s} \rrbracket\right), \alpha_{c}^{r}\left(\llbracket P_{c} \rrbracket\right)\) (e.g., each basic block in the assembly code should be one computation step)

\section*{Symbolic transfer functions: definition}

A language to describe the effect of a basic block
- basic blocks usually contain series of assignment: we flatten sequences of assignments into parallel assignments
- a basic block may branch to several points (often two)
- no loop: each cycle in the compiled code control flow graph is associated to at least one control state in the source

\section*{Symbolic transfer functions}

Symbolic transfer functions are defined by the grammar:


Intuitively, a symbolic transfer function is a store transformer

\section*{Symbolic transfer functions: semantics}

Semantic domain:
- \(\perp\) corresponds to the absence of behavior (error, blocking)
- \(\llbracket \delta \rrbracket \in \mathbb{M} \rightarrow \mathbb{M} \cup\{\perp\}\)

\section*{Denotational Semantics:}
- \(\mathbb{\square} \square](\rho)=\perp\)
- \(\llbracket L x \leftarrow e \rrbracket \rrbracket(\rho)=\rho\left[\forall i, \llbracket x_{i} \rrbracket(\rho) \leftarrow \llbracket e_{i} \rrbracket(\rho) \rrbracket\right.\)
\[
\text { if } \forall i, \llbracket x_{i} \rrbracket(\rho) \neq \text { error and } \forall i, \llbracket e_{i} \rrbracket(\rho) \neq \text { error }
\]
\(\llbracket L x \leftarrow e\rfloor \rrbracket(\rho)=\perp\) otherwise
- \(\llbracket\left\lfloor e ? \delta_{0} \mid \delta_{1}\right\rfloor \rrbracket(\rho)= \begin{cases}\llbracket \delta_{0} \rrbracket(\rho) & \text { if } \llbracket e \rrbracket(\rho)=\text { true } \\ \llbracket \delta_{1} \rrbracket(\rho) & \text { if } \llbracket \llbracket \rrbracket(\rho)=\text { false } \\ \perp & \text { if } \llbracket \llbracket \rrbracket(\rho)=\text { error }\end{cases}\)

Note: observe the identity is described by \(\iota=\lfloor\cdot \leftarrow \cdot\rfloor\) (parallel assignment, with empty support)

\section*{Symbolic transfer functions: example}

Encoding of a few instructions:
- "Addition" \(f_{0}:\) addi \(r_{1}, r_{1}, v ; f_{1}: \ldots\) :
\[
\delta_{l_{0}, \mathfrak{l}_{1}}=\left\lfloor\mathbf{r}_{0} \leftarrow \mathbf{r}_{1}+v\right\rfloor
\]
- "Comparison" \(\mathscr{K}_{0}: \mathrm{cmp} \mathrm{r}_{0}, \mathrm{r}_{1} ; \mathfrak{l}_{1}: \ldots\) :
\[
\begin{aligned}
\delta_{L_{0}, \ell_{1}}=\left\lfloor\mathbf{r}_{0}\right. & <\mathbf{r}_{1} ? \\
& \lfloor\mathbf{c r} \leftarrow \mathrm{LT}\rfloor \\
& \left.\mid\left\lfloor\mathbf{r}_{0}=\mathbf{r}_{1} ?\lfloor\mathbf{c r} \leftarrow \mathrm{EQ}\rfloor \mid\lfloor\mathbf{c r} \leftarrow \mathrm{GT}\rfloor\right\rfloor\right\rfloor
\end{aligned}
\]
- "Conditional branching" \(\mathfrak{l}_{0}:\) blt \(\langle\mathrm{LT}\rangle \mathfrak{C}_{1} ; \mathfrak{l}_{2}: \ldots\) :
\[
\begin{aligned}
& \delta_{l_{0}, l_{1}}=\lfloor\mathbf{c r}=\mathrm{LT} ? \iota \mid \square\rfloor \\
& \delta_{l_{0}, l_{2}}=\lfloor\mathbf{c r}=\mathrm{LT} ? \square \mid \iota\rfloor
\end{aligned}
\]

\section*{Symbolic transfer functions: example}

Encoding of a few instructions:
- "Load"
\[
\begin{aligned}
& \mathscr{L}_{0}: \operatorname{ld} \times \mathbf{r}_{d}, o, \mathbf{r}_{x} ; \mathfrak{l}_{1}: \ldots: \\
& \qquad \delta_{l_{0}, l_{1}}=\left\lfloor\mathbf{r}_{d} \leftarrow \mu\left(o+\mathbf{r}_{x}\right)\right\rfloor
\end{aligned}
\]
- "Load"
\[
\mathfrak{l}_{0}: \operatorname{ld} \mathrm{r}_{d}, o ; \mathfrak{l}_{1}: \ldots:
\]
\[
\delta_{l_{0}, \mathfrak{l}_{1}}=\left\lfloor\mathbf{r}_{d} \leftarrow \mu(o)\right\rfloor
\]
- "Store" \(\mathfrak{l}_{0}: \mathbf{s t x} \mathbf{r}_{d}, o, \mathbf{r}_{x} ; \mathfrak{l}_{1}: \ldots\) :
\[
\delta_{10, l_{1}}=\left\lfloor\mu\left(o+\mathbf{r}_{x}\right) \leftarrow \mathbf{r}_{d}\right\rfloor
\]

The encoding of the source semantics is straightforward

\section*{Symbolic transfer functions: composition operation}

\section*{Theorem}

We can define a fully syntactic composition operation \(\otimes: \mathbb{T} \times \mathbb{T} \rightarrow \mathbb{T}\) such that:
\[
\llbracket \delta_{0} \otimes \delta_{1} \rrbracket \simeq \llbracket \delta_{0} \rrbracket \circ \llbracket \delta_{1} \rrbracket
\]

Full proof left as exercise; we consider a few cases:
- \(\square \otimes \delta=\square\)
- \(\delta \otimes \square=\square\)
- \(\delta \otimes\left\lfloor c ? \delta_{0} \mid \delta_{1}\right\rfloor=\left\lfloor c ? \delta \otimes \delta_{0} \mid \delta \otimes \delta_{1}\right\rfloor\)
- ไx \(\left\lfloor x_{0} \leftarrow e_{0}\right\rfloor \otimes\left\lfloor x_{1} \leftarrow e_{1}\right\rfloor= \begin{cases}\left\lfloor x_{0} \leftarrow e_{0}\left[x_{1} \leftarrow e_{1}\right]\right\rfloor \\ \left\lfloor\begin{array}{lll}x_{0} & \leftarrow & e_{0}\left[x_{1} \leftarrow e_{1}\right] \\ x_{1} & \leftarrow & e_{1}\end{array}\right] \quad \text { if } x_{0}=x_{1} \\ \text { otherwise }\end{cases}\)
(note aliases must be treated with care)

\section*{Symbolic transfer functions: composition operation}

\section*{Example:}
- no aliasing between \(x, y, z\)
(i.e., locations \(x, y, z\) are disjoint pairwise)
- \(\delta_{0}=\left\lfloor\begin{array}{lll}x & \leftarrow & y+4 \\ y & \leftarrow & 3\end{array}\right]\)
- \(\delta_{1}=\lfloor y \leftarrow z+1\rfloor\)

Then:
\[
\delta_{0} \otimes \delta_{1}=\left\lfloor\begin{array}{lll}
x & \leftarrow z+5 \\
y & \leftarrow 3
\end{array}\right\rfloor
\]

Note that \(y\) is overwritten, and the expression written into \(x\) takes into account that assignment

\section*{Translation validation with symbolic transfer functions}

Application of symbolic transfer functions:
Definition of a new program (labeled transition system) \(P_{c}^{\prime}\)

\section*{Program Reduction}
- States: \(L_{c}^{\prime}\)
- \(\rightarrow\) is defined by a table of symbolic transfer functions:
```

$(I, \rho) \rightarrow\left(I^{\prime}, \rho^{\prime}\right)$

$$
\left\{\exists I_{0}, \ldots, I_{n} \in \mathbb{L}_{c} \backslash \mathbb{L}_{c}^{\prime},\right.
$$

$$
\rho^{\prime}=\llbracket \delta_{l_{n}, l^{\prime}} \otimes \ldots \otimes \delta_{l_{i}, l_{i+1}} \otimes \delta_{l_{i-1}, l_{i}} \otimes \ldots \otimes \delta_{l, l_{0}} \rrbracket(\rho)
$$

```

Symbolic semantic abstraction
- Semantics: \(\llbracket P_{c}^{\prime} \rrbracket=\operatorname{Ifp} F_{c}^{\prime}\) where \(F_{c}^{r}\) is derived from \(P_{c}^{\prime}\)
- Soundness property: \(\alpha_{c}^{r}\left(\llbracket P_{c} \rrbracket\right)=\llbracket P_{c}^{\prime} \rrbracket=\operatorname{Ifp} F_{c}^{\prime}\) Proof: by induction on the length of the traces of \(P_{c}^{\prime}\)

\section*{Translation validation: example (condition test)}

\section*{Compiled code:}

Source code:
\[
\begin{aligned}
& \text { if }(x \leq 5)\{ \\
& \quad \text { assert }(x \leq 5) ;
\end{aligned}
\]
\}else\{
\}
STF to the true branch:
\(\delta^{s}=\lfloor\mathrm{x} \leq 5 ? \iota \mid \square\rfloor\)
\(0 \quad\) Id \(r_{0}, \underline{x}\)

4 li \(\mathbf{r}_{1}, 5\)
\(8 \mathrm{cmp} \mathrm{r}_{0}, \mathrm{r}_{1}\)
12 blt \(\langle\mathrm{GT}\rangle\) ¢ \# (jump point)
16 ...\# true branch contents
\(\ell\) : \# false branch contents
STF to 1 :
\[
\delta_{l}^{c}=\lfloor\underline{\mathrm{x}}<5 ?
\]
\[
\begin{aligned}
& \left\lfloor\begin{array}{lll}
\mathbf{r}_{0} & \leftarrow & \mu(\underline{x}) \\
\mathbf{r}_{1} & \leftarrow & 5 \\
\mathrm{cr} & \leftarrow & \mathrm{LT}
\end{array}\right\rfloor \\
& \mid \ldots .
\end{aligned}
\]

Translation validation and optimization: instruction scheduling
source code
\(\int_{0}^{s} \quad i:=i+1\);
\(\zeta_{1}^{s} \quad \mathrm{x}:=\mathrm{x}+\mathrm{t}[\mathrm{i}] ;\)
\(\zeta_{2}^{s}\)
optimized code


Syntactic mappings:
\[
\begin{aligned}
& \pi_{\mathbb{X} \times \mathbb{X}}: \quad\left(\mathcal{L}_{0}^{s}, \mathrm{i}\right) \mapsto\left(\mathcal{L}_{0}^{0}, \underline{\mathrm{i}}\right) \\
& \left(6_{0}^{5}, \mathrm{x}\right) \mapsto\left(6_{0}^{0}, \underline{\mathrm{x}}\right) \\
& \left(f_{1}^{5}, i\right) \mapsto\left(f_{5}^{0}, \underline{i}\right) \\
& \left(\mathcal{1}_{1}^{5}, \mathrm{x}\right) \mapsto\left(\mathrm{h}_{1}^{\circ}, \underline{\mathrm{x}}\right) \\
& \left(\vdash_{2}^{s}, \mathrm{i}\right) \mapsto\left(\vdash_{7}^{\circ}, \underline{\mathrm{i}}\right) \\
& \left(\zeta_{2}^{s}, \mathrm{x}\right) \mapsto\left(\mathcal{F}_{7}^{\circ}, \underline{\mathrm{x}}\right)
\end{aligned}
\]

Thus, \(\zeta_{f}^{o}=i @ C_{5}^{o} ; x @ C_{1}^{o}\)
- Source level transfer functions:
\[
\delta_{l^{5},,_{1}^{s}}=\lfloor\mathrm{i} \leftarrow \mathrm{i}+1\rfloor \quad \delta_{\mathfrak{l}^{s},,_{2}^{s}}=\lfloor\mathrm{x} \leftarrow \mathrm{x}+\mathrm{t}[\mathrm{i}]\rfloor
\]
- Optimized level transfer functions (registered not displayed):
\[
\delta_{\mathbb{L}_{0}^{0}, \mathscr{l}_{f}^{0}}=\lfloor\mu(\mathrm{i}) \leftarrow \mu(\mathrm{i})+1\rfloor \quad \delta_{l_{f}, \mathscr{l}^{\circ}}=\lfloor\mu(\underline{\mathrm{x}}) \leftarrow \mu(\underline{\mathrm{x}})+\mu(\underline{\mathrm{t}}+\mu(\underline{\mathrm{i}}))\rfloor
\]

\section*{Translation validation and optimizations}

Program reduction:
- produces a set of symbolic transfer functions that encode the transition relation of the program up-to observational abstraction
- abstracts the effect of optimizations as in the instruction scheduling example loop unrolling would result into unrolling at the source level (partitioning)

Translation validation:
- based on a specialized prover, to establish equivalence of transfer functions

\section*{Outline}

\section*{Conclusion}

Formalization of Compilation:
- At the concrete level: independant from analysis
- Very broad; works as well for
- other architectures
- optimizations (use of other abstractions)

Algorithms for certified compilation described in the abstract interpretation frameworks:
- Invariant translation
- Invariant checking
- Translation validation
- Compiler formal certification

Symbolic transfer functions and use in static analysis and program transformations.

This approach applies to other program transformations

\section*{Homework}
(1) Formalize the dead variable elimination correctness (P. 46)
(2) Read:
P. Cousot and R. Cousot.

Systematic design of program transformation frameworks by abstract interpretation.
In Conference Record of the 29th Symposium on Principles of Programming Languages (POPL'02), pages 178-190, Portland, Oregon, January 2002.

\section*{Semantics}
- Program transformations: P. Cousot and R. Cousot.

Systematic design of program transformation frameworks by abstract interpretation.
In Conference Record of the 29th Symposium on Principles of Programming Languages (POPL'02), pages 178-190, Portland, Oregon, January 2002.
- Relation between types and static analysis:
P. Cousot,

Types as Abstract Interpretations.
In POPL'97, pages 316-331, Paris, january 1997.
- Symbolic transfer functions:
C. Colby and P. Lee.

Trace-based program analysis.
In 23rd POPL, pages 195-207, St. Petersburg Beach, (Florida USA), 1996.

\section*{Bibliography: Certified Compilation}
- Proof Carrying Codes: G. C. Necula. Proof-Carrying Code.
In 24th POPL, pages 106-119, 1997.
- Typed Assembly languages:
G. Morrisett, D. Tarditi, P. Cheng, C. Stone, R. Harper, and P. Lee. The TIL/ML Compiler: Performance and Safety Through Types. In WCSSS, 1996.
- Abstract invariant translation (after compilation):
X. Rival.

Abstract Interpretation-based Certification of Assembly Code. In 4th VMCAI, New York (USA), 2003.

\section*{Bibliography: Certified Compilation}
- Translation validation: A. Pnueli, O. Shtrichman, and M. Siegel. Translation Validation for Synchronous Languages.
In ICALP'98, pages 235-246. Springer-Verlag, 1998.
- Formal proof:
X. Leroy.

Formal certification of a compiler back-end, or: programming a compiler with a proof assistant.
In POPL'06, Charleston, january 2006.
- A generic frameork:
X. Rival.

Symbolic-Transfer Function-Based Approaches to Compilation Certification
In POPL'04, Venice, january 2004.```

