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Signalling Pathways

Eikuch, 2007
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Bridging the gap between. . .







































dx1
dt

= −k1 · x1 · x2 + k−1 · x3
dx2
dt

= −k1 · x1 · x2 + k−1 · x3
dx3
dt

= k1 · x1 · x2 − k−1 · x3 + 2 · k2 · x3 · x3 − k−2 · x4
dx4
dt

= k2 · x
2
3
− k2 · x4 +

v4·x5
p4+x5

− k3 · x4 − k−3 · x5
dx5
dt

= · · ·

...
dxn
dt

= −k1 · x1 · c2 + k−1 · x3
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Rule-based approach

We use site graph rewrite systems

1. The description level matches with both

• the observation level
• and the intervention level

of the biologist.
We can tune the model easily.

2. Model description is very compact.

3. Quantitative semantics can be defined.
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Complexity walls
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Abstractions offer different perspectives
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EGFR model (stochastic simulation)

[EGFR(Y68!0),GRB2(a!0,b!1),SOS(d!1)]
[EGFR(Y48!0),SHC(Y7!1,pi!0),GRB2(a!1,b!2),SOS(d!2)]

Concrete semantics
Causal traces

modulo abstraction

Flow of information
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egfr-compressed.ka

[EGFR(Y48!0),SHC(Y7!1,pi!0),GRB2(a!1,b!2),SOS(d!2)]
[EGFR(Y68!0),GRB2(a!0,b!1),SOS(d!1)]

Exact projection of
the ODE semantics
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Static analysis of reachable species (I/II)

Semi-fluid medium: the notion of individual is meaningless.

Design a static analysis to approximate the set of reachable species [VMCAI’08]

which focuses on the relationships between the states of the sites of each
agent:

This analysis is efficient, suitable to our problem, and accurate.
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Static analysis of reachable species (II/II)

Applications:

1. check the consistency of a model [ICCMSE’07]

2. compute the properties to allow fast simulation [APLAS’07]

3. simplify models,

4. compute independent fragments of chemical species [PNAS’09, LICS’10,Chaos’10]

The analysis is complete (no false positif) for a significatif kernel of Kappa
[VMCAI’08].
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Model reduction

The ground differential system uses one variable per chemical species;
We directly compute its exact projection over independent fragments of chem-
ical species.
With a small model, 356 chemical species are reduced into 38 fragments:
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(reduced) [EGFR(Y48!0),SHC(Y7!1,pi!0),GRB2(a!1,b!2),SOS(d!2)]
(reduced) [EGFR(Y68!0),GRB2(a!0,b!1),SOS(d!1)]

(ground) [EGFR(Y48!0),SHC(Y7!1,pi!0),GRB2(a!1,b!2),SOS(d!2)]
(ground) [EGFR(Y68!0),GRB2(a!0,b!1),SOS(d!1)]

On a bigger model, 1019 chemical species are reduced into 180 000 frag-
ments. [PNAS’09,LICS’10,Chaos’10]
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In this talk...

We illustrate the following concepts:

• Galois connections:

-- the upper closure operator γ ◦ α,
-- the lower closure operator α ◦ γ;

• soundness:

-- the abstraction forgets no behavior;

• completeness:

-- sufficient conditions that ensure the absence of false positive;

on an abstraction of the reachable connected components in a site-graph
rewriting language.
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Overview

1. Introduction

2. Language: Kappa

3. Abstraction: Local views

4. Completeness: false positives?

5. Local fragment of Kappa

6. Decontextualization

7. Conclusion
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Signaling Pathways

Eikuch, 2007
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A single story
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A concurrent story
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Overshoot

When we combine the two stories. . .

. . . we get an overshoot.
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A chemical species
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E(r!1), R(l!1,r!2), R(r!2,l!3), E(r!3)
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A Unbinding/Binding Rule
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E(r), R(l,r)←→ E(r!1), R(l!1,r)
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Internal state
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R(Y1∼u,l!1), E(r!1)←→ R(Y1∼p,l!1), E(r!1)
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Early EGF example

Ligand-receptor binding, receptor dimerisation, rtk x-phosph, & de-phosph
 01: R(l,r), E(r) <-> R(l1,r), E(r1)
 02: R(l1,r), R(l2,r) <-> R(l1,r3), R(l2,r3)
 03: R(r1,Y68) -> R(r1,Y68p)
       R(Y68p) -> R(Y68) 
 04: R(r1,Y48) -> R(r1,Y48p)
       R(Y48p) -> R(Y48) 

Sh x-phosph & de-phosph
 14: R(r2,Y48p1), Sh(π1,Y7) ->  R(r2,Y48p1), Sh(π1,Y7p)
 ??: Sh(π1,Y7p)  ->  Sh(π1,Y7)
 16: Sh(π,Y7p) -> Sh(π,Y7)

Y68-G binding
 09: R(Y68p),  G(a,b)  <-> R(Y68p1)+G(a1,b)
 11: R(Y68p),  G(a,b2) <-> R(Y68p1)+G(a1,b2)

egf rules 1

receptor type: R(l,r,Y68,Y48)

refined from 
R(Y68p)+G(a)<->R(Y68p1)+G(a1)

refined from 
Sh(Y7p)-> Sh(Y7)

protein shorthands: E:=egf, R:=egfr, So:=Sos,Sh:=Sh,G:=grb2
site abbreviations & fusions: Y68:=Y1068, Y48:=Y1148/73, Y7:=Y317, π:=PTB/SH2
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Early EGF example

G-So binding
 10: R(Y68p1), G(a1,b), So(d) <-> R(Y68p1), G(a1,b2), So(d2)
 12: G(a,b), So(d)   <->  G(a,b1), So(d1)
 22: Sh(π,Y7p2), G(a2,b), So(d)      <->  Sh(π,Y7p2), G(a2,b1), S(d1)
 19: Sh(π1,Y7p2), G(a2,b), So(d)   <->  Sh(π1,Y7p2), G(a2,b1), S(d1) 

Y48-Sh binding
13: R(Y48p), Sh(π,Y7)  <-> R(Y48p1), Sh(π1,Y7) 
15: R(Y48p), Sh(π,Y7p) <-> R(Y48p1), Sh(π1,Y7p)
18: R(Y48p), Sh(π,Y7p1), G(a1,b)  <-> R(Y48p2), Sh(π2,Y7p1), G(a1,b)
20: R(Y48p), Sh(π,Y7p1), G(a1,b3), S(d3) <-> R(Y48p2), Sh(π2,Y7p1), G(a1,b3), S(d3)

Sh-G binding
17: R(Y48p1), Sh(π1,Y7p), G(a,b)   <-> R(Y48p1), Sh(π1,Y7p2), G(a2,b)
21: Sh(π,Y7p), G(a,b)  <->  Sh(π,Y7p1), G(a1,b)
23: Sh(π,Y7p), G(a,b2) <-> Sh(π,Y7p1), G(a1,b2)
24: R(Y48p1), Sh(π1,Y7p), G(a,b3), S(d3)  <-> R(Y48p1), Sh(π1,Y7p2), G(a2, b3), S(d3)

egf rules 2

refined from 
R(Y48p)+Sh(π)<->R(Y48p1)+Sh(π1)

why not simply G(b3)??

refined from 
Sh(π), G(a)<->Sh(π1), G(a1)

interface note: highlight 
the interacting parts

refined from 
So(d)+G(b)<->So(d1)+G(b1)
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Properties of interest

1. Show the absence of modeling errors:

• detect dead rules ;
• detect overlapping rules;
• detect non exhaustive interactions;
• detect rules with ambiguous molecularity.

2. Get idiomatic description of the networks:

• capture causality;
• capture potential interactions;
• capture relationships between site states;
• simplify rules.

3. Allow fast simulation:

• capture accurate approximation of the wake-up relation.
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Overview

1. Introduction

2. Language: Kappa

3. Abstraction: Local views

4. Completeness: false positives?

5. Local fragment of Kappa

6. Decontextualization

7. Conclusion
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Embedding

RR R

Φ

Φ
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Z Z ′
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Y48
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We write Z⊳Φ Z ′ iff:

• Φ is a site-graph morphism:

-- i is less specific than Φ(i),
-- if there is a link between (i, s) and (i ′, s ′),

then there is a link between (Φ(i), s) and (Φ(i ′), s ′).

• Φ is an into map (injective):

-- Φ(i) = Φ(i ′) implies that i = i ′.
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Set of reachable chemical species

Let R = {Ri} be a set of rules.
Let Species be the set of all chemical species (C, c1, c ′

1, . . . , ck, c
′
k, . . . ∈ Species).

Let Species0 be the set of initial .
We write:

c1, . . . , cm →Rk c
′
1, . . . , c

′
n

whenever:

1. there is an embedding of the lhs of Rk in the solution c1, . . . , cm;

2. the (embedding/rule) produces the solution c ′
1, . . . , c

′
n.

We are interested in Speciesω the set of all chemical species that can be
constructed in one or several applications of rules in R starting from the set
Species0 of initial chemical species.

(We do not care about the number of occurrences of each chemical species).
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Inductive definition

We define the mapping F as follows:

F :






℘(Species) → ℘(Species)

X 7→ X ∪

{

c ′
j

∣

∣

∣

∣

∃Rk ∈ R, c1, . . . , cm ∈ X,

c1, . . . , cm →Rk c
′
1, . . . , c

′
n

}

.

The set ℘(Species) is a complete lattice.
The mapping F is an extensive ∪-complete morphism.

We define the set of reachable chemical species as follows:

Speciesω =
⋃{

F
n(Species0)

∣

∣ n ∈ N
}
.
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Local views
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α({R(Y1∼u,l!1), E(r!1)}) = {R(Y1∼u,l!r.E); E(r!l.R)}.
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Galois connection

Let Local_view be the set of all local views.

Let α ∈ ℘(Species)→ ℘(Local_view) be the function that maps any set of
chemical species into the set of their local views.

The set ℘(Local_view) is a complete lattice.
The function α is a ∪-complete morphism.

Thus, it defines a Galois connection:

℘(Species) −−→←−−
α

γ

℘(Local_view).

(The function γ maps a set of local views into the set of complexes that can
be built with these local views).
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γ ◦ α

γ ◦ α is an upper closure operator: it abstracts away some information.

Guess the image of the following set of chemical species ?

{ }a

R
rl
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α ◦ γ

α ◦ γ is a lower closure operator: it simplifies (or reduces) constraints.

Guess the image of the following set of local views ?

{ }R
a

; a

S
rl

l.r.

l

r.

r

l.R RR R
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One more question

α ◦ γ is a lower closure operator: it simplifies (or reduces) constraints.

Guess the image of the following set of local views ?

{ }R
a

; a

R
r

l. R RR
l l

r. l.

r
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Abstract reactions
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Abstract counterpart to F

We define F
♯ as:

F
♯ :






℘(Local_view) → ℘(Local_view)

Y 7→ Y ∪

{

lv ′
j

∣

∣

∣

∣

∃Rk ∈ R, lv1, . . . , lvm ∈ Y,

lv1, . . . , lvm →
♯

Rk
lv ′

1, . . . , lv
′
n

}

.

We have:

• F
♯ is extensive;

• F
♯ is monotonic;

• F ◦ γ
.

⊆ γ ◦ F♯;

• F
♯ ◦ α = α ◦ F ◦ γ ◦ α (we will see later why).
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Soundness

Theorem 1 Let:

1. (D,⊆,∪) and (D♯,⊑,⊔) be chain-complete partial orders;

2. D −−→←−−
α

γ

D♯ be a Galois connection;

3. F ∈ D→ D and F
♯ ∈ D♯ → D♯ be monotonic mappings such that:

F ◦ γ
.

⊆ γ ◦ F♯;

4. X0 ∈ D be an element such that: X0 ⊆ F(X0);

Then:

1. both lfpX0
F and lfpα(X0)

F
♯ exist,

2. lfpX0
F ⊆ γ(lfpα(X0)

F
♯).
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Which information is abstracted away ?

Our analysis is exact (no false positive):

• for EGF cascade (356 chemical species);

• for FGF cascade (79080 chemical species);

• for SBF cascade (around 1019 chemical species).

We know how to build systems with false positives. . .
. . .but they seem to be biologically meaningless.

This raises the following issues:

• Can we characterize which information is abstracted away ?

• Which is the form of the systems, for which we have no false positive ?

• Do we learn something about the biological systems that we describe ?
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Which information is abstracted away ?

Theorem 2 We suppose that:

1. (D,⊆) be a partial order;

2. (D♯,⊑,⊔) be chain-complete partial order;

3. D −−→←−−
α

γ

D♯ be a Galois connection;

4. F ∈ D→ D and F
♯ ∈ D♯ → D♯ are monotonic;

5. F ◦ γ
.

⊆ γ ◦ F♯;

6. X0, inv ∈ D such that:

• X0 ⊆ F(X0) ⊆ F(inv) ⊆ inv,
• inv = γ(α(inv)),
• and α(F(inv)) = F

♯(α(inv));

Species

inv
γ(lfpα(Species0)

F
♯)

Speciesω

Then, lfpα(X0)
F
♯ exists and γ(lfpα(X0)

F
♯) ⊆ inv.
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Proof I/III

We have already seen (previous lectures) that:

1. lfpα(X0)
F
♯ exists;

2. there exists an ordinal δ such that lfpα(X0)
F
♯ = F

♯δ(α(X0)).
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Proof II/III

Let us show that γ(lfpα(X0)
F
♯) ⊆ inv.

Let us prove instead by induction over δ that F♯δ(α(X0)) ⊑ α(inv).

• If Y ∈ D♯ is an element such that Y ⊑ α(inv),
F
♯(Y) ⊑ F

♯(α(inv)) (F♯ is mon)
F
♯(α(inv)) = α(F(inv)) (assumption)

α(F(inv)) ⊑ α(inv). (α is mon and inv is a post)

Thus: F♯(Y) ⊑ α(inv)

• If Yi ∈ D♯I is a chain of elements such that Yi ⊑ α(inv) for any i ∈ I,
then, ⊔Yi ⊑ α(inv) (lub).

So: F♯δ(α(X0)) ⊑ α(inv).
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Proof III/III

We have:
F
♯δ(α(X0)) ⊑ α(inv).

Since γ is monotonic:

γ(F♯δ(α(X0))) ⊆ γ(α(inv)).

But, by assumption, γ(α(inv)) = inv.
Thus,

γ(F♯δ(α(X0))) ⊆ inv.
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When is there no false positive ?

Theorem 3 We suppose that:

1. (D,⊆,∪) and (D♯,⊑,⊔) are chain-complete partial orders;

2. (D,⊆) −−→←−−
α

γ

(D♯,⊑) is a Galois connection;

3. F : D→ D is a monotonic map;

4. X0 is a concrete element such that X0 ⊆ F(X0);

5. F ◦ γ
.

⊆ γ ◦ F♯;

6. F
♯ ◦ α = α ◦ F ◦ γ ◦ α.

Then:

• lfpX0
F and lfpα(X0)

F
♯ exist;

• lfpX0
F = γ(α(lfpX0

F))⇐⇒ lfpX0
F = γ(lfpα(X0)

F
♯).

We need to understand under which assumptions lfpX0
F = γ(α(lfpX0

F)).
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Swapping relation

We define the binary relation
SWAP
∼ among tuples Species∗ of chemical species.

We say that (C1, . . . , Cm)
SWAP
∼ (D1, . . . , Dn) if and only if:

(C1, . . . , Cm) matches with

r l

r l

while (D1, . . . , Dn) matches with

r l

r l
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Swapping closure

Theorem 4 Let X ∈ ℘(Species) be a set of chemical species.

The two following assertions are equivalent:

1. X = γ(α(X));

2. for any tuples (Ci), (Dj) ∈ Species∗ such that:

• (Ci) ∈ X∗,

• and (Ci)
SWAP
∼ (Dj);

we have (Dj) ∈ X∗.
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Proof (easier implication way)

If:

• X = γ(α(X)),

• (Ci)i∈I ∈ X∗,

• and (Ci)i∈I
SWAP
∼ (Dj)j∈J;

Then:
we have α({Ci | i ∈ I}) = α({Dj | j ∈ J}) (because (Ci)

SWAP
∼ (Dj))

and α({Ci | i ∈ I}) ⊆ α(X) (because (Ci) ∈ X∗ and α mon);
so α({Dj | j ∈ J}) ⊆ α(X);
so {Dj | j ∈ J} ⊆ γ(α(X)) (by def. of Galois connections);
so {Dj | j ∈ J} ⊆ X (since X = γ(α(X)));
so (Dj)j∈J ∈ X∗.
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Proof: more difficult implication way

For any X ∈ ℘(Local_view), γ(X) is given by a rewrite system:
For any lv ∈ X, we add the following rules:

F

.

.

.

F
E

.

E

E

I
E

.

F

F

F

F
E

.

E

E

E

F Fl

p

p

Y2

Y1

u

p

u

r.

Y2

Y1 Y3

u

l

p

r

u

Y3

Y3.

r

r

r

r

l l

Y3.

r.

l.

Y3rY3

l

p

p

u

r.

Y2

Y3

u

l.

r

l.

r

l

p

p

u

r.

Y2

Y1 Y3

u

r.

r.

r.

Y1

I and semi-links are non-terminal.
I is the initial symbol.
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Proof (more difficult implication way)

We suppose that X is close with respect to
SWAP
∼ .

We want to prove that γ(α(X)) ⊆ X.

We prove, by induction, that any open complex that can be built by gathering
the views of α(X), can be embedded in a complex in X:

• By def. of α, this is satisfied for any local view in α(X);

• This remains satisfied after unfolding a semi-link with a local view;

• This remains satisfied after binding two semi-links.

Jérôme Feret 39 Wednesday, the 11th of February, 2015



Initialization

E

F
E

.

E

F
E

.

.

I
r.

l

p

p

u

r.

Y2

Y1 Y3

u

r.

l

p

p

u

r.

Y2

Y1 Y3

u

C ∈ X
(since lv ∈ α(X))lv
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Unfolding a semi-link

.

.

E

F

F

F
E

..

.

..

F
E

.

open partial species

p

r

r

r.

l.

l.

p

u

r.

Y2

Y1 Y3

u

l

p

l

p
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Unfolding a semi-link
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Binding two semi-links
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Consequences

Let Y ∈ ℘(Local_view)) be a set of local views such that α(γ(Y)) = Y.

1. Each open complex C built with the local views in Y is a sub-complex of
a close complex C ′ in γ(Y).

2. When considering the rewrite system that computes γ(Y), any partial
rewriting sequence can be completed in a successful one.

Thus:

(a) γ(Y) is finite if and only if the grammar has a finite set of prefixes
(and the latter is decidable);

(b) We have F
♯ ◦ α = α ◦ F ◦ γ ◦ α.
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Outline

We have proved that:

• if the set Speciesω of reachable chemical species is close with respect

swapping
SWAP
∼ ,

• then the reachability analysis is exact (i.e. Speciesω = γ(lfpα(Species0)
F
♯)).

Now we give some sufficient conditions that ensure this property.
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Sufficient conditions

Whenever the following assumptions:

1. initial agents are not bound;

2. rules are atomic;

3. rules are local:

• only agents that interact are tested,
• no cyclic patterns (neither in lhs, nor in rhs);

4. binding rules do not interfere i.e. if both:

• A(a∼m,S),B(b∼n,T)→ A(a∼m!1,S),B(b∼n!1,T)
• and A(a∼m’,S’),B(b∼n’,T’)→ A(a∼m’!1,S’),B(b∼n’!1,T’),

then:

• A(a∼m,S),B(b∼n’,T’)→ A(a∼m!1,S),B(b∼n’!1,T’);

5. chemical species in γ(α(Speciesω)) are acyclic,

are satisfied, the set of reachable chemical species is local.
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Proof outline

We sketch a proof in order to discover sufficient conditions that ensure this
property:

• We consider tuples of complexes in which the same kind of links occur
twice.

• We want to swap these links.

• We introduce the history of their computation.

• There are several cases. . .
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First case (I/V)

..

.

.

..

.

..

rr
rr

C ∈ Speciesω C ′ ∈ Speciesω
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First case (II/V)
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just before the links are made

C ∈ Speciesω
∗

C ′ ∈ Speciesω
∗
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First case (III/V)
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∗

we suppose we can swap the links
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First case (IV/V)

Then, we ensure that further computation steps:

• are always possible;

• have the same effect on local views;

• commute with the swapping relation
SWAP
∼ .

Cn

SWAP
∼ ,σ

//

R,φ

��

C ′
n

R,φ

��

Cn+1

SWAP
∼ ,σ

//C ′
n+1
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First case (V/V)
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Second case (I/II)
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we assume that the chemical species C is acyclic
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Second case (II/II)

..

.

.

..

.

..

..... ..
..

.

.

..

.

..

rr
rr

rr
rr

Jérôme Feret 55 Wednesday, the 11th of February, 2015



Sufficient conditions

Whenever the following assumptions:

1. initial agents are not bound;

2. rules are atomic;

3. rules are local:

• only agents that interact are tested,
• no cyclic patterns (neither in lhs, nor in rhs);

4. binding rules do not interfere i.e. if both:

• A(a∼m,S),B(b∼n,T)→ A(a∼m!1,S),B(b∼n!1,T)
• and A(a∼m’,S’),B(b∼n’,T’)→ A(a∼m’!1,S’),B(b∼n’!1,T’),

then:

• A(a∼m,S),B(b∼n’,T’)→ A(a∼m!1,S),B(b∼n’!1,T’);

5. chemical species in γ(α(Speciesω)) are acyclic,

are satisfied, the set of reachable chemical species is local.
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Third case (I/III)
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Third case (II/III)
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Third case (II/III)
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Non local systems

Species0
∆
= R(a∼u)

Rules
∆
=






R(a∼u) ↔ R(a∼p)
R(a∼u),R(a∼u) → R(a∼u!1),R(a∼u!1)
R(a∼p),R(a∼u) → R(a∼p!1),R(a∼p!1)
R(a∼p),R(a∼p) → R(a∼p!1),R(a∼p!1)






R(a∼u!1),R(a∼u!1) ∈ Speciesω
R(a∼p!1),R(a∼p!1) ∈ Speciesω
But R(a∼u!1),R(a∼p!1) 6∈ Speciesω.
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Non local systems

Species0
∆
= A(a∼u),B(a∼u)

Rules
∆
=






A(a∼u),B(a∼u)→ A(a∼u!1),B(a∼u!1)
A(a∼u!1),B(a∼u!1)→ A(a∼p!1),B(a∼u!1)
A(a∼u!1),B(a∼u!1)→ A(a∼u!1),B(a∼p!1)






A(a∼u!1),B(a∼p!1) ∈ Speciesω
A(a∼p!1),B(a∼u!1) ∈ Speciesω
But A(a∼p!1),B(a∼p!1) 6∈ Speciesω.
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Non local systems

Species0
∆
= A(a∼u)

Rules
∆
=

{
A(a∼u)↔ A(a∼p)
A(a∼u),A(a∼p)→ A(a∼u!1),A(a∼p!1)

}

A(a∼u!1),A(a∼p!1) ∈ Speciesω
But A(a∼p!1),A(a∼p!1) 6∈ Speciesω.
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Non local systems

Species0
∆
= R(a,b)

Rules
∆
= { R(a,b),R(a)→ R(a,b!1),R(a!1)}

R(a,b!2),R(a!2,b!1),R(a!1,b)∈ Speciesω
But R(a!1,b!1) 6∈ Speciesω.
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Outline

• we have a syntactic criterion in order to ensure that the set of reachable
chemical species of a kappa system is local ;

• we now design program transformations to help systems satisfying this
criterion ;

1. decontextualization
-- is fully automatic;
-- preserves the transition system;
-- simplifies rules thanks to reachability analysis.

2. conjugation
-- manual;
-- preserves the set of reachable chemical species;
-- uses backtrack to add new rules.
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Example

Initial rule:

R2(l!2,r),R1(l!1,r),E2(r!1),E1(r!2)→ R2(l!3,r!1),R1(l!2,r!1),E2(r!2),E1(r!3)

Decontextualized rule:

R2(l!_,r),R1(l!_,r)→ R2(l!_,r!1),R1(l!_,r!1)

We can remove redundant tests.
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Example

Initial rules:

Sh(Y7∼p!2,pi!1),G(a!2,b),R(Y48∼p!1) → Sh(Y7∼p,pi!1),G(a,b),R(Y48∼p!1)
Sh(Y7∼p!3,pi!1),G(a!3,b!2),So(d!2),R(Y48∼p!1) → Sh(Y7∼p,pi!1),G(a,b!2),So(d!2),R(Y48∼p!1)

Sh(Y7∼p!1,pi),G(a!1,b) → Sh(Y7∼p,pi),G(a,b)
Sh(Y7∼p!1,pi),G(a!1,b!_) → Sh(Y7∼p,pi),G(a,b!_)

Decontextualized rule:

Sh(Y7!1),G(a!1)→ Sh(Y7),G(a)

We can remove exhaustive enumerations.
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How does it work ?

To remove a test, we prove that:

• this test is satisfied whenever the other tests are satisfied;

• or each complex that passes all tests but this one also matches with the
left hand side of another rule that performs the same action.
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More formally

More formally:

• Each rule R is associated with the set S(R) of open chemical species
that can match its lhs;

• Rules are gathered in equivalence classes according to the actions they
perform;

• For each class [R], we compute:

G([R]) = ∪{S(R ′) | R ′ ∈ [R]}.

• For each class [R], Reach([R]) is an over approximation of the set of
open chemical species that may match the lhs of a rule R ′ ∈ [R].

A rule R may be decontextualized in a rule R ′ if:

S(R ′) ∩ Reach([R]) ⊆ G([R]).

Decontextualization is more efficient, if the reachability analysis is accurate.
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An undecontextualizable rule

Initial rule:

Sh(Y7∼u,pi!1),R(Y48∼p!1,r!_) -> Sh(Y7∼p,pi!1),R(Y48∼p!1,r!_)

Decontextualized rule:

Sh(Y7∼u,pi!1),R(Y48!1,r!_) -> Sh(Y7∼p,pi!1),R(Y48!1,r!_)
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Conjugation

If a rule R ′ is equivalent to a rule in the transitive closure of the system.
Then it may be included in the system without modifying reachable states.
To remove the context C of a rule, we try to apply it for another context C ′ by:

1. removing the context C ′ (backtrack) ;

2. building the context C ;

3. applying the initial rule ;

4. removing the context C (backtrack) ;

5. building the context C ′.

This is proved manually.
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Conclusion

• A scalable static analysis to abstract the reachable chemical species.

• A class of models for which the abstraction is complete.

• Many applications:

-- idiomatic description of reachable chemical species;
-- dead rule detection;
-- rule decontextualization;
-- computer-driven kinetic refinement.

• It can also help simulation algorithms:

-- wake up/inhibition map (agent-based simulation);
-- flat rule system generation (for bounded set of chemical species);
-- on the fly flat rule generation (for large/unbounded set)
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