Part I: Problem

Question 1.

1. The Galois connection is:

\[\alpha(U(R)) \overset{\text{def}}{=} \{ (\rho, a(i)) \mid (\rho, a) \in R, i \in [0, \rho(N) - 1] \} \]

\[\gamma(U(R^\sharp)) \overset{\text{def}}{=} \{ (\rho, a) \mid \forall i \in [0, \rho(N) - 1] : (\rho, a(i)) \in R^\sharp \} \]

This is indeed a Galois connection:

\[\alpha(U(R)) \subseteq R^\sharp \iff \{ (\rho, a(i)) \mid (\rho, a) \in R, i \in [0, \rho(N) - 1] \} \subseteq R^\sharp \]

\[\iff \forall (\rho, a) \in R : \forall i \in [0, \rho(N) - 1] : (\rho, a(i)) \in R^\sharp \]

\[\iff (\rho, a) \in R \implies \forall i \in [0, \rho(N) - 1] : (\rho, a(i)) \in R^\sharp \]

\[\iff R \subseteq \{ (\rho, a) \mid \forall i \in [0, \rho(N) - 1] : (\rho, a(i)) \in R^\sharp \} \]

\[\iff R \subseteq \gamma(U(R^\sharp)) \]

Actually, we have a Galois embedding as \(\alpha(U) \) is onto: any \((\rho, x) \in E^U\) is the abstraction \(\alpha(U)\{ (\rho, a) \} \) of some \((\rho, a) \in E\) such that \(\forall i \in [0, \rho(N) - 1] : a(i) = x \).

2. Consider \(X \overset{\text{def}}{=} ([N \mapsto 2], [0 \mapsto 0, 1 \mapsto 1]) \in E \).

Then, \(\alpha(U \{ X \}) = \{ ([N \mapsto 2], 0), ([N \mapsto 2], 1) \} \).

Then, \(\gamma(U(\alpha(U \{ X \}))) = \{ ([N \mapsto 2], [0 \mapsto 0, 1 \mapsto 0]), ([N \mapsto 2], [0 \mapsto 0, 1 \mapsto 1]), ([N \mapsto 2], [0 \mapsto 1, 1 \mapsto 0]), ([N \mapsto 2], [0 \mapsto 1, 1 \mapsto 1]) \} \)

which is larger than \(\{ X \} \).

3. To find the exactness condition we compute:

\[\gamma(U(\alpha(U(R)))) \]

\[= \{ (\rho, a) \mid \forall i \in [0, \rho(N) - 1] : (\rho, a(i)) \in \alpha(U(R)) \} \]

\[= \{ (\rho, a) \mid \forall i \in [0, \rho(N) - 1] : \exists (\rho, a') \in R : \exists j \in [0, \rho(N) - 1] : a(i) = a'(j) \} \]

\(\gamma(U(\alpha(U(R)))) = R \) if and only if \(\gamma(U(\alpha(U(R)))) \subseteq R \), i.e.:
\[\gamma^U(\alpha^U(R)) \subseteq R \]

\[\iff \{ (\rho, a) \mid \forall i \in [0, \rho(N) - 1] : \exists (\rho, a') \in R : \exists j \in [0, \rho(N) - 1] : a(i) = a'(j) \} \subseteq R \]

\[\iff \forall i \in [0, \rho(N) - 1] : \exists j \in [0, \rho(N) - 1] : \exists (\rho, a') \in R : a(i) = a'(j) \implies (\rho, a) \in R \]

\[\iff (\rho, a') \in R \implies \forall i, j \in [0, \rho(N) - 1] : \exists (\rho, a) \in R : a(i) = a'(j) \]

i.e., whenever the array \(A \) contains some value \(v \) at some index \(i \) while the scalar variables are defined by \(\rho \), then \(v \) can also appear at any other index \(j \) of \(A \) in another environment sharing the same \(\rho \). The abstraction is uniform: it collects the set of possible array element values for each \(\rho \) but does not distinguish between elements at different positions.

Question 2.

1. We derive abstract versions \(F^\sharp \) of each operator \(F \) using the Galois connection: \(F^\sharp \overset{\text{def}}{=} \alpha^U \circ F \circ \gamma^U \), so that our abstract operators are optimal by construction.

* Abstract assignment into a scalar:

\[
\left\{ (\rho[V \mapsto x], a) \mid (\rho, a) \in \gamma^U(R^\sharp) \right\} = \alpha^U(\{ (\rho[V \mapsto x], a) \mid (\rho, a) \in \gamma^U(R^\sharp) \})
\]

\[
= \alpha^U(\{ (\rho[V \mapsto x], a) \mid (\rho, x) \in \gamma^U(R^\sharp), \rho \cap [0, \rho(N) - 1] \neq \emptyset \})
\]

\[
= \{ (\rho[V \mapsto x], y) \mid (\rho, x), (\rho, y) \in R^\sharp, \rho \cap [0, \rho(N) - 1] \neq \emptyset \}
\]

The expression \(e \) is only evaluated to ensure that there is no out-of-bound access. We note that this abstraction is actually exact as:

\[
\{ (\rho[V \mapsto x], a) \mid (\rho, x) \in R^\sharp, (\rho, a) \in \gamma^U(R^\sharp) \}
\]

can be exactly represented in \(\mathcal{P}(\mathcal{E}^U) \) as it satisfies the formula from question 1.3.

* Abstract assignment into the array:

\[
\left\{ (\rho[A \leftarrow e], a) \mid (\rho, a) \in \gamma^U(R^\sharp) \right\} = \alpha^U(\{ (\rho[A \leftarrow e], a) \mid (\rho, a) \in \gamma^U(R^\sharp) \})
\]

\[
= \alpha^U(\{ (\rho, a[i \mapsto v]) \mid (\rho, a) \in \gamma^U(R^\sharp), i \in \mathcal{E}[e] \rho \cap [0, \rho(N) - 1], v \in \mathcal{E}[e'] \rho \})
\]

\[
= \{ (\rho, x), (\rho, v) \mid (\rho, x) \in R^\sharp, \mathcal{E}[e] \rho \cap [0, \rho(N) - 1] \neq \emptyset, v \in \mathcal{E}[e'] \rho \}
\]

As before, the expression \(e \) is only evaluated to ensure that there is no out-of-bound access. To prove that the operator is not exact, consider \(R^\sharp \overset{\text{def}}{=} \{ ([N \mapsto 2], 0) \} \), which represents:

\[
R = \gamma^U(R^\sharp) = \{ ([N \mapsto 2], [0 \mapsto 0, 1 \mapsto 0]) \}
\]

In the concrete, we have:

\[
C[A[0] \leftarrow 1] R = \{ ([N \mapsto 2], [0 \mapsto 1, 1 \mapsto 0]) \}
\]

However, this set cannot be exactly represented in the abstract; we get instead:

\[
C^U[A[0] \leftarrow 1] R^\sharp = \{ ([N \mapsto 2], 0), ([N \mapsto 2], 1) \}
\]

whose concretization is much larger (see question 1.2). Hence, the operator is not exact.
2. Abstract join: we have \(\cup^U = \cup \) as:

\[
R^\sharp \cup^U S^\sharp \\
\overset{\text{def}}{=} \alpha^U(\gamma^U(R^\sharp) \cup \gamma^U(S^\sharp)) \\
= \{ (\rho, a(i)) \mid (\rho, a) \in \gamma^U(R^\sharp) \cup \gamma^U(S^\sharp), i \in [0, \rho(N) - 1] \} \\
= \{ (\rho, a(i)) \mid (\rho, a) \in \gamma^U(R^\sharp), i \in [0, \rho(N) - 1] \} \cup \\
\{ (\rho, a(i)) \mid (\rho, a) \in \gamma^U(S^\sharp), i \in [0, \rho(N) - 1] \} \\
= \alpha^U(\gamma^U(R^\sharp)) \cup \alpha^U(\gamma^U(S^\sharp)) \\
= R^\sharp \cup S^\sharp
\]

The last line comes from the Galois embedding property: \(\alpha^U \circ \gamma^U = \text{id} \).

To show that \(\cup^U \) is not exact, consider \(R^\sharp \overset{\text{def}}{=} \{ ([N \mapsto 2], 0) \} \) and \(S^\sharp \overset{\text{def}}{=} \{ ([N \mapsto 2], 1) \} \).

Then:

\[
\gamma^U(R^\sharp) \cup \gamma^U(S^\sharp) = \{ ([N \mapsto 2], [0 \mapsto 0, 1 \mapsto 0]), ([N \mapsto 2], [0 \mapsto 1, 1 \mapsto 1]) \}
\]

But:

\[
\gamma^U(R^\sharp \cup^U S^\sharp) = \gamma^U(\{ ([N \mapsto 2], 0), ([N \mapsto 2], 1) \}) \\
= \{ ([N \mapsto 2], [0 \mapsto 0, 1 \mapsto 0]), ([N \mapsto 2], [0 \mapsto 0, 1 \mapsto 1]),
\quad ([N \mapsto 2], [0 \mapsto 1, 1 \mapsto 0]), ([N \mapsto 2], [0 \mapsto 1, 1 \mapsto 1]) \}
\]

as in question 1.2.

Question 3.

1. At the end of the program, the array is completely initialized to 1; hence:

\[
\mathcal{F} \overset{\text{def}}{=} \{ ([I \mapsto n, N \mapsto n], a) \mid n \geq 2, \forall i \in [0, n - 1] : a(i) = 1 \}
\]

2. We have: \(\mathcal{I}^U \overset{\text{def}}{=} \alpha^U(\mathcal{I}) = \{ ([I \mapsto n, N \mapsto n], 0) \mid n \geq 2 \} \)

and \(\mathcal{F}^U \overset{\text{def}}{=} \alpha^U(\mathcal{F}) = \{ ([I \mapsto n, N \mapsto n], 1) \mid n \geq 2 \} \).

Note that \(\gamma^U(\mathcal{I}^U) = \mathcal{I} \) and \(\gamma^U(\mathcal{F}^U) = \mathcal{F} \), so that the abstractions of \(\mathcal{I} \) and \(\mathcal{F} \) are indeed exact in \(\mathcal{P}(\mathcal{E}^U) \).

3. The concrete loop invariant is: \(\{ ([I \mapsto i, N \mapsto n], a) \mid n \geq 2, i \in [0, n], \forall k \in [0, i - 1] : a(k) = 1, \forall k \in [i, n - 1] : a(k) = 0 \} \), which cannot be represented exactly in \(\mathcal{P}(\mathcal{E}^U) \).

The best over-approximation of the invariant in \(\mathcal{P}(\mathcal{E}^U) \) is \(\{ ([I \mapsto i, N \mapsto n], v) \mid n \geq 2, i \in [0, n], v \in \{0, 1 \} \} \).

The computation \(\mathcal{C}^U [P_1] \mathcal{I}^U \) would then give \(\{ ([I \mapsto n, N \mapsto n], v) \mid n \geq 2, v \in \{0, 1 \} \} \), which is coarser than \(\mathcal{F}^U \) and cannot prove that \(A \) is indeed initialized to 1.

Question 4.

* We use the interval Galois connection between \(\mathcal{P}(\mathcal{E}^U) \) and \(\mathcal{D}^I \):
These operators are sound by construction, but they are not optimal. Indeed, in both cases, the abstract assignment into the array:

$$\alpha^I(R) \overset{\text{def}}{=} \begin{cases} \lambda V \in \mathcal{V}.[\min \{ \rho(V) \mid (\rho, a) \in R \}, \max \{ \rho(V) \mid (\rho, a) \in R \}] & \text{if } R \neq \emptyset \\ \lambda A. [\min \{ a \mid (\rho, a) \in R \}, \max \{ a \mid (\rho, a) \in R \}] & \text{if } R = \emptyset \end{cases}$$

Abstract assignment into a scalar:

$$\gamma^I(R^d) \overset{\text{def}}{=} \begin{cases} \{ (\rho, a) \mid \forall V \in \mathcal{V} : \rho \in R^d(V), a \in R^d(a) \} & \text{if } R^d \neq \bot, \emptyset \text{ otherwise} \end{cases}$$

* Abstract assignment into a scalar:

$$C^{U,I}[V \leftarrow A[e]] R^d \overset{\text{def}}{=} \alpha^I(C^{U}[V \leftarrow A[e]] \gamma^I(R^d))$$

$$= \alpha^I(\{ (\rho[V \mapsto x], y) \mid (\rho, x), (\rho, y) \in \gamma^I(R^d), E[e] \rho \cap [0, \rho(N) - 1] \neq \emptyset \})$$

$$= \begin{cases} R^d[V \mapsto R^d(A)] & \text{if } (E[e] \gamma^I(R^d)) \cap [0, \max R^d(N) - 1] \neq \emptyset \\ \bot & \text{otherwise} \end{cases}$$

Abstract assignment into the array:

$$C^{U,I}[A[e] \leftarrow e'] R^d \overset{\text{def}}{=} \alpha^I(C^{U,I}[A[e] \leftarrow e'] \gamma^I(R^d))$$

$$= \alpha^I(\{ (\rho, x), (\rho, v) \mid (\rho, x) \in \gamma^I(R^d), E[e] \rho \cap [0, \rho(N) - 1] \neq \emptyset \})$$

$$= \begin{cases} R^d \cup^I R^d[A \mapsto \alpha^I(E[e'] \gamma(R^d))] & \text{if } (E[e] \gamma^I(R^d)) \cap [0, \max R^d(N) - 1] \neq \emptyset \\ \bot & \text{otherwise} \end{cases}$$

$$\subseteq \begin{cases} R^d \cup^I R^d[A \mapsto E[e'] R^d] & \text{if } (E[e] R^d) \cap [0, \max R^d(N) - 1] \neq \emptyset \\ \bot & \text{otherwise} \end{cases}$$

These operators are sound by construction, but they are not optimal. Indeed, in both cases, the last inclusion is not an equality because $E[I[e]]$ is, in general, not an optimal abstraction of $E[e]$ (e.g., $E[I[V - V]]$).

Question 5.

* $C[P_2] I = \{ (I \mapsto n, N \mapsto n), a \} \mid n \geq 2, \forall i \in [0, n - 1], a(i) = i + 1 \}$

* The best abstraction of I in $P(U)$ is $I^U \overset{\text{def}}{=} \{ (I \mapsto 0, N \mapsto n), 0 \} \mid n \geq 2 \}$.

The computation is similar to that of question 3.3. We find, as loop invariant:

$$\{ (I \mapsto i, N \mapsto n), a \} \mid n \geq 2, i \in [0, n], a \in [0, i] \}$$

so that, at the end of the loop, we have:

$$C[P_2] I^U = \{ (I \mapsto n, N \mapsto n), a \} \mid n \geq 2, a \in [0, n] \}$$

Note that this abstraction not only forgets the relationship between the array index i and the array contents $a(i) = i + 1$ at the index, but it also forgets that the array values are strictly positive (0 is allowed in the abstraction).

* The best abstraction of I in D is $I^{'} \overset{\text{def}}{=} \{ I \mapsto [0, 0], N \mapsto [2, +\infty], A \mapsto [0, 0] \}$.

Then, the interval loop invariant is:
\[I \mapsto [0, +\infty], N \mapsto [2, +\infty], A \mapsto [0, +\infty] \]

and so:

\[C^U[I \mid P_2] = [I \mapsto [2, +\infty], N \mapsto [2, +\infty], A \mapsto [0, +\infty]] \]

Compared to the uniform abstraction, the interval abstraction further loses the relationship between \(I, N, \) and \(A \). In particular, we cannot prove that the array contents is bounded by the array size: \(A \leq N \). Naturally, similarly to the uniform abstraction, the interval abstraction cannot prove that the array is initialized to strictly positive values: \(A \geq 1 \).

Question 6.

1. We have:

\[
C^U[\text{expand } A \mapsto B; V \leftarrow B; \text{remove } B] R
= C^U[\text{remove } B] (C^U[V \leftarrow B] (C^U[\text{expand } A \mapsto B] R))
= \{ \rho \mid \exists v \in Z : \rho \oplus [B \mapsto v] \in C^U[V \leftarrow B] (C^U[\text{expand } A \mapsto B] R) \}
= \{ \rho \mid \exists v \in Z : \exists \rho' \in C^U[\text{expand } A \mapsto B] R : \rho' \oplus [B \mapsto v] = \rho'[V \mapsto \rho'(B)] \}
= \{ \rho \mid \exists v, v' \in Z : \exists \rho'' \in R : \rho''[A \mapsto v] \in R
\quad \rho' = \rho'' \oplus [B \mapsto v'], \rho \oplus [B \mapsto v] = \rho'[V \mapsto \rho'(B)] \}
= \{ \rho \mid \exists v, v' \in Z : \exists \rho'' \in R : \rho''[A \mapsto v] \in R, \rho \oplus [B \mapsto v] = (\rho'' \oplus [B \mapsto v])[V \mapsto v'] \}
= \{ \rho \mid \exists v' \in Z : \exists \rho'' \in R : \rho''[A \mapsto v'] \in R, \rho = \rho''[V \mapsto v'] \}
= \{ \rho''[V \mapsto v'] \mid \rho'' \in R, \rho''[A \mapsto v'] \in R \}
\]

(the first four equalities are obtained by expanding the definition of the sequence, then \text{remove } B,
then \(V \leftarrow B \), then \text{expand } A \mapsto B; \) we then eliminate \(\rho' \), then \(v \), and finally \(\rho \).

On the other hand, when using \(E^U \simeq (\forall \cup \{A\}) \rightarrow Z \), the formula found in question 2 can be rewritten as:

\[C^U[V \leftarrow A[e]] R = \{ \rho[V \mapsto v] \mid \rho \in R, \rho[A \mapsto v] \in R, E[\rho \cap [0, N - 1] \neq \emptyset] \} \]

2. The two formulas only differ for environments that necessarily cause an out-of-bound access
\((E[e] \rho \cap [0, N - 1] = \emptyset)\), in which case the first formula is less precise (returning some environments instead of \(\emptyset \)), so, it is sound but not optimal. When there is no out-of-bound access, the formulas are equal, i.e., the approximation is exact.

3. * Let \(X \overset{\text{def}}{=} \{ \{A \mapsto a\} \mid a \in \{0, 1\} \} \).

Then, \(C^U[\text{add } B; B \leftarrow A] = \{ \{A \mapsto a, B \mapsto a\} \mid a \in \{0, 1\} \} \), which satisfies \(A = B \).

However, \(C^U[\text{expand } A \mapsto B] = \{ \{A \mapsto a, B \mapsto b\} \mid a, b \in \{0, 1\} \} \), which contains some environments that do not satisfy \(A = B \).

* Let \(X \overset{\text{def}}{=} \{ \{V \mapsto 0, A \mapsto a\} \mid a \in \{0, 1\} \} \).

Then, \(C^U[V \leftarrow A[e]] = \{ \{V \mapsto v, A \mapsto a\} \mid a, v \in \{0, 1\} \} \).

However, \(C^U[V \leftarrow A] = \{ \{V \mapsto a, A \mapsto a\} \mid a \in \{0, 1\} \} \). This implies \(V = A \) after the assignment, i.e., in each environment, all the array elements are equal to the value of \(V \), which is obviously wrong.
Question 7.

We abstract $C^U[A[e \leftarrow e']$ as $C^U[\text{add } B; B \leftarrow e'; \text{fold } A \leftarrow B]$. This is sound as:

$$C^U[\text{add } B; B \leftarrow e'; \text{fold } A \leftarrow B] \cap$$

$$= C^U[\text{fold } A \leftarrow B] (C^U[B \leftarrow e'] (C^U[\text{add } B] R))$$

$$= C^U[\text{fold } A \leftarrow B] (C^U[B \leftarrow e'] \{ \rho \oplus [B \mapsto v] \mid \rho \in R, v \in Z \})$$

$$= C^U[\text{fold } A \leftarrow B] \{ \rho \oplus [B \mapsto v] \mid \rho \in R, v \in E[e'] \rho \}$$

$$= \{ \rho' \mid \exists v' \in Z : \exists \rho \in R : \exists v \in E[e'] \rho : \rho' \oplus [B \mapsto v'] = \rho \oplus [B \mapsto v] \} \cup$$

$$\{ \rho'[A \mapsto v'] \mid \exists \rho \in R : \exists v \in E[e'] \rho : \rho' \oplus [B \mapsto v'] = \rho \oplus [B \mapsto v] \}$$

$$= \{ \rho \mid \rho \in R, E[e'] \rho \neq \emptyset \} \cup \{ \rho[A \mapsto v] \mid \rho \in R, v \in E[e'] \rho \}$$

$$= \{ \rho, \rho[A \mapsto v] \mid \rho \in R, v \in E[e'] \rho \}$$

(as before the first lines are obtained by expanding the definition of the sequence, of \text{add } B, of B \leftarrow e', \text{ and then } \text{fold } A \leftarrow B).$

On the other hand, when using $E^U \simeq ((\forall \cup \{A\}) \rightarrow Z)$, the formula found in question 2 can be rewritten as:

$$C^U[A[e \leftarrow e'] R = \{ \rho, \rho[A \mapsto v] \mid \rho \in R, E[e] \rho \cap [0, N - 1] \neq \emptyset, v \in E[e'] \rho \}.$$

As before, the formulas are equivalent for environments that do not have an out-of-bound array access. Otherwise, $C^U[\text{add } B; B \leftarrow e'; \text{fold } A \leftarrow B]$ is less precise, and so, sound but not optimal.

Question 8.

We consider that each polyhedron $\gamma^P(C)$ is represented by a set of affine constraints C. We denote by $C^P[.]$ the regular polyhedra operators seen in the course.

* We set:

$$C^U,P[\text{add } W] C \overset{\text{def}}{=} C$$

i.e., we do not change the constraint presentation. That way, there is no constraint on W, which models the fact that W can have an arbitrary value, independent from the values of other variables. The operator is exact.

* We set:

$$C^U,P[\text{remove } W] C \overset{\text{def}}{=} C^P[W \leftarrow [-\infty, +\infty]] C$$

i.e., use the “forget” (or “project”) operation. The resulting constraint system is guaranteed to not feature the variable W. On rationals, the operation is exact. Indeed, we have:

$$\gamma^P(C^P[W \leftarrow [-\infty, +\infty]] C) = \{ \rho[W \mapsto w] \mid \rho \in \gamma^P(P), w \in \mathbb{Q} \}$$

$$= \{ \rho \mid \exists w \in \mathbb{Q} : \rho[W \mapsto w] \in \gamma^P(P) \}.$$

However, on integers, as is the case here, the operation is not exact, as the projection of an integer polyhedron may not be an integer polyhedron. Consider for instance $C^U[\text{remove } Y] \gamma^P(\{X = 2Y\}) = \{ [X \mapsto x] \mid x \in 2\mathbb{Z} \}$, which is not a polyhedron, although $\gamma^P(\{X = 2Y\})$ is.

* We set

$$C^U,P[\text{expand } V \mapsto W] C \overset{\text{def}}{=} C \cup \{ c[W/V] \mid c \in C \}$$
i.e., to the constraint set C we add a copy of each constraint $c \in C$ where the variable W has been substituted for the variable V.

We now prove that this operation is exact on polyhedra. Recall that $C^U[\mathbf{expand} V \mapsto W] \overset{\text{def}}{=} \{ \rho \oplus \{ W \mapsto v \} \mid \rho \in R, \rho[V \mapsto v] \in R \}$. Given a map ρ containing variable V but not W, then $\rho' \overset{\text{def}}{=} \rho \oplus \{ W \mapsto v \}$ satisfies $C \cup \{ c[W/V] \mid c \in C \}$ if and only if ρ' satisfies C and ρ' satisfies $\{ c[W/V] \mid c \in C \}$. As W does not occur in C, ρ' satisfies C if and only if ρ does. As V does not occur in $\{ c[W/V] \mid c \in C \}$, ρ' satisfies $\{ c[W/V] \mid c \in C \}$ if and only if $\rho \oplus \{ W \mapsto v \} \oplus V$ does (where $\oplus V$ indicates that we remove a variable from a map). By renaming back W into V in both $\rho \oplus \{ W \mapsto v \} \oplus V$ and $\{ c[W/V] \mid c \in C \}$, this is equivalent to having $\rho[V \mapsto v]$ satisfying C. To sum up, we have that $\rho \oplus \{ W \mapsto v \}$ satisfies $C \cup \{ c[W/V] \mid c \in C \}$ if and only if both ρ and $\rho[V \mapsto v]$ satisfy C, which concludes the proof.

Consider the polyhedron $\gamma^P(C)$ defined by the constraint set $C \overset{\text{def}}{=} \{ V \in [0, 1], W \in [10, 11] \}$. Then, in the concrete, $C^U[\mathbf{fold} V \leftarrow W] \gamma^P(C) = \{ [V \mapsto v \mid v \in [0, 1] \cup [10, 11]] \}$, which is not convex. Hence, there cannot exist an exact abstraction of $\mathbf{fold} V \leftarrow W$ in the polyhedra domain. We propose the following abstraction:

$$C^{U,P}[\mathbf{fold} V \leftarrow W] C \overset{\text{def}}{=} C^{U,P}[\mathbf{remove} W] (C \cup \mathbf{P} \mathbf{C}[V \leftarrow W] C)$$

i.e., we join the polyhedron with a copy where V is assigned to W, and then forget W. We justify the soundness as follows, using the soundness of the abstract $C^{U,P}[\mathbf{remove} W]$, of $\cup \mathbf{P}$, and $C^{U}[V \leftarrow W]$, as well as the complete \cup–morphism property of $C^{U}[\mathbf{remove} W]$ and \cup:

$$\gamma^P(C^{U,P}[\mathbf{remove} W] (C \cup \mathbf{P} \mathbf{C}[V \leftarrow W] C)) \supseteq C^{U}[\mathbf{remove} W] (\gamma^P(\mathbf{C}[V \leftarrow W] C))$$

$$= \{ \rho \mid \exists v \in Z : \rho \oplus \{ W \mapsto v \} \in \gamma^P(C) \} \cup \{ \rho \mid \exists v \in Z : \rho \oplus \{ W \mapsto v \} \in C[\mathbf{V} \leftarrow W] \gamma^P(C) \}$$

$$= \{ \rho \mid \exists v \in Z : \rho \oplus \{ W \mapsto v \} \in \gamma^P(C) \} \cup \{ \rho[V \mapsto v] \mid \rho \oplus \{ W \mapsto v \} \in \gamma^P(C) \}$$

$$= C^{U}[\mathbf{fold} V \leftarrow W] \gamma^P(C)$$

We start by giving the polyhedra semantics of P_2:

- The initial state is abstracted exactly in the polyhedra domain using the constraint set $I^P = \{ N \geq 2, I = 0, A = 0 \}$.

- In the first loop iteration, after an application of $A[I] \leftarrow I + 1$, we get $A^P = \{ N \geq 2, I = 0, 0 \leq A \leq 1 \}$ and, after incrementing I, we get $Y^P = \{ N \geq 2, I = 1, 0 \leq A \leq 1 \}$.

The control flow join at the loop head gives $I^P = I^P \cup P Y^P = \{ N \geq 2, 0 \leq I \leq 1, 0 \leq A \leq I \}$. Note that the join creates a relation $A \leq I$ between the array contents and I, stating that all array elements are smaller than I.

- After performing a second loop iteration from I^P, we get similarly $I^P = \{ N \geq 2, 0 \leq I \leq 2, 0 \leq A \leq I \}$.

Note that the assignment $A[I] \leftarrow I + 1$ maintains the relation between A and I.
We apply a widening and get $W^P_2 = I^P_1 \lor I^P_2 = \{ N \geq 2, 0 \leq I, 0 \leq A \leq I \}$.

To get the invariant when the program ends, we apply the exit loop condition.

An extra iteration shows that W^P_2 is stable; however, it is not very precise on the upper bound of I due to the widening.

To recover some precision, we apply (as in the course) one iteration without widening. We get $W^P_3 = \{ N \geq 2, 0 \leq I \leq N, 0 \leq A \leq I \}$, i.e., we recover the relation between I and N.

We are able to prove that all array elements are smaller than the array size N. However, we cannot prove that the array elements are greater than 1, nor that $\forall i : A[i] = i + 1$ (although both properties are true, and the first property is expressible in the polyhedra domain with the uniform abstraction).

The semantics of P_1 could be computed the same way. It is actually simpler as there is not relationship between A and I. We thus find: $\{ N \geq 2, I = N, 0 \leq A \leq N \}$. Note that, apart from the relation $I = N$, the result is exactly the same with the polyhedra domain as with the interval domain. In particular, we cannot infer that $A = 1$, i.e., that the array is fully initialized to 1 when the program stops.

Question 10.

1. Neither the assignment $I \leftarrow I + 1$ nor the test $I < N$? updates the array, and so, they are identical to a semantics in E^one where L and H have no special meaning. We set:

$$C^one[I \leftarrow I + 1] R = \{ \rho[I \mapsto \rho(I) + 1] \mid \rho \in R \}$$

$$C^one[I < N?] R = \{ \rho \in R \mid \rho(I) < \rho(N) \} .$$

These are obviously sound and exact abstractions.

The assignment $A[I] \leftarrow 1$ is more interesting as it is able to manipulate the predicate $one(L, H)$. More precisely, it can extend the range on which $one(L, H)$ holds whenever I is adjacent to the range $[L, H]$ (i.e., $I = L - 1$ or $I = H + 1$). Formally:

$$C^one[A[I] \leftarrow 1] R \overset{\text{def}}{=} \{ f(\rho) \mid \rho \in R \}$$

where

$$f(\rho) \overset{\text{def}}{=} \begin{cases}
\rho[H \mapsto \rho(H)] & \text{if } \rho(I) = \rho(H) + 1 \\
\rho[L \mapsto \rho(I)] & \text{else if } \rho(I) = \rho(L) - 1 \\
\rho & \text{otherwise .}
\end{cases}$$

The operator is obviously sound. However, it is not exact. Consider for instance $X^2 \overset{\text{def}}{=} \{ [N \mapsto 10, L \mapsto 0, H \mapsto 1] \}$ representing the set of 10-element arrays whose two first elements are ones. Then, $C[A[5] \leftarrow 1] \gamma(X^2)$ is the set of environments $Y \overset{\text{def}}{=} \{ ([N \mapsto 10], a) \mid a(0) = a(1) = a(5) = 1 \}$, which cannot be exactly represented in $P(E^one)$. We have instead: $C^one[A[5] \leftarrow 1] X^2 = X^2$.

This example also shows that there are no best abstraction (i.e., no α^one) in $P(E^one)$: Y can be over-approximated by both $X^2 = \{ [N \mapsto 10, L \mapsto 0, H \mapsto 1] \}$ and by $\{ [N \mapsto 10, L \mapsto 5, H \mapsto 5] \}$, neither of which is a better abstraction.

We now prove that the regular set union $\cup^one \overset{\text{def}}{=} \cup$ on $P(E^one)$ is a sound and exact abstraction of \cup on $P(E)$:
Question 11.

1. When computing the semantics of \(P \), in the previous question, we have expressed

\[
\gamma_{\text{one}}(R \cup S) = \{ (\rho, a) \mid \rho \oplus [L \mapsto l, H \mapsto h] \in R \cup S, \forall i \in [l, h] : a(i) = 1 \}
\]

\[
= \{ (\rho, a) \mid \rho \oplus [L \mapsto l, H \mapsto h] \in R, \forall i \in [l, h] : a(i) = 1 \} \cup
\]

\[
\{ (\rho, a) \mid \rho \oplus [L \mapsto l, H \mapsto h] \in S, \forall i \in [l, h] : a(i) = 1 \}
\]

= \(\gamma_{\text{one}}(R) \cup \gamma_{\text{one}}(S) \)

In fact, we can check that \(\gamma_{\text{one}} \) is a \(\cup \)-morphism: \(\gamma_{\text{one}}(X) = \bigcup \{ \gamma_{\text{one}}(\{x\}) \mid x \in X \} \).

2. When computing the semantics of \(P_1 \) in \(\mathcal{P}(E^{\text{one}}) \), every application of \(C_{\text{one}}^1[I \leftarrow 1] \) triggers the first case of \(f \), i.e., \(H \) is incremented. At the beginning of the \(k \)-th iteration of the loop, we get the following set of abstract environments:

\[
\{ [N \mapsto n, I \mapsto i, L \mapsto 0, H \mapsto i - 1] \mid n \geq 2, i \leq \min(n, k) \}
\]

whose join over \(k \) gives the loop invariant:

\[
\{ [N \mapsto n, I \mapsto i, L \mapsto 0, H \mapsto i - 1] \mid n \geq 2, i \leq n \}.
\]

Hence, when the program stops, we have the property:

\[
\{ [N \mapsto n, I \mapsto n, L \mapsto 0, H \mapsto n - 1] \mid n \geq 2 \}
\]

which proves that the array is completely initialized to 1.

Question 11.

1. * In the previous question, we have expressed \(C_{\text{one}}^1[I \leftarrow I + 1] \), \(C_{\text{one}}^1[I < N?] \) and \(\cup_{\text{one}} \) using regular scalar concrete semantic operators over \(\mathbb{V} \cup \{L, H\} \), where \(L \) and \(H \) have no special meaning. By replacing the concrete scalar semantics with a polyhedral scalar semantics, we simply get:

\[
C_{\text{one}}^P[I \leftarrow I + 1] \quad \text{def} \quad C^P[I \leftarrow I + 1]
\]

\[
C_{\text{one}}^P[I < N?] \quad \text{def} \quad C^P[I < N?]
\]

\[
\cup_{\text{one}} \quad \text{def} \quad \cup^P
\]

* To abstract \(A[I] \leftarrow 1 \), we separate three possible cases, depending on the relative value of \(L \), \(I \), and \(H \). The predicate can be extended by increasing the upper bound \(H \) (when \(I = H + 1 \)), or extended by decreasing the lower bound \(L \) (when \(I = L - 1 \)), or left unchanged (when \(I \) is neither \(H + 1 \) nor \(L - 1 \)). Formally, this can be abstracted using regular polyhedra assignments, tests, and joins:

\[
C_{\text{one}}^P[A[I] \leftarrow 1] R \quad \text{def} \quad C^P[H \leftarrow H + 1](C^P[I = H + 1?] R) \cup^P
\]

\[
C^P[L \leftarrow L - 1](C^P[I = L - 1?] R) \cup^P
\]

\[
C^P[I \neq H + ?](C^P[I \neq L - ?] R)
\]

The soundness is a consequence of the soundness of each regular polyhedra operator we use. Note that equality and disequality tests can be decomposed into pairs of inequalities, for instance:

\[
C^P[I \neq H + 1] R \quad \text{def} \quad C^P[I > H + 1?] R \cup C^P[I < H + 1?] R.
\]
2. We note that all the abstract elements computed by the predicate semantic \(C^{one}[\cdot] \) for \(P_1 \) are actually exactly expressible in the polyhedra domain.

* We start with the constraint set \(I^P = \{ N \geq 2, I = 0, L = 0, H = -1 \} \) abstracting \(I \).
* The first application of \(A[I] \leftarrow 1 \) gives: \(C^{P,\text{one}}[A[I] \leftarrow 1] I^P = C^P[H \leftarrow H + 1] I^P = \{ N \geq 2, I = 0, L = 0, H = 0 \} \).
* After incrementing \(I \), we get \(\{ N \geq 2, I = 1, L = 0, H = 0 \} \).
* The join with \(I^P \) at the loop head gives: \(I^P = \{ N \geq 2, 0 \leq I \leq 1, L = 0, H = I - 1 \} \). Note that we discover the important relation \(H = I - 1 \).
* After a second iteration, we get: \(I^P = \{ N \geq 2, 0 \leq I \leq 2, L = 0, H = I - 1 \} \).
* The polyhedral widening gives: \(I^P \lor I^P = \{ N \geq 2, 0 \leq I \leq 2, L = 0, H = I - 1 \} \).
* A decreasing iteration recovers the constraint \(I \leq N \).

The polyhedral invariant is thus: \(\{ N \geq 2, 0 \leq I \leq N, L = 0, H = I - 1 \} \). The predicate \(\text{one}(0, N - 1) \) holds, which expresses the fact that \(A \) is completely filled with ones.

Question 12.

To analyze precisely \(P_3 \), it is necessary to express exactly the loop invariant, i.e., the fact that \(V \) is the maximum of a slice of the array (but not necessarily of the whole array). Naturally, we use a predicate \(V = \max A(L, H) \) that denotes that the value of \(V \) is the maximum of \(A \) between indices \(L \) and \(H \). However, this is not sufficient: we also need to keep the relationship between \(X \), \(V \), and \(A[I] \) in order to abstract precisely the assignment \(X \leftarrow A[I] \) and the test \(X > V? \).

There are several solutions to this problem. Here, we will use a simple solution, which consists in adding a new synthetic variable \(A_I \) that represents the array element at index \(I \) in the current environment. Hence, we set:

\[
E^{max} \overset{\text{def}}{=} (\forall \{ A, H, A_I \}) \rightarrow \mathbb{Z}
\]

with concretization \(\gamma^{max}: \mathcal{P}(E^{max}) \rightarrow \mathcal{P}(E) \) defined as:

\[
\gamma^{max}(R^E) \overset{\text{def}}{=} \{ (\rho, a) \mid \exists ! l, h, x \in \mathbb{Z} : \rho \oplus [L \mapsto l, H \mapsto h, A_I \mapsto x] \in R^E, \\
\rho(I) \in [0, \rho(N) - 1] \implies x = a(\rho(I)), \\
l \leq h \implies \rho(V) = \max \{ a(i) \mid i \in [l, h] \} \}
\]

Note that, when \(L > H \), we do not impose any constraint on \(V \), which is necessary to be able to represent the initial state where no array element equals one. Likewise, \(A[I] \) is not defined when \(I \not\in [0, N - 1] \), and the variable \(A_I \) does not enforce any constraint in that case.

* The initial state

\[
I \overset{\text{def}}{=} \{ ([N \mapsto n, V \mapsto v, I \mapsto i], a) \mid n \geq 2, v, i \in \mathbb{Z} \}
\]

is represented as the abstract set:

\[
I^{max} \overset{\text{def}}{=} \{ ([N \mapsto n, V \mapsto v, I \mapsto i, L \mapsto 0, H \mapsto -1, A_I \mapsto x] \mid n \geq 2, v, i, x \in \mathbb{Z} \}
\]

where the values of \(L, H, \) and \(A_I \) do not impose any constraint on the array contents.

* \(C^{max}[V \leftarrow A[0]] \overset{\text{def}}{=} C[L \leftarrow 0; H \leftarrow 0]. \)

We initialize the predicate as \(V = \max A(0, 0) \), indicating that \(V \) is the maximum of the \(A \) between 0 and 0 (i.e., \(A[0] \)).
\(C^\text{max} [I \leftarrow e] \stackrel{\text{def}}{=} C[I \leftarrow I + 1; A_I \leftarrow [-\infty, +\infty]] \).

In addition to updating the variable \(I \), we also forget the value of \(A_I \) to model the fact that any information on the prior value of \(A[I] \) is lost, as \(I \) may have changed its value.

\(C^\text{max} [I \triangleright e?] \stackrel{\text{def}}{=} C[I \triangleright e?] \).

This test is unchanged, we do not update our predicate nor \(A_I \).

\(C^\text{max} [X \leftarrow A[I]] \stackrel{\text{def}}{=} C[X \leftarrow A_I] \).

We update the relation between \(X \) and the synthetic variable \(A_I \) to remember the relation between \(X \) and \(A[I] \).

\(C^\text{max} [X > V?] \stackrel{\text{def}}{=} C[X > V?] \).

This test is also unchanged. Note that, as this test is executed after the assignment \(X \leftarrow A[I] \) in our program, we get \(\rho(X) = \rho(A)_I \) and the semantics will naturally track the relation between \(A[I] \) and \(V \): we get that \(\rho(A_I) > \rho(V) \) holds in all environments after the test.

\(C^\text{max} [X \leq V?] \ R \stackrel{\text{def}}{=} \{ f(\rho) \mid \rho \in R \} \) where:

\[
f(\rho) \stackrel{\text{def}}{=} \begin{cases}
\rho[H \mapsto \rho(I)] & \text{if } \rho(I) = \rho(H) + 1, \ \rho(A_I) = \rho(X) \\
\rho & \text{otherwise}
\end{cases}
\]

This tests uses the knowledge that \(A[I] = X \leq V \) to enlarge the interval \([L, H]\) over which \(V \) equals the maximum of \(A \).

\(C^\text{max} [V \leftarrow X] \ R \stackrel{\text{def}}{=} \{ g(\rho) \mid \rho \in R \} \) where:

\[
g(\rho) \stackrel{\text{def}}{=} \begin{cases}
\rho[V \mapsto \rho(X), H \mapsto \rho(I)] & \text{if } \rho(I) = \rho(H) + 1, \ \rho(A_I) > \rho(V) \\
\rho[V \mapsto \rho(X)] & \text{otherwise}
\end{cases}
\]

Similarly, this assignment uses the knowledge that \(A[I] > V \) to enlarge the interval \([L, H]\) over which \(V \) equals the maximum of \(A \).

\(\star \) As \(\gamma^\text{max} \) is a \(\cup \)-morphism, similarly to \(\mathcal{P}(E^{\text{one}}) \), we have that \(\cup^{\text{max}} \stackrel{\text{def}}{=} \cup \) is the best abstraction of the join.

We could further abstract \(\mathcal{P}(E^{\text{max}}) \) using the polyhedra abstract domain over \((V \cup \{L, H, A_I\}) \rightarrow \mathbb{Z})

Historical notes:

The uniform abstraction has been used for a long time in combination with non-relational abstract interpretations (such as the interval analysis). It has been also used in data-flow analysis, which is inherently non-relational (the abstraction is also called “field-insensitive”). The first use of an uniform abstraction on a relational abstract domain is in the following article, that introduces the expand and remove operators: “D. Gopan, F. DiMaio, N. Dor, T. Reps, M. Sagiv. Numeric domains with summarized dimensions. In Proc. of 10th International Conference on Tools and Algorithms for Construction and Analysis of Systems (TACAS), LNCS 2988, p. 512–529. Springer, 2004.”

\[\star \star \star \]
Part II: Exercise

1. ★ Assume that M is a lower Moore family. Given $x \in X$, we use the notation $M_x \overset{\text{def}}{=} \{ y \in M \mid x \sqsubseteq y \}$. We know by hypothesis that $M_x \neq \emptyset$ and that M_x has a least element $\sqcap M_x$ in M.

We have by definition $M_\top = \{ y \in M \mid \top \sqsubseteq y \}$. The only element greater than \top is \top itself, so that $M_\top \subseteq \{ \top \}$. As $M_\top \neq \emptyset$, we must have $M_\top = \{ \top \}$. As $M_\top \subseteq M$, we have $\top \in M$.

Consider now $S \subseteq M$ and $M_{\cap S} = \{ y \in M \mid \sqcap S \subseteq y \}$. By Moore family property, $\sqcap M_{\cap S} \subseteq M_{\cap S}$, so that $\sqcap S \subseteq \sqcap M_{\cap S}$. Moreover, as $\forall s \in S : \sqcap S \subseteq s$, we have $S \subseteq M_{\cap S}$, so that $\sqcap M_{\cap S} \subseteq \sqcap S$. Hence, $\sqcap S = \sqcap M_{\cap S} \in M$.

★ For the other direction, assume that $\top \in M$ and M is closed by \sqcap. Take $x \in X$ and consider $M_x \overset{\text{def}}{=} \{ y \in M \mid x \sqsubseteq y \}$. As $\top \in M$, $\top \in M_x$ so that M_x is not empty. As X is a complete lattice, M_x has a least element $\sqcap M_x$ in X. As $M_x \subseteq M$ and M is closed by \sqcap, we have that $\sqcap M_x \in M$.

2. ★ Assume that M is a lower Moore family. We construct the following operator $\rho(x) \overset{\text{def}}{=} \sqcap \{ y \in M \mid x \sqsubseteq y \}$. We now prove that it is an upper closure operator.

Monotony: Assume $x \subseteq x'$, then $\forall y \in M : x' \subseteq y \implies x \subseteq y$. Hence $\{ y \in M \mid x \subseteq y \} \subseteq \{ y \in M \mid x' \subseteq y \}$. This implies $\sqcap \{ y \in M \mid x \subseteq y \} \subseteq \sqcap \{ y \in M \mid x' \subseteq y \}$, i.e., $\rho(x) \subseteq \rho(x')$.

Extensivity: Assume $x \in X$, then $\{ y \in M \mid x \subseteq y \}$ contains only elements greater than x, hence $x \sqsubseteq \sqcap \{ y \in M \mid x \subseteq y \} = \rho(x)$.

Idempotence: By Moore family property, we known that $\forall x \in X : \rho(x) \in M$. Take now $x' \in M$. Then, $x' \subseteq \{ y \in M \mid x' \subseteq y \}$. Thus, $x' = \sqcap \{ y \in M \mid x' \subseteq y \} = \rho(x')$. This is true in particular if $x' = \rho(x)$ for some $x \in X$. We thus deduce that $\forall x \in X : \rho(\rho(x)) = \rho(x)$.

Finally, note that when proving the idempotence, we proved that $\forall x \in X : \rho(x) \in M$, which means that $\{ \rho(x) \mid x \in X \} \subseteq M$, and we proved that $\forall x \in M : \rho(x) = x$, which means that $M \subseteq \{ \rho(x) \mid x \in X \}$. Hence, $M = \{ \rho(x) \mid x \in X \}$.

★ To prove the converse, assume that ρ is an upper closure operator and define $M \overset{\text{def}}{=} \{ \rho(x) \mid x \in X \}$. We prove that M is an upper closure operator by proving that it contains \top and is closed by intersection (see question 1).

By extensivity of ρ, we have $\top \subseteq \rho(\top)$, which means that $\top = \rho(\top)$, and so, $\top \in M$.

Consider $S \subseteq M$. As $\forall s \in S : \sqcap S \subseteq s$, by monotony, $\forall s \in S : \rho(\sqcap S) \subseteq \rho(s)$ and, by idempotence, $\forall s \in S : \rho(s) = s$ so that $\forall s \in S : \rho(\sqcap S) \subseteq s$, i.e., $\rho(\sqcap S) \subseteq \sqcap S$. By extensivity, however, $\sqcap S \subseteq \rho(\sqcap S)$. We deduce that $\rho(\sqcap S) = \sqcap S$, i.e., $\sqcap S$ is in the image of ρ: $\sqcap S \in M$. Hence, M is closed by intersection.

3. ★ X^\sharp is not closed by intersection because $\{ x \mid x \geq 0 \}, \{ x \mid x \leq 0 \} \in X^\sharp$, but $\{ x \mid x \geq 0 \} \cap \{ x \mid x \leq 0 \} = \{ 0 \} \not\in X^\sharp$. Hence it is not a Moore family.

★ By question 2, because X^\sharp is not a Moore family of $\mathcal{P}(\mathbb{Z})$, it is not the image of $\mathcal{P}(\mathbb{Z})$ by any upper closure operator. We saw in the course that the existence of a Galois connection between a set $\mathcal{P}(\mathbb{Z})$ and one of its subset X^\sharp is equivalent to the existence of an upper closure operator whose image of $\mathcal{P}(\mathbb{Z})$ is X^\sharp. Hence, we know that there cannot exist any best abstraction function $\alpha \in \mathcal{P}(\mathbb{Z}) \to X^\sharp$.

In particular, the set $\{ 0 \}$ has no best abstraction in X^\sharp. Both properties $\{ x \mid x \geq 0 \}$ and $\{ x \mid x \leq 0 \}$ are equally good.

4. ★ A natural way to make X^\sharp a Moore family is to complete it by adding all the missing in-
tersections. In our case, we simply need to add \(\{0\} \). We then retrieve the domain of simple signs.

* Alternatively, we can remove either \(\{x \mid x \geq 0\} \) or \(\{x \mid \leq 0\} \). We obtain a linear three-element domain: either \(\emptyset \subseteq \{x \mid x \geq 0\} \subseteq \mathbb{Z} \) or \(\emptyset \subseteq \{x \mid x \leq 0\} \subseteq \mathbb{Z} \).

We can even remove both and obtain the two-element lattice \(\{\emptyset, \mathbb{Z}\} \), i.e., \(\{\bot, \top\} \).

Historical notes:

The fact that Moore families are equivalent to upper closure operators and Galois connections is mentioned, in the context of abstract interpretation, as early as in: “P. Cousot. Méthodes itératives de construction et d’approximation de points fixes d’opérateurs monotones sur un treillis, analyse sémantique des programmes. Thèse ès Sciences Mathématiques, Université Joseph Fourier, Grenoble, France, 21 March 1978.”

Part III: Exercise

1. * We have \([0, 1] \sqsubseteq [0, 2] \).
 However, \([0, 1] \vee [0, 2] = [0, +\infty] \) while \([0, 2] \vee [0, 2] = [0, 2] \) and \([0, +\infty] \not\subseteq [0, 2] \).
 Hence, \(\vee \) is not monotonic in its first argument.

 * For the second argument, consider \([c, d] \sqsubseteq [c', d'] \), i.e., \(c \geq c' \) and \(d \leq d' \).
 Consider the upper bound \(u \) of \([a, b] \vee [c, d] \) and the upper bound \(u' \) of \([a, b] \vee [c', d'] \).
 If \(b < d \), then \(u = +\infty \), but we also have \(b < d' \), so that \(u' = +\infty = u \).
 If \(b \geq d \), then \(u = b \). As \(u' \in \{+\infty, b\} \), we have \(u' \geq b = u \).
 In all cases \(u \leq u' \). A similar reasoning on the lower bounds \(l \) and \(l' \) gives \(l \geq l' \).
 Hence, \([a, b] \vee [c, d] \subseteq [a, b] \vee [c', d'] \), i.e., \(\vee \) is monotonic in its second argument.

2. In the concrete, the loop invariant states that \(0 \leq X \leq 10 \).

 * The first iteration with widening gives \([0, 0] \vee [0, 1] = [0, +\infty] \), which is then stable. Hence, the interval domain with the classic widening is only able to prove that \(X \geq 0 \).
 Note that, on this program, using a narrowing would not gain us any precision (however, using a widening with threshold would).

 * When starting the iteration from \([0, 10] \) instead of \([0, 1] \), we get \([0, 10] \vee [0, 10] = [0, 10] \), which is stable. Hence, we find the precise result \([0, 10] \).

3. We now assume that \(\vee \) is a stable widening that is monotonic in its first argument.

 Consider a strictly increasing chain \(y_0 \subset y_1 \subset \cdots \), and construct the derived iteration with widening: \(x_0 \bydef y_0 \) and \(\forall i \in \mathbb{N} : x_{i+1} \bydef x_i \vee y_{i+1} \). We prove by recurrence on \(i \) that, \(\forall i : x_i = y_i \).

 The base case \(i = 0 \) holds by hypothesis.

 Assume now that \(x_i = y_i \). Then, \(x_{i+1} = x_i \vee y_{i+1} = y_i \vee y_{i+1} \).

 As by hypothesis \(y_i \subseteq y_{i+1} \), we have, by monotony, that \(y_i \vee y_{i+1} \subseteq y_{i+1} \vee y_i \).

 By stability, \(y_{i+1} \vee y_{i+1} = y_{i+1} \), which gives: \(y_i \vee y_{i+1} \subseteq y_{i+1} \).

 Moreover, by soundness, \(y_{i+1} \subseteq y_i \vee y_{i+1} \).

 We deduce that \(y_i \vee y_{i+1} = y_{i+1} \), i.e., \(x_{i+1} = y_{i+1} \).

 If the sequence \(y_0, y_1, \ldots \) is infinite and strictly increasing, then so is the sequence \(x_i \). This
violates the convergence property of the widening. We deduce that D cannot have strictly increasing infinite chains.

Note that one way to obtain a monotonic widening is to relax the stability condition. For instance, the widening $\forall a, b : a \triangleright b \overset{\text{def}}{=} \top$ is indeed monotonic, sound and always terminating. It is not stable as $x \triangleright x = \top$ for $x \neq \top$. Moreover, it is not a very interesting widening.

Historical notes:

The mention that interesting widenings cannot be monotonic as well as the proof from the last question can be found in: “P. Cousot. Abstract Interpretation Scene-Setting Talk. In Dagstuhl Seminar 14352, Aug. 2014.”