Static Analysis of Concurrent Programs MPRI 2–6: Abstract Interpretation, application to verification and static analysis

Antoine Miné

year 2015-2016

course 6 28 October 2015

Concurrent programming

Idea:

Decompose a program into a set of (loosely) interacting processes.

Why concurrent programs?

 exploit parallelism in current computers (multi-processors, multi-cores, hyper-threading)

"Free lunch is over"

change in Moore's law (×2 transistors every 2 years)

- exploit several computers (distributed computing)
- ease of programming (GUI, network code, reactive programs)

In this course: static thread model

- implicit communication through shared memory
- explicit communication through synchronisation primitives
- fixed number of threads
- numeric programs

Goal: static analysis

- infer numeric program invariants
- discover possible run-time errors (e.g., division by 0)
- parametrized by a choice of numeric abstract domains

(no dynamic creation of threads)

(real-valued variables)

Outline

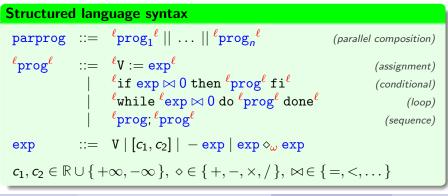
• From sequential to concurrent abstract interpreters

- alternate sequential semantics (denotational semantics with errors)
- interleaving concurrent semantics
- (non-relational) interference-based analysis
- Abstract rely-guarantee
 - rely-guarantee proof method
 - complete modular concrete semantics
 - relational interference abstractions

Introduction

Simple structured numeric language

- finite set of (toplevel) threads: prog₁ to prog_n
- \bullet finite set of numeric program variables $\mathtt{V}\in \mathtt{V}$
- finite set of statement locations $\ell \in \mathcal{L}$
- finite set of potential error locations $\omega \in \Omega$



Sequential semantics

Reminder : transition systems

Transition system: $(\Sigma, \tau, \mathcal{I})$

- Σ : set of program states
- $\tau \subseteq \Sigma \times \Sigma$: transition relation we note $(\sigma, \sigma') \in \tau$ as $\sigma \to_{\tau} \sigma'$
- $\mathcal{I} \subseteq \Sigma$: set of initial states

Reminder : traces of a transition system

 $\underline{\text{Maximal trace semantics:}} \quad \mathcal{M}_{\infty} \in \mathcal{P}(\Sigma^{\infty})$

Set of total executions $\sigma_0, \ldots, \sigma_n, \ldots$

- starting in an initial state $\sigma_0 \in \mathcal{I}$ and either
- ending in a blocking state in $\mathcal{B} \stackrel{\text{def}}{=} \{ \sigma \mid \forall \sigma' : \sigma \not\rightarrow_{\tau} \sigma' \}$
- or infinite

$$\mathcal{M}_{\infty} \stackrel{\text{def}}{=} \{ \sigma_0, \dots, \sigma_n \, | \, \sigma_0 \in \mathcal{I} \land \sigma_n \in \mathcal{B} \land \forall i < n: \sigma_i \to_{\tau} \sigma_{i+1} \} \cup \\ \{ \sigma_0, \dots, \sigma_n \dots | \, \sigma_0 \in \mathcal{I} \land \forall i < \omega: \sigma_i \to_{\tau} \sigma_{i+1} \}$$

Reminder : prefix trace abstraction

Finite prefix trace semantics: $\mathcal{T}_{\rho} \in \mathcal{P}(\Sigma^*)$

set of finite prefixes of executions: $\mathcal{T}_{p} \stackrel{\text{def}}{=} \{ \sigma_{0}, \dots, \sigma_{n} \mid n \geq 0, \sigma_{0} \in \mathcal{I}, \forall i < n: \sigma_{i} \rightarrow_{\tau} \sigma_{i+1} \}$

 $\mathcal{T}_{\rho} \text{ is an abstraction of the maximal trace semantics} \\ \mathcal{T}_{\rho} = \alpha_{* \preceq}(\mathcal{M}_{\infty}) \text{ where } \alpha_{* \preceq}(X) \stackrel{\text{def}}{=} \{ t \in \Sigma^* \, | \, \exists u \in X : t \preceq u \, \}$

- can still prove safety properties
- cannot prove termination nor inevitability

fixpoint characterisation: $\mathcal{T}_p = \text{lfp } F_p$ where $F_p(X) = \mathcal{I} \cup \{ \sigma_0, \dots, \sigma_{n+1} | \sigma_0, \dots, \sigma_n \in X \land \sigma_n \rightarrow_{\tau} \sigma_{n+1} \}$

Reminder : reachable state abstraction

<u>**Reachable state semantics:**</u> $\mathcal{R} \in \mathcal{P}(\Sigma)$

set of states reachable in any execution: $\mathcal{R} \stackrel{\text{def}}{=} \{ \sigma \, | \, \exists n \geq 0, \, \sigma_0, \dots, \sigma_n : \sigma_0 \in \mathcal{I}, \, \forall i < n : \sigma_i \to_{\tau} \sigma_{i+1} \land \sigma = \sigma_n \}$

 \mathcal{R} is an abstraction of the finite trace semantics: $\mathcal{R} = \alpha_p(\mathcal{T}_p)$ where $\alpha_p(X) \stackrel{\text{def}}{=} \{ \sigma \mid \exists \sigma_0, \dots, \sigma_n \in X : \sigma = \sigma_n \}$

- *R* can prove state safety properties: *R* ⊆ *S* (executions stay in *S*)
- $\bullet \ \mathcal{R}$ cannot prove ordering, termination, inevitability properties

fixpoint characterisation: $\mathcal{R} = \text{lfp } F_{\mathcal{R}}$ where $F_{\mathcal{R}}(X) = \mathcal{I} \cup \{ \sigma \mid \exists \sigma' \in X : \sigma' \rightarrow_{\tau} \sigma \}$

States of a sequential program, with errors

Simple sequential numeric programs: $parprog ::= \ell^i prog^{\ell^x}$.

Program states: $\Sigma \stackrel{\text{def}}{=} (\mathcal{L} \times \mathcal{E}) \cup \Omega$

- a control state in \mathcal{L} , and
- either a memory state: an environment in $\mathcal{E} \stackrel{\mathrm{def}}{=} \mathbb{V} \to \mathbb{R}$
- or an error state, in Ω

Initial states:

start at the first control point ℓ^i with variables set to 0: $\mathcal{I} \stackrel{\text{def}}{=} \{ (\ell^i, \lambda V.0) \}$

Note that $\mathcal{P}(\Sigma) \simeq (\mathcal{L} \to \mathcal{P}(\mathcal{E})) \times \mathcal{P}(\Omega)$:

- $\bullet\,$ a state property in $\mathcal{P}(\mathcal{E})$ at each program point in $\mathcal L$
- and a set of errors in $\mathcal{P}(\Omega)$

Expression semantics with errors

Expression sem	antics	$E[\![\mathtt{exp}]\!]:\mathcal{E}\to (\mathcal{P}(\mathbb{R})\times\mathcal{P}(\Omega))$
$E[\![\mathtt{V}]\!]\rho$	$\stackrel{\rm def}{=}$	$\langle \{ \rho(\mathtt{V}) \}, \emptyset \rangle$
$E[\![[c_1,c_2]]\!]\rho$	$\stackrel{\rm def}{=}$	$\langle \{ x \in \mathbb{R} c_1 \leq x \leq c_2 \}, \emptyset \rangle$
$E[\![-e]\!]\rho$	$\stackrel{\text{def}}{=}$	$ \begin{array}{l} let \ \langle \ V, \ O \ \rangle = E[\![\ e \]\!] \ \rho \ in \\ \langle \ \{ -\nu \ \ \in \ V \ \}, \ O \ \rangle \end{array} $
$E[\![e_1 \diamond_\omega e_2]\!] \rho$		$ \begin{array}{l} let\;\langle\;V_1,\;O_1\;\rangle = E[\![\;e_1\;]\!]\;\rho\;in \\ let\;\langle\;V_2,\;O_2\;\rangle = E[\![\;e_2\;]\!]\;\rho\;in \\ \langle\;\{\;v_1\diamond\;v_2\; \;v_i\in V_i,\diamond\neq/\lor\;v_2\neq 0\;\}, \\ O_1\cup O_2\cup\{\;\omega\;if\;\diamond=/\land 0\in V_2\;\}\;\rangle \end{array} $

- defined by structural induction on the syntax
- evaluates in an environment ρ to a set of values
- also returns a set of accumulated errors (here, only divisions by zero)

Reminders: semantics in equational form

Principle: (without handling errors in Ω)

- see lfp f as the least solution of an equation x = f(x)
- partition states by control: $\mathcal{P}(\mathcal{L} \times \mathcal{E}) \simeq \mathcal{L} \rightarrow \mathcal{P}(\mathcal{E})$ $\mathcal{X}_{\ell} \in \mathcal{P}(\mathcal{E})$: invariant at $\ell \in \mathcal{L}$ $\forall \ell \in \mathcal{L}$: $\mathcal{X}_{\ell} \stackrel{\text{def}}{=} \{ m \in \mathcal{E} \mid (\ell, m) \in \mathcal{R} \}$

 \Longrightarrow set of (recursive) equations on \mathcal{X}_ℓ

Example:

$$\begin{array}{ll} \ell^{1} \texttt{i:=2;} & \mathcal{X}_{1} = \mathcal{I} \\ \ell^{2} \texttt{n:=} [-\infty, +\infty] \texttt{;} & \mathcal{X}_{2} = \texttt{C} \llbracket \texttt{i} \texttt{i:=2} \rrbracket \mathcal{X}_{1} \\ \ell^{3} \texttt{while} \ \ell^{4} \texttt{i} < \texttt{n} \texttt{ do} & \mathcal{X}_{3} = \texttt{C} \llbracket \texttt{n} \texttt{i:=} [-\infty, +\infty] \rrbracket \mathcal{X}_{2} \\ \ell^{5} \texttt{if} \ \llbracket 0, 1 \rrbracket = \texttt{0} \texttt{ then} & \mathcal{X}_{4} = \mathcal{X}_{3} \cup \mathcal{X}_{7} \\ \ell^{5} \texttt{i:=i+1} & \mathcal{X}_{5} = \texttt{C} \llbracket \texttt{i} < \texttt{n} \rrbracket \mathcal{X}_{4} \\ \texttt{fi} & \mathcal{X}_{6} = \mathcal{X}_{5} \\ \ell^{7} \texttt{done} & \mathcal{X}_{7} = \mathcal{X}_{5} \cup \texttt{C} \llbracket \texttt{i} \texttt{i:=i+1} \rrbracket \mathcal{X}_{6} \\ \ell^{8} & \mathcal{X}_{8} = \texttt{C} \llbracket \texttt{i} \ge \texttt{n} \rrbracket \mathcal{X}_{4} \end{array}$$

Semantics in denotational form

Input-output function C prog $\mathbb{C}\llbracket \operatorname{prog} \rrbracket : (\mathcal{P}(\mathcal{E}) \times \mathcal{P}(\Omega)) \to (\mathcal{P}(\mathcal{E}) \times \mathcal{P}(\Omega))$ $\mathbb{C}[\![\mathbf{X} := e]\!] \langle R, O \rangle \stackrel{\text{def}}{=} \langle \emptyset, O \rangle \sqcup \bigsqcup_{\rho \in R} \langle \{ \rho[\mathbf{X} \mapsto v] | v \in V_{\rho} \}, O_{\rho} \rangle$ $\mathbb{C}[\![e \bowtie 0?]\!]\langle R, O \rangle \stackrel{\text{def}}{=} \langle \emptyset, O \rangle \sqcup \bigsqcup_{\rho \in R} \langle \{\rho \mid \exists v \in V_{\rho} : v \bowtie 0\}, O_{\rho} \rangle$ where $\langle V_{\rho}, O_{\rho} \rangle \stackrel{\text{def}}{=} \mathbb{E} \llbracket \boldsymbol{e} \rrbracket \rho$ $\mathbb{C}[\![\text{if } e \bowtie 0 \text{ then } s \text{ fi}]\!] X \stackrel{\text{def}}{=} (\mathbb{C}[\![s]\!] \circ \mathbb{C}[\![e \bowtie 0 ?]\!]) X \sqcup \mathbb{C}[\![e \bowtie 0 ?]\!] X$ \mathbb{C} while $e \bowtie 0$ do s done $X \stackrel{\text{def}}{=}$ $\mathbb{C}\llbracket e \bowtie 0? \rrbracket (\mathsf{lfp} \lambda Y X \sqcup (\mathbb{C}\llbracket s \rrbracket \circ \mathbb{C}\llbracket e \bowtie 0? \rrbracket) Y)$ $\mathbb{C}[\mathbf{s}_1; \mathbf{s}_2] \stackrel{\text{def}}{=} \mathbb{C}[\mathbf{s}_2] \circ \mathbb{C}[\mathbf{s}_1]$

- mutate memory states in \mathcal{E} , accumulate errors in Ω (\sqcup is the element-wise \cup in $\mathcal{P}(\mathcal{E}) \times \mathcal{P}(\Omega)$)
- structured: nested loops yield nested fixpoints
- big-step: forget information on intermediate locations ℓ

Abstract semantics in denotational form

Extend a numeric abstract domain \mathcal{E}^{\sharp} abstracting $\mathcal{P}(\mathcal{E})$ to $\mathcal{D}^{\sharp} \stackrel{\text{def}}{=} \mathcal{E}^{\sharp} \times \mathcal{P}(\Omega)$.

 $\underline{\mathsf{C}^{\sharp}[\![\operatorname{\mathtt{prog}}]\!]}:\mathcal{D}^{\sharp}\to\mathcal{D}^{\sharp}$

 $C^{\sharp}[X := e] \langle R^{\sharp}, O \rangle \text{ and } C^{\sharp}[e \bowtie 0?] \langle R^{\sharp}, O \rangle \text{ are given}$ $C^{\sharp}[if e \bowtie 0 \text{ then } s \text{ fi}] X^{\sharp} \stackrel{\text{def}}{=}$

 $\left(\mathsf{C}^{\sharp}[\![s]\!] \circ \mathsf{C}^{\sharp}[\![e \bowtie 0?]\!]\right)X^{\sharp} \sqcup^{\sharp} \mathsf{C}^{\sharp}[\![e \not\bowtie 0?]\!]X^{\sharp}$

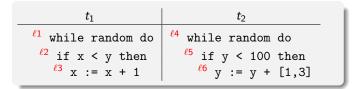
 $C^{\sharp} \llbracket \text{ while } e \bowtie 0 \text{ do } s \text{ done } \rrbracket X^{\sharp} \stackrel{\text{def}}{=} \\ C^{\sharp} \llbracket e \bowtie 0? \rrbracket (\lim \lambda Y^{\sharp}. Y^{\sharp} \bigtriangledown (X^{\sharp} \sqcup (C^{\sharp} \llbracket s \rrbracket \circ C^{\sharp} \llbracket e \bowtie 0? \rrbracket) Y^{\sharp})) \\ C^{\sharp} \llbracket s_{1}; s_{2} \rrbracket \stackrel{\text{def}}{=} C^{\sharp} \llbracket s_{2} \rrbracket \circ C^{\sharp} \llbracket s_{1} \rrbracket$

- the abstract interpreter mimicks an actual interpreter
- less flexibility in the iteration scheme (iteration order, widening points, etc.)
- efficient in memory (intermediate invariants are not kept)

 \implies much more scalable for large programs

Concurrent semantics

Multi-thread execution model



Execution model:

- finite number of threads
- the memory is shared (x,y)
- each thread has its own program counter
- execution interleaves steps from threads t_1 and t_2 (assignments and tests are assumed to be atomic)

```
\implies we have the global invariant 0 \le x \le y \le 102
```

Labelled transition systems

Labelled transition system: $(\Sigma, \mathcal{A}, \tau, \mathcal{I})$

- Σ : set of program states
- \mathcal{A} : set of actions
- $\tau \subseteq \Sigma \times \mathcal{A} \times \Sigma$: transition relation we note $(\sigma, a, \sigma') \in \tau$ as $\sigma \xrightarrow{a}_{\tau} \sigma'$
- $\mathcal{I} \subseteq \Sigma$: set of initial states

<u>Labelled traces</u>: sequences of states interspersed with actions denoted as $\sigma_0 \xrightarrow{a_0} \sigma_1 \xrightarrow{a_1} \cdots \sigma_n \xrightarrow{a_n} \sigma_{n+1}$

From concurrent programs to labelled transition systems

Notations:

- concurrent program: parprog ::= $\ell_1^i \operatorname{prog}_1 \ell_1^{\times} || \cdots || \ell_n^i \operatorname{prog}_n \ell_n^{\times}$
- threads identifiers: $\mathbb{T} \stackrel{\text{def}}{=} \{1, \ldots, n\}$

 $\underline{ \textbf{Program states:}} \quad \Sigma \stackrel{\text{def}}{=} ((\mathbb{T} \to \mathcal{L}) \times \mathcal{E}) \cup \Omega$

- a control state $L(t) \in \mathcal{L}$ for each thread $t \in \mathbb{T}$ and
- a single shared memory state $\rho \in \mathcal{E}$
- or an error state $\omega \in \Omega$

Initial states:

threads start at their first control point ℓ_t^i , variables are set to 0: $\mathcal{I} \stackrel{\text{def}}{=} \{ (\lambda t. \ell_t^i, \lambda V.0) \}$

Actions: thread identifiers: $\mathcal{A} \stackrel{\text{def}}{=} \mathbb{T}$

From concurrent programs to labelled transition systems

 $\begin{array}{ll} \hline \textbf{Transition relation:} & \tau \subseteq \Sigma \times \mathcal{A} \times \Sigma \\ (L,\rho) \xrightarrow{t}_{\tau} (L',\rho') & \stackrel{\text{def}}{\longleftrightarrow} & (L(t),\rho) \rightarrow_{\tau[\text{prog}_t]} (L'(t),\rho') \land \\ & \forall u \neq t \colon L(u) = L'(u) \\ (L,\rho) \xrightarrow{t}_{\tau} \omega & \stackrel{\text{def}}{\longleftrightarrow} & (L(t),\rho) \rightarrow_{\tau[\text{prog}_t]} \omega \end{array}$

- based on the transition relation of individual threads seen as sequential processes prog_t : $\tau[\operatorname{prog}] \subseteq (\mathcal{L} \times \mathcal{E}) \times ((\mathcal{L} \times \mathcal{E}) \cup \Omega)$
 - choose a thread t to run
 - update ρ and L(t)
 - leave L(u) intact for $u \neq t$

(See course 3 for the full definition of τ [prog].)

• each $\sigma \to \sigma'$ in $\tau[\operatorname{prog}_t]$ leads to many transitions in τ !

Interleaved trace semantics

Maximal and finite prefix trace semantics are as before:

Blocking states:
$$\mathcal{B} \stackrel{\text{def}}{=} \{ \sigma \, | \, \forall \sigma' \colon \forall t \colon \sigma \xrightarrow{t}_{\tau} \sigma' \}$$

 $\begin{array}{ll} \underline{\text{Maximal traces:}} & \mathcal{M}_{\infty} & \text{(finite or infinite)} \\ \mathcal{M}_{\infty} \stackrel{\text{def}}{=} & \{ \sigma_0 \stackrel{t_0}{\to} \cdots \stackrel{t_{n-1}}{\to} \sigma_n \, | \, n \geq 0 \land \sigma_0 \in \mathcal{I} \land \sigma_n \in \mathcal{B} \land \forall i < n; \sigma_i \stackrel{t_i}{\to} \tau \sigma_{i+1} \} \cup \\ & \{ \sigma_0 \stackrel{t_0}{\to} \sigma_1 \ldots | \, n \geq 0 \land \sigma_0 \in \mathcal{I} \land \forall i < \omega; \sigma_i \stackrel{t_i}{\to} \tau \sigma_{i+1} \} \end{array}$

 $\begin{array}{l} \hline \textbf{Finite prefix traces:} \quad \mathcal{T}_{p} \\ \hline \mathcal{T}_{p} \stackrel{\text{def}}{=} \left\{ \sigma_{0} \stackrel{t_{0}}{\to} \cdots \stackrel{t_{n-1}}{\to} \sigma_{n} \mid n \geq 0 \land \sigma_{0} \in \mathcal{I} \land \forall i < n: \sigma_{i} \stackrel{t_{i}}{\to} \sigma_{i+1} \right\} \\ \hline \textbf{Fixpoint form:} \quad \mathcal{T}_{p} = \text{lfp } \mathcal{F}_{p} \text{ where} \\ \hline \mathcal{F}_{p}(X) = \mathcal{I} \cup \left\{ \sigma_{0} \stackrel{t_{0}}{\to} \cdots \stackrel{t_{n}}{\to} \sigma_{n+1} \mid n \geq 0 \land \sigma_{0} \stackrel{t_{0}}{\to} \cdots \stackrel{t_{n-1}}{\to} \sigma_{n} \in X \land \sigma_{n} \stackrel{t_{n}}{\to} \tau \sigma_{n+1} \right\} \\ \hline \textbf{Abstraction:} \quad \mathcal{T}_{p} = \alpha_{* \preceq}(\mathcal{M}_{\infty}) \end{array}$

Fairness

Fairness conditions: avoid threads being denied to run

Given enabled
$$(\sigma, t) \iff \exists \sigma' \in \Sigma: \sigma \xrightarrow{t} \sigma'$$
,
an infinite trace $\sigma_0 \xrightarrow{t_0} \cdots \sigma_n \xrightarrow{t_n} \cdots$ is:

- weakly fair if $\forall t \in \mathbb{T}$: $(\exists i: \forall j \ge i: enabled(\sigma_j, t)) \implies (\forall i: \exists j \ge i: a_j = t)$ (no thread can be continuously enabled without running)
- strongly fair if ∀t ∈ T:
 (∀i:∃j ≥ i: enabled(σ_j, t)) ⇒ (∀i:∃j ≥ i: a_j = t) (no thread can be infinitely often enabled without running)

Proofs under fairness conditions given:

- \bullet the maximal traces \mathcal{M}_∞ of a program
- a property X to prove (as a set of traces)
- the set F of all (weakly or strongly) fair and of finite traces

 \implies prove $\mathcal{M}_{\infty} \cap F \subseteq X$ instead of $\mathcal{M}_{\infty} \subseteq X$

Fairness (cont.)

Example: while $x \ge 0$ do x:=x+1 done || x:=-1

- may not terminate without fairness
- always terminates under weak and strong fairness

Finite prefix trace abstraction

 $\mathcal{M}_{\infty} \cap F \subseteq X$ is abstracted into testing $\alpha_{*\preceq}(\mathcal{M}_{\infty} \cap F) \subseteq \alpha_{*\preceq}(X)$ for all fairness conditions F, $\alpha_{*\preceq}(\mathcal{M}_{\infty} \cap F) = \alpha_{*\preceq}(\mathcal{M}_{\infty}) = \mathcal{T}_p$ \Longrightarrow fairness dependent properties cannot be proved with finite profives only.

 \Longrightarrow fairness-dependent properties cannot be proved with finite prefixes only

In the following, we ignore fairness conditions. (see [Cous85])

Equational state semantics

State abstraction \mathcal{R} : as before

•
$$\mathcal{R} \stackrel{\text{def}}{=} \{ \sigma \mid \exists n \ge 0, \sigma_0 \stackrel{t_0}{\to} \cdots \sigma_n : \sigma_0 \in \mathcal{I} \forall i < n : \sigma_i \stackrel{t_i}{\to} \sigma_{i+1} \land \sigma = \sigma_n \}$$

•
$$\mathcal{R} = \alpha_p(\mathcal{T}_p)$$
 where $\alpha_p(X) \stackrel{\text{def}}{=} \{ \sigma \mid \exists n \ge 0, \sigma_0 \stackrel{t_0}{\to} \cdots \sigma_n \in X : \sigma = \sigma_n \}$

•
$$\mathcal{R} = \mathsf{lfp} \, F_{\mathcal{R}} \text{ where } F_{\mathcal{R}}(X) = \mathcal{I} \cup \{ \sigma \, | \, \exists \sigma' \in X, t \in \mathbb{T} : \sigma' \xrightarrow{t} \sigma \}$$

Equational form: (without handling errors in Ω)

- for each $L \in \mathbb{T} \to \mathcal{L}$, a variable \mathcal{X}_L with value in \mathcal{E}
- equations are derived from thread equations $eq(prog_t)$ as: $\mathcal{X}_{L_1} = \bigcup_{t \in \mathbb{T}} \{ F(\mathcal{X}_{L_2}, \dots, \mathcal{X}_{L_N}) \mid \\ \exists (\mathcal{X}_{\ell_1} = F(\mathcal{X}_{\ell_2}, \dots, \mathcal{X}_{\ell_N})) \in eq(prog_t): \\ \forall i \leq N: L_i(t) = \ell_i, \forall u \neq t: L_i(u) = L_1(u) \}$

Join with \cup equations from $eq(prog_t)$ updating a single thread $t \in \mathbb{T}$.

(See course 3 for the full definition of eq(prog).)

Equational state semantics (example)

Example: inferring $0 \le x \le y \le 102$			
t_1	t_2		
$^{\ell 1}$ while random do	<pre>^{ℓ4} while random do</pre>		
$ l^{\ell 2} if x < y then l^{3} x := x + 1 $	ℓ^{6} if y < 100 then ℓ^{6} y := y + [1,3]		

Equation system:

$$\begin{split} &\mathcal{X}_{1,4} = \mathcal{I} \\ &\mathcal{X}_{2,4} = \mathcal{X}_{1,4} \cup \mathbb{C}[\![\, \mathbf{x} \geq \mathbf{y} \,]\!] \, \mathcal{X}_{2,4} \cup \mathbb{C}[\![\, \mathbf{x} := \mathbf{x} + 1 \,]\!] \, \mathcal{X}_{3,4} \\ &\mathcal{X}_{3,4} = \mathbb{C}[\![\, \mathbf{x} < \mathbf{y} \,]\!] \, \mathcal{X}_{2,4} \\ &\mathcal{X}_{1,5} = \mathcal{X}_{1,4} \cup \mathbb{C}[\![\, \mathbf{y} \geq 100 \,]\!] \, \mathcal{X}_{1,5} \cup \mathbb{C}[\![\, \mathbf{y} := \mathbf{y} + [1,3] \,]\!] \, \mathcal{X}_{1,6} \\ &\mathcal{X}_{2,5} = \mathcal{X}_{1,5} \cup \mathbb{C}[\![\, \mathbf{x} \geq \mathbf{y} \,]\!] \, \mathcal{X}_{2,5} \cup \mathbb{C}[\![\, \mathbf{x} := \mathbf{x} + 1 \,]\!] \, \mathcal{X}_{3,5} \cup \\ & \mathcal{X}_{2,4} \cup \mathbb{C}[\![\, \mathbf{y} \geq 100 \,]\!] \, \mathcal{X}_{2,5} \cup \mathbb{C}[\![\, \mathbf{y} := \mathbf{y} + [1,3] \,]\!] \, \mathcal{X}_{2,6} \\ &\mathcal{X}_{3,5} = \mathbb{C}[\![\, \mathbf{x} < \mathbf{y} \,]\!] \, \mathcal{X}_{2,5} \cup \mathcal{X}_{3,4} \cup \mathbb{C}[\![\, \mathbf{y} \geq 100 \,]\!] \, \mathcal{X}_{3,5} \cup \mathbb{C}[\![\, \mathbf{y} := \mathbf{y} + [1,3] \,]\!] \, \mathcal{X}_{3,6} \\ &\mathcal{X}_{1,6} = \mathbb{C}[\![\, \mathbf{y} < 100 \,]\!] \, \mathcal{X}_{1,5} \\ &\mathcal{X}_{2,6} = \mathcal{X}_{1,6} \cup \mathbb{C}[\![\, \mathbf{x} \geq \mathbf{y} \,]\!] \, \mathcal{X}_{2,6} \cup \mathbb{C}[\![\, \mathbf{x} := \mathbf{x} + 1 \,]\!] \, \mathcal{X}_{3,6} \cup \mathbb{C}[\![\, \mathbf{y} < 100 \,]\!] \, \mathcal{X}_{2,5} \\ &\mathcal{X}_{3,6} = \mathbb{C}[\![\, \mathbf{x} < \mathbf{y} \,]\!] \, \mathcal{X}_{2,6} \cup \mathbb{C}[\![\, \mathbf{y} < 100 \,]\!] \, \mathcal{X}_{3,5} \end{split}$$

Concurrent semantics

Equational state semantics (example)

Example: inferring $0 \le x \le y \le 102$			
t_1	t ₂		
ℓ^1 while random do	<pre>^{ℓ4} while random do</pre>		
ℓ^{2} if x < y then ℓ^{3} x := x + 1	ℓ^{5} if y < 100 then ℓ^{6} y := y + [1,3]		

Pros:

- easy to construct
- easy to further abstract in an abstract domain \mathcal{E}^{\sharp}

Cons:

- explosion of the number of variables and equations
- explosion of the size of equations
 - \implies efficiency issues
- the equation system does *not* reflect the program structure (not defined by induction on the concurrent program)

Wish-list

We would like to:

- keep information attached to syntactic program locations (control points in \mathcal{L} , not control point tuples in $\mathbb{T} \to \mathcal{L}$)
- be able to abstract away control information (precision/cost trade-off control)
- avoid duplicating thread instructions
- have a computation structure based on the program syntax (denotational style)

Ideally: thread-modular denotational-style semantics

(analyze each thread independently by induction on its syntax)

Simple interference semantics

Intuition and example

t_1	
$^{\ell 1}$ while random do	
ℓ^2 if x < y then	
$\ell^{3} x := x + 1$	

t ₂	
ℓ^4 while random	do
<pre> 100 ℓ⁵ if y < 100</pre>	then
^{ℓ6} y := y +	[1,3]

Principle:

• analyze each thread in isolation but also gather interferences

(abstraction of) the values stored into each variable by each thread

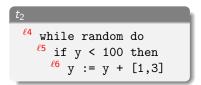
- re-analyze the threads taking interferences into account (variable read returns the last value written, or an interference) gather new sets of interferences
- iterate until stabilization
 - \implies one more level of fixpoint iteration

course 6

Static Analysis of Concurrent Programs

Intuition and example

t_1	
ℓ^1 while random do	
ℓ^2 if x < y then	
ℓ^3 x := x + 1	



Analysis of t_1 in isolation

(1):
$$x = y = 0$$
 $\mathcal{X}_1 = I$
(2): $x = y = 0$ $\mathcal{X}_2 = \mathcal{X}_1 \cup C[[x \leftarrow x + 1]] \mathcal{X}_3 \cup C[[x \ge y]] \mathcal{X}_2$
(3): \bot $\mathcal{X}_3 = C[[x < y]] \mathcal{X}_2$

Intuition and example

t_1	
ℓ^1 while random do	
ℓ^2 if x < y then	
ℓ^{3} x := x + 1	

t ₂	
ℓ^4 while random	do
<pre> 100 ℓ5 if y < 100</pre>	then
^{ℓ6} y := y +	[1,3]

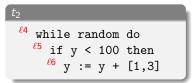
Analysis of t_2 in isolation

(4):
$$x = y = 0$$
 $\mathcal{X}_4 = I$
(5): $x = 0, y \in [0, 102]$ $\mathcal{X}_5 = \mathcal{X}_4 \cup \mathbb{C} [\![y \leftarrow y + [1, 3]]\!] \mathcal{X}_6 \cup \mathbb{C} [\![y \ge 100]\!] \mathcal{X}_5$
(6): $x = 0, y \in [0, 99]$ $\mathcal{X}_6 = \mathbb{C} [\![y < 100]\!] \mathcal{X}_5$

output interferences: $y \leftarrow [1, 102]$

Intuition and example

t_1	
ℓ^1 while random do	
ℓ^2 if x < y then	
$\ell^3 x := x + 1$	



Re-analysis of t_1 with interferences from t_2

input interferences: $y \leftarrow [1, 102]$ (1): x = y = 0 $\mathcal{X}_1 = I$ (2): $x \in [0, 102], y = 0$ $\mathcal{X}_2 = \mathcal{X}_{1a} \cup \mathbb{C}[x \leftarrow x + 1] \mathcal{X}_3 \cup \mathbb{C}[x \ge (y \mid [1, 102])] \mathcal{X}_2$ (3): $x \in [0, 102], y = 0$ $\mathcal{X}_3 = \mathbb{C}[x < (y \mid [1, 102])] \mathcal{X}_2$

output interferences: $x \leftarrow [1, 102]$

subsequent re-analyses are identical (fixpoint reached)

course 6

Intuition and example

t_1	
$^{\ell 1}$ while random do	
ℓ^2 if x < y then	
$\ell^{3} x := x + 1$	

t_2	
ℓ^4 while random	do
^{ℓ5} if y < 100	then
<mark>ℓ6</mark> y := y +	[1,3]

Derived abstract analysis:

- similar to a sequential program analysis, but iterated (can be parameterized by arbitrary abstract domains)
- efficient (few reanalyses are required in practice)
- interferences are non-relational and flow-insensitive (limit inherited from the concrete semantics)

Limitation:

we get $x, y \in [0, 102]$; we don't get that $x \leq y$ simplistic view of thread interferences (volatile variables) based on an incomplete concrete semantics!

course 6

Denotational semantics with interferences

Interferences in $\mathbb{I} \stackrel{\text{\tiny def}}{=} \mathbb{T} \times \mathbb{V} \times \mathbb{R}$

 $\langle t, X, v \rangle$ means: t can store the value v into the variable X

We define the analysis of a thread twith respect to a set of interferences $I \subseteq \mathbb{I}$.

Expressions with interference: for thread t

 $\mathsf{E}_t[\![\,\mathtt{exp}\,]\!] \, : (\mathcal{E}\times \mathcal{P}(\mathbb{I})) \to (\mathcal{P}(\mathbb{R})\times \mathcal{P}(\Omega))$

• Apply interferences to read variables: $E_{t}[[X]] \langle \rho, I \rangle \stackrel{\text{def}}{=} \langle \{ \rho(X) \} \cup \{ v \mid \exists u \neq t : \langle u, X, v \rangle \in I \}, \emptyset \rangle$

• Pass recursively / down to sub-expressions:

$$E_{t}[\![-e]\!]\langle \rho, I \rangle \stackrel{\text{def}}{=} \\
\text{let } \langle V, O \rangle = E_{t}[\![e]\!]\langle \rho, I \rangle \text{ in } \langle \{-v \,|\, v \in V \}, O \rangle$$

Denotational semantics with interferences (cont.)

 $\begin{array}{l} \underline{ Statements \ with \ interference:} \\ C_t[\![prog]\!] : (\mathcal{P}(\mathcal{E}) \times \mathcal{P}(\Omega) \times \mathcal{P}(\mathbb{I})) \to (\mathcal{P}(\mathcal{E}) \times \mathcal{P}(\Omega) \times \mathcal{P}(\mathbb{I})) \end{array}$

- pass interferences to expressions
- collect new interferences due to assignments
- accumulate interferences from inner statements

$$C_{t}\llbracket X := e \rrbracket \langle R, O, I \rangle \stackrel{\text{def}}{=} \\ \langle \emptyset, O, I \rangle \sqcup \bigsqcup_{\rho \in R} \langle \{ \rho[X \mapsto v] | v \in V_{\rho} \}, O_{\rho}, \{ \langle t, X, v \rangle | v \in V_{\rho} \} \rangle \\ C_{t}\llbracket s_{1}; s_{2} \rrbracket \stackrel{\text{def}}{=} C_{t}\llbracket s_{2} \rrbracket \circ C_{t}\llbracket s_{1} \rrbracket$$

noting $\langle V_{\rho}, O_{\rho} \rangle \stackrel{\text{def}}{=} \mathsf{E}_{t}[\![e]\!] \langle \rho, I \rangle$ \sqcup is now the element-wise \cup in $\mathcal{P}(\mathcal{E}) \times \mathcal{P}(\Omega) \times \mathcal{P}(\mathbb{I})$

. . .

Denotational semantics with interferences (cont.)

Program semantics: $P[[parprog]] \subseteq \Omega$

Given parprog ::= $prog_1 \parallel \cdots \parallel prog_n$, we compute:

 $\mathsf{P}[\![\operatorname{parprog}]\!] \stackrel{\text{def}}{=} \left[\mathsf{lfp}\,\lambda\langle\,\mathcal{O},\,\boldsymbol{I}\,\rangle.\,\bigsqcup_{t\in\mathbb{T}} \,\left[\mathsf{C}_{\mathsf{t}}[\![\operatorname{prog}_{t}]\!]\,\langle\,\mathcal{E}_{\mathsf{0}},\,\emptyset,\,\boldsymbol{I}\,\rangle\right]_{\Omega,\mathbb{I}}\right]_{\Omega}$

- each thread analysis starts in an initial environment set $\mathcal{E}_0 \stackrel{\text{def}}{=} \{ \lambda V.0 \}$
- $[X]_{\Omega,\mathbb{I}}$ projects $X \in \mathcal{P}(\mathcal{E}) \times \mathcal{P}(\Omega) \times \mathcal{P}(\mathbb{I})$ on $\mathcal{P}(\Omega) \times \mathcal{P}(\mathbb{I})$ and interferences and errors from all threads are joined (the output environments are ignored)
- P[parprog] only outputs the set of possible run-time errors

Interference abstraction

Abstract interferences I[#]

 $\mathcal{P}(\mathbb{I}) \stackrel{\mathrm{def}}{=} \mathcal{P}(\mathbb{T} \times \mathbb{V} \times \mathbb{R}) \text{ is abstracted as } \mathbb{I}^{\sharp} \stackrel{\mathrm{def}}{=} (\mathbb{T} \times \mathbb{V}) \to \mathcal{R}^{\sharp}$ where \mathcal{R}^{\sharp} abstracts $\mathcal{P}(\mathbb{R})$ (e.g. intervals)

Abstract semantics with interferences $C_t^{\sharp}[s]$

derived from $C^{\sharp}[[s]]$ in a generic way:

 $\underline{\mathsf{Example:}} \quad \mathsf{C}^{\sharp}_{\mathsf{t}}[\![\mathtt{X} := \mathtt{e} \,]\!] \left< \mathsf{R}^{\sharp}, \, \Omega, \, \mathit{I}^{\sharp} \right>$

- for each Y in e, get its interference $Y_{\mathcal{R}}^{\sharp} = \bigsqcup_{\mathcal{R}}^{\sharp} \{ I^{\sharp} \langle u, Y \rangle | u \neq t \}$
- if $Y_{\mathcal{R}}^{\sharp} \neq \bot_{\mathcal{R}}^{\sharp}$, replace Y in e with $get \langle Y, R^{\sharp} \rangle \sqcup_{\mathcal{R}}^{\sharp} Y_{\mathcal{R}}^{\sharp}$ (where $get(Y, R^{\sharp})$ extracts the abstract values in \mathcal{R}^{\sharp} of a variable Y from $R^{\sharp} \in \mathcal{E}^{\sharp}$)
- compute $\langle R^{\sharp \prime}, O' \rangle = C^{\sharp} \llbracket e \rrbracket \langle R^{\sharp}, O \rangle$
- enrich $I^{\sharp}\langle t, X \rangle$ with $get(X, R^{\sharp'})$

Static analysis with interferences

Abstract analysis

$$\mathbb{P}^{\sharp} \llbracket \operatorname{parprog} \rrbracket \stackrel{\text{def}}{=} \\ \left[\lim \lambda \langle O, I^{\sharp} \rangle . \langle O, I^{\sharp} \rangle \nabla \bigsqcup_{t \in \mathbb{T}}^{\sharp} \left[C_{t}^{\sharp} \llbracket \operatorname{prog}_{t} \rrbracket \langle \mathcal{E}_{0}^{\sharp}, \emptyset, I^{\sharp} \rangle \right]_{\Omega, \mathbb{I}^{\sharp}} \right]_{\Omega}$$

- effective analysis by structural induction
- termination ensured by a widening
- \bullet parametrized by a choice of abstract domains $\mathcal{R}^{\sharp},\,\mathcal{E}^{\sharp}$
- \bullet interferences are flow-insensitive and non-relational in \mathcal{R}^{\sharp}
- \bullet thread analysis remains flow-sensitive and relational in \mathcal{E}^{\sharp}

(reminder: $[X]_{\Omega}$, $[Y]_{\Omega,\mathbb{I}^{\sharp}}$ keep only X's component in Ω , Y's components in Ω and \mathbb{I}^{\sharp})

Abstract rely-guarantee

Rely-guarantee proof method

Reminder: Floyd-Hoare logic

Logic to prove properties about sequential programs [Hoar69].

Hoare triples: $\{P\} \operatorname{prog} \{Q\}$

- annotate programs with logic assertions {P} prog {Q}
 (if P holds before prog, then Q holds after prog)
- check that {P}prog{Q} is derivable with the following rules (the assertions are program invariants)

$$\frac{\{P \land e \bowtie 0\} s \{Q\} \quad P \land e \bowtie 0 \Rightarrow Q}{\{P\} \text{ if } e \bowtie 0 \text{ then } s \text{ fi } \{Q\}}$$

$$\frac{\{P\} s_1 \{Q\} \quad \{Q\} s_2 \{R\}}{\{P\} s_1; s_2 \{R\}} \qquad \frac{\{P \land e \bowtie 0\} s \{P\}}{\{P\} \text{ while } e \bowtie 0 \text{ do } s \text{ done } \{P \land e \bowtie 0\}}$$

$$\frac{\{P'\} s \{Q'\} \quad P \Rightarrow P' \quad Q' \Rightarrow Q}{\{P\} s \{Q\}}$$

Floyd–Hoare logic as abstract interpretation

Link with the equational state semantics: $(\mathcal{X}_{\ell})_{\ell \in \mathcal{L}}$

Correspondence between $\ell \operatorname{prog}^{\ell'}$ and $\{P\} \operatorname{prog} \{Q\}$:

- if P (resp. Q) models exactly the points in X_ℓ (resp. X_{ℓ'}) then {P} prog {Q} is a derivable Hoare triple
- if $\{P\} \operatorname{prog} \{Q\}$ is derivable, then $\mathcal{X}_{\ell} \models P$ and $\mathcal{X}_{\ell'} \models Q$ (all the points in \mathcal{X}_{ℓ} (resp. $\mathcal{X}_{\ell'}$) satisfy P (resp. Q))
- $\implies \mathcal{X}_\ell \quad \text{provides the most precise Hoare assertions} \\ \text{in a constructive form} \\$
- $\gamma(\mathcal{X}^{\sharp}_{\ell})$ provides (less precise) Hoare assertions in a computable form

Owicki-Gries proof method

Extension of Floyd–Hoare to concurrent programs [Owic76].

Principle: add a new rule, for ||

 $\frac{\{P_1\}\,s_1\,\{Q_1\}}{\{P_1 \land P_2\}\,s_1\,||\,s_2\,\{Q_1 \land Q_2\}}$

Owicki-Gries proof method

Extension of Floyd–Hoare to concurrent programs [Owic76].

Principle: add a new rule, for ||

$$\frac{\{P_1\}\,s_1\,\{Q_1\}}{\{P_1 \land P_2\}\,s_1\,||\,s_2\,\{Q_1 \land Q_2\}}$$

This rule is not always sound!

 $\begin{array}{ll} \text{e.g., we have} & \{X=0,Y=0\}\,X:=1\,\{X=1,Y=0\} \\ & \text{and} & \{X=0,Y=0\}\,\text{if}\,X=0\,\text{then}\,Y:=1\,\text{fi}\,\{X=0,Y=1\} \\ & \text{but not} & \{X=0,Y=0\}\,X:=1\,||\,\text{if}\,X=0\,\text{then}\,Y:=1\,\text{fi}\,\{\text{false}\} \end{array}$

 $\implies \text{ we need a side-condition to the rule:} \\ \{P_1\} s_1 \{Q_1\} \text{ and } \{P_2\} s_2 \{Q_2\} \text{ must not interfere}$

Owicki-Gries proof method (cont.)

interference freedom

given proofs Δ_1 and Δ_2 of $\{P_1\} s_1 \{Q_1\}$ and $\{P_2\} s_2 \{Q_2\}$

 $\begin{array}{l} \Delta_1 \text{ does not interfere with } \Delta_2 \text{ if:} \\ \text{ for any } \Phi \text{ appearing before a statement in } \Delta_1 \\ \text{ for any } \{P_2'\} s_2' \{Q_2'\} \text{ appearing in } \Delta_2 \\ \{\Phi \land P_2'\} s_2' \{\Phi\} \text{ holds} \\ \text{ and moreover } \{Q_1 \land P_2'\} s_2' \{Q_1\} \end{array}$

i.e.: the assertions used to prove $\{P_1\}\, s_1\, \{Q_1\}$ are stable by s_2

Summary:

- pros: the invariants are local to threads
- cons: the proof is not compositional

(proving one thread requires delving into the proof of other threads)

 \implies not satisfactory

Jones' rely-guarantee proof method

<u>Idea:</u> explicit interferences with (more) annotations [Jone81]. Rely-guarantee "quintuples": $R, G \vdash \{P\} \operatorname{prog} \{Q\}$

- if P is true before prog is executed
- and the effect of other threads is included in R (rely)
- then Q is true after prog
- and the effect of prog is included in G (guarantee)

where:

- P and Q are assertions on states (in $\mathcal{P}(\Sigma)$)
- *R* and *G* are assertions on transitions $(in \mathcal{P}(\Sigma \times \mathcal{A} \times \Sigma))$

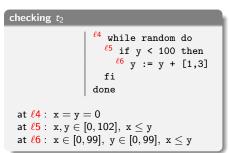
The parallel composition rule becomes:

 $\frac{R \lor G_2, G_1 \vdash \{P_1\} s_1 \{Q_1\} \quad R \lor G_1, G_2 \vdash \{P_2\} s_2 \{Q_2\}}{R, G_1 \lor G_2 \vdash \{P_1 \land P_2\} s_1 \mid \mid s_2 \{Q_1 \land Q_2\}}$

Rely-guarantee example

checking t₁

```
 \begin{array}{c|c} {}^{\ell 1} \text{ while random do} \\ {}^{\ell 2} \text{ if } x < y \text{ then} \\ {}^{\ell 3} x := x+1 \\ \text{fi} \\ \text{done} \end{array} \\ \\ {}^{\ell 1} : x = y = 0 \\ {}^{\ell 2} : x, y \in [0, 102], x \le y \\ {}^{\ell 3} : x \in [0, 101], y \in [1, 102], x < y \end{array}
```



Rely-guarantee example

checking t₁

^{ℓ1} while random do ^{ℓ2} if x < y then ^{ℓ3} x := x+1 fi	x unchanged y incremented $0 \le y \le 102$
done	

y unchanged

$$0 \le x \le y$$

$$\begin{pmatrix} \ell^4 \text{ while random do} \\ \ell^5 \text{ if } y < 100 \text{ then} \\ \ell^6 y := y + [1,3] \\ \text{fi} \\ \text{done} \end{pmatrix}$$
at $\ell^4 : x = y = 0$
at $\ell^5 : x, y \in [0, 102], x \le y$
at $\ell^6 : x \in [0, 99], y \in [0, 99], x \le y$

In this example:

- guarantee exactly what is relied on $(R_1 = G_1 \text{ and } R_2 = G_2)$
- rely and guarantee are global assertions

Benefits of rely-guarantee:

- invariants are still local to threads
- checking a thread does not require looking at other threads, only at an abstraction of their semantics

Auxiliary variables

<u>Goal:</u> prove $\{x = 0\} t_1 || t_2 \{x = 2\}$.

Auxiliary variables

$$\underline{\text{Goal:}} \quad \text{prove } \{ \mathtt{x} = 0 \} t_1 \mid\mid t_2 \{ \mathtt{x} = 2 \}.$$

we must rely on and guarantee that each thread increments *x* exactly once!

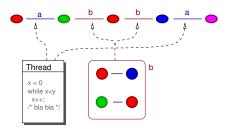
Solution: auxiliary variables

do not change the semantics but store extra information:

- past values of variables (history of the computation)
- program counter of other threads (pc_t)

Rely-guarantee as abstract interpretation

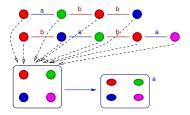
Modularity: main idea



Main idea: separate execution steps

- from the current thread a
 - found by analysis by induction on the syntax of a
- from other threads b
 - given as parameter in the analysis of a
 - inferred during the analysis of b

Trace decomposition



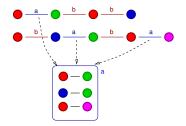
Reachable states projected on thread t: $\mathcal{R}I(t)$

- \bullet attached to thread control point in $\mathcal L,$ not control state in $\mathbb T\to \mathcal L$
- remember other thread's control point as "auxiliary variables" (required for completeness)

$$\mathcal{R}I(t) \stackrel{\text{def}}{=} \pi_t(\mathcal{R}) \subseteq \mathcal{L} \times (\mathbb{V} \cup \{ pc_{t'} \mid t \neq t' \in \mathbb{T} \}) \to \mathbb{R}$$

where $\pi_t(\mathcal{R}) \stackrel{\text{def}}{=} \{ \langle L(t), \rho [\forall t' \neq t: pc_{t'} \mapsto L(t')] \rangle | \langle L, \rho \rangle \in \mathcal{R} \}$

Trace decomposition

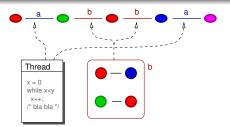


Interferences generated by *t*: A(t) (\simeq guarantees on transitions) Extract the transitions with action *t* observed in T_n

(subset of the transition system, containing only transitions actually used in reachability)

$$\begin{array}{l} \mathcal{A}(t) \stackrel{\text{def}}{=} \alpha^{\mathbb{I}}(\mathcal{T}_{p})(t) \\ \text{where } \alpha^{\mathbb{I}}(X)(t) \stackrel{\text{def}}{=} \{ \langle \sigma_{i}, \sigma_{i+1} \rangle \, | \, \exists \sigma_{0} \stackrel{a_{1}}{\to} \sigma_{1} \cdots \stackrel{a_{n}}{\to} \sigma_{n} \in X : a_{i+1} = t \, \} \end{array}$$

Thread-modular concrete semantics



Principle: express $\mathcal{R}I(t)$ and A(t) directly, without computing \mathcal{T}_p

States: RI

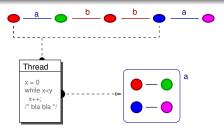
Interleave:

- transitions from the current thread t
- transitions from interferences A by other threads

 $\mathcal{R}I(t) = \mathsf{lfp} \, \underset{R_t(Y)(X)}{\overset{\text{def}}{=}} \pi_t(I) \cup \{ \pi_t(\sigma') \mid \exists \pi_t(\sigma) \in X : \sigma \stackrel{\sharp_{\tau}}{\to} \sigma' \} \cup \\ \{ \pi_t(\sigma') \mid \exists \pi_t(\sigma) \in X : \exists t' \neq t : \langle \sigma, \sigma' \rangle \in \mathbf{Y}(t') \}$

 \implies similar to reachability for a sequential program, up to A

Thread-modular concrete semantics



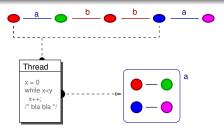
Principle: express $\mathcal{R}I(t)$ and A(t) directly, without computing \mathcal{T}_p

Interferences: A

Collect transitions from a thread t and reachable states \mathcal{R} : $A(t) = B(\mathcal{R})(t)$, where

$$B(\mathsf{Z})(t) \stackrel{\text{def}}{=} \{ \langle \sigma, \sigma' \rangle \, | \, \pi_t(\sigma) \in \mathsf{Z}(t) \land \sigma \stackrel{t}{\to}_{\tau} \sigma' \, \}$$

Thread-modular concrete semantics



Principle: express $\mathcal{R}I(t)$ and A(t) directly, without computing \mathcal{T}_p

Recursive definition:

- $\mathcal{R}(t) = \operatorname{lfp} \mathcal{R}_t(A)$
- $A(t) = B(\mathcal{R}I)(t)$

 \implies express the most precise solution as nested fixpoints:

$$\mathcal{R}$$
 = lfp $\lambda Z.\lambda t.$ lfp $R_t(B(Z))$

Completeness: $\forall t: \mathcal{R}I(t) \simeq \mathcal{R}$ (π_t is bijective thanks to auxiliary variables)

Fixpoint form

Constructive fixpoint form:

Use Kleene's iteration to construct fixpoints:

• $\mathcal{R}I = \text{lfp } H = \bigsqcup_{n \in \mathbb{N}} H^n(\lambda t.\emptyset)$

in the pointwise powerset lattice $\prod_{t\in\mathbb{T}} \{t\}
ightarrow \mathcal{P}(\Sigma_t)$

• $H(Z)(t) = \text{lfp } R_t(B(Z)) = \bigcup_{n \in \mathbb{N}} (R_t(B(Z)))^n(\emptyset)$ in the powerset lattice $\mathcal{P}(\Sigma_t)$

(similar to the sequential semantics of thread t in isolation)

 \implies nested iterations

Abstract rely-guarantee

Suggested algorithm: nested iterations with acceleration

once abstract domains for states and interferences are chosen

- start from $\mathcal{R}I_0^{\sharp} \stackrel{\text{\tiny def}}{=} A_0^{\sharp} \stackrel{\text{\tiny def}}{=} \lambda t. \bot^{\sharp}$
- while A_n^{\sharp} is not stable
 - compute ∀t ∈ T: Rl[#]_{n+1}(t) ^{def} = lfp R[#]_t(A[#]_n) by iteration with widening ∇

(\simeq separate analysis of each thread)

• compute $A_{n+1}^{\sharp} \stackrel{\text{def}}{=} A_n^{\sharp} \bigtriangledown B^{\sharp}(\mathcal{R}I_{n+1}^{\sharp})$

• when
$$A_n^{\sharp} = A_{n+1}^{\sharp}$$
, return $\mathcal{R} I_n^{\sharp}$

⇒ thread-modular analysis parameterized by abstract domains able to easily reuse existing sequential analyses

Thread-modular abstractions

Flow-insensitive abstraction

Flow-insensitive abstraction:

- reduce as much control information as possible
- but keep flow-sensitivity on each thread's control location

Local state abstraction: remove auxiliary variables

$$\alpha_{\mathcal{R}}^{nf}(X) \stackrel{\text{def}}{=} \{ (\ell, \rho_{|_{\mathcal{V}}}) \, | \, (\ell, \rho) \in X \} \cup (X \cap \Omega)$$

Interference abstraction: remove all control state $\alpha_{A}^{nf}(Y) \stackrel{\text{def}}{=} \{ (\rho, \rho') | \exists L, L' \in \mathbb{T} \to \mathcal{L}: ((L, \rho), (L', \rho')) \in Y \}$

Abstract rely-guarantee Thread-modular abstractions Flow-insensitive abstraction (cont.) **Flow-insensitive fixpoint semantics:** (omitting errors Ω) We apply $\alpha_{\mathcal{P}}^{nf}$ and α_{Δ}^{nf} to the nested fixpoint semantics. $\mathcal{R}I^{nf} \stackrel{\text{def}}{=} \text{lfp } \lambda Z.\lambda t. \text{lfp } R^{nf}{}_t(B^{nf}(Z)), \text{ where }$ $B^{nf}(Z)(t) \stackrel{\text{def}}{=} \{ (\rho, \rho') \mid \exists \ell, \ell' \in \mathcal{L}: (\ell, \rho) \in Z(t) \land (\ell, \rho) \to_t (\ell', \rho') \}$ (extract interferences from reachable states) $R_{+}^{nf}(Y)(X) \stackrel{\text{def}}{=} R_{+}^{loc}(X) \cup A_{+}^{nf}(Y)(X)$ (interleave steps) $R_{t}^{loc}(X) \stackrel{\text{def}}{=} \{ (\ell_{t}^{i}, \lambda \mathbb{V}.0) \} \cup \{ (\ell^{i}, \rho^{i}) \mid \exists (\ell, \rho) \in X : (\ell, \rho) \rightarrow_{t} (\ell^{i}, \rho^{i}) \}$ (thread step) $A_{\star}^{nf}(Y)(X) \stackrel{\text{def}}{=} \{ (\ell, \rho') \mid \exists \rho, \ \mu \neq t; (\ell, \rho) \in X \land (\rho, \rho') \in Y(\mu) \}$ (interference step) where \rightarrow_t is the transition relation for thread t alone: $\tau[\text{prog}_t]$

Cost/precision trade-off:

less variables

 \implies subsequent numeric abstractions are more efficient

- sufficient to analyze our first example (slide 26)
- \bullet insufficient to analyze $x:=x+1 \mid\mid x:=x+1$ (slide 35)

Retrieving the simple interference-based analysis

Cartesian abstraction: on interferences

- forget the relations between variables
- forget the relations between values before and after transitions (input-output relationship)
- only remember which variables are modified, and their value:

 $\alpha_{\mathcal{A}}^{nr}(Y) \stackrel{\text{\tiny def}}{=} \lambda \mathbb{V}.\{x \in \mathbb{V} \, | \, \exists (\rho, \rho') \in Y \colon \rho(\mathbb{V}) \neq x \land \rho'(\mathbb{V}) = x \, \}$

- to apply interferences, we get, in the nested fixpoint form: $\begin{array}{l} \mathbf{A}_{t}^{nr}(Y)(X) \stackrel{\text{def}}{=} \\ \left\{ \left(\ell, \rho[\mathbb{V} \mapsto v]\right) \mid (\ell, \rho) \in X, \mathbb{V} \in \mathbb{V}, \exists u \neq t \colon v \in Y(u)(\mathbb{V}) \end{array} \right\} \end{array}$
- no modification on the state

(the analysis of each thread can still be relational)

 \implies we get back our simple interference analysis!

Finally, use a numeric abstract domain $\alpha : \mathcal{P}(\mathbb{V} \to \mathbb{R}) \to \mathcal{D}^{\sharp}$ (for interferences, $\mathbb{V} \to \mathcal{P}(\mathbb{R})$ is abstracted as $\mathbb{V} \to \mathcal{D}^{\sharp}$)

A note on unbounded threads

Extension: relax the finiteness constraint on \mathbb{T}

- there is still a finite syntactic set of threads \mathbb{T}_s
- \bullet some threads $\mathbb{T}_\infty\subseteq\mathbb{T}_s$ can have several instances

(possibly an unbounded number)

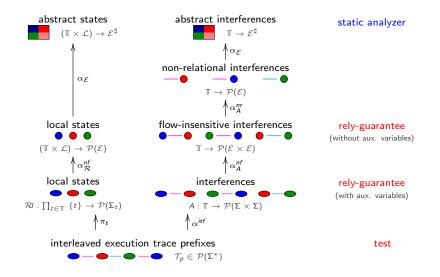
Flow-insensitive analysis:

- local state and interference domains have finite dimensions (\mathcal{E}_t and ($\mathcal{L} \times \mathcal{E}$) × ($\mathcal{L} \times \mathcal{E}$), as opposed to \mathcal{E} and $\mathcal{E} \times \mathcal{E}$)
- all instances of a thread t ∈ T_s are isomorphic
 ⇒ iterate the analysis on the finite set T_s (instead of T)
- we must handle self-interferences for threads in \mathbb{T}_{∞} : $A_t^{nf}(Y)(X) \stackrel{\text{def}}{=}$ $\{(\ell, \rho') | \exists \rho, u: (u \neq t \lor t \in \mathbb{T}_{\infty}) \land (\ell, \rho) \in X \land (\rho, \rho') \in Y(u) \}$

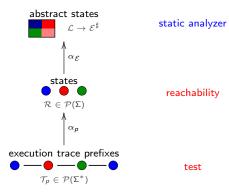
Abstract rely-guarantee

Thread-modular abstractions

From traces to thread-modular analyses



Compare with sequential analyses



Beyond simple interferences

Scheduling

Synchronization primitives

$$prog ::= lock(m)$$

| unlock(m)

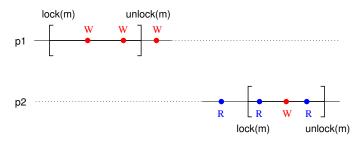
 $m \in \mathbb{M}$: finite set of non-recursive mutexes

Scheduling

mutexes ensure mutual exclusion

at each time, each mutex can be locked by a single thread

Mutual exclusion

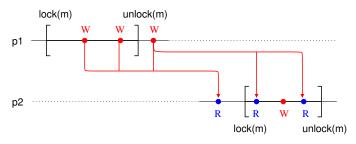


We use a refinement of the simple interference semantics by partitioning wrt. an abstract local view of the scheduler $\mathbb C$

•
$$\mathcal{E} \longrightarrow \mathcal{E} \times \mathbb{C}, \quad \mathcal{E}^{\sharp} \longrightarrow \mathbb{C} \to \mathcal{E}^{\sharp}$$

• $\mathbb{I} \stackrel{\text{def}}{=} \mathbb{T} \times \mathbb{V} \times \mathbb{R} \longrightarrow \mathbb{I} \stackrel{\text{def}}{=} \mathbb{T} \times \mathbb{C} \times \mathbb{V} \times \mathbb{R},$
 $\mathbb{I}^{\sharp} \stackrel{\text{def}}{=} (\mathbb{T} \times \mathbb{V}) \to \mathcal{R}^{\sharp} \longrightarrow \mathbb{I}^{\sharp} \stackrel{\text{def}}{=} (\mathbb{T} \times \mathbb{C} \times \mathbb{V}) \to \mathcal{R}^{\sharp}$

Mutual exclusion

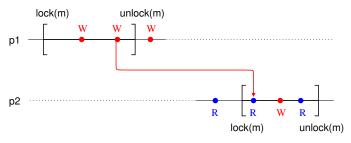


Data-race effects

Across read / write not protected by a mutex. Partition wrt. mutexes $M \subseteq \mathbb{M}$ held by the current thread t.

•
$$C_t[[X := e]] \langle \rho, M, I \rangle$$
 adds
 $\{ \langle t, M, X, v \rangle \mid v \in E_t[[X]] \langle \rho, M, I \rangle \}$ to I
• $E_t[[X]] \langle \rho, M, I \rangle =$
 $\{ \rho(X) \} \cup \{ v \mid \langle t', M', X, v \rangle \in I, t \neq t', M \cap M' = \emptyset \}$

Mutual exclusion



Well-synchronized effects

- last write before unlock affects first read after lock
- partition interferences wrt. a protecting mutex *m* (and *M*)
- $C_t[[unlock(m)]] \langle \rho, M, I \rangle$ stores $\rho(X)$ into I
- $C_t[lock(m)]\langle \rho, M, I \rangle$ imports values form I into ρ
- imprecision: non-relational, largely flow-insensitive

Example analysis

abstract consumer/producer		
N consumers	N producers	
<pre>while 0=0 do lock(m);^{ℓ1} if X>0 then ^{ℓ2}X:=X-1 fi; unlock(m);</pre>	<pre>while 0=0 do lock(m); X:=X+1; if X>100 then X:=100 fi;</pre>	
^{ℓ3} Y:=X done	unlock(m) done	

Assuming we have several (N) producers and consumers:

- no data-race interference (proof of the absence of data-race)
- well-synchronized interferences: *consumer*: x ← [0,99] *producer*: x ← [1,100]
- \implies we get that $x \in [0, 100]$

(without locks, if N > 1, our concrete semantics cannot bound x!)

course 6	Static Analysis of Concurrent Programs	Antoine Miné	p. 60 / 70
----------	--	--------------	------------

Locks and priorities

priority-based critical sections		
high thread	low thread	
L := isLocked(m);	<pre>lock(m);</pre>	
if $L = 0$ then	Z := Y;	
Y := Y+1;	Y := 0;	
yield()	unlock(m)	

Real-time scheduling

- only the highest priority unblocked thread can run
- lock and yield may block
- yielding threads wake up non-deterministically (preempting lower-priority threads)
- explicit synchronisation enforces memory consistency

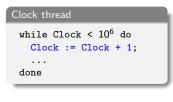
Locks and priorities

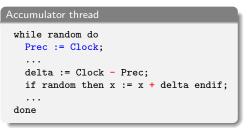
priority-based critical sections			
high thread	low thread		
<pre>L := isLocked(m);</pre>	<pre>lock(m);</pre>		
if $L = 0$ then	Z := Y;		
Y := Y+1;	Y := 0;		
yield()	unlock(m)		

Partition interferences and environments wrt. scheduling state

- partition wrt. mutexes tested with isLocked
- X := isLocked(m) creates two partitions
 - P_0 where X = 0 and m is free
 - P_1 where X = 1 and m is locked
- P_0 handled as if m where locked
- blocking primitives merge P_0 and P_1 (lock, yield)

Weakly relational interferences





- lock is a global, increasing clock
- x accumulates periods of time
- no overflow on Clock Prec, nor x := x + delta

To prove this we need relational abstractions of interferences $({\tt keep\ input-output\ relationships})$

Monotonicity abstraction

Abstraction:

map variables to \uparrow monotonic or \top don't know

 $\alpha^{\mathsf{mono}}_{A}(Y) \stackrel{\text{def}}{=} \lambda V. \text{if } \forall \langle \, \rho, \, \rho' \, \rangle \in Y : \rho(V) \leq \rho'(V) \text{ then } \not \ \text{ else } \top$

- keep some input-output relationships
- forgets all relations between variables
- flow-insensitive

Inference and use

• gather:

 $A^{mono}(t)(V) = \uparrow \iff$ all assignments to V in t have the form $V \leftarrow V + e$, with $e \ge 0$

use: combined with non-relational interferences
 if ∀t: A^{mono}(t)(V) = ↑
 then any test with non-relational interference C[[X ≤ (V | [a, b])]]
 can be strengthened into C[[X ≤ V]]

Relational invariant interferences

Abstraction: keep relations maintained by interferences

- remove control state in interferences
- keep mutex state M

 (α_A^{nf})

(set of mutexes held)

- forget input-output relationships
- keep relationships between variables

 $\alpha_{A}^{\mathsf{inv}}(Y) \stackrel{\mathrm{def}}{=} \{ \langle M, \rho \rangle \, | \, \exists \rho' \colon \langle \langle M, \rho \rangle, \langle M, \rho' \rangle \rangle \in Y \lor \langle \langle M, \rho' \rangle, \langle M, \rho \rangle \rangle \in Y \}$

 $\langle M, \rho \rangle \in \alpha_A^{\mathsf{inv}}(Y) \Longrightarrow \langle M, \rho \rangle \in \alpha_A^{\mathsf{inv}}(Y) \text{ after any sequence of interferences from } Y$

Lock invariant:

$$\{\rho \,|\, \exists t \in \mathcal{T}, M: \langle M, \rho \rangle \in \alpha_A^{\mathsf{inv}}(\mathbb{I}(t)), \ m \notin M \}$$

- property maintained outside code protected by m
- possibly broken while *m* is locked
- restored before unlocking m

Weakly relational interference example

analyzing t_1		a	nalyzing t ₂	
t_1	t ₂		t_1	<i>t</i> ₂
<pre>while random do lock(m); if x < y then x := x + 1; unlock(m)</pre>	x unchanged y incremented $0 \le y \le 102$		y unchanged 0 \leq x, x \leq y	<pre>while random do lock(m); if y < 100 then y := y + [1,3]; unlock(m)</pre>

Using all three interference abstractions:

- non-relational interferences $(0 \le y \le 102, 0 \le x)$
- lock invariants, with the octagon domain $(x \le y)$
- monotonic interferences (y monotonic)

we can prove automatically that $x \leq y$ holds

course 6

Subsequence interference

t_1 : clock in H	t ₂ : sample H into C	t_3 : accumulate time in T
while random do	while random do	while random do
if $H < 10,000$ then	С := Н	if random then $T := 0$
H := H+1		else $T := T + (C-L)$
		L := C

<u>Problem:</u> we wish to prove that $T \le L \le C \le H$

it is sufficient to prove the monotony of H, C, and L but monotony is not transitive

X is only assigned monotonic variables $\not\Longrightarrow$ X is monotonic

 \implies we infer an additional property implying monotony

Abstraction: subsequence

A^{sseq}(t)(V) = { W ∈ V | V's values are a subsequence of W's values }

•
$$\alpha_{\mathcal{R}}^{\text{sseq}}(X)(V) \stackrel{\text{def}}{=} \{ W \mid \\ \forall \langle \langle \ell_0, \rho_0 \rangle, \dots, \langle \ell_n, \rho_n \rangle \rangle \in X : \exists i_0, \dots, i_n : \\ \forall k : i_k \le k \land i_k \le i_{k+1} \land \forall j : \rho_j(V) = \rho_{i_j}(W) \}$$

based on a trace version of the modular semantics

Bibliography

Bibliography

[Bour93] **F. Bourdoncle**. *Efficient chaotic iteration strategies with widenings*. In Proc. FMPA'93, LNCS vol. 735, pp. 128–141, Springer, 1993.

[Carr09] J.-L. Carré & C. Hymans. From single-thread to multithreaded: An efficient static analysis algorithm. In arXiv:0910.5833v1, EADS, 2009.

[Cous84] **P. Cousot & R. Cousot**. *Invariance proof methods and analysis techniques for parallel programs*. In Automatic Program Construction Techniques, chap. 12, pp. 243–271, Macmillan, 1984.

[Cous85] **R. Cousot**. Fondements des méthodes de preuve d'invariance et de fatalité de programmes parallèles. In Thèse d'Etat es sc. math., INP Lorraine, Nancy, 1985.

[Hoar69] C. A. R. Hoare. An axiomatic basis for computer programming. In Com. ACM, 12(10):576–580, 1969.

Bibliography (cont.)

[Jone81] **C. B. Jones**. *Development methods for computer programs including a notion of interference*. In PhD thesis, Oxford University, 1981.

[Lamp77] L. Lamport. Proving the correctness of multiprocess programs. In IEEE Trans. on Software Engineering, 3(2):125–143, 1977.

[Lamp78] L. Lamport. *Time, clocks, and the ordering of events in a distributed system.* In Comm. ACM, 21(7):558–565, 1978.

[Mans05] J. Manson, B. Pugh & S. V. Adve. The Java memory model. In Proc. POPL'05, pp. 378–391, ACM, 2005.

[Miné12] A. Miné. Static analysis of run-time errors in embedded real-time parallel C programs. In LMCS 8(1:26), 63 p., arXiv, 2012.

[Owic76] **S. Owicki & D. Gries**. An axiomatic proof technique for parallel programs *I*. In Acta Informatica, 6(4):319–340, 1976.

Bibliography (cont.)

[Reyn04] J. C. Reynolds. *Toward a grainless semantics for shared-variable concurrency.* In Proc. FSTTCS'04, LNCS vol. 3328, pp. 35–48, Springer, 2004.

[Sara07] V. A. Saraswat, R. Jagadeesan, M. M. Michael & C. von Praun. A theory of memory models. In Proc. PPoPP'07, pp. 161–172, ACM, 2007.