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Intra-cellular signalling pathways

Eikuch, 2007
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Models of the behaviour of the system



dx1
dt = −k1 · x1 · x2 + k−1 · x3

dx2
dt = −k1 · x1 · x2 + k−1 · x3

dx3
dt = k1 · x1 · x2 − k−1 · x3 + 2 · k2 · x3 · x3 − k−2 · x4
dx4
dt = k2 · x2

3 − k2 · x4 + v4·x5
p4+x5

− k3 · x4 − k−3 · x5

dx5
dt = · · ·

...
dxn
dt = −k1 · x1 · c2 + k−1 · x3
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dx1
dt = −k1 · x1 · x2 + k−1 · x3
dx2
dt = −k1 · x1 · x2 + k−1 · x3
dx3
dt = k1 · x1 · x2 − k−1 · x3 + 2 · k2 · x3 · x3 − k−2 · x4
dx4
dt = k2 · x2

3 − k2 · x4 + v4·x5
p4+x5

− k3 · x4 − k−3 · x5

dx5
dt = · · ·

...
dxn
dt = −k1 · x1 · c2 + k−1 · x3

knowledge

representation and
models of the

behaviour of systems
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Site-graphs rewriting

EGF r EGFRl

r

EGF r EGFRl

r

EGF r EGFRl

r

EGF r EGFRl

r

PSfrag replaements

k

• a language close to knowledge representation;

• rules are easy to update;

• a compact description of models.
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Choices of semantics
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Markov chain



dx1
dt = −k1 · x1 · x2 + k−1 · x3

dx2
dt = −k1 · x1 · x2 + k−1 · x3

dx3
dt = k1 · x1 · x2 − k−1 · x3 + 2 · k2 · x3 · x3 − k−2 · x4

dx4
dt = k2 · x2

3 − k2 · x4 + v4·x5
p4+x5

− k3 · x4 − k−3 · x5

dx5
dt = · · ·

...
dxn
dt = −k1 · x1 · c2 + k−1 · x3

ordinary differential equations
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Abstractions offer different perspectives
on models
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concrete semantics causal traces
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exact projection
of the ODE semantics
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Contact map
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Causal traces
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ODE semantics
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Causal traces
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Combinatorial wall
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Information flow

EGF

r

EGFR

l

r

Y68

Y48

EGF

r

EGFR

l

r

Y68

Y48

ShC

pi

Y7

ShC

pi

Y7

Grb2a b

Grb2

a

b

Sosd
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A potential breach
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Case study

JÃl’rôme Feret 18 Wednesday, the 18th of November, 2015



Case study

PSfrag replaements
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Law of mass action

We consider that chemical species are elementary particles without any volume, and
that they are diffusing in an infinite, perfectly fluid and homogeneous medium without
borders.
Let X be a set of chemical species.
A reaction network is a set of reactions R.
Each reaction r is defined by:

1. αr, a function from X to N (the reactants);

2. βr, a function from X to N (the products);

3. kr, a non negative real number (the kinetic rate).

With these notations, the law of mass action defines the behaviour of the concentration
[X ] of each chemical species X :

d[X ]

dt
=
∑
r∈R

kr · (βr(X)− αr(X)) ·
∏
X ′∈X

[X ′]αr(X
′).
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Case study

PSfrag replaements

kc



d[(u,u,u)]
dt = −kc·[(u,u,u)]

d[(u,p,u)]
dt = kc·[(u,u,u)]−kg·[(u, p, u)]− kd·[(u, p, u)]

d[(u, p, p)]
dt =−kl·[(u, p, p)] + kr·[(u, p, u)]

d[(p, p, u)]
dt =kl·[(u, p, u)]− kr·[(p, p, u)]

d[(p, p, p)]
dt =kl·[(u, p, p)] + kr·[(p, p, u)]
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Case study

PSfrag replaements

kc

kdkd

kgkg



d[(u,u,u)]
dt = −kc·[(u,u,u)]

d[(u,p,u)]
dt = −kg·[(u,p,u)] + kc·[(u,u,u)] − kd·[(u,p,u)]

d[(u,p,p)]
dt = −kg·[(u,p,p)] + kd·[(u,p,u)]

d[(p,p,u)]
dt = kg·[(u,p,u)]− kd·[(p,p,u)]

d[(p,p,p)]
dt = kg·[(u,p,p)] + kd·[(p,p,u)]
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Case study
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Case study
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Case study

[(u,u,u)] = [(u,u,u)]

[(u,p,?)]
∆
= [(u,p,u)] + [(u,p,p)]

[(p,p,?)]
∆
= [(p,p,u)] + [(p,p,p)]

d[(u,u,u)]
dt = −kc·[(u,u,u)]

d[(u,p,?)]
dt = −kg·[(u,p,?)] + kc·[(u,u,u)]

d[(p,p,?)]
dt = kg·[(u,p,?)]

[(u,u,u)] = [(u,u,u)]

[(?,p,u)]
∆
= [(u,p,u)] + [(p,p,u)]

[(?,p,p)]
∆
= [(u,p,p)] + [(p,p,p)]

d[(u,u,u)]
dt = −kc·[(u,u,u)]

d[(?,p,u)]
dt = −kd·[(?,p,u)] + kc·[(u,u,u)]

d[(?,p,p)]
dt = kd·[(?,p,u)]
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What we have learned so far:

We can use the absence of information flow to detect useless

correlations between the states of sites in chemical species.

We can use this to cut chemical species into fragments.

This transformation loses some information: we cannot com-

pute the concentration of each chemical species anymore.
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A model with symmetries

k1 k1

P −→ ?P k1 P? −→ ?P? k1

P −→ P? k1
?P −→ ?P? k1

k2
?P? −→ ∅ k2
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Reduced model

2·k1

P −→ ?P 2·k1

k1

?P −→ ?P? k1

k2
?P? −→ ∅ k2
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Differential equations

• Initial system:

d

dt

 P
?P
P?

?P?

 =

−2·k1 0 0 0
k1 −k1 0 0
k1 0 −k1 0
0 k1 k1 −k2

 ·
 P

?P
P?

?P?


• Reduced system:

d

dt

 P
?P + P?

0
?P?

 =

−2·k1 0 0 0
2·k1 −k1 0 0

0 0 0 0
0 k1 0 −k2

·
 P
?P + P?

0
?P?
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Invariant
We wonder whether or not:

[?P] = [P?],

Thus we define the difference X as follows:

X
∆
= [?P]− [P?].

We have:

dX

dt
= −k1 ·X.

So the property (X = 0) is an invariant.

Thus, if [?P] = [P?] at time t = 0, then [?P] = [P?] forever.
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Conclusion

We can abstract away the distinction between chemical species which are equivalent
up to symmetries (with respect to the reactions).

1. If the symmetries are satisfied in the initial state:

+ the abstraction is invertible:

we can recover the concentration of any species,

(thanks to the invariants).

2. Otherwise:

− some information is abstracted away:

we cannot recover the concentration of any species;

+ the system converges to a state which satisfies the symmetries.
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Differential semantics

A system of ordinary differential equations is a pair (V ,F) where:

• V is a finite set of variables,

• F is a continuous function from V → R+ to V → R.

Elements of V → R+ are called states.

The differential semantics maps each initial state X0 ∈ V → R+ to the solution
XX0 ∈ [0, Tmax

X0
[→ (V → R+) of the following equation:

XX0(T ) = X0 +

∫ T

t=0

F(XX0(t))·dt.

that is defined over the widest time interval as possible.
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Back to the case study

1. V ∆
= {[(u,u,u)], [(u,p,u)], [(p,p,u)], [(u,p,p)], [(p,p,p)]},

2. F(ρ)
∆
=


[(u,u,u)] 7→ −kc·ρ([(u,u,u)])

[(u,p,u)] 7→ −kg·ρ([(u,p,u)]) + kc·ρ([(u,u,u)]) − kd·ρ([(u,p,u)])

[(u,p,p)] 7→ −kg·ρ([(u,p,p)]) + kd·ρ([(u,p,u)])

[(p,p,u)] 7→ kg·ρ([(u,p,u)])− kd·ρ([(p,p,u)])

[(p,p,p)] 7→ kg·ρ([(u,p,p)]) + kd·ρ([(p,p,u)]).
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Abstraction
An abstraction is a 5-uple (V ,F,V ], ψ,F]), where:

• (V ,F) is a system of ordinary equations,

• V ] is a finite set of observables,

• ψ is a function from the set V → R into the set V ] → R,

• F] is a function C∞ from the set V ] → R+ into the set V ] → R;

such that:

• ψ is linear with positive coefficients only and such that each variable v ∈ V
occurs in the image of at least one observable v] ∈ V ] with a non-zero coefficient;

• the following diagram commutes:

(V → R+)
F−→ (V → R)

ψ

y yψ

(V ] → R+)
F]−→ (V ] → R)

that is to say that ψ ◦ F = F] ◦ ψ.
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Back to the case study

1. V ∆
= {[(u,u,u)], [(u,p,u)], [(p,p,u)], [(u,p,p)], [(p,p,p)]}

2. F(ρ)
∆
=


[(u,u,u)] 7→ −kc·ρ([(u,u,u)])

[(u,p,u)] 7→ −kg·ρ([(u,p,u)]) + kc·ρ([(u,u,u)]) − kd·ρ([(u,p,u)])

[(u,p,p)] 7→ −kg·ρ([(u,p,p)]) + kd·ρ([(u,p,u)])

· · ·

3. V ] ∆
= {[(u,u,u)], [(?,p,u)], [(?,p,p)], [(u,p,?)], [(p,p,?)]}

4. ψ(ρ)
∆
=


[(u,u,u)] 7→ ρ([(u,u,u)])

[(?,p,u)] 7→ ρ([(u,p,u)]) + ρ([(p,p,u)])

[(?,p,p)] 7→ ρ([(u,p,p)]) + ρ([(p,p,p)])

. . .

5. F](ρ]) ∆
=


[(u,u,u)] 7→ −kc·ρ]([(u,u,u)])

[(?,p,u)] 7→ −kd·ρ]([(?,p,u)]) + kc·ρ]([(u,u,u)])

[(?,p,p)] 7→ kd·ρ]([(?,p,u)])

. . .
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Let us apply the abstraction function

Let:

1. (V ,F,V ], ψ,F]) be an abstraction,

2. and X0 ∈ V → R+ be an initial state.

We have, at any time T within the time interval [0, Tmax
X0

[:

XX0(T ) = X0 +

∫ T

t=0

F(XX0(t))·dt.

So:

ψ(XX0(T )) = ψ

(
X0 +

∫ T

t=0

F(XX0(t))·dt
)
.
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Let us push ψ towards the right

Let:

1. (V ,F,V ], ψ,F]) be an abstraction,

2. and X0 ∈ V → R+ be an initial state.

We have, at any time T within the time interval [0, Tmax
X0

[:

XX0(T ) = X0 +

∫ T

t=0

F(XX0(t))·dt.

So:

ψ(XX0(T )) = ψ(X0) + ψ

(∫ T

t=0

F(XX0(t))·dt
)
.
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Let us push ψ towards the right

Let:

1. (V ,F,V ], ψ,F]) be an abstraction,

2. and X0 ∈ V → R+ be an initial state.

We have, at any time T within the time interval [0, Tmax
X0

[:

XX0(T ) = X0 +

∫ T

t=0

F(XX0(t))·dt.

So:

ψ(XX0(T )) = ψ(X0) +

∫ T

t=0

[ψ ◦ F](XX0(t))·dt.
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Let us push ψ towards the right

Let:

1. (V ,F,V ], ψ,F]) be an abstraction,

2. and X0 ∈ V → R+ be an initial state.

We have, at any time T within the time interval [0, Tmax
X0

[:

XX0(T ) = X0 +

∫ T

t=0

F(XX0(t))·dt.
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ψ(XX0(T )) = ψ(X0) +
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t=0

[F] ◦ ψ](XX0(t))·dt.
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Let us push ψ towards the right

Let:

1. (V ,F,V ], ψ,F]) be an abstraction,

2. and X0 ∈ V → R+ be an initial state.

We have, at any time T within the time interval [0, Tmax
X0

[:

XX0(T ) = X0 +

∫ T

t=0

F(XX0(t))·dt.

So:

ψ(XX0(T )) = ψ(X0) +

∫ T

t=0

F](ψ(XX0(t)))·dt.
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Abstract semantics

Let (V ,F,V ], ψ,F]) be an abstraction.

The couple (V ],F]) is a system of differential equations.
Let us denote by Y its semantics.

For each state Y0 ∈ V ] → R+, we denote by [0, T ]max
Y0

[ the domain of the function

YY0. We have, at any time T ] ∈ [0, T ]max
X0

[,

YY0(T
]) = Y0 +

∫ T ]

t=0

F](YY0(t))·dt.

ThÃl’orÃĺme 1 For each initial state X0 ∈ V → R+, we have:

1. T ]max
ψ(X0)

= Tmax
X0

;

2. at any time T ∈ [0, Tmax
X0

[, ψ(XX0(T )) = Yψ(X0)(T ).

That is to say that the abstract semantics is the image of the concrete semantics by
the abstraction function.
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Abstract trajectories

t

Y(t)
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Concrete trajectories

t

Y(t)

X(t)
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A model with symmetries

k1 k1

P −→ ?P k1 P? −→ ?P? k1

P −→ P? k1
?P −→ ?P? k1

k2
?P? −→ ∅ k2
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Differential equations

• Initial system:

d

dt

 P
?P
P?

?P?

 =

−2·k1 0 0 0
k1 −k1 0 0
k1 0 −k1 0
0 k1 k1 −k2

 ·
 P

?P
P?

?P?


• Reduced system:

d

dt

 P
?P + P?

0
?P?

 =

−2·k1 0 0 0
2·k1 −k1 0 0

0 0 0 0
0 k1 0 −k2

·
 P
?P + P?

0
?P?
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Differential equations

• Initial system:

d

dt

 P
?P
P?

?P?

 =

−2·k1 0 0 0
k1 −k1 0 0
k1 0 −k1 0
0 k1 k1 −k2

 ·
 P

?P
P?

?P?


• Reduced system:

d

dt

 P
?P + P?

0
?P?

 =

1 0 0 0
0 1 1 0
0 0 0 0
0 0 0 1


︸ ︷︷ ︸

P

·

−2·k1 0 0 0
k1 −k1 0 0
k1 0 −k1 0
0 k1 k1 −k2

·
1 0 0 0

0 1 0 0
0 0 0 0
0 0 0 1


︸ ︷︷ ︸

Z

·

 P
?P + P?

0
?P?
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Pair of projections induced by an
equivalence relation among variables

Let r be an idempotent mapping from V to V .
We define two linear projections Pr, Zr ∈ (V → R+)→ (V → R+) by:

• Pr(ρ)(V ) =

{∑
{ρ(V ′) | r(V ′) = r(V )} when V = r(V )

0 when V 6= r(V );

• Zr(ρ) =

{
V 7→ ρ(V ) when V = r(V )

V 7→ 0 when V 6= r(V ).

We notice that the following diagram commutes:

Pr

Zr
`?

`?

`
Pr
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Induced bisimulation

The mapping r induces a bisimulation,
∆⇐⇒

for any σ, σ′ ∈ V → R+, Pr(σ) = Pr(σ
′) =⇒ Pr(F(σ)) = Pr(F(σ′)).

Indeed the mapping r induces a bisimulation,
⇐⇒
for any σ ∈ V → R+, Pr(F(σ)) = Pr(F(Pr(σ))).

F

Pr

Pr
Pr

F
`?

`?

`?
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Induced abstraction

Under these assumptions (r(V), Pr, Pr ◦ F ◦ Zr) is an abstraction of (V ,F), as proved
in the following commutative diagram:

Zr F Pr

Pr

F

Pr Pr

`? `?
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Abstract projection

We assume that we are given:

• a concrete system (V ,F);

• an abstraction (V ], ψ,F]) of (V ,F) (I);

• an idempotent mapping r over V which in-
duces a bisimulation (II);

• an idempotent mapping r] over V ] (III);

such that: ψ ◦ Pr = Pr] ◦ ψ (IV).

ψI

`?

F]

F

ψ

`?

F

Pr

Pr
Pr

F

II

`?

`?

`?

Pr]

Zr]
III

`?

`?

Pr]

ψIV

`?

`?Pr]

Pr `?

ψ

`?
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Combination of abstractions

Under these assumptions, (r](V ]), Pr] ◦ ψ, Pr] ◦ F] ◦ Zr]) is an abstraction of (V ,F),
as proved in the following commutative diagram:

F

F Pr

IV

Pr II

ψ

Pr]

IV

I

Zr]

ψ

Pr]F]

III

ψ ψ

Pr]
Pr]

IV
ψ

Pr

`?

`?

`?

`?
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On the menu today

1. Context and motivations

2. Case studies

3. Reduction of ordinary differential equations

4. Abstraction of the information flow

5. Model reduction

6. Conclusion
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Concrete semantics

A rule is a symbolic representation of a multi-set of reactions.

For instance, the rule:

PSfrag replaements

kd

denotes the following two rules:

PSfrag replaements

kd
PSfrag replaements

kd

The semantics of a set of rules is the semantics of the underlying multi-set of reactions.
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Flow of information (in the concrete)

Does the state of a given site influence the capability to modify another site?
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Flow of information (in the concrete)
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Flow of information (in the concrete)

If there exists a soup of chemical species in which the activation rate of the site of
ShC is different in these two contexts, then there may be a flow of information.
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Discrimination by a rule
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In this case, there exists a rule which makes a difference between these two contexts,
for instance the following one:

ShCY7 pi EGFR rY48 ShCY7 pi EGFR rY48
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Flow of information due to a rule
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Flow of information due to a rule
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Flow of information due to a rule
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Flow of information due to a rule
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Flow of information due to a rule
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Projection on the contact map
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Projection on the contact map
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Projection on the contact map
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Projection on the contact map
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Projection on the contact map
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Direct computation
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JÃl’rôme Feret 51 Wednesday, the 18th of November, 2015



Direct computation
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JÃl’rôme Feret 51 Wednesday, the 18th of November, 2015



Direct computation
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Direct computation
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Direct computation
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On the menu today

1. Context and motivations

2. Case studies

3. Reduction of ordinary differential equations

4. Abstraction of the information flow

5. Model reduction

6. Conclusion

JÃl’rôme Feret 52 Wednesday, the 18th of November, 2015



Which patterns shall we keep?
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Which patterns shall we keep?
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Pattern annotation
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Pattern annotation
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Prefragment
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DÃl’finition 1 (prefragment) A pattern is a prefragment

if, in its annotated form, there exists a site that it is reachable

from every site (following the flow of information).
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Fragments
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DÃl’finition 2 (fragment) A fragment is a prefragment

that cannot be embedded in any bigger prefragment. lahbald-

sjfljs dfljd fls j dslj fsl fds
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Examples
Which patterns are fragments?
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Examples : annotated map
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Examples : pattern annotation
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Examples
Which patterns are prefragments?
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Examples
Prefragments
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Examples
Which patterns are fragments?

EGF

r

EGFR

l

rY48

EGF

r

EGFR

l

r

EGF

r

EGFR

l

r

EGF

r

EGFR

l

r

EGF

r

EGFR

l

r

Y68

EGF

r

EGFR

l

r
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Examples
Fragments
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Examples : fragments
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Almost done. . .

We are left to express the consumption and the production

(in concentration) of each fragment as expressions of the con-

centration of fragments.

Firstly, we notice that the concentration of each prefragment

can be expressed as a linear combination of the concentration

of the fragments.
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Fragments consumption

ShCY7 pi EGFR rY48 ShCY7 pi EGFR rY48

ShCY7 pi EGFR rY48

l

Whenever there is an overlap between a fragment and a connected component in the
left hand side of a rule such that the common region contains a site that is modified
by the rule, then the connected component embeds in the fragement.
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Fragments consumption

ShCY7 pi EGFR rY48 ShCY7 pi EGFR rY48

ShCY7 pi EGFR rY48

l

Whenever there is an overlap between a fragment and a connected component in the
left hand side of a rule such that the common region contains a site that is modified
by the rule, then the connected component embeds in the fragement.
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Fragments consumption

ShCY7 pi EGFR rY48 ShCY7 pi EGFR rY48

ShCY7 pi EGFR rY48

l

For each fragment F , for each rule:

r : C1, . . . , Cn → rhs k

and for each occurrence of a connected component Cj that is modified by the rule, in
a the fragment F , we have the following contribution:

d[F ]

dt

−
=

k · [F ] ·
∏

i 6=j [Ci]

sym[C1, . . . , Cn] · sym[F ]
.
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Fragments production

ShCY7 pi EGFR rY48 ShCY7 pi EGFR rY48

ShCY7 pi EGFR

l

Y48

Whenever there is an overlap between a fragment and the right hand side of a rule,
such that the common region contains a site that is modified by the rule. . .
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Fragments production

ShCY7 pi EGFR rY48 ShCY7 pi EGFR rY48

ShCY7 pi EGFR

l

Y48

Whenever there is an overlap between a fragment and the right hand side of a rule,
such that the common region contains a site that is modified by the rule. . .
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Fragments production

ShCY7 pi EGFR rY48 ShCY7 pi EGFR rY48

ShCY7 pi EGFR

l

Y48

ll

Whenever there is an overlap between a fragment and the right hand side of a rule such
that the common region contains a site that is modified by the rule, each connected
component in the left hand side of the refined rule, is a prefragment.
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Fragment production

For each overlap ch between a fragment and the right hand side of a rule, such that
the common region contains a site that is modified by the rule:

r : C1, . . . , Cm → rigth hand side k,

we have the following contribution:

d[F ]

dt

+
=

k ·
∏

i
[C ′i]

sym[C1, . . . , Cm] · sym[F ]
.

where C ′1, . . . , C
′
n is the left hand side of the refined rule.

JÃl’rôme Feret 68 Wednesday, the 18th of November, 2015



On the menu today

1. Context and motivations

2. Case studies

3. Reduction of ordinary differential equations

4. Abstraction of the information flow

5. Model reduction

6. Conclusion
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Benchmark

Model early EGF EGF/Insulin SFB

Number of mollecular species 356 2899 ∼ 2.1019

Number of fragments
38 208 ∼ 2.105

(ODEs semantics)

Number of fragments
356 618 ∼ 2.1019

(CTMC semantics)
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In short
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Abstraction of the information flow
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Abstraction of the information flow
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Patterns of interest
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Patterns of interest
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MPRI

An algebraic approach for inferring and using
symmetries in rule-based models

Jérôme Feret
DI - ÉNS

Wednesday, the 18th of November, 2015



Overview

1. Context and motivations

2. Case study

3. Kappa semantics

4. Symmetries in site-graphs

5. Symmetric models

6. Conclusion
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Signalling Pathways

Eikuch, 2007
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dx1
dt

= −k1 · x1 · x2 + k−1 · x3
dx2
dt

= −k1 · x1 · x2 + k−1 · x3
dx3
dt

= k1 · x1 · x2 − k−1 · x3 + 2 · k2 · x3 · x3 − k−2 · x4
dx4
dt

= k2 · x23 − k2 · x4 +
v4·x5
p4+x5

− k3 · x4 − k−3 · x5
dx5
dt

= · · ·
...

dxn
dt

= −k1 · x1 · c2 + k−1 · x3

knowledge
representation and

models of the
behaviour of

systems
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Site-graphs rewriting

EGF r EGFRl

r

EGF r EGFRl

r

EGF r EGFRl

r

EGF r EGFRl

r

PSfrag replaements

k

• a language close to knowledge representation;

• rules are easy to update;

• a compact description of models.
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Choices of semantics
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dx1
dt

= −k1 · x1 · x2 + k−1 · x3
dx2
dt

= −k1 · x1 · x2 + k−1 · x3
dx3
dt

= k1 · x1 · x2 − k−1 · x3 + 2 · k2 · x3 · x3 − k−2 · x4
dx4
dt

= k2 · x23 − k2 · x4 +
v4·x5
p4+x5

− k3 · x4 − k−3 · x5
dx5
dt

= · · ·
...

dxn
dt

= −k1 · x1 · c2 + k−1 · x3

ordinary differential equations
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Complexity walls
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Abstractions offer different perspectives
on models
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concrete semantics causal traces

EGF

r

EGFR

l

rY68

Y48

ShC
piY7

Grb2

a

b Sosd

information flow
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�
�
�
�
�
�
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�
���
�

����
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exact projection
of the ODE semantics
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Symmetric sites

• in BNGL or MetaKappa (multiple-occurrences of sites):

• in Formal Cellular Machinery or React(C) (hyper-edges):

Blinov et al., BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains, Bioinformatics 2004
Danos et al., Rule-Based Modelling and Model Perturbation, TCSB 2009
Damgaard et al., Formal cellular machinery, Damgaard et al., SASB 2011
John et al., Biochemical Reaction Rules with Constraints, ESOP 2011
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Other kinds of symmetries:
Circular permutations
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Other kinds of symmetries:
Circular permutations
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Other kinds of symmetries:
Homogeneous symmetries

We can compute a horizontal reflection.
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Other kinds of symmetries:
Homogeneous symmetries

We can compute a vertical reflection.
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Other kinds of symmetries:
Homogeneous symmetries

We can compute both reflections.
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Other kinds of symmetries:
Homogeneous symmetries

But we cannot apply different permutations!!!.
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Other kinds of symmetries:
Homogeneous symmetries
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Overview

1. Context and motivations

2. Case study

(a) Symetric model with symmetric initial state
(b) Symmetric model with non-symmetric initial state
(c) Non-symmetric model

3. Kappa semantics

4. Symmetries in site-graphs

5. Symmetric models

6. Conclusion
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Case study

k•,• � ,2

kd•,•

�lr

k•,• � ,2

kd•,•

�lr

k•,• � ,2

kd•,•

�lr
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State distribution

q0 : ×6

q1 : ×4 ×1

q2 : ×4 ×1

q3 : ×2 ×2

q4 : ×2 ×2
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P(q2)
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P(q4)
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k•,• = k•,• = 1

k•,• = k
d
•,• = k

d
•,• = k

d
•,• = 2

P(q0 | t = 0) = 1
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Lumpability

k•,• � ,2

kd•,•

�lr

k•,• � ,2

kd•,•

�lr

k•,• � ,2

kd•,•

�lr

Whenever: {
2k•,• = 2k•,• = k•,•
kd•,• = k

d
•,• = k

d
•,•

We can lump the system.
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Lumped system

4k•,• � ,2

kd•,•

�lr
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Macrostate distribution

Q0 : ×6

Q1 : ×4 ×1

Q2 : ×2 ×2
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Probability ratios
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Overview

1. Context and motivations

2. Case study

(a) Symetric model with symmetric initial state
(b) Symmetric model with non-symmetric initial state
(c) Non-symmetric model

3. Kappa semantics

4. Symmetries in site-graphs

5. Symmetric models
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Model
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State distribution
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Lumpability
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Lumped system

4k•,• � ,2

kd•,•

�lr
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Macrostate distribution
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Probability ratios (wrong initial condition)

q1 : ×4 ×1

q2 : ×4 ×1
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Overview

1. Context and motivations

2. Case study

(a) Symetric model with symmetric initial state
(b) Symmetric model with non-symmetric initial state
(c) Non-symmetric model

3. Kappa semantics

4. Symmetries in site-graphs
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Model
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State distribution

q0 : ×6
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Lumpability

k•,• � ,2

kd•,•

�lr

k•,• � ,2
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�lr

k•,• � ,2
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�lr

In general, when the following system:{
2k•,• = 2k•,• = k•,•
kd•,• = k

d
•,• = k

d
•,•

is not satisfied, we cannot lump the system.
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Probability ratios (wrong coefficients)

q1 : ×4 ×1

q2 : ×4 ×1

q3 : ×4 ×1

q4 : ×2 ×2

q5 : ×2 ×2

0
1
2
3
4
5
6

0 0.2 0.4 0.6 0.8 1
P

ro
ba

bi
lit

y
ra

tio
s

‘
t

Probability ratios VS Time
P(q2)/P(q1)
P(q3)/P(q1)
P(q5)/P(q4)

with:


k•,• = k•,• = k•,• = 1

kd•,• = k
d
•,• = 2

kd•,• = 4

P(q0 | t = 0)) = 1
Jérôme Feret 37 Wednesday, the 18th of November, 2015



In this talk

An algebraic notion of symmetries over site graphs:

• compatible with the SPO (Single Push-Out) semantics of Kappa;

• with a notion of subgroups of symmetries;

• with a notion of symmetric models.

Some conditions so that symmetries over a model induce

• a forward bisimulation;

• a backward bisimulation.

In this talk, we consider only a side-effect free fragment of Kappa.
The full language is handled with in, the paper.
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Signature

Agents:

Sites:

Interface:
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Site graphs
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Embeddings
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Embeddings
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Composition of embeddings

Jérôme Feret 42 Wednesday, the 18th of November, 2015



Composition of embeddings

Jérôme Feret 42 Wednesday, the 18th of November, 2015



Composition of embeddings
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Identity embeddings
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Identity embeddings
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Isomorphisms
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Isomorphisms
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Fully specified site graphs
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Isomorphic embeddings

When the following diagram:

x �
� f //
s�

g
&&

x
≈

88

commutes, we say that the embeddings f and g are isomorphic, and we write
f ≈ g.
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Partial embeddings
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Composition of partial embeddings
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Composition of partial embeddings
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Composition of partial embeddings

x x x

xS3
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Rules

A rule is a partial embedding such that:

• the domain (D) is maximal;

• some constraints that we omit here are satisfied.
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Rule application
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Rule applications
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Refinement

x

x � ,2

* 18

x
, �

!

::

x � ,2?�

OO

x
?�

OO

2�

DD
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Semantics
1. A model is a map k from rules to non negative real numbers;
2. Q ∆

= {[G]≈ | G fully specified site graph};

3. L ∆
=

{
(r, [f]≈)

∣∣∣∣ r a rule , f an embedding from lhs(r)
to a fully specified site graph

}
;

4. [M]≈
(r,[φ]≈)
−→ [M ′]≈ if and only if:

M � ,2M ′

x r � ,2?�
f
OO

x
?�

OO

The rate of such a transition is defined as:
γ(r)card({φf | φ ∈ Aut(im(f))})

card(Aut(lhs(r)))
.
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Semantics
1. A model is a map k from rules to non negative real numbers;

2. Q ∆
= {[G]≈ | G fully specified site graph};

3. L ∆
=

{
(r, [f]≈)

∣∣∣∣ r a rule , f an embedding from lhs(r)
to a fully specified site graph

}
;

4. [M]≈
(r,[f]≈)
−→ [M ′]≈ if and only if:

M � ,2M ′

≈
OO

x r � ,2?�
f
OO

x
?�

OO

The rate of such a transition is defined as:
γ(r)card({φf | φ ∈ Aut(im(f))})

card(Aut(lhs(r)))
.
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Applying transformations over push-outs

We would like to make pairs of transformations act over push-outs,

q � ,2q ′

L r � ,2
?�

OO

R
?�

OO
σq.q � ,2σq ′.q ′

agree
4 T

gg

) 	

77

σ ′q.L
(σ ′q,σ

′
q ′
).r

� ,2
?�

OO

σ ′q ′.R
?�

OO

whenever they act the same way on preserved agents.
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5. Symmetric models

6. Conclusion
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Transformations over site graphs

• For any site graph G, we introduce a finite group of transformations GG.

• For any site graph G and any transformation σ ∈ GG, we introduce the
site graph σ.G and we call it the image of G by σ.

• We assume that GG and G
(σ.G) are the same group.
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Restricting a transformation
to the domain of an embedding
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Jérôme Feret 58 Wednesday, the 18th of November, 2015



Restricting a transformation
to the domain of an embedding
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Restriction of symmetry
to the domain of an embedding

G � � f // H

f.σ

��

σ

��

(f.σ).G � � σ.f // σ.H
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Restriction of symmetry
to the domain of an embedding

G � � f // H

f.σ

��

σ

��

(f.σ).G � � σ.f // σ.H
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Identity function

E � �
iE //E

iE.σ

��

σ

�

σ

��

(iE.σ).E }�

σ.iE
11

! �
i(σ.E)

--σ.E
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Identity function

E � �
iE //E

iE.σ

��

σ

�

σ

��

(iE.σ).E }�

σ.iE
11

! �
i(σ.E)

--σ.E

We assume that:

• iE.σ = σ

• σ.iE = i(σ.E)

Jérôme Feret 63 Wednesday, the 18th of November, 2015



Identity symmetry

E � � f //F

f.εF

��

εE

�

εF

��

E =(f.εF).E ~�

εF.f
00

 � f ..εF.F= F

Jérôme Feret 64 Wednesday, the 18th of November, 2015



Identity symmetry

E � � f //F

f.εF

��

εE

�

εF

��

E =(f.εF).E ~�

εF.f
00

 � f ..εF.F= F

Jérôme Feret 64 Wednesday, the 18th of November, 2015



Identity symmetry

E � � f //F

f.εF

��

εE

�

εF

��

E =(f.εF).E ~�

εF.f
00

 � f ..εF.F= F

Jérôme Feret 64 Wednesday, the 18th of November, 2015



Identity symmetry

E � � f //F

f.εF

��

εE

�

εF

��

E =(f.εF).E ~�

εF.f
00

 � f ..εF.F= F

Jérôme Feret 64 Wednesday, the 18th of November, 2015



Identity symmetry

E � � f //F

f.εF

��

εE

�

εF

��

E =(f.εF).E ~�

εF.f
00

 � f ..εF.F= F

We assume that:

• εF.F = F
• f.εF = εE
• εF.f = f
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Composition of embeddings

E y�

f ++

� � gf
//G

f.(g.σ)

�

(gf).σ

��

F �&
g

44

σ

��

g.σ
��

(g.σ).F � w σ.g
))

((gf).σ).E ��

σ.(gf)
//

& �
(g.σ).f 33

σ.G
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�

(gf).σ

��

F �&
g

44

σ

��

g.σ
��

(g.σ).F � w σ.g
))

((gf).σ).E ��

σ.(gf)
//

& �
(g.σ).f 33

σ.G
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Composition of embeddings

E y�

f ++

� � gf
//G

f.(g.σ)

�

(gf).σ

��

F �&
g

44

σ

��

g.σ
��

(g.σ).F � w σ.g
))

((gf).σ).E ��

σ.(gf)
//

& �
(g.σ).f 33

σ.G

We assume that:

• (gf).σ = f.(g.σ)

• σ.(gf) = (σ.g)((g.σ).f)
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Product of transformations

E �
� f //F

f.(σ ′◦σ)

��

f.σ
$,

σ

v~

σ ′◦σ

��

(f.σ).E � � σ.f //σ.F

(σ.f).σ ′
ks

σ ′
+3

(f.(σ ′ ◦ σ)).E � � (σ ′◦σ).f
// (σ ′ ◦ σ).F
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Product of transformations

E �
� f //F

f.(σ ′◦σ)

��

f.σ
$,

σ

v~

σ ′◦σ

��

(f.σ).E � � σ.f //σ.F

(σ.f).σ ′
ks

σ ′
+3

(f.(σ ′ ◦ σ)).E � � (σ ′◦σ).f
// (σ ′ ◦ σ).F

We assume that:

• (σ ′ ◦ σ).F = σ ′.(σ.F)

• f.(σ ′ ◦ σ) = ((f.σ).σ ′) ◦ (f.σ)
• (σ ′ ◦ σ).f = σ ′.(σ.f)
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Images of fully specified site graphs

We assume that for any site graph G and any transformation σ ∈ GG the two
following assertions are equivalent:

1. G is fully specified;

2. σ.G is fully specified.
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Images of partial embeddings

For any partial embedding φ : L
f←↩ D g

↪→ R,
We assume that:

• if {
f.σL = g.σR
f.σ ′L = g.σ ′R

• then
f.(σL ◦ σ ′L) = g.(σR ◦ σ ′R),

for any σL, σ ′L ∈ GL, σR, σ
′
R ∈ GR,

We consider:
Gφ

∆
= {(σL, σR) ∈ GL ×GR | f.σL = g.σR}.
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Images of rules

We assume that for any partial embedding φ : L
f←↩ D g

↪→ R and any (pair of)
transformation(s) (σL, σR) ∈ Gφ the two following assertions are equivalent:

1. φ is a rule;

2. σL.L
σL.f←↩ (f.σL).D σR.g

↪→ σR.R is a rule.
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Images of push-outs

Theorem 1 Let r be a rule, and (σL, σR) ∈ Gr be a pair of transformations.
If the following diagram:

L ′ r � ,2R ′

L ′
r ′

� ,2
?�

hL

OO

R
?�
hR

OO

is a push-out, then the following diagram:

σL.L ′
(σL,σR).r � ,2σR.R ′

(hL.σL).L ′ (hL.σL,hR.σR).r ′
� ,2

?�
σL.hL

OO

(hR.σR).R
?�
σR.hR
OO

is a push-out as well.
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Subgroups of transformations

Theorem 2
If, for any embedding h between two site graphs G and H:

• we have a subset G ′G of GG;

• for any transformation σ ∈ G ′G, G ′G = G ′
(σ.G);

• for any two σ, σ ′ transformations in G ′G, σ ◦ σ ′ ∈ G ′G;

• for any transformation σ ∈ G ′H, h.σ ∈ G ′G;

then the groups (G ′G) define a set of transformations.
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Example:
Heterogeneous site permutations
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Example:
Homogeneous site permutations
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Overview

1. Context and motivations

2. Case study

3. Kappa semantics

4. Symmetries in site-graphs

(a) Groups of transformations
(b) Action of the transformations

5. Symmetric models

6. Conclusion
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Group actions over site graphs

Let G,G ′ be two site graphs.

We write G≈GG
′ if and only if there exists σ ∈ GG such that G ′ = σ.G.

The function: {
GG × [G]≈G → [G]≈G

(σ,G) 7→ σ.G

is a group action.

That is to say:

• ε.G = G;

• σ ′.(σ.G) = (σ ′ ◦ σ).G.
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Group actions over embeddings

Let f, f ′ be two embeddings.

We write f≈Gf
′ if and only if there exists σ ∈ G

IM(f)
such that f ′ = σ.f.

The function: {
G

IM(f)
× [f]≈G → [f]≈G

(σ, f) 7→ σ.f

is a group action.
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Compatible embeddings

An embedding f between two site graphs G and H is said compatible if and
only if:

GG = {f.σ | σ ∈ GH}

(that is to say that any transformation that can be applied to the domain of f
can be extended to the image of f).

This property is not preserved by subgroups of transformations:

Heterogeneous permutations Homogeneous permutations
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Decomposition of transformations along
an embedding

When f is an embedding between two site graphs G and H,
we have:

GH ≈ {σ ∈ GH | f.σ = εG}× {h.σ | σ ∈ GH}.
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Images of isomorphisms

The image of an isomorphism is an isomorphism.

σF.F �
�

iσF.F
//

s�

(f.σF).(f−1) %%

σF.F

(f.σF).E
�+
σF.f

99

The image of an automorphism may be not an automorphism.

Yet, for any site graph G, we have:

Card(G) = Card({φ | φ ∈ Aut(G)})× Card({G ′ | G ′ ≈ G and G ′≈GG}).
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Group actions over rules

Let r : L
f←↩ D g

↪→ R be a rule.

We define the symmetric of r by a symmetry (σL, σR) ∈ Gr as follows:

(σL, σR).r
∆
= σL.L

σL.f←↩ (f.σL).D σR.g
↪→ σR.R

We write r≈Gr
′ if and only if there exists σ ∈ Gr such that r ′ = σ.r.

Then:
• Gr is a group.

• the groups Gr and Gσ.r are the same, for any symmetry σ ∈ Gr.
• The function: {

Gr × [r]≈G → [r]≈G

(σ, r) 7→ σ.r.

is a group action.
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Decomposition of the group of
transformations over a rule
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Decomposition of the group of
transformations over a rule

Some transformations operate on the domain of the rule.
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Decomposition of the group of
transformations over a rule
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Decomposition of the group of
transformations over a rule

Some transformations operate on degraded agents.
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Decomposition of the group of
transformations over a rule

Jérôme Feret 88 Wednesday, the 18th of November, 2015



Decomposition of the group of
transformations over a rule

Some transformations operate on created agents.
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Decomposition of the group of
transformations over a rule

When r : L
f←↩ D g

↪→ R is a rule,
we have:

Gr ≈ {σ ∈ GL | f.σ = εD}×{σ | ∃(σL, σR) ∈ Gr, σ = f.σL = f.σR}×{σ ∈ GR | g.σ = εD}.

Symmetries distribute over:

1. the ones on removed agents;

2. the ones on new agents;

3. the ones on the domain which are compatible with rule.
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Group actions over push-out

Theorem 3 Let r be a rule. The function which maps each pair of transfor-
mations (σL, σR) ∈ Gr and each push-out of the form:

L ′ r ′ � ,2R ′

L ′
r ′′

� ,2
?�

hL

OO

R
?�
hR

OO

with r ′≈Gr, to the push-out:

σL.L ′
(σL,σR).r ′ � ,2σR.R ′

(hL.σL).L ′ (hL.σL,hR.σR).r ′′
� ,2

?�
σL.hL

OO

(hR.σR).R
?�
σR.hR
OO

is a group action.
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Overview

1. Context and motivations

2. Case study

3. Kappa semantics

4. Symmetries in site-graphs

5. Symmetric models

(a) Symmetries among set of rules
(b) Induced bisimulations

6. Conclusion
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Isomorphic rules
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Isomorphic rules

Jérôme Feret 93 Wednesday, the 18th of November, 2015



Symmetric model

We assume that the model contains atmost one rule per isomorphism class.

A model is G-symmetric if and only if:

• for any rule r in the model and any pair of symmetries σ ∈ Gr, there is
(unique) a rule r ′ in the model that is isomorphic to the rule σ.r.

• and, with the same notations, we have g(r) = g(r ′) where:

g(r)
∆
=

k(r)

card({σ ∈ Gr | σ.r ≈ r})card(Aut(lhs(r))
.

Jérôme Feret 94 Wednesday, the 18th of November, 2015



Binding rules

k•,• � ,2

k•,• � ,2

k•,• � ,2

k•,• � ,2

k•,•

1·2
=
k•,•

1 · 2
=
k•,•

2 · 2
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Unbinding rules

kd•,• � ,2

kd•,• � ,2

kd•,• � ,2

kd•,• � ,2

kd•,•

1 · 2
=
kd•,•

1 · 2
=
kd•,•

2 · 1
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Compatible embeddings (reminders)

An embedding f between two site graphs G and H is said compatible if and
only if:

GG = {f.σ | σ ∈ GH}

(that is to say that any transformation that can be applied to the domain of f
can be extended to the image of f).

This property is not preserved by subgroups of transformations:

Heterogeneous permutations Homogeneous permutations
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Compatible rules
We say that a rule r is forward-compatible if and only if, for any push-out of
the following form:

x � ,2x
xY9

kk

�% g

33

x r � ,2?�

OO

x
?�

OO

the embedding g is compatible.

We say that a rule r is backward-compatible if and only if, for any push-out of
the following form:

x � ,2x
xY9f

kk

�%

33

x r � ,2?�

OO

x
?�

OO

the embedding f is compatible.
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Lumping states

We say that two states q, q ′ ∈ Q are isomorphic if and only if there exist
M ∈ q and M ′ ∈ q ′ such that M≈GM

′.

In such a case, we write q≈Gq
′.

≈G is an equivalence relation.
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Lumping the transtion labels

We say that two labels (r, C) ∈ L and (r ′, C ′) ∈ L are isomorphic if and only if
there exist an embedding f ∈ C, an embedding f ′ ∈ C ′, a pair of symmetries
(σL ′, σR) ∈ G

IM(f)
×Grhs(r) such that (f. ′σL ′, σR) ∈ Gr and two isomorphisms φ

and ψ such that the following diagram commutes:

� ,2

(f. ′σL ′,σR).r � ,2?�

σL ′.
′′f

OO

� ?

OO

r ′ � ,2

≈φ

OO

K+

f ′

FF

≈ψ

OO

In such a case, we write (r, C)≈G(r
′, C ′) (this is also an equivalence relation).
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Weighted flow

Let X,X ′ ⊆ Q and Y ⊆ L.
Let ω be a function from Q to R+.

We define the flow from X to X ′ via Y, weighted by the reward function ω by:

FLOWω (X, Y, X ′)
∆
=
∑

q∈X,q ′∈X ′,λ∈Y, q
λ
−→q ′

ω(q)RATE(λ)
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Forward bisimulation

Theorem 4 Let q, q ′, q ′′ ∈ Q such that q≈Gq
′. Let λ ∈ L.

If the model is symmetric and if the rules of the models are forward-compatible,
then the following equality holds:

FLOWω

(
{q}, [λ]≈G

, [q ′′]≈G

)
= FLOWω

(
{q ′}, [λ]≈G

, [q ′′]≈G

)
,

with ω(q1) = 1 for any q1 ∈ Q.
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Backward bisimulation (DTMC)

Theorem 5 Let q, q ′, q ′′ ∈ Q such that q ′≈Gq
′′. Let λ ∈ L.

If the model is symmetric and if the rules of the models are backward-compatible,
then the following equality holds:

ω(q ′′)FLOWω

(
[q]≈G, [λ]≈G

, {q ′}

)
= ω(q ′)FLOWω

(
[q]≈G, [λ]≈G

, {q ′′}

)
,

with ω(q1)
∆
=

1

card(Aut(q))
, for any q1 ∈ Q.
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Backward bisimulation (CTMC)

Theorem 6 Let q, q ′, q ′′ ∈ Q such that q ′≈Gq
′′. Let λ ∈ L.

If the model is symmetric and if the rules of the models are both forward- and
backward-compatible,
then the following equalities holds:

1. FLOWω ({q ′},Q,L) = FLOWω ({q"},Q,L),
with ω(q1) = 1 for any q1 ∈ Q;

2. ω(q ′′)FLOWω

(
[q]≈G, [λ]≈G

, {q ′}

)
= ω(q ′)FLOWω

(
[q]≈G, [λ]≈G

, {q ′′}

)
,

with ω(q1)
∆
=

1

card(Aut(q))
, for any q1 ∈ Q.
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Conclusion

A fully algebraic framework to infer and use symmetries in Kappa;

• Compatible with the SPO semantics (see [FSTTCS’2012]);

• Can handle side-effects (see the paper);

• Induces forward and/or back and forth bisimulations;

• Can be applied to discover model reductions for the qualitative seman-
tics, the ODEs semantics, and the stochastic semantics [MFPSXXVII];

• Can be combined with other exact model reductions [MFPSXXVI].

This framework is cleaner and more general that the process algebra based
one [MFPSXXVII].

Camporesi et al., Combining model reductions. MFPS XXVI (2010)
Camporesi et al., Formal reduction of rule-based models, MFPS XXVII (2011)
Danos et al., Rewriting and Pathway Reconstruction for Rule-Based Models, FSTTCS 2012
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Future work

• Investigate which specific classes of symmetries and which specific
classes of rules ensure that rules are forward and/or backward com-
patible with the symmetries;

• Check the compatibility with the DPO (Double Push-Out) semantics;

• Design approximate symmetries using bisimulation metrics
(ask Norman Ferns).

“AbstractCell”
(2009-2013)

“Big Mechanism” (2014-2017)
“CwC” (2015-2018)

“TGFβSysBio"
(2015-2018)
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ODE fragments

In the ODE semantics, using the flow of information backward, we can detect
which correlations are not relevant for the system, and deduce a small set of
portions of chemical species (called fragments) the behavior of the concen-
tration of which can be described in a self-consistent way.

(ie. the trajectory of the reduced model are the exact projection of the trajec-
tory of the initial model).

Can we do the same for the stochastic semantics?
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Stochastic fragments ?
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A model with ubiquitination

k1 k2

P
k1−→ ?P P? k1−→ ?P?

P
k2−→ P? ?P

k2−→ ?P?

? k3
?P

k3−→ ∅
?P? k3−→ ∅

?
k4 P? k4−→ ∅

?P? k4−→ ∅
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Statistical independence
We check numerically that:

Et (n?P?) = Et

(
(n?P + n?P?)(nP? + n?P?)

nP + nP? + n?P + n?P?

)
.
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with k1 = k2 = k3 = k4 = 1
and two instances of P at time t = 0.
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Reduced model

k1 k2

P
k1−→ ?P

P
k2−→ P?

k3 ?P
k3−→ ∅

+ side effect: remove one P

k4
P? k4−→ ∅

+ side effect: remove one P

Jérôme Feret 9 Wednesday, the 19th of Novermber, 2015



Comparison between the two models
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Coupled semi-reactions

?
kA+/kA−

A
kA+−−⇀↽−−
kA−

A?, AB
kA+−−⇀↽−−
kA−

A?B, AB?
kA+−−⇀↽−−
kA−

A?B?

?

kB+/kB−

B
kB+−−⇀↽−−
kB−

B?, AB
kB+−−⇀↽−−
kB−

AB?, A?B
kB+−−⇀↽−−
kB−

A?B?

kAB/kA?B?/kA..B A + B
kAB−−⇀↽−−
kA..B

AB, A? + B
kAB−−⇀↽−−
kA..B

A?B,

A + B?
kAB−−⇀↽−−
kA..B

AB?, A? + B?
kA?B?−−−⇀↽−−−
kA..B

A?B?
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Reduced model

?
kA+/kA−

A
kA+−−⇀↽−−
kA−

A?, AB�
kA+−−⇀↽−−
kA−

A?B�,

?

kB+/kB−

B
kB+−−⇀↽−−
kB−

B?, A�B
kB+−−⇀↽−−
kB−

A�B?,

kAB/kA?B?/kA..B

A + B
kAB−−−−−−−−−−−⇀↽−−−−−−−−−−−

kA..B/(nA�B+nA�B?)
AB� + A�B,

A? + B
kAB−−−−−−−−−−−⇀↽−−−−−−−−−−−

kA..B/(nA�B+nA�B?)
A?B� + A�B,

A + B?
kAB−−−−−−−−−−−⇀↽−−−−−−−−−−−

kA..B/(nA�B+nA�B?)
AB� + A�B?,

A? + B?
kA?B?−−−−−−−−−−−⇀↽−−−−−−−−−−−

kA..B/(nA�B+nA�B?)
A?B� + A�B?

Jérôme Feret 12 Wednesday, the 19th of Novermber, 2015



Comparison between the two models

0

0.1

0.2

0.3

0.4

0.5

0 0.5 1 1.5 2 2.5 3

E
(n

A
?
B
?
)

t

unreduced system
reduced system

0

0.01

0.02

0.03

0.04

0.05

0.06

0 0.5 1 1.5 2 2.5 3

er
ro

rr
at

e

t

with kA+= kA−= kB+= kB−= kAB = kA..B = 1, kA?B? = 10,
and two instances of A and B at time t = 0.

Although the reduction is correct in the ODE semantics.
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Degree of correlation
(in the unreduced model)
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Distant control

?

k+/k−
A

k+−⇀↽−
k−

A?

A?

k+−⇀↽−
k−

A?
?

?

k+

?

A + A? k+−→ A? + A?

A? + A? k+−→ A?
? + A?

A + A?
?

k+−→ A? + A?
?

A? + A?
?

k+−→ A?
? + A?

?
?

k− A?
?

k−−→ A?

A?
k−−→ A
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Reduced model

k+/k− A
k+−⇀↽−
k−

A?

k+
A + A? k+−→ A? + A?

k−

A?
k−−→ A
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Comparison between the two models
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Degree of correlation
(in the unreduced model)
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Overview

1. Introduction
2. Examples of information flow
3. Symmetric sites
4. Stochastic semantics
5. Lumpability
6. Bisimulations
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A model with symmetries

k1 k1

P
k1−→ ?P P? k1−→ ?P?

P
k1−→ P? ?P

k1−→ ?P?

k2
?P? k2−→ ∅
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Degree of correlation
(in the unreduced model)
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Equivalent chemical species

We check numerically that:

Et (nP?) = Et (n?P).
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and two instances of P at time t = 0.
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Reduced model

2·k1

P
2·k1−−→ ?P

k1

?P
k1−→ ?P?

k2
?P? k2−→ ∅

Exponential reduction!!!
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Comparison between the two models
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Weighted Labelled Transition Systems

A weighted-labelled transition systemW is given by:

• Q, a countable set of states;

• L, a set of labels;

• w : Q×L×Q→ R+
0 , a weight function;

• π0 : Q→ [0, 1], an initial probability distribution.

We also assume that:

• the system is finitely branching, i.e.:

-- the set {q ∈ Q | π0(q) > 0} is finite
-- and, for any q ∈ Q, the set {l, q ′ ∈ L ×Q | w(q, l, q ′) > 0} is finite.

• the system is deterministic:
if w(q, λ, q1) > 0 and w(q, λ, q2) > 0, then: q1 = q2.
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Trace distribution

A cylinder set of traces is defined as:

τ
∆
= q0

λ1,I1→ q1 . . . qk−1
λk,Ik→ qk

where:

• (qi)0≤i≤k ∈ Qk+1 and (λi)1≤i≤k ∈ Lk,
• (Ii)1≤i≤k is a family of open intervals in R+

0 .

The probability of a cylinder set of traces is defined as follows:

Pr(τ) ∆
= π0(q0)

k∏
i=1

w(qi−1, li, qi)

a(qi−1)

(
e−a(qi−1)·inf(Ii) − e−a(qi−1)·sup(Ii)

)
,

where a(q) ∆
=
∑

λ,q ′w(q, λ, q
′).
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Abstraction between WLTS
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Soundness

Given:

• two WLTS S ∆
= (Q,L,→, w, I , π0) and S] ∆= (Q],L], , w], I], π]0),

• two abstraction functions βQ : Q→ Q] and βL : L→ L],

S] is a sound abstraction of S , if and only if, for any cylinder set τ of traces of
S , we have:

Pr(βT(τ)) =
∑

τ ′
(Pr(τ ′) | βT(τ) = βT(τ ′)),

where,

βT(q0
λ1,I1→ q1 . . . qk−1

λk,Ik→ qk)
∆
= βQ(q0)

βL(λ1),I1→ βQ(q1) . . . β
Q(qk−1)

βL(λk),Ik→ βQ(qk).
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Completeness

Given:

• two WLTS S ∆
= (Q,L,→, w, I , π0) and S] ∆= (Q],L], , w], I], π]0),

• two abstraction functions βQ : Q→ Q] and βL : L→ L],

• a concretization function γQ : Q→ R+,

S] is a sound and complete abstraction of S , if and only if,

1. it is a sound abstraction;

2. for any cylinder set τ] of abstract traces of S] which ends in the abstract
state q]k, we have:

γQ(s) = Pr(qk = s | τ such that βT(τ) ∈ τ])×
∑

{γQ(s ′) | βQ(s ′) = q]k}.
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Markovian Property

We consider a stochastic process:

• T = R+
0 : time range;

• Q: a countable set of states;

• (X t)t∈T: a family of random variables over Q;

We say that (X t) satisfies the Markovian property,
if, for any family (st)t∈T of states indexed over T, and any time t1 < t2,
we have:

Pr(Xt2 = st2 | Xt1 = st1) = Pr(Xt2 = st2 | Xt = st, ∀t < t1).
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Lumpability property

Given:

• a stochastic process (X t) which satisfies the Markovian property,

• an initial distribution π0 : Q→ [0, 1],

• an equivalence relation ∼ over Q,

we define the lumped process (Yt) on the state space Q/∼ as:

Pr(Yt = [xt]/∼ | Y0 = [s0]/∼)
∆
= Pr(X t ∈ [st]/∼ | X 0 ∈ [s0]/∼).

We say that (X )t is ∼-lumpable with respect to π0 if and only if, the stochastic
process (Yt) satisfies the Markovian property as well.
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Strong lumpability

x

y1

y2

y3

z1

z2

z3

1/2

1/3

1

1

11/3

1/3

1/2

1/2

1/2

1/2

1/2

x̃

z̃12

z̃3
1/2

1/2

1/2

1/2

ỹ12

ỹ3

1

1

2/3

1/3

A stochastic process is ∼-strongly lumpable, if:
it is ∼-lumpable with respect to any initial distribution.
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Weak lumpability
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A stochastic process (X t) is ∼-weakly lumpable, if:
there exists an initial distribution with respect to which (X t) is ∼-lumpable.
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Forward bisimulation

Let ∼Q be an equivalence relation over Q and ∼L be an equivalence relation
over L.

We say that (∼Q, ∼L) is a forward bisimulation,
if and only if, for any q1, q2 ∈ Q such that q1 ∼Q q2:

• a(q1) = a(q2);
• and for any λ? ∈ L, q ′? ∈ Q,

fwd(q1, [λ?]/∼L, [q
′
?]/∼Q) = fwd(q2, [λ?]/∼L, [q

′
?]/∼Q)

q1

q2

[λ?]/∼L

[λ?]/∼L
[q1]/∼Q [q ′?]/∼Q

where: fwd(q, [λ?]/∼L, [q
′
?]/∼Q) =

∑
λ ′,q ′

(w(q, λ ′, q ′) | λ ′ ∼L λ?, q
′ ∼Q q

′
?).
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Backward bisimulation

Let ∼Q be an equivalence relation over Q and ∼L be an equivalence relation
over L.

We say that (∼Q, ∼L) is a backward bisimulation,
if and only if, there exists γ : Q→ R+, such that:
for any q ′1, q

′
2 ∈ Q which satisfies q ′1 ∼Q q

′
2:

• a(q ′1) = a(q ′2);
• and for any λ? ∈ L, q? ∈ Q,

bwd([q?]/∼Q, [λ?]∼/L, q
′
1) = bwd([q?]/∼Q, [λ?]∼/L, q

′
2)

[λ?]/∼L

[q ′1]/∼Q
[λ?]/∼L

q ′1

q ′2

q1
q2

q3
q4

[q?]/∼Q

γ(q ′1)

γ(q ′2)γ(q4)
γ(q3)

γ(q2)
γ(q1)

where: bwd([q?]/∼Q, [λ?]∼/L, q
′) =

∑
q,λ ′

(
γ(q)
γ(q ′)w(q, λ

′, q ′) |q ∼Q q?, λ
′ ∼L λ?

)
.
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Logical implications

• if (∼Q, ∼L) is a forward bisimulation, then the process is ∼Q-strongly
lumpable,
moreover, it induces a sound abstraction;

• if (∼Q, ∼L) is a backward bisimulation, then the process is ∼Q-weakly
lumpable, for the initial distributions which satisfy:

q ∼Q q
′ ⇒ [π0(q) · γ(q ′) = π0(q ′) · γ(q)];

it induces a sound and complete abstraction for these initial distribu-
tions;

• there exist forward bisimulations which are not backward bisimulations;

• there exist backward bisimulations which are not forward bisimulations.
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Counter-example I

A forward bisimulation which is not a backward bisimulation:
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Counter-example II

A backward bisimulation which is not a forward bisimulation:
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Uniform backward bisimulation

Given q?, q ′ ∈ Q and λ? ∈ L, we denote:

pred([q?]/∼Q, [λ?]∼/L, q
′)
∆
= {(q, λ) | w(q, λ, q ′) > 0, q ∼Q q?, λ ∼L λ?}.

If,

• q1 ∼Q q2 =⇒ a(q1) = a(q2);

• for any q ′1,q
′
2 ∈ Q, such that q ′1 ∼Q q

′
2, and any q? ∈ Q and λ? ∈ L,

there is a 1-to-1 mapping between pred([q?]/∼Q, [λ?]∼/L, q
′
1) and

pred([q?]/∼Q, [λ?]∼/L, q
′
2) which is compatible with w,

then:

• (∼Q, ∼L) is a backward bisimulation (with γ(q) = 1, ∀q ∈ Q).
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Abstraction algebra

(Sound/Complete) abstractions can be:
• composed: S[

S

S]

• factored: S[

S

S]

• combined with a symmetric product (c.f. lub or pushout):

∃!
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Compatibility between composition and
pushout
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ConcretizationConcretization
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From individuals to population

• Individual semantics:
In the individual semantics, each agent is tagged with a unique identifier
which can be tracked along the trace;

• Population semantics:
In the population semantics, the state of the system is seen up to injec-
tive substitution of agent identifier;
equivalently, the state of the system is a multi-set of chemical species.
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Fragments

An annotated contact map is valid with respect to the stochastic semantics,
if:

• Whenever the site x and y both occurs in the same or in distinct agent
of type A in a rule, then, there should be a bidirectional edge between
the site x and the y of A.

• Whenever there is a bond between two sites, each of which either car-
ries an internal state of, is connected to some other sites of its agent,
then the bond if oriented in both directions.
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From population to fragments

• Population of fragments:

1. In the annotated contact, each agent is fitted with a binary equiv-
alence over its sites. We split the interface of agents into equiv-
alence classes of sites. Then we abstract away which subagents
belong to the same agent.

2. Whenever an edge is not oriented in the annotated contact map,
we cut each instance of this bond into two half bonds, and abstract
away which partners are bond together.
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ConcretizationConcretization
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Symmetries among sites

Let R be a set of rules andM0 be an initial mixture.

Two sites x1 and x2 are symmetric in the agent A in the set of rules R and the
initial mixtureM0
∆⇐⇒
• R is preserved (modulo ≡) if we replace each rule with all the combina-

tions of rules which can be obtained by replacing (independently) each
occurrence of x1 and x2 with x1 or x2 (and dividing the kinetic rate by
the number of combinations, and taking care of gain/loss of automor-
phisms).

• each agent of type Ai inM0 has their sites x1 and x2 free, with the same
internal state.
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Hierarchy of semantics
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Conclusion

• A framework for reducing stochastic rule-based models.

-- We use:
∗ the sites the state of which are uncorrelated;
∗ the sites having the same capabilities of interactions.

-- Algebraic operators combine these abstractions.

• We use backward bisimulations in order to prove statistical invariants,
we use them to reduce the dimension of the continuous-time Markov
chains.
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Future works

• Investigate the use of hybrid bisimulation.

• Propose approximated simulation algorithms to approximate different
scale rate reactions.

-- hybrid systems,
-- tau-leaping,
-- . . .
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