Shape analysis based on separation logic MPRI — Cours "Interprétation abstraite : application à la vérification et à l'analyse statique"

Xavier Rival

INRIA

Jan, 12th, 2016

 Xavier Rival (INRIA)
 Shape analysis based on separation logic
 Jan, 12th, 2016

1 / 89

How to reason about memory properties

Last lecture:

- concrete and abstract memory models
- abstractions for pointers and arrays
- issues specific to the precise analysis of updates
- an introduction to shape analysis with TVLA

Today: systematically avoid weak updates

- a logic to describe properties of memory states
- abstract domain
- static analysis algorithms
- combination with numerical domains
- widening operators...

Weak update problems

	&x	&y	&р
1	[-10, -5]	[5, 10]	Т
2	[-10, -5]	[5, 10]	Т
3	[-10, -5]	[5, 10]	Т
4	[-10, -5]	[5, 10]	{&x}
5	[-10, -5]	[5, 10]	Т
6	[-10, -5]	[5, 10]	{&y}
7	[-10, -5]	[5, 10]	$\{\&x,\&y\}$
8	[-10, 0]	[0, 10]	$\{\&x,\&y\}$

What is the final range for x ?
What is the final range for y ?
Abstract locations: {&x, &y, &p}

Imprecise results

- The abstract information about both x and y are weakened
- The fact that $x \neq y$ is lost

Outline

1 An introduction to separation logic

- 2 A shape abstract domain relying on separation
- 3 Combination with a numerical domain
- 4 Standard static analysis algorithms
- 5 Conclusion

4 / 89

Our model

Not all memory cell corresponds to a variable

- a variable may correspond to several cells (structures...)
- dynamically allocated cells correspond to no variable at all...

Environment + Heap

- \bullet Addresses are values: $\mathbb{V}_{addr} \subseteq \mathbb{V}$
- Environments $e \in \mathbb{E}$ map variables into their addresses
- Heaps ($h \in \mathbb{H}$) map addresses into values

$$\begin{array}{rcl} \mathbb{E} & = & \mathbb{X} \to \mathbb{V}_{\mathrm{addr}} \\ \mathbb{H} & = & \mathbb{V}_{\mathrm{addr}} \to \mathbb{V} \end{array}$$

h is actually only a partial function

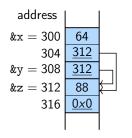
• Memory states (or memories): $\mathbb{M} = \mathbb{E} \times \mathbb{H}$

Avoid confusion between heap (function from addresses to values) and dynamic allocation space (often referred to as "heap")

Example of a concrete memory state (variables)

- $\bullet~{\rm x}$ and z are two list elements containing values 64 and 88, and where the former points to the latter
- y stores a pointer to z

Memory layout (pointer values underlined)



e :		\mapsto	300 308 312
h :	300	\mapsto	64
	304	\mapsto	312
	308	\mapsto	312
	312	\mapsto	88
	316	\mapsto	0

Example of a concrete memory state (variables + dyn. cell)

- same configuration
- + z points to a heap allocated list element (in purple)

Memory layout address &x = 300 64 304 312 &y = 308 312 &z = 312 88 316 508 508 25

512

0x0

e :	x y z	$\begin{array}{c} \mapsto \\ \mapsto \\ \mapsto \end{array}$	300 308 312
<i>h</i> :	300 304 308 312 316 508 512	$\begin{array}{c} \uparrow \\ \uparrow $	64 312 312 88 508 25 0

Separation logic principle: avoid weak updates

How to deal with weak updates $? \end{tabular}$

Avoid them !

- Always materialize exactly the cell that needs be modified
- Can be very costly to achieve, and not always feasible
- Notion of property that holds over a memory region: special separating conjunction operator *
- Local reasoning:

powerful principle, which allows to consider only part of the memory

• Separation logic has been used in many contexts, including manual verification, static analysis, etc...

Separation logic

Several kinds of formulas:

• **pure formulas** behave like formulas in first-order logic *i.e.*, are not attached to a memory region

• spatial formulas describe properties attached to a memory region

Pure formulas denote value properties

Pure formulas semantics: $\gamma(P) \subseteq \mathbb{E} \times \mathbb{M}$

Separation logic: points-to predicates

The next slides introduce the main separation logic formulas $F ::= \dots$

We start with the most basic predicate, that describes a single cell:

Points-to predicate

• Predicate:

 $\texttt{F} ::= \ldots \mid \texttt{l} \mapsto \texttt{v}$

• Concretization:

 $(e, h) \in \gamma(1 \mapsto v)$ if and only if $h = \llbracket [\llbracket 1 \rrbracket (e, h) \mapsto v]$

• Example:

$$F = x \mapsto 18$$
 & $x = 308$ 18

• We also note $l \mapsto e$

Xavier Rival (INRIA)

Shape analysis based on separation logic

Separation logic: separating conjunction

Merge of concrete heaps: let $h_0, h_1 \in (\mathbb{V}_{addr} \to \mathbb{V})$, such that $dom(h_0) \cap dom(h_1) = \emptyset$; then, we let $h_0 \otimes h_1$ be defined by: $h_0 \otimes h_1 : dom(h_0) \cup dom(h_1) \longrightarrow \mathbb{V}$ $x \in dom(h_0) \longmapsto h_0(x)$ $x \in dom(h_1) \longmapsto h_1(x)$

Separating conjunction

• Predicate:

$$F::=\ldots \mid F_0*F_1$$

• Concretization:

$$\gamma(\mathsf{F}_0 \ast \mathsf{F}_1) = \{(e, h_0 \circledast h_1) \mid (e, h_0) \in \gamma(\mathsf{F}_0) \land (e, h_1) \in \gamma(\mathsf{F}_1)\}$$

$$F_0 * F_1$$

Xavier Rival (INRIA)

Shape analysis based on separation logic

An example

Concrete memory layout (pointer values underlined)

 address
 64

 304 312

 $& & & & \\ & &$

e :	x y z	$\begin{array}{c} \mapsto \\ \mapsto \\ \end{array}$	300 308 312
<i>h</i> :	300 304 308 312 316	$\begin{array}{c} \uparrow \\ \uparrow \end{array}$	64 312 312 88 0

A formula that abstracts away the addresses:

$$x \mapsto \langle 64, \& z \rangle * y \mapsto \& z * z \mapsto \langle 88, 0 \rangle$$

Separation logic: non separating conjunction

We can also add the conventional conjunction operator, with its usual concretization:

- Non separating conjunction
 - Predicate:

$$F ::= \dots \mid F_0 \wedge F_1$$

• Concretization:

$$\gamma(\mathtt{F}_0\wedge\mathtt{F}_1)=\gamma(\mathtt{F}_0)\cap\gamma(\mathtt{F}_1)$$

Exercise: describe and compare the concretizations of

- $a \mapsto \& b \land b \mapsto \& a$
- $a \mapsto \&b * b \mapsto \&a$

Separating conjunction vs non separating conjunction

- Classical conjunction: properties for the same memory region
- Separating conjunction: properties for disjoint memory regions

```
a → &b ∧ b → &a
the same heap verifies a → &b
and b → &a
there can be only one cell
```

• thus a = b

```
\mathtt{a}\mapsto \mathtt{\&b}\ast \mathtt{b}\mapsto \mathtt{\&a}
```

- two separate sub-heaps respectively satisfy a → &b and b → &a
- thus $a \neq b$

Separating conjunction and non-separating conjunction have very different properties

• Both express very different properties *e.g.*, no ambiguity on weak / strong updates

Separating and non separating conjunction

Logic rules of the two conjunction operators of SL:

• Separating conjunction:

$$\frac{(e, h_0) \in \gamma(\mathsf{F}_0) \qquad (e, h_1) \in \gamma(\mathsf{F}_1)}{(e, h_0 \circledast h_1) \in \gamma(\mathsf{F}_0 \ast \mathsf{F}_1)}$$

• Non separating conjunction:

$$\frac{(e, h) \in \gamma(F_0) \quad (e, h) \in \gamma(F_1)}{(e, h) \in \gamma(F_0 \wedge F_1)}$$

Reminiscent of Linear Logic [Girard87]: resource aware / non resource aware conjunction operators

Xavier Rival (INRIA)

Shape analysis based on separation logic

Jan, 12th, 2016 15 / 89

Separation logic: empty store

Empty store

• Predicate:

 $F ::= \dots | emp$

• Concretization:

$$\gamma(\mathsf{emp}) = \{(e, []) \mid e \in \mathbb{E}\} = \mathbb{E} imes \{[]\}$$

where [] denotes the empty store

- emp is the neutral element for *
- by contrast the neutral element for \land is TRUE, with concretization:

$$\gamma(\mathtt{TRUE}) = \mathbb{E} \times \mathbb{H}$$

Separation logic: other connectors

Disjunction:

- $\bullet \ F ::= \ldots \mid F_0 \lor F_1$
- oncretization:

$$\gamma(\mathtt{F}_{\mathsf{0}} \lor \mathtt{F}_{\mathsf{1}}) = \gamma(\mathtt{F}_{\mathsf{0}}) \cup \gamma(\mathtt{F}_{\mathsf{1}})$$

Spatial implication (aka, magic wand):

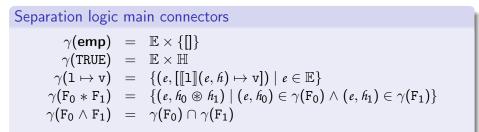
- $F ::= ... | F_0 F_1$
- concretization:

$$egin{aligned} &\gamma(\mathtt{F}_0 \twoheadrightarrow \mathtt{F}_1) = \ &\{(e,\hbar) \mid orall \hbar_0 \in \mathbb{H}, \ (e,\hbar_0) \in \gamma(\mathtt{F}_0) \Longrightarrow (e,\hbar \circledast \hbar_0) \in \gamma(\mathtt{F}_1) \} \end{aligned}$$

 very powerful connector to describe structure segments, used in complex SL proofs

Separation logic

Summary of the main separation logic constructions seen so far:

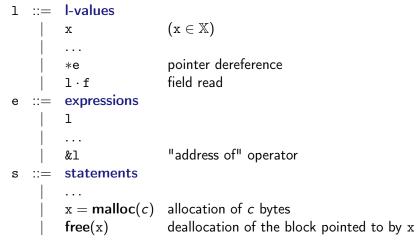


Concretization of pure formulas is standard

How does this help for program reasoning ?

Programs with pointers: syntax

Syntax extension: quite a few additional constructions



We do not consider pointer arithmetics here

Xavier Rival (INRIA)	Shape analysis based on separation logic	Jan, 12th, 2016	19 / 89
----------------------	--	-----------------	---------

Programs with pointers: semantics

Case of I-values:

$$\begin{split} \llbracket \mathbf{x} \rrbracket(e, h) &= e(\mathbf{x}) \\ \llbracket * \mathbf{e} \rrbracket(e, h) &= \begin{cases} h(\llbracket \mathbf{e} \rrbracket(e, h)) & \text{if } \llbracket \mathbf{e} \rrbracket(e, h) \neq \mathbf{0} \land \llbracket \mathbf{e} \rrbracket(e, h) \in \mathsf{Dom}(h) \\ \Omega & \text{otherwise} \end{cases} \\ \llbracket \mathbf{1} \cdot \mathbf{f} \rrbracket(e, h) &= \llbracket \mathbf{1} \rrbracket(e, h) + \mathsf{offset}(\mathbf{f}) \text{ (numeric offset)} \end{split}$$

Case of expressions:

$$\llbracket \texttt{l} \rrbracket(e, h) = h(\llbracket \texttt{l} \rrbracket(e, h)) \qquad \qquad \llbracket \texttt{\&l} \rrbracket(e, h) = \llbracket \texttt{l} \rrbracket(e, h)$$

Case of statements:

- memory allocation $\mathbf{x} = \text{malloc}(c)$: $(e, h) \rightarrow (e, h')$ where $h' = h[e(\mathbf{x}) \leftarrow k] \uplus \{k \mapsto v_k, k+1 \mapsto v_{k+1}, \dots, k+c-1 \mapsto v_{k+c-1}\}$ and $k, \dots, k+c-1$ are fresh in h
- memory deallocation free(x): $(e, h) \rightarrow (e, h')$ where k = e(x) and $h = h' \uplus \{k \mapsto v_k, k+1 \mapsto v_{k+1}, \dots, k+c-1 \mapsto v_{k+c-1}\}$

Separation logic triple

Program proofs based on triples
Notation: {F}p{F'} if and only if: ∀s, s' ∈ S, s ∈ γ(F) ∧ s' ∈ [[p]](s) ⇒ s' ∈ γ(F') Hoare triples
Application: formalize proofs of programs

A few rules (straightforward proofs):

$$\begin{array}{c|c} F_0 \Longrightarrow F_0' & \{F_0'\}b\{F_1'\} & F_1' \Longrightarrow F_1 \\ \hline & \{F_0\}b\{F_1\} \\ \hline & \hline \\ \hline & \{x \mapsto ?\}x := e\{x \mapsto e\} \end{array} \text{ mutation} \\ \hline & x \text{ does not appear in } F \\ \hline & \hline & \{x \mapsto ?*F\}x := e\{x \mapsto e*F\} \end{array} \text{ mutation} - 2 \end{array}$$

(we assume that *e* does not allocate memory)

The frame rule

What about the resemblance between rules "mutation" and "mutation-2" ?

Theorem: the frame rule
$$\frac{\{F_0\}b\{F_1\} \quad \texttt{freevar}(F) \cap \texttt{write}(b)}{\{F_0 * F\}b\{F_1 * F\}} \ \textit{frame}$$

- Proof by induction on the logical rules on program statements, *i.e.*, essentially a large case analysis (see biblio for a more complete set of rules)
- Rules are proved by case analysis on the program syntax

The frame rule allows to reason locally about programs

Application of the frame rule

A program with intermittent invariants, derived using the frame rule, since each step impacts a disjoint region:

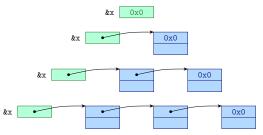
Many other program proofs done using separation logic *e.g.*, verification of the Deutsch-Shorr-Waite algorithm (biblio)

Summarization and inductive definitions

What do we still miss ?

So far, formulas denote **fixed sets of cells** Thus, no summarization of unbounded regions...

• Example all lists pointed to by x, such as:



• How to precisely abstract these stores with a single formula *i.e.*, no infinite disjunction ?

Inductive definitions in separation logic

List definition

$$\begin{array}{lll} \alpha \cdot {\sf list} & := & \alpha = {\sf 0} \, \wedge \, {\sf emp} \\ & \lor & \alpha \neq {\sf 0} \, \wedge \, \alpha \cdot {\sf next} \mapsto \delta \ast \alpha \cdot {\sf data} \mapsto \beta \ast \delta \cdot {\sf list} \end{array}$$

• Formula abstracting our set of structures:

 $\mathtt{\&x} \mapsto \alpha \ast \alpha \cdot \mathsf{list}$

• Summarization:

this formula is finite and describe infinitely many heaps

• Concretization: next slide...

Practical implementation in verification/analysis tools

- Verification: hand-written definitions
- Analysis: either built-in or user-supplied, or partly inferred

Concretization by unfolding

Intuitive semantics of inductive predicates

- Inductive predicates can be unfolded, by unrolling their definitions Syntactic unfolding is noted $\xrightarrow{\mathcal{U}}$
- A formula F with inductive predicates describes all stores described by all formulas F' such that F $\stackrel{\mathcal{U}}{\longrightarrow}$ F'

Example:

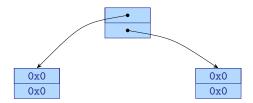
• Let us start with $\mathbf{x} \mapsto \alpha_0 * \alpha_0 \cdot \mathbf{list}$; we can unfold it as follows:

$$\begin{array}{ll} & \texttt{\&x} \mapsto \alpha_0 \ast \alpha_0 \cdot \mathsf{list} \\ & \stackrel{\mathcal{U}}{\longrightarrow} & \texttt{\&x} \mapsto \alpha_0 \ast \alpha_0 \cdot \mathsf{next} \mapsto \alpha_1 \ast \alpha_0 \cdot \mathsf{data} \mapsto \beta_1 \ast \alpha_1 \cdot \mathsf{list} \\ & \stackrel{\mathcal{U}}{\longrightarrow} & \texttt{\&x} \mapsto \alpha_0 \ast \alpha_0 \cdot \mathsf{next} \mapsto \alpha_1 \ast \alpha_0 \cdot \mathsf{data} \mapsto \beta_1 \ast \mathsf{emp} \land \alpha_1 = \mathbf{0} \mathbf{x} \mathbf{0} \end{array}$$

• We get the concrete state below:

Example: tree

• Example:



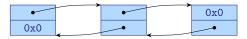
Inductive definition

• Two recursive calls instead of one:

$$\begin{array}{lll} \alpha \cdot \mathbf{tree} & := & \alpha = \mathbf{0} \, \wedge \, \mathbf{emp} \\ & \lor & \alpha \neq \mathbf{0} \, \wedge \, \alpha \cdot \mathbf{left} \mapsto \beta \ast \alpha \cdot \mathbf{right} \mapsto \delta \\ & \ast \, \beta \cdot \mathbf{tree} \ast \delta \cdot \mathbf{tree} \end{array}$$

Example: doubly linked list

• Example:



Inductive definition

• We need to propagate the prev pointer as an additional parameter:

$$\begin{array}{lll} \alpha \cdot \mathsf{dll}(\delta) & := & \alpha = \mathbf{0} \land \operatorname{emp} \\ & \lor & \alpha \neq \mathbf{0} \land \alpha \cdot \operatorname{next} \mapsto \beta \ast \alpha \cdot \operatorname{prev} \mapsto \delta \\ & \ast \beta \cdot \mathsf{dll}(\alpha) \end{array}$$

Example: sortedness

• Example: sorted list

Inductive definition

- Each element should be greater than the previous one
- The first element simply needs be greater than $-\infty...$
- We need to propagate the lower bound, using a scalar parameter

$$\begin{array}{lll} \alpha \cdot \mathsf{lsort}_{\mathrm{aux}}(n) & := & \alpha = 0 \land \mathsf{emp} \\ & \lor & \alpha \neq 0 \land \beta \leq n \land \alpha \cdot \mathsf{next} \mapsto \delta \\ & \ast \alpha \cdot \mathsf{data} \mapsto \beta \ast \delta \cdot \mathsf{lsort}_{\mathrm{aux}}(\beta) \end{array}$$

$$\alpha \cdot \text{lsort}() := \alpha \cdot \text{lsort}_{aux}(-\infty)$$

A new overview of the remaining part of the lecture

How to apply separation logic to static analysis and design abstract interpretation algorithms based on it ?

In remainder of this lecture, we will:

- choose a small but expressive set of separation logic formulas
- combine it with a numerical abstract domain
- study algorithms for local concretization (equivalent to focus) and global abstraction (widening...)

A shape abstract domain relying on separation

Outline

An introduction to separation logic

2 A shape abstract domain relying on separation

Combination with a numerical domain

- 4 Standard static analysis algorithms
- 5 Conclusion

Design of an abstract domain

A lot of things are missing to turn SL into an abstract domain

Set of logical predicates:

- separation logic formulas are very expressive e.g., arbitrary alternations of ∧ and *
- such expressiveness is not necessarily required in static analysis

Representation:

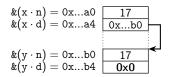
- unstructured formulas can be represented as ASTs, but this representation is not easy to manipulate efficiently
- intuition over memory states typically involves graphs

Analysis algorithms:

• inference of "optimal" invariants in SL obviously not computable

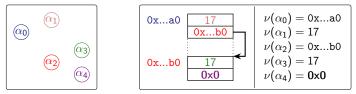
• Concrete memory states

- very low level description
- pointers, numeric values: raw sequences of bits



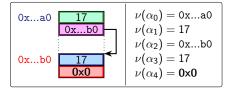
• Concrete memory states

• Abstraction of values into symbolic variables (nodes)

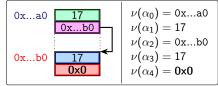


- characterized by valuation ν
- v maps symbolic variables into concrete addresses

- Concrete memory states
- Abstraction of values into symbolic variables / nodes
- Abstraction of regions into points-to edges



- Concrete memory states
- Abstraction of values into symbolic variables / nodes
- Abstraction of regions into points-to edges



• Shape graph concretization

$$\gamma_{\mathrm{S}}(G) = \{(h, \nu) \mid \ldots\}$$

valuation ν plays an important role to combine abstraction...

Structure of shape graphs

Valuations bridge the gap between nodes and values

Symbolic variables / nodes and intuitively abstract concrete values:

Symbolic variables

We let \mathbb{V}^{\sharp} denote a countable set of symbolic variables; we usually let them be denoted by Greek letters in the following: $\mathbb{V}^{\sharp} = \{\alpha, \beta, \delta, \ldots\}$

When concretizing a shape graph, we need to characterize how the concrete instance evaluates each symbolic variable, which is the purpose of the valuation functions:

Valuations

A valuation is a function from symbolic variables into concrete values (and is often denoted by ν): Val = $\mathbb{V}^{\sharp} \longrightarrow \mathbb{V}$

Note that valuations treat in the same way addresses and raw values

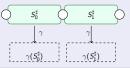
Structure of shape graphs

Distinct edges describe separate regions

In particular, if we split a graph into two parts:

Separating conjunction

 $\gamma_{\mathrm{S}}(S_0^{\sharp} * S_1^{\sharp}) = \{(h_0 \circledast h_1, \nu) \mid (h_0, \nu) \in \gamma_{\mathrm{S}}(S_0^{\sharp}) \land (h_1, \nu) \in \gamma_{\mathrm{S}}(S_1^{\sharp})\}$



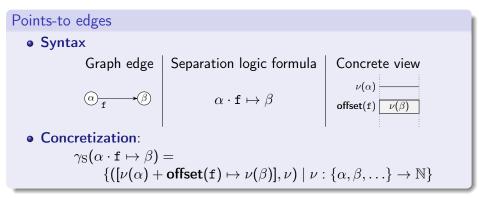
Similarly, when considering the **empty set of edges**, we get the empty heap (where \mathbb{V}^{\sharp} is the set of nodes):

$$\gamma_{\mathrm{S}}(\mathsf{emp}) = \{ (\emptyset, \nu) \mid \nu : \mathbb{V}^{\sharp} \to \mathbb{V} \}$$

Abstraction of contiguous regions

A single points-to edge represents one heap cell

A points-to edge encodes basic points to predicate in separation logic:



Abstraction of contiguous regions

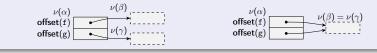
Contiguous regions are described by adjacent points-to edges

To describe **blocks** containing series of **cells** (*e.g.*, in a **C structure**), shape graphs utilize several outgoing edges from the node representing the base address of the block

Field splitting model

- Separation impacts edges / fields, not pointers
- Shape graph

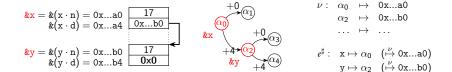
accounts for both abstract states below:



A shape abstract domain relying on separation

Abstraction of the environment

Environments bind variables to their (concrete / abstract) address



Abstract environments

- An abstract environment is a function e[#] from variables to symbolic nodes
- The concretization extends as follows:

$$\gamma_{\mathrm{M}}(\mathfrak{e}^{\sharp}, \mathcal{S}^{\sharp}) = \{(\mathfrak{e}, \mathfrak{h}, \nu) \mid (\mathfrak{h}, \nu) \in \gamma_{\mathrm{S}}(\mathcal{S}^{\sharp}) \land \mathfrak{e} = \nu \circ \mathfrak{e}^{\sharp}\}$$

Basic abstraction: summarization

Set of all lists of any length: Well-founded list inductive def. $\alpha \cdot \mathbf{list} :=$ &x 0x0 &x 0x... &x 0x... $(emp \land \alpha = 0x0)$ $\vee (\alpha \cdot \mathbf{d} \mapsto \beta_0 * \alpha \cdot \mathbf{n} \mapsto \beta_1$ 0x0 0x... * $\beta_1 \cdot \text{list} \land \alpha \neq 0 \times 0$) 0x0well-founded predicate Inductive summary predicates

Concretization based on unfolding and least-fixpoint:

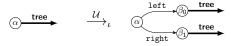
 $\&x(\alpha)$

- $\xrightarrow{\mathcal{U}}$ replaces an $\alpha \cdot$ list predicate with one of its premises
- $\gamma(S^{\sharp}, \mathbf{F}) = \bigcup \{ \gamma(S_{u}^{\sharp}, \mathbf{F}_{u}) \mid (S^{\sharp}, \mathbf{F}) \xrightarrow{\mathcal{U}} (S_{u}^{\sharp}, \mathbf{F}_{u}) \}$

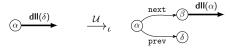
Inductive structures: a few instances

As before, **many interesting inductive predicates** encode nicely into graph inductive definitions:

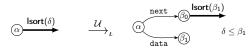
• More complex shapes: trees



• Relations among pointers: doubly-linked lists

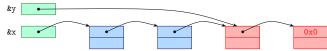


• Relations between pointers and numerical: sorted lists



Inductive segments

• A frequent pattern:



• Could be expressed directly as an inductive with a parameter:

$$\begin{array}{ll} \alpha \cdot \mathsf{list_endp}(\pi) & ::= & (\mathsf{emp}, \alpha = \pi) \\ & | & (\alpha \cdot \mathsf{next} \mapsto \beta_0 * \alpha \cdot \mathsf{data} \mapsto \beta_1 \\ & * \beta_0 \cdot \mathsf{list_endp}(\pi), \alpha \neq 0) \end{array}$$

• This definition straightforwardly derives from list Thus, we make segments part of the fundamental predicates of the domain

• Multi-segments: possible, but harder for analysis

Shape graphs and separation logic

Semantic preserving translation Π of graphs into separation logic formulas:

$Graph\; S^{\sharp} \in \mathbb{D}_{\mathrm{S}}^{\sharp}$	Translated formula $\Pi(S^{\sharp})$
$\textcircled{\alpha}_{f} \xrightarrow{\beta}$	$\alpha \cdot \mathtt{f} \mapsto \beta$
	$\Pi(S_0^\sharp) * \Pi(S_1^\sharp)$
(a) list →	$lpha \cdot list$
(a) list list (δ)	$lpha \cdot list_endp(\delta)$
other inductives and segments	similar

Note that:

- shape graphs can be encoded into separation logic formula
- the opposite is usually not true

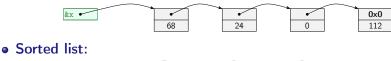
Outline

- An introduction to separation logic
- 2 A shape abstract domain relying on separation
- 3 Combination with a numerical domain
 - 4 Standard static analysis algorithms
- 5 Conclusion

Example

How to express both shape and numerical properties ?

- Hybrid stores: data stored next to structures
- List of even elements:



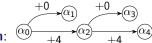
- Many other examples:
 - list of open filed descriptors
 - tries
 - balanced trees: red-black, AVL...
- Note: inductive definitions also talk about data

Combination with a numerical domain

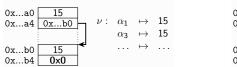
Adding value information (here, numeric)

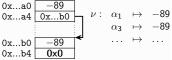
Concrete numeric values appear in the valuation thus the abstracting contents boils down to abstracting ν !

Example: all lists of length 2, with equal data fields Memory



abstraction:





Abstraction of valuations: $\nu(\alpha_1) = \nu(\alpha_3)$, (constraint $\alpha_1 = \alpha_3$)

Xavier Rival (INRIA)

Shape analysis based on separation logic

Jan, 12th, 2016 45 / 89

A first approach to domain combination

Assumptions:

- Graphs form a shape domain \mathbb{D}_{S}^{\sharp} abstract stores together with a physical mapping of nodes $\gamma_{S}: \mathbb{D}_{S}^{\sharp} \to \mathcal{P}((\mathbb{D}_{S}^{\sharp} \to \mathbb{M}) \times (\mathbb{V}^{\sharp} \to \mathbb{V}))$
- Numerical values are taken in a numerical domain $\mathbb{D}_{num}^{\sharp}$ abstracts physical mapping of nodes

$$\gamma_{\mathrm{num}}:\mathbb{D}^{\sharp}_{\mathrm{num}} o\mathcal{P}((\mathbb{V}^{\sharp} o\mathbb{V}))$$

Combined domain [CR]

- \bullet Set of abstract values: $\mathbb{D}^{\sharp}=\mathbb{D}_{\rm S}^{\sharp}\times\mathbb{D}_{\rm num}^{\sharp}$
- Concretization:

$$\gamma(S^{\sharp}, \mathsf{N}^{\sharp}) = \{(\mathfrak{h}, \nu) \in \mathbb{M} \mid \nu \in \gamma_{\mathrm{num}}(\mathsf{N}^{\sharp}) \land (\mathfrak{h}, \nu) \in \gamma_{\mathrm{S}}(S^{\sharp})\}$$

Combination with a numerical domain

Formalizing the product domain

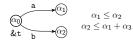
Can it be described as a reduced product ?

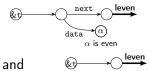
- Product abstraction: $\mathbb{D}^{\sharp} = \mathbb{D}_{0}^{\sharp} \times \mathbb{D}_{1}^{\sharp}$
- Concretization: $\gamma(x_0, x_1) = \gamma(x_0) \cap \gamma(x_1)$
- Reduction: \mathbb{D}_r^{\sharp} is the quotient of \mathbb{D}^{\sharp} by the equivalence relation \equiv defined by $(x_0, x_1) \equiv (x'_0, x'_1) \iff \gamma(x_0, x_1) = \gamma(x'_0, x'_1)$
- Abstract order: pairwise on reduced elements

Several issues:

Shape + octagons:

How to compare the two elements below ?





... what is α_3 ?

Xavier Rival (INRIA)

Shape analysis based on separation logic

Towards a more adapted combination operator

Why does this fail here ?

- The set of nodes / symbolic variables is not fixed
- Variables represented in the numerical domain depend on the shape abstraction
- \Rightarrow Thus the product is **not** symmetric

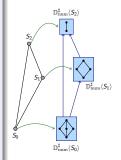
Intuitions

- Graphs form a shape domain $\mathbb{D}_{\mathrm{S}}^{\sharp}$
- For each graph $S^{\sharp} \in \mathbb{D}_{\mathrm{S}}^{\sharp}$, we have a numerical lattice $\mathbb{D}_{\operatorname{num}(S^{\sharp})}^{\sharp}$
 - example: if graph S^{\sharp} contains nodes $\alpha_0, \alpha_1, \alpha_2$, $\mathbb{D}^{\sharp}_{\mathsf{num}\langle S^{\sharp}\rangle}$ should abstract $\{\alpha_0, \alpha_1, \alpha_2\} \to \mathbb{V}$
- An abstract value is a pair (S^{\sharp}, N^{\sharp}) , such that $N^{\sharp} \in \mathbb{D}^{\sharp}_{\operatorname{num}(N^{\sharp})}$

Cofibered domain

Definition [AV]

- Basis: abstract domain (D[♯]₀, ⊑[♯]₀), with concretization γ₀ : D[♯]₀ → D
- Function: φ : D₀[#] → D₁, where each element of D₁ is an abstract domain (D₁[#], ⊑[#]₁), with a concretization γ_{D[#]₁} : D₁[#] → D
- Domain: \mathbb{D}^{\sharp} is the set of pairs $(x_0^{\sharp}, x_1^{\sharp})$ where $x_1^{\sharp} \in \phi(x_0^{\sharp})$
- Lift functions: $\forall x^{\sharp}, y^{\sharp} \in \mathbb{D}_{0}^{\sharp}$, such that $x^{\sharp} \sqsubseteq_{0}^{\sharp} y^{\sharp}$, there exists a function $\Pi_{x^{\sharp}, y^{\sharp}} : \phi(x^{\sharp}) \to \phi(y^{\sharp})$, that is monotone for $\gamma_{x^{\sharp}}$ and $\gamma_{y^{\sharp}}$



49 / 89

Generic product, where the second lattice depends on the first
 Provides a generic scheme for widening, comparison
 Xavier Rival (INRIA)
 Shape analysis based on separation logic
 Jan, 12th, 2016

Domain operations

• Lift functions allow to switch domain when needed

Comparison of $(x_0^{\sharp}, x_1^{\sharp})$ and $(y_0^{\sharp}, y_1^{\sharp})$

- First, compare x_0^{\sharp} and y_0^{\sharp} in \mathbb{D}_0^{\sharp}
- $e If x_0^{\sharp} \sqsubseteq^{\sharp}_0 y_0^{\sharp}, compare \Pi_{x_0^{\sharp}, y_0^{\sharp}}(x_1^{\sharp}) and y_1^{\sharp}$

Widening of $(x_0^{\sharp}, x_1^{\sharp})$ and $(y_0^{\sharp}, y_1^{\sharp})$

- First, compute the widening in the basis $z_0^{\sharp} = x_0^{\sharp} \bigtriangledown y_0^{\sharp}$
- **2** Then move to $\phi(z_0^{\sharp})$, by computing $x_2^{\sharp} = \prod_{x_0^{\sharp}, z_0^{\sharp}} (x_1^{\sharp})$ and $y_2^{\sharp} = \prod_{v_0^{\sharp}, z_0^{\sharp}} (y_1^{\sharp})$

3 Last widen in $\phi(z_0^{\sharp})$: $z_1^{\sharp} = x_2^{\sharp} \bigtriangledown_{z_0^{\sharp}} y_2^{\sharp}$

$$(x_0^{\sharp}, x_1^{\sharp}) \, \triangledown(y_0^{\sharp}, y_1^{\sharp}) = (z_0^{\sharp}, z_1^{\sharp})$$

Domain operations

Transfer functions, e.g., assignment

- Require memory location be materialized in the graph
 - *i.e.*, the graph may have to be modified
 - the numerical component should be updated with lift functions
- Require update in the graph and the numerical domain
 - *i.e.*, the numerical component should be kept coherent with the graph

Proofs of soundness of transfer functions rely on:

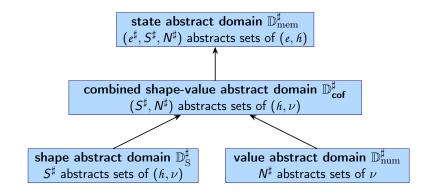
- the soundness of the lift functions
- the soundness of both domain transfer functions

Combination with a numerical domain

Overall abstract domain structure

Modular structure

- Each layer accounts for one aspect of the concrete states
- Each layer boils down to a module or functor in ML



Outline

- An introduction to separation logic
- 2 A shape abstract domain relying on separation
- 3 Combination with a numerical domain

Standard static analysis algorithms

- Overview of the analysis
- Post-conditions and unfolding
- Folding: widening and inclusion checking
- Abstract interpretation framework: assumptions and results

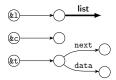
5 Conclusion

Static analysis overview

A list insertion function:

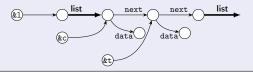
```
list * 1 assumed to point to a list
list * t assumed to point to a list element
list * c = 1;
while(c != NULL && c -> next != NULL && (...)){
    c = c -> next;
}
t -> next = c -> next;
c -> next = t;
```

- list inductive structure def.
- Abstract precondition:



Result of the (interprocedural) analysis

• Over-approximations of reachable concrete states *e.g.*, after the insertion:



Transfer functions

Abstract interpreter design

- Follows the semantics of the language under consideration
- The abstract domain should provide sound transfer functions

Transfer functions:

- Assignment: $x \rightarrow f = y \rightarrow g$ or $x \rightarrow f = e_{arith}$
- Test: analysis of conditions (if, while)
- Variable creation and removal
- Memory management: malloc, free

Abstract operators:

- Join and widening: over-approximation
- Inclusion checking: check stabilization of abstract iterates

Should be sound *i.e.*, not forget any concrete behavior

Abstract operations

Denotational style abstract interpreter

- \bullet Concrete denotational semantics $[\![b]\!]:\mathbb{S}\longrightarrow\mathcal{P}(\mathbb{S})$
- Abstract post-condition $\llbracket b \rrbracket^{\sharp}(S)$, computed by the analysis: $s \in \gamma(S) \Longrightarrow \llbracket b \rrbracket(s) \subseteq \gamma(\llbracket b \rrbracket^{\sharp}(S))$

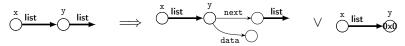
Analysis by induction on the syntax using domain operators

$$\begin{split} \llbracket b_0; b_1 \rrbracket^{\sharp}(\mathsf{S}) &= \llbracket b_1 \rrbracket^{\sharp} \circ \llbracket b_0 \rrbracket^{\sharp}(\mathsf{S}) \\ \llbracket 1 &= e \rrbracket^{\sharp}(\mathsf{S}) &= assign(1, e, \mathsf{S}) \\ \llbracket 1 &= \mathsf{malloc}(n) \rrbracket^{\sharp}(\mathsf{S}) &= alloc(1, n, \mathsf{S}) \\ \llbracket \mathsf{free}(1) \rrbracket^{\sharp}(\mathsf{S}) &= free(1, n, \mathsf{S}) \\ \llbracket \mathsf{if}(e) \ b_t \ \mathsf{else} \ b_f \rrbracket^{\sharp}(\mathsf{S}) &= \begin{cases} joint(\llbracket b_t \rrbracket^{\sharp}(test(e, \mathsf{S})), \\ \llbracket b_f \rrbracket^{\sharp}(test(e = \mathsf{false}, \mathsf{S}))) \\ \llbracket \mathsf{while}(e) b \rrbracket^{\sharp}(\mathsf{S}) &= test(e = \mathsf{false}, \mathsf{lfp}^{\sharp}_{\mathsf{S}}F^{\sharp}) \\ \mathsf{where}, \ F^{\sharp}: \mathsf{S}_0 \mapsto \llbracket b \rrbracket^{\sharp}(test(e, \mathsf{S}_0)) \end{split}$$

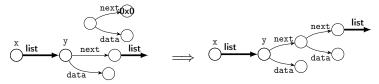
Xavier Rival (INRIA) Shape analysis based on separation logic Jan, 12th, 2016 56 / 89

The algorithms underlying the transfer functions

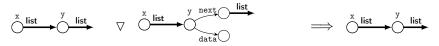
• Unfolding: cases analysis on summaries



• Abstract postconditions, on "exact" regions, e.g. insertion



• Widening: builds summaries and ensures termination



Outline

- An introduction to separation logic
- 2 A shape abstract domain relying on separation
- 3 Combination with a numerical domain

Standard static analysis algorithms

- Overview of the analysis
- Post-conditions and unfolding
- Folding: widening and inclusion checking
- Abstract interpretation framework: assumptions and results

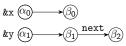
Conclusion

Analysis of an assignment in the graph domain

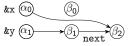
Steps for analyzing $x = y \rightarrow next$ (local reasoning)

- $\textbf{ I valuate I-value x into points-to edge } \alpha \mapsto \beta$
- 2 Evaluate r-value y -> next into node β'
- **③** Replace points-to edge $\alpha \mapsto \beta$ with points-to edge $\alpha \mapsto \beta'$

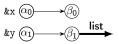
With pre-condition:



- Step 1 produces $\alpha_0 \mapsto \beta_0$
- Step 2 produces β_2
- End result:



With pre-condition:



- Step 1 produces $\alpha_0 \mapsto \beta_0$
- Step 2 fails
- Abstract state too abstract
- We need to refine it

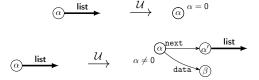
Xavier Rival (INRIA)

Shape analysis based on separation logic

Unfolding as a local case analysis

Unfolding principle

- Case analysis, based on the inductive definition
- Generates symbolic disjunctions (analysis performed in a disjunction domain, *e.g.*, trace partitioning)
- Example, for lists:



• Numeric predicates: approximated in the numerical domain

Soundness: by definition of the concretization of inductive structures

$$\gamma_{\mathrm{S}}(S^{\sharp}) \subseteq \bigcup \{ \gamma_{\mathrm{S}}(S_{0}^{\sharp}) \mid S^{\sharp} \stackrel{\mathcal{U}}{\longrightarrow} S_{0}^{\sharp} \}$$

Xavier Rival (INRIA)

Shape analysis based on separation logic

Jan, 12th, 2016

Analysis of an assignment, with unfolding

Principle

• We have
$$\gamma_{S}(\alpha \cdot \iota) = \bigcup \{\gamma_{S}(S^{\sharp}) \mid \alpha \cdot \iota \stackrel{\mathcal{U}}{\longrightarrow} S^{\sharp} \}$$

• Replace $\alpha \cdot \iota$ with a finite number of disjuncts and continue

Disjunct 1:

$$\begin{array}{c} & \& \mathbf{x} & \textcircled{0} & \longrightarrow & \overbrace{\beta_0} \\ & \& \mathbf{y} & \textcircled{1} & \longrightarrow & \overbrace{\beta_1} \\ & = \mathbf{0} \end{array}$$

- Step 1 produces $\alpha_0 \mapsto \beta_0$
- Step 2 fails: Null pointer !
- In a correct program, would be ruled out by a condition y ≠ 0 *i.e.*, β₁ ≠ 0 in D[‡]_{num}

Xavier Rival (INRIA)

Shape analysis based on separation logic

Disjunct 2:

- Step 1 produces $\alpha_0 \mapsto \beta_0$
- Step 2 produces β_2
- End result:

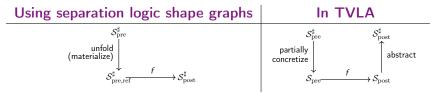
Jan, 12th, 2016 61 / 89

Unfold, compute abstract post, and...

Evaluation of a transfer functions (assignment, test...)

- evaluate all expressions and I-values that are required unfold inductive definitions if needed
- Compute the effect of the concrete operation on fully materialized graph chunks

Comparison with the previous lecture:



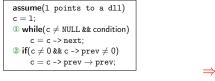
When does the abstraction takes place ? More on this a bit later

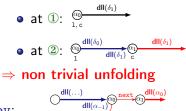
Xavier Rival (INRIA)

Shape analysis based on separation logic

Jan, 12th, 2016 62 / 89

Unfolding and degenerated cases





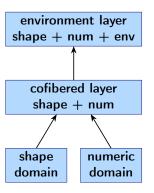
• Materialization of c -> prev:

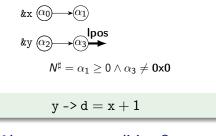
Segment splitting lemma: basis for segment unfolding

 $\frac{1}{\ell} \stackrel{i+j}{\longrightarrow} 0^2$ describes the same set of stores as $0^{-\ell}$

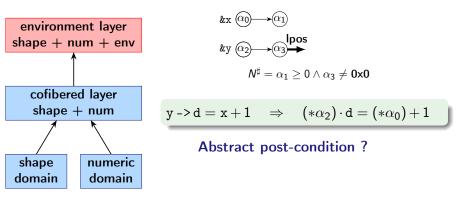
- Materialization of c -> prev -> prev:

• Implementation issue: discover which inductive edge to unfold very hard !



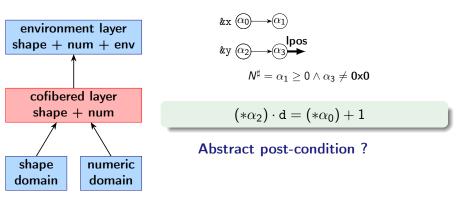


Abstract post-condition ?



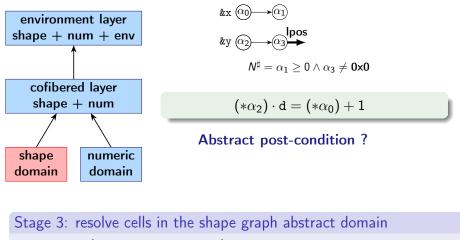
Stage 1: environment resolution

• replaces x with $*e^{\sharp}(x)$

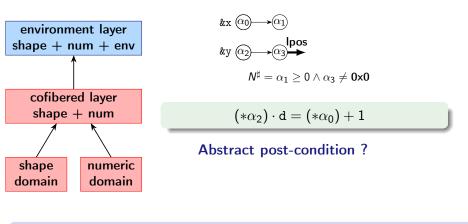


Stage 2: propagate into the shape + numerics domain

only symbolic nodes appear

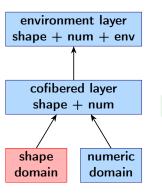


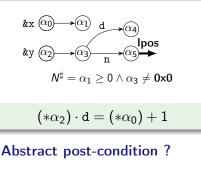
- $*\alpha_0$ evaluates to α_1 ; $*\alpha_2$ evaluates to α_3
- $(*\alpha_2) \cdot d$ fails to evaluate: no points-to out of α_3



Stage 4 (a): unfolding triggered

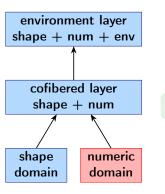
- the analysis needs to locally materialize $\alpha_3 \cdot \mathbf{lpos}...$
- ullet thus, unfolding starts at symbolic variable $lpha_3$

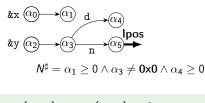




Stage 4 (b): unfolding, shape part

- unfolding of the memory predicate part
- numerical predicates still need be taken into account

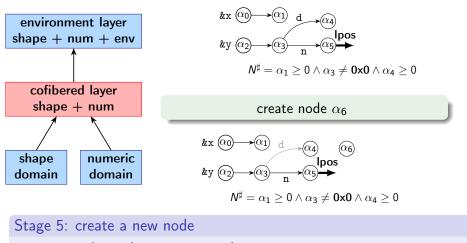




$$(*\alpha_2) \cdot d = (*\alpha_0) + 1$$

Abstract post-condition ?

Stage 4 (c): unfolding, numeric part • numerical predicates taken into account • l-value $\alpha_3 \cdot d$ now evaluates into edge $\alpha_3 \cdot d \mapsto \alpha_4$ Xavier Rival (INRIA) Shape analysis based on separation logic Jan, 12th, 2016 64 / 89

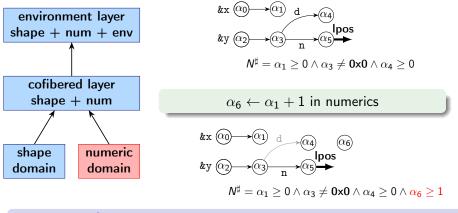


• new node α_6 denotes a new value will store the new value

Xavier Rival (INRIA)

Shape analysis based on separation logic

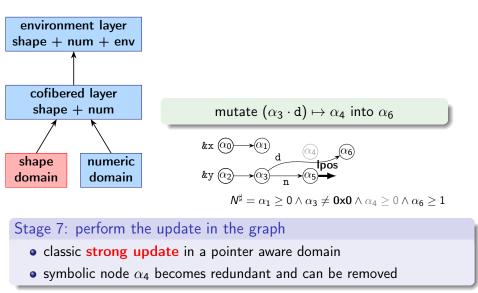
Jan, 12th, 2016 64 / 89



Stage 6: perform numeric assignment

 numeric assignment completely ignores pointer structures to the new node

Xavier Rival (INRIA)	Shape analysis based on separation logic	Jan, 12th, 2016	64 / 89
----------------------	--	-----------------	---------



Xavier Rival (INRIA) Shape analysis based on separation logic Jan, 12th, 2016

Outline

- An introduction to separation logic
- 2 A shape abstract domain relying on separation
- 3 Combination with a numerical domain

Standard static analysis algorithms

- Overview of the analysis
- Post-conditions and unfolding
- Folding: widening and inclusion checking
- Abstract interpretation framework: assumptions and results

5 Conclusion

Folding: widening and inclusion checking

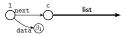
Need for a folding operation

Back to the list traversal example:

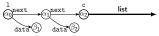
First iterates in the loop:

• at iteration 0 (before entering the loop):

• at iteration 1:

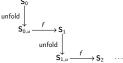


• at iteration 2:



assume(1 points to a list) c = 1: while ($c \neq NULL$){ $c = c \rightarrow next$:

The analysis **unfolds**, but **never folds**:



- How to guarantee **termination** of the analysis ?
- How to introduce segment edges / perform abstraction ?

Xavier Rival (INRIA)

Shape analysis based on separation logic

Jan, 12th, 2016 66 / 89

Widening

- The lattice of shape abstract values has infinite height
- Thus iteration sequences may not terminate

Definition of a widening operator \bigtriangledown

• Over-approximates join:

$$\left\{\begin{array}{ll} \gamma(X^{\sharp}) &\subseteq & \gamma(X^{\sharp} \triangledown Y^{\sharp}) \\ \gamma(Y^{\sharp}) &\subseteq & \gamma(X^{\sharp} \triangledown Y^{\sharp}) \end{array}\right.$$

• Enforces termination: for all sequence $(X_n^{\sharp})_{n \in \mathbb{N}}$, the sequence $(Y_n^{\sharp})_{n \in \mathbb{N}}$ defined below is ultimately stationary

$$\begin{cases} Y_0^{\sharp} = X_0^{\sharp} \\ \forall n \in \mathbb{N}, \ Y_{n+1}^{\sharp} = Y_n^{\sharp} \triangledown X_{n+1}^{\sharp} \end{cases}$$

Canonicalization

Upper closure operator

 $\rho: \mathbb{D}^{\sharp} \longrightarrow \mathbb{D}_{can}^{\sharp} \subseteq \mathbb{D}^{\sharp}$ is an upper closure operator (uco) iff it is monotone, extensive and idempotent.

Canonicalization

- Disjunctive completion: $\mathbb{D}^{\sharp}_{\vee} = finite \text{ disjunctions over } \mathbb{D}^{\sharp}$
- Canonicalization operator ρ_{\vee} defined by $\rho_{\vee} : \mathbb{D}^{\sharp}_{\vee} \longrightarrow \mathbb{D}^{\sharp}_{\operatorname{can}\vee}$ and $\rho_{\vee}(X^{\sharp}) = \{\rho(x^{\sharp}) \mid x^{\sharp} \in X^{\sharp}\}$ where ρ is an uco and $\mathbb{D}^{\sharp}_{\operatorname{can}}$ has finite height
- Canonicalization is used in many shape analysis tools: TVLA (truth blurring), most separation logic based analysis tools
- Easier to compute but less powerful than widening: does not exploit history of computation

Weakening: definition

To design **inclusion test**, **join** and **widening** algorithms, we first study a more general notion of **weakening**:

Weakening

We say that S_0^{\sharp} can be weakened into S_1^{\sharp} if and only if

$$\forall (\hbar,\nu) \in \gamma_{\mathrm{S}}(S_0^{\sharp}), \; \exists \nu' \in \mathsf{Val}, \; (\hbar,\nu') \in \gamma_{\mathrm{S}}(S_1^{\sharp})$$

We then note $S_0^{\sharp} \preccurlyeq S_1^{\sharp}$

Applications:

- inclusion test (comparison) inputs $S_0^{\sharp}, S_1^{\sharp}$; if returns true $S_0^{\sharp} \preccurlyeq S_1^{\sharp}$
- canonicalization (unary weakening) inputs S_0^{\sharp} and returns $\rho(S_0^{\sharp})$ such that $S_0^{\sharp} \preccurlyeq \rho(S_0^{\sharp})$
- widening / join (binary weakening ensuring termination or not) inputs $S_0^{\sharp}, S_1^{\sharp}$ and returns $S_{\rm up}^{\sharp}$ such that $S_i^{\sharp} \preccurlyeq S_{\rm up}^{\sharp}$

Xavier Rival (INRIA)

Folding: widening and inclusion checking

 $(\alpha_0) S_{0,\text{weak}}^{\sharp} (\alpha_1) S_{1,\text{weak}}^{\sharp} (\alpha_2)$

Local weakening: separating conjunction rule

We can apply the local reasoning principle to weakening

 \preccurlyeq

If
$$S_0^{\sharp} \preccurlyeq S_{0,\text{weak}}^{\sharp}$$
 and $S_1^{\sharp} \preccurlyeq S_{1,\text{weak}}^{\sharp}$ then:

Separating conjunction rule (\preccurlyeq_*)

 S_0^{\sharp}

Let us assume that

•
$$S_0^{\sharp}$$
 and S_1^{\sharp} have distinct set of source nodes

 S_1^{\sharp}

 (α_2)

• we can weaken
$$S_0^{\sharp}$$
 into $S_{0,\text{weak}}^{\sharp}$

• we can weaken
$$S_1^{\sharp}$$
 into $S_{1,\text{weak}}^{\sharp}$

then: we can weaken $S_0^{\sharp} * S_1^{\sharp}$ into $S_{0,\text{weak}}^{\sharp} * S_{1,\text{weak}}^{\sharp}$

Local weakening: unfolding rule

Weakening unfolded region $(\preccurlyeq_{\mathcal{U}})$

Let us assume that $S_0^{\sharp} \xrightarrow{\mathcal{U}} S_1^{\sharp}$. Then, by definition of the concretization of unfolding

we can weaken S_1^{\sharp} into S_0^{\sharp}

- the proof follows from the definition of unfolding
- it can be applied locally, on graph regions that differ due to unfolding of inductive definitions

Local weakening: identity rule

Identity weakening
$$(\preccurlyeq_{Id})$$

we can weaken S^{\sharp} into S^{\sharp}

• the proof is trivial:

$$\gamma_{\mathrm{S}}(S^{\sharp}) \subseteq \gamma_{\mathrm{S}}(S^{\sharp})$$

• on itself, this principle is not very useful, but it can be applied locally, and combined with $(\preccurlyeq_{\mathcal{U}})$ on graph regions that are not equal

Local weakening: example

By rule (\preccurlyeq_{Id}) :

Thus, by **rule** $(\preccurlyeq_{\mathcal{U}})$:

Additionally, by rule (\preccurlyeq_{Id}) :

Thus, by rule (\preccurlyeq_*) :

Xavier Rival (INRIA)

Shape analysis based on separation logic

Inclusion checking rules in the shape domain

Graphs to compare have distinct sets of nodes, thus inclusion check should carry out a valuation transformer $\Psi : \mathbb{V}^{\sharp}(S_{1}^{\sharp}) \longrightarrow \mathbb{V}^{\sharp}(S_{0}^{\sharp})$

Using (and extending) the weakening principles, we obtain the following rules (considering only inductive definition **list**, though these rules would extend to other definitions straightforwardly):

• Identity rules:

۵

$$\begin{array}{cccc} \forall i, \ \Psi(\beta_i) = \alpha_i \implies & \alpha_0 \cdot \mathbf{f} \mapsto \alpha_1 & \sqsubseteq^{\sharp}_{\Psi} & \beta_0 \cdot \mathbf{f} \mapsto \beta_1 \\ & \Psi(\beta) = \alpha \implies & \alpha \cdot \mathsf{list} & \sqsubseteq^{\sharp}_{\Psi} & \beta \cdot \mathsf{list} \\ \forall i, \ \Psi(\beta_i) = \alpha_i \implies & \alpha_0 \cdot \mathsf{list_endp}(\alpha_1) & \sqsubseteq^{\sharp}_{\Psi} & \beta_0 \cdot \mathsf{list_endp}(\beta_1) \\ \end{array}$$
Rules on inductives:

$$\begin{array}{cccc} \forall i, \ \Psi(\beta_i) = \alpha \implies & \mathsf{emp} & \sqsubseteq^{\sharp}_{\Psi} & \beta_0 \cdot \mathsf{list_endp}(\beta_1) \\ S_0^{\sharp} \sqsubseteq^{\sharp}_{\Psi} & S_1^{\sharp} \land \beta \cdot \iota \xrightarrow{\mathcal{U}} & S_1^{\sharp} \implies & S_0^{\sharp} & \sqsubseteq^{\sharp}_{\Psi} & \beta \cdot \iota \\ \mathsf{if} \ \beta_1 \ \mathsf{fresh} \ , \Psi' = \Psi[\beta_1 \mapsto \alpha_1] \ \mathsf{and} \ \Psi(\beta_0) = \alpha_0 \ \mathsf{then}, \\ S_0^{\sharp} \sqsubseteq^{\sharp}_{\Psi'} & \beta_1 \cdot \mathsf{list} \implies & \alpha_0 \cdot \mathsf{list_endp}(\alpha_1) * S_0^{\sharp} & \sqsubseteq^{\sharp}_{\Psi} & \beta_0 \cdot \iota \\ \end{array}$$

Xavier Rival (INRIA) Shape analysis based on separation logic Jan, 12th, 2016 74 / 89

Inclusion checking algorithm

Comparison of $(e_0^{\sharp}, S_0^{\sharp}, N_0^{\sharp})$ and $(e_1^{\sharp}, S_1^{\sharp}, N_1^{\sharp})$

- start with Ψ defined by Ψ(β) = α if and only if there exists a variable x such that e^β₀(x) = α ∧ e^β₁(x) = β
- 2 iteratively apply local rules, and extend Ψ when needed
- **③** if the algorithm establishes $S_0^{\sharp} \preccurlyeq S_1^{\sharp}$, compare $N_0^{\sharp} \circ \Psi$ and N_1^{\sharp} in $\mathbb{D}_{num}^{\sharp}$
 - the first step ensures both environments are consistent
 - in the last step, composing with Ψ ensures we are comparing consistent numerical values (note that N_0^{\sharp} and N_1^{\sharp} may have distinct sets of nodes)

This algorithm is sound:

Soundness

$$(e_0^{\sharp}, S_0^{\sharp}, \mathsf{N}_0^{\sharp}) \sqsubseteq^{\sharp} (e_1^{\sharp}, S_1^{\sharp}, \mathsf{N}_1^{\sharp}) \Longrightarrow \gamma(e_0^{\sharp}, S_0^{\sharp}, \mathsf{N}_0^{\sharp}) \subseteq \gamma(e_1^{\sharp}, S_1^{\sharp}, \mathsf{N}_1^{\sharp})$$

Xavier Rival (INRIA)

Shape analysis based on separation logic

Jan, 12th, 2016 75 / 89

Over-approximation of union

The principle of join and widening algorithm is similar to that of \sqsubseteq^{\sharp} :

• It can be computed **region by region**, as for weakening in general : If $\forall i \in \{0, 1\}, \forall s \in \{lft, rgh\}, S_{i,s}^{\sharp} \preccurlyeq S_{s}^{\sharp}$,

The partitioning of inputs / different nodes sets requires a **node correspondence function**

$$\Psi: \mathbb{V}^{\sharp}(S^{\sharp}_{\mathrm{lft}}) \times \mathbb{V}^{\sharp}(S^{\sharp}_{\mathrm{rgh}}) \longrightarrow \mathbb{V}^{\sharp}(S^{\sharp})$$

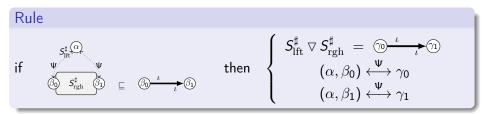
• The computation of the shape join progresses by the application of local join rules, that produce a new (output) shape graph, that weakens both inputs

Over-approximation of union: syntactic identity rules

In the next few slides, we focus on \bigtriangledown though the abstract union would be defined similarly in the shape domain

Several rules derive from
$$(\preccurlyeq_{ld})$$
:
• If $S_{lft}^{\sharp} = \alpha_0 \cdot \mathbf{f} \mapsto \alpha_1$
and $S_{lft}^{\sharp} = \beta_0 \cdot \mathbf{f} \mapsto \beta_1$
and $\Psi(\alpha_0, \beta_0) = \delta_0, \Psi(\alpha_1, \beta_1) = \delta_1$, then:
 $S_{lft}^{\sharp} \bigtriangledown S_{rgh}^{\sharp} = \delta_0 \cdot \mathbf{f} \mapsto \delta_1$
• If $S_{lft}^{\sharp} = \alpha_0 \cdot \mathbf{list}$
and $S_{lft}^{\sharp} = \beta_0 \cdot \mathbf{list}_1$
and $\Psi(\alpha_0, \beta_0) = \delta_0$, then:

Over-approximation of union: segment introduction rule



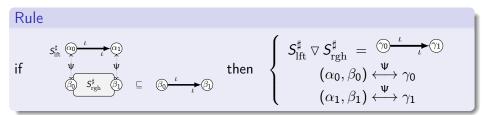
Application to list traversal, at the end of iteration 1:

• before iteration 0:

• end of iteration 0:

• join, before iteration 1:

Over-approximation of union: segment extension rule



Application to list traversal, at the end of iteration 1:

• previous invariant before iteration 1:

- end of iteration 1: $(a) \xrightarrow{list} (b) \xrightarrow$
- join, before iteration 1:

Over-approximation of union: rewrite system properties

- Comparison, canonicalization and widening algorithms can be considered rewriting systems over tuples of graphs
- Success configuration: weakening applies on all components, *i.e.*, the inputs are fully "consumed" in the weakening process
- Failure configuration: some components cannot be weakened *i.e.*, the algorithm should return the conservative answer $(i.e., \top)$

Termination

- The systems are terminating
- This ensures comparison, canonicalization, widening are computable

Non confluence !

- The results depends on the order of application of the rules
- Implementation requires the choice of an adequate strategy

Xavier Rival (INRIA)

Shape analysis based on separation logic

Jan, 12th, 2016 80 / 89

Over-approximation of union in the combined domain

Widening of $(e_0^{\sharp}, S_0^{\sharp}, N_0^{\sharp})$ and $(e_1^{\sharp}, S_1^{\sharp}, N_1^{\sharp})$

- define Ψ , e by $\Psi(\alpha, \beta) = e(\mathbf{x}) = \delta$ (where δ is a fresh node) if and only if $e_0^{\sharp}(\mathbf{x}) = \alpha \wedge e_1^{\sharp}(\mathbf{x}) = \beta$
- **2** iteratively apply join local rules, and extend Ψ when new relations are inferred (for instance for points-to edges)
- **③** if the algorithm computes $S_0^{\sharp} \nabla S_1^{\sharp} = S^{\sharp}$, compute the widening in the numeric domain: $N^{\sharp} = N_0^{\sharp} \circ \Psi_{\rm lft} \nabla N_1^{\sharp} \circ \Psi_{\rm rgh}$

This algorithm is sound:

Soundness

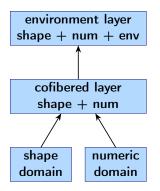
$$\gamma(e_0^{\sharp}, S_0^{\sharp}, \mathsf{N}_0^{\sharp}) \cup \gamma(e_1^{\sharp}, S_1^{\sharp}, \mathsf{N}_1^{\sharp}) \subseteq \gamma(e^{\sharp}, S^{\sharp}, \mathsf{N}^{\sharp})$$

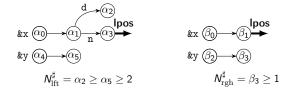
Widening also enforces **termination** (it only introduces segments, and the growth induced by the introduction of segments is bounded)

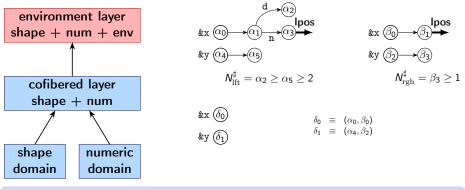
Xavier Rival (INRIA)

Shape analysis based on separation logic

Jan, 12th, 2016 81 / 89

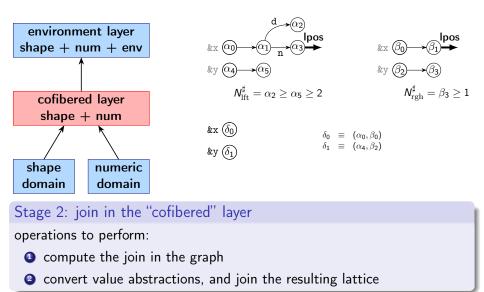


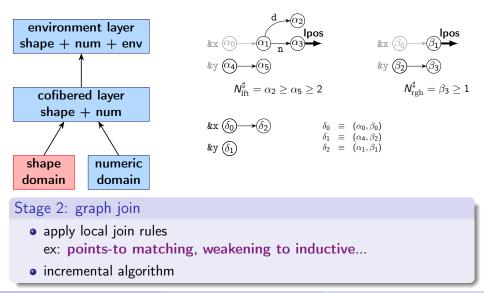


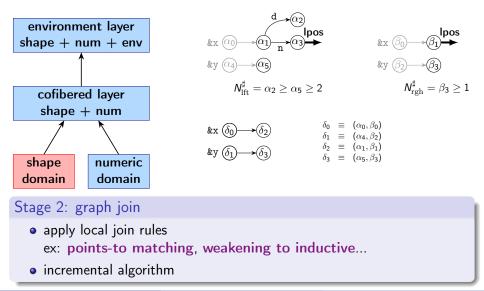


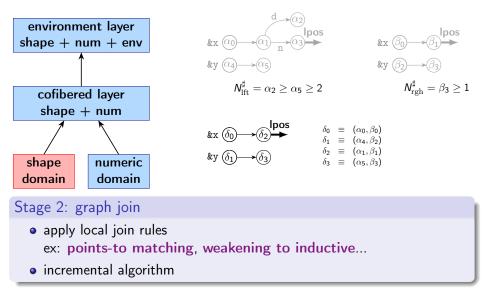
Stage 1: abstract environment

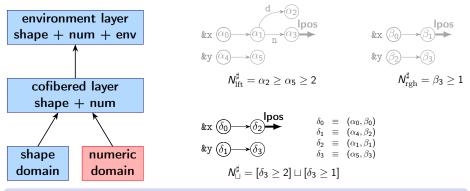
• compute new abstract environment and initial node relation e.g., α_0, β_0 both denote &x







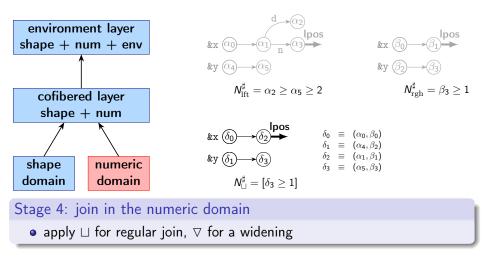




Stage 3: conversion function application in numerics

- remove nodes that were abstracted away
- rename other nodes

Xavier Rival (INRIA)



Outline

- An introduction to separation logic
- 2 A shape abstract domain relying on separation
- 3 Combination with a numerical domain

4 Standard static analysis algorithms

- Overview of the analysis
- Post-conditions and unfolding
- Folding: widening and inclusion checking
- Abstract interpretation framework: assumptions and results

Conclusion

Assumptions

What assumptions do we make ? How do we prove soundness of the analysis of a loop ?

• Assumptions in the concrete level, and for block b:

 $\begin{array}{ll} (\mathcal{P}(\mathbb{M}),\subseteq) & \text{ is a complete lattice, hence a CPO} \\ F:\mathcal{P}(\mathbb{M})\to\mathcal{P}(\mathbb{M}) & \text{ is the concrete semantic ("post") function of b} \end{array}$

thus, the concrete semantics writes down as $[\![\mathbf{b}]\!] = \mathsf{lfp}_{\emptyset}\mathsf{F}$

• Assumptions in the abstract level:

$$\begin{split} \mathbb{M}^{\sharp} & \text{set of abstract elements, no order a priori} \\ \gamma_{\text{mem}} : \mathbb{M}^{\sharp} \to \mathcal{P}(\mathbb{M}) & \text{concretization} \\ F^{\sharp} : \mathbb{M}^{\sharp} \to \mathbb{M}^{\sharp} & \text{sound abstract semantic function} \\ i.e., \text{ such that } F \circ \gamma_{\text{mem}} \subseteq \gamma_{\text{mem}} \circ F^{\sharp} \\ \nabla : \mathbb{M}^{\sharp} \times \mathbb{M}^{\sharp} \to \mathbb{M}^{\sharp} & \text{widening operator, terminates, and such that} \\ \gamma_{\text{mem}}(m_{0}^{\sharp}) \cup \gamma_{\text{mem}}(m_{1}^{\sharp}) \subseteq \gamma_{\text{mem}}(m_{0}^{\sharp} \lor m_{1}^{\sharp}) \\ \end{split}$$

Computing a loop abstract post-condition

Loop abstract semantics

The abstract semantics of loop while (rand()){b} is calculated as the limit of the sequence of abstract iterates below:

$$\begin{cases} m_0^{\sharp} = \bot \\ m_{n+1}^{\sharp} = m_n^{\sharp} \bigtriangledown F^{\sharp}(m_n^{\sharp}) \end{cases}$$

Soundness proof:

- by induction over n, $\bigcup_{k \leq n} F^k(\emptyset) \subseteq \gamma_{mem}(m_n^{\sharp})$
- by the property of widening, the abstract sequence converges at a rank N: $\forall k \geq N, \ m_k^{\sharp} = m_N^{\sharp}$, thus

$$\mathsf{lfp}_{\emptyset}\mathsf{F} = \bigcup_k \mathsf{F}^k(\emptyset) \subseteq \gamma_{\mathrm{mem}}(\mathfrak{m}^\sharp_{\mathsf{N}})$$

Discussion on the abstract ordering

How about the abstract ordering ? We assumed NONE so far...

• Logical ordering, induced by concretization, used for proofs

$$m_0^{\sharp} \sqsubseteq m_1^{\sharp} \quad ::= \quad "\gamma_{\mathrm{mem}}(m_0^{\sharp}) \subseteq \gamma_{\mathrm{mem}}(m_1^{\sharp})"$$

• Approximation of the logical ordering, implemented as a function is le : $\mathbb{M}^{\sharp} \times \mathbb{M}^{\sharp} \to \{ true, \top \}$, used to test the convergence of abstract iterates

$$\mathsf{is_le}(\mathit{m}_0^\sharp,\mathit{m}_1^\sharp) = \mathsf{true} \quad \Longrightarrow \quad \gamma_{\mathrm{mem}}(\mathit{m}_0^\sharp) \subseteq \gamma_{\mathrm{mem}}(\mathit{m}_1^\sharp)$$

Abstract semantics is not assumed (and is actually most likely NOT) monotone with respect to either of these orders...

• Also, computational ordering would be used for proving widening termination

Xavier Rival (INRIA) Shape analysis based on separation logic Jan, 12th, 2016 86 / 89

Outline

- An introduction to separation logic
- 2 A shape abstract domain relying on separation
- 3 Combination with a numerical domain
- 4 Standard static analysis algorithms
- 5 Conclusion

Updates and summarization

Weak updates cause significant precision loss... Separation logic makes updates strong

Separation logic

Separating conjunction combines properties on disjoint stores

- Fundamental idea: * forces to identify what is modified
- Before an update (or a read) takes place, memory cells need to be materialized
- Local reasoning: properties on unmodified cells pertain

Summaries

Inductive predicates describe unbounded memory regions

• Last lecture: array segments and transitive closure (TVLA)

Xavier Rival (INRIA)

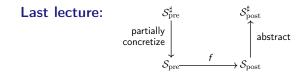
Shape analysis based on separation logic

Jan, 12th, 2016 88 / 89

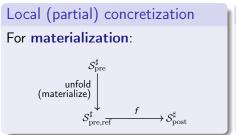
Conclusion

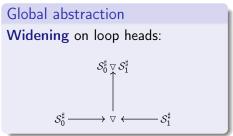
Partial concretization, Global abstraction

Separation and summaries should be maintained by the analysis



Today, two separate processes:





Conclusion

Bibliography

• [JR]: Separation Logic: A Logic for Shared Mutable Data Structures.

John C. Reynolds. In LICS'02, pages 55-74, 2002.

- [DHY]: A Local Shape Analysis Based on Separation Logic. Dino Distefano, Peter W. O'Hearn et Hongseok Yang. In TACAS'06, pages 287–302.
- [CR]: Relational inductive shape analysis. Bor-Yuh Evan Chang et Xavier Rival. In POPL'08, pages 247–260, 2008.
- [AV]: Abstract Cofibered Domains: Application to the Alias Analysis of Untyped Programs.

Arnaud Venet. In SAS'96, pages 366–382.

Internship topics:

- Modular interprocedural analysis using separation logic
- Deciding implications among inductive predicates and reduction

Xavier Rival (INRIA)

Shape analysis based on separation logic

Jan, 12th, 2016 90

90 / 89