Program Semantics

MPRI 2–6: Abstract Interpretation, application to verification and static analysis

Antoine Miné

year 2016-2017

course 02 21 September 2016 Discuss several flavors of **concrete** semantics:

- independently from programming languages (transition systems)
- defined in a constructive way (as fixpoints)
- compare their expressive power (link by abstractions)

Plan:

- transition systems
- state semantics (forward and backward)
- trace semantics (finite and infinite)
- relational semantics
- state and trace properties

Transition systems

Transition systems: definition

Language-neutral formalism to discuss program semantics.

Transition system: (Σ, τ)

set of states Σ,

(memory states, λ -terms, configurations, etc., generally infinite)

• transition relation $\tau \subseteq \Sigma \times \Sigma$.

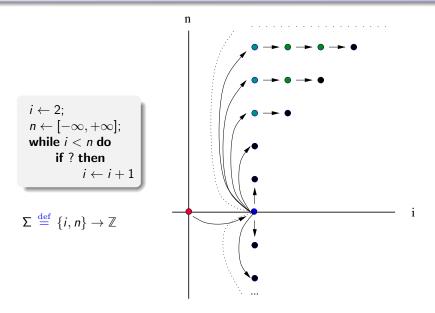
 (Σ, τ) is a general form of small-step operational semantics.

 $(\sigma, \sigma') \in \tau$ is noted $\sigma \to \sigma'$:

starting in state σ , after one execution step, we can go to state σ' .

Transition systems

Transition system: example



Transition systems

From programs to transition systems

Example: on a simple imperative language.

Language syntax	
$\ell stat^{\ell} ::= \ell X \leftarrow expr^{\ell}$	(assignment)
$ {}^{\ell}$ if expr $\bowtie 0$ then ${}^{\ell}stat^{\ell}$	(conditional)
$ \ell while \ell expr \bowtie 0 do \ell stat^{\ell}$	(loop)
^ℓ stat; ^ℓ stat ^ℓ	(sequence)

- $X \in \mathbb{V}$, where \mathbb{V} is a finite set of program variables,
- $\ell \in \mathcal{L}$ is a finite set of control labels,
- $\bowtie \in \{=, \leq, \ldots\}$, the syntax of *expr* is left undefined. (see next course)

Program states: $\Sigma \stackrel{\text{def}}{=} \mathcal{L} \times \mathcal{E}$ are composed of:

- a control state in \mathcal{L} ,
- a memory state in $\mathcal{E} \stackrel{\text{def}}{=} \mathbb{V} \to \mathbb{R}$.

From programs to transition systems

<u>Transitions</u>: $\tau[\ell stat^{\ell'}] \subseteq \Sigma \times \Sigma$ is defined by induction on the syntax.

Assuming that expression semantics is given as $\mathsf{E}[\![e]\!]: \mathcal{E} \to \mathcal{P}(\mathbb{R})$. (see next course)

 $\tau[{}^{\ell 1}X \leftarrow e^{\ell 2}] \stackrel{\text{def}}{=} \{ (\ell 1, \rho) \to (\ell 2, \rho[X \mapsto v]) \, | \, \rho \in \mathcal{E}, \, v \in \mathsf{E}[\![e]\!] \, \rho \}$

$$\tau[{}^{\ell 1} \mathbf{if} \ e \bowtie 0 \ \mathbf{then} \ {}^{\ell 2} {}^{\ell 3}] \stackrel{\text{def}}{=} \\ \{ (\ell 1, \rho) \to (\ell 2, \rho) \ | \ \rho \in \mathcal{E}, \ \exists v \in \mathsf{E}[\![\ e \]] \ \rho : v \bowtie 0 \ \} \cup \\ \{ (\ell 1, \rho) \to (\ell 3, \rho) \ | \ \rho \in \mathcal{E}, \ \exists v \in \mathsf{E}[\![\ e \]] \ \rho : v \not\bowtie 0 \ \} \cup \tau[{}^{\ell 2} {}^{\ell 3}] \end{cases}$$

$$\tau[{}^{\ell_1} \text{while} {}^{\ell_2} e \bowtie 0 \text{ do } {}^{\ell_3} s^{\ell_4}] \stackrel{\text{def}}{=} \{ (\ell_1, \rho) \to (\ell_2, \rho) \mid \rho \in \mathcal{E} \} \cup \{ (\ell_2, \rho) \to (\ell_3, \rho) \mid \rho \in \mathcal{E}, \exists v \in \mathsf{E}[\![e]\!] \rho: v \bowtie 0 \} \cup \{ (\ell_2, \rho) \to (\ell_4, \rho) \mid \rho \in \mathcal{E}, \exists v \in \mathsf{E}[\![e]\!] \rho: v \not\bowtie 0 \} \cup \tau[{}^{\ell_3} s^{\ell_2}] \}$$

 $\tau[{}^{\ell 1}s_1; {}^{\ell 2}s_2{}^{\ell 3}] \stackrel{\text{def}}{=} \tau[{}^{\ell 1}s_1{}^{\ell 2}] \cup \tau[{}^{\ell 2}s_2{}^{\ell 3}]$

Initial, final, blocking states

Initial and final states:

Transition systems (Σ, τ) are often enriched with:

- $\bullet \ \mathcal{I} \subseteq \Sigma$ a set of distinguished initial states,
- $\mathcal{F} \subseteq \Sigma$ a set of distinguished final states.

(e.g., limit observation to executions starting in an initial state and ending in a final state) $% \left({\left({{{\mathbf{x}}_{i}} \right)_{i}} \right)_{i}} \right)$

Blocking states \mathcal{B} :

- states with no successor $\mathcal{B} \stackrel{\text{def}}{=} \{ \sigma \, | \, \forall \sigma' \in \Sigma : \sigma \not\to \sigma' \},\$
- model both correct program termination and program errors, (correct exit, program stuck, unhandled exception, etc.)
- often include (or equal) final states \mathcal{F} .

 $\begin{array}{l} \underline{\text{Note:}} \text{ we can always remove blocking states by completing } \tau \text{:} \\ \tau' \stackrel{\text{def}}{=} \tau \cup \{ \left(\sigma, \sigma \right) \, | \, \sigma \in \mathcal{B} \, \}. \\ \quad \text{(add self-loops)} \end{array}$

Transition systems

Transition systems: additional examples

A large variety of semantics can be expressed as a transition system, with different notions of states and transitions.

Example: the λ -calculus

- Syntax: $t ::= x \mid \lambda x.t \mid t u$
- Small-step operational semantics:

sequence of instructions: $\mathcal{I} \stackrel{\text{def}}{=} \text{Grab} \mid \text{Access}(\mathbb{Z}) \mid \text{Push}(\mathcal{I}) \mid \mathcal{I}; \mathcal{I}$ executed over configurations (*i.e.*, state) (*inst*, env, state) transitions, e.g.: $\langle \text{Access}(0) \cdot C, (C_0, e_0) \cdot e, s \rangle \rightarrow \langle C_0, e_0, s \rangle, \ldots$

State operators

Post-image, pre-image

Forward and backward images, in $\mathcal{P}(\Sigma) \to \mathcal{P}(\Sigma)$:

• successors: (forward, post-image)

$$\operatorname{post}_{\tau}(S) \stackrel{\text{def}}{=} \{ \sigma' \mid \exists \sigma \in S \colon \sigma \to \sigma' \}$$

• predecessors: (backward, pre-image) pre_{τ}(S) $\stackrel{\text{def}}{=}$ { $\sigma \mid \exists \sigma' \in S: \sigma \to \sigma'$ }

 $\begin{array}{l} \mathsf{post}_{\tau} \text{ and } \mathsf{pre}_{\tau} \text{ are complete } \cup -\mathsf{morphisms in } (\mathcal{P}(\Sigma), \subseteq, \cup, \cap, \emptyset, \Sigma). \\ (\mathsf{post}_{\tau}(\cup_{i \in I} S_i) = \cup_{i \in I} \mathsf{post}_{\tau}(S_i), \mathsf{pre}_{\tau}(\cup_{i \in I} S_i) = \cup_{i \in I} \mathsf{pre}_{\tau}(S_i)) \end{array}$

 $\mathsf{post}_{\tau} \text{ and } \mathsf{pre}_{\tau} \text{ are strict.} \quad (\mathsf{post}_{\tau}(\emptyset) = \mathsf{pre}_{\tau}(\emptyset) = \emptyset)$

We have: $\operatorname{pre}_{\tau}(S) = \bigcup \{ \operatorname{pre}_{\tau}(\{s\}) \mid s \in S \}$ and $\operatorname{post}_{\tau}(S) = \bigcup \{ \operatorname{post}_{\tau}(\{s\}) \mid s \in S \}.$

Dual images

Dual post-images and pre-images:

• $\widetilde{\mathsf{pre}}_{\tau}(S) \stackrel{\text{def}}{=} \{ \sigma \, | \, \forall \sigma' : \sigma \to \sigma' \implies \sigma' \in S \}$

(states such that all successors satisfy S)

•
$$\widetilde{\mathsf{post}}_{\tau}(S) \stackrel{\text{def}}{=} \{ \sigma' \, | \, \forall \sigma : \sigma \to \sigma' \implies \sigma \in S \}$$

(states such that all predecessors satisfy S)

 $\widetilde{\mathsf{pre}}_{\tau}$ and $\widetilde{\mathsf{post}}_{\tau}$ are complete \cap -morphisms and not strict.

post is not much used...

Correspondences between images and dual images

State operators

State semantics

We have the following correspondences:

- inverse: $\operatorname{pre}_{\tau} = \operatorname{post}_{(\tau^{-1})}$ $\operatorname{post}_{\tau} = \operatorname{pre}_{(\tau^{-1})}$ $\widetilde{\operatorname{pre}}_{\tau} = \widetilde{\operatorname{post}}_{(\tau^{-1})}$ $\widetilde{\operatorname{post}}_{\tau} = \widetilde{\operatorname{pre}}_{(\tau^{-1})}$ (where $\tau^{-1} \stackrel{\text{def}}{=} \{ (\sigma, \sigma') | (\sigma', \sigma) \in \tau \}$)
- Galois connections:

$$(\mathcal{P}(\Sigma),\subseteq) \xrightarrow[\operatorname{post}_{\tau}]{\operatorname{post}_{\tau}} (\mathcal{P}(\Sigma),\subseteq) \text{ and}$$
$$(\mathcal{P}(\Sigma),\subseteq) \xrightarrow[\operatorname{post}_{\tau}]{\operatorname{post}_{\tau}} (\mathcal{P}(\Sigma),\subseteq).$$

proof:

$$\begin{array}{l} \mathsf{post}_{\tau}(A) \subseteq B \iff \{ \, \sigma' \, | \, \exists \sigma \in A : \sigma \to \sigma' \} \subseteq B \iff (\forall \sigma \in A : \sigma \to \sigma' \Longrightarrow \sigma' \in B) \iff (A \subseteq \{ \, \sigma \, | \, \forall \sigma' : \sigma \to \sigma' \implies \sigma' \in B \, \}) \iff A \subseteq \widetilde{\mathsf{pre}}_{\tau}(B); \\ \text{other directions are similar.} \end{array}$$

Deterministic systems

Determinism:

- (Σ, τ) is deterministic if $\forall \sigma \in \Sigma$: $| \text{post}_{\tau}(\{\sigma\}) | = 1$, (every state has a single successor, no blocking state)
- most transition systems are non-deterministic.
 (e.g., effect of input X ← [0, 10], program termination)

We have the following correspondences:

• $\forall S: \mathcal{B} \subseteq \widetilde{\text{pre}}_{\tau}(S) \subseteq \text{pre}_{\tau}(S) \cup \mathcal{B}.$ When $\mathcal{B} = \emptyset$, then $\widetilde{\text{pre}}_{\tau}(S) \subseteq \text{pre}_{\tau}(S).$

• If
$$\tau$$
 is deterministic, then $\mathcal{B} = \emptyset$,
pre _{τ} = $\widetilde{\text{pre}}_{\tau}$ and $\text{post}_{\tau} = \widetilde{\text{post}}_{\tau}$.

post: reachability state semantics

Forward reachability

 $\mathcal{R}(\mathcal{I}){:}$ states reachable from $\mathcal I$ in the transition system

$$\mathcal{R}(\mathcal{I}) \stackrel{\text{def}}{=} \{ \sigma \, | \, \exists n \ge 0, \sigma_0, \dots, \sigma_n : \sigma_0 \in \mathcal{I}, \sigma = \sigma_n, \forall i : \sigma_i \to \sigma_{i+1} \} \\ = \bigcup_{n \ge 0} \operatorname{post}_{\tau}^n(\mathcal{I})$$

(reachable \iff reachable from \mathcal{I} in *n* steps of τ for some $n \ge 0$)

 $\mathcal{R}(\mathcal{I})$ can be expressed in fixpoint form:

$$\mathcal{R}(\mathcal{I}) = \mathsf{lfp} \, \, F_\mathcal{R} \, \, \mathsf{where} \, \, F_\mathcal{R}(S) \stackrel{\scriptscriptstyle\mathrm{def}}{=} \mathcal{I} \cup \mathsf{post}_ au(S)$$

 $(F_{\mathcal{R}} \text{ shifts } S \text{ and adds back } \mathcal{I})$

<u>Alternate characterization</u>: $\mathcal{R} = \mathsf{lfp}_{\mathcal{I}} \ G_{\mathcal{R}}$ where $G_{\mathcal{R}}(S) \stackrel{\text{def}}{=} S \cup \mathsf{post}_{\tau}(S)$. ($G_{\mathcal{R}}$ shifts S by τ and accumulates the result with S)

(proofs on next slide)

Forward reachability: proof

proof: of
$$\mathcal{R}(\mathcal{I}) = \operatorname{lfp} F_{\mathcal{R}}$$
 where $F_{\mathcal{R}}(S) \stackrel{\text{def}}{=} \mathcal{I} \cup \operatorname{post}_{\tau}(S)$

 $(\mathcal{P}(\Sigma), \subseteq)$ is a CPO and post_{τ} is continuous, hence $F_{\mathcal{R}}$ is continuous: $F_{\mathcal{R}}(\bigcup_{i \in I} A_i) = \bigcup_{i \in I} F_{\mathcal{R}}(A_i).$

By Kleene's theorem, Ifp $F_{\mathcal{R}} = \cup_{n \in \mathbb{N}} F_{\mathcal{R}}^n(\emptyset)$.

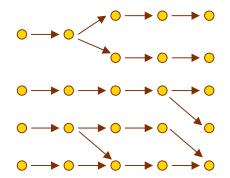
We prove by recurrence on *n* that: $\forall n: F_{\mathcal{R}}^n(\emptyset) = \bigcup_{i < n} \text{post}_{\tau}^i(\mathcal{I}).$ (states reachable in less than *n* steps)

•
$$F^0_{\mathcal{R}}(\emptyset) = \emptyset$$

Hence: Ifp $F_{\mathcal{R}} = \bigcup_{n \in \mathbb{N}} F_{\mathcal{R}}^n(\emptyset) = \bigcup_{i \in \mathbb{N}} \text{ post}_{\tau}^i(\mathcal{I}) = \mathcal{R}(\mathcal{I}).$

The proof is similar for the alternate form, given that $\operatorname{lfp}_{\mathcal{I}} G_{\mathcal{R}} = \bigcup_{n \in \mathbb{N}} G_{\mathcal{R}}^{n}(\mathcal{I})$ and $G_{\mathcal{R}}^{n}(\mathcal{I}) = F_{\mathcal{R}}^{n+1}(\emptyset) = \bigcup_{i \leq n} \operatorname{post}_{\tau}^{i}(\mathcal{I}).$

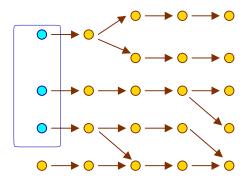
Forward reachability: graphical illustration



Transition system.

post: reachability state semantics

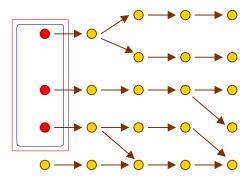
Forward reachability: graphical illustration



Initial states \mathcal{I} .

post: reachability state semantics

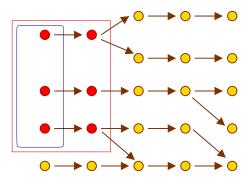
Forward reachability: graphical illustration



Iterate $F^1_{\mathcal{R}}(\mathcal{I})$.

post: reachability state semantics

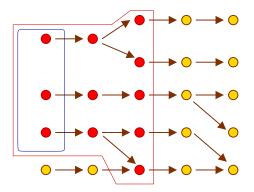
Forward reachability: graphical illustration



Iterate $F_{\mathcal{R}}^2(\mathcal{I})$.

post: reachability state semantics

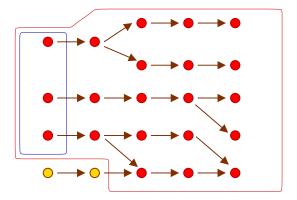
Forward reachability: graphical illustration



Iterate $F^3_{\mathcal{R}}(\mathcal{I})$.

post: reachability state semantics

Forward reachability: graphical illustration

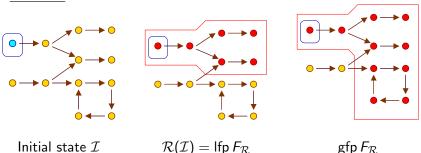


States reachable from \mathcal{I} : $\mathcal{R}(\mathcal{I}) = F^{5}_{\mathcal{R}}(\mathcal{I})$.

Multiple forward fixpoints

Recall: $\mathcal{R}(\mathcal{I}) = \operatorname{lfp} F_{\mathcal{R}}$ where $F_{\mathcal{R}}(S) \stackrel{\text{def}}{=} \mathcal{I} \cup \operatorname{post}_{\tau}(S)$. Note that $F_{\mathcal{R}}$ may have several fixpoints.

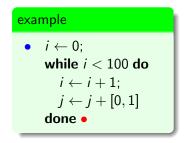
Example:



Exercise:

Compute all the fixpoints of $G_{\mathcal{R}}(S) \stackrel{\text{def}}{=} S \cup \text{post}_{\tau}(S)$ on this example.

- - Infer the set of possible states at program end: $\mathcal{R}(\mathcal{I}) \cap \mathcal{F}$.



- initial states $\mathcal{I}:\, j\in [0,10]$ at control state •,
- final states \mathcal{F} : any memory state at control state •,
- $\Longrightarrow \mathcal{R}(\mathcal{I}) \cap \mathcal{F}$: control at •, i = 100, and $j \in [0, 110]$.
- Prove the absence of run-time error: $\mathcal{R}(\mathcal{I}) \cap \mathcal{B} \subseteq \mathcal{F}$.

(never block except when reaching the end of the program)

Forward reachability equation system

By partitioning forward reachability wrt. control states, we retrieve the equation system form of program semantics.

Control state partitioning

We assume $\Sigma \stackrel{\text{def}}{=} \mathcal{L} \times \mathcal{E}$; note that: $\mathcal{P}(\Sigma) \simeq \mathcal{L} \to \mathcal{P}(\mathcal{E})$. We have a Galois isomorphism:

$$(\mathcal{P}(\Sigma),\subseteq) \xrightarrow{\qquad \gamma_{\mathcal{L}} \\ \xrightarrow{\alpha_{\mathcal{L}}}} (\mathcal{L} \to \mathcal{P}(\mathcal{E}), \subseteq)$$

•
$$X \subseteq Y \iff \forall \ell \in \mathcal{L}: X(\ell) \subseteq Y(\ell)$$

- $\alpha_{\mathcal{L}}(S) \stackrel{\text{def}}{=} \lambda \ell \{ \rho \mid (\ell, \rho) \in S \}$
- $\gamma_{\mathcal{L}}(X) \stackrel{\text{def}}{=} \{ (\ell, \rho) | \ell \in \mathcal{L}, \rho \in X(\ell) \}$
- simply reorganize the states by control location!

Note that: $\alpha_{\mathcal{L}} \circ \gamma_{\mathcal{L}} = \gamma_{\mathcal{L}} \circ \alpha_{\mathcal{L}} = id.$ (no abstraction)

Forward reachability equation system: example

Idea:

From the global fixpoint equation $S = F_{\mathcal{R}}(S)$, $S \subseteq \mathcal{P}(\mathcal{L} \times \mathcal{E})$, consider its abstraction $F_{eq} \stackrel{\text{def}}{=} \alpha_{\mathcal{L}} \circ F_{\mathcal{R}} \circ \gamma_{\mathcal{L}}$ in $\mathcal{L} \to \mathcal{P}(\mathcal{E})$, we get $(\mathcal{X}_{\ell})_{\ell \in \mathcal{L}} = F_{eq}((\mathcal{X}_{\ell})_{\ell \in \mathcal{L}})$, i.e., an equation system with equation variables $\mathcal{X}_{\ell} \subseteq \mathcal{E}$.

Example:

$$\begin{array}{l} \ell^{1} i \leftarrow 2; \\ \ell^{2} n \leftarrow [-\infty, +\infty]; \\ \ell^{3} \text{ while } \ell^{4} i < n \text{ do} \\ \ell^{5} \text{ if } [0,1] = 0 \text{ then} \\ \ell^{6} i \leftarrow i+1 \\ \ell^{7} \end{array}$$

$$\begin{array}{l} \mathcal{X}_{1} = \mathcal{I}_{1} \\ \mathcal{X}_{2} = \mathbb{C} \llbracket i \leftarrow 2 \rrbracket \mathcal{X}_{1} \\ \mathcal{X}_{3} = \mathbb{C} \llbracket n \leftarrow [-\infty, +\infty] \rrbracket \mathcal{X}_{2} \\ \mathcal{X}_{4} = \mathcal{X}_{3} \cup \mathcal{X}_{7} \\ \mathcal{X}_{5} = \mathbb{C} \llbracket i < n \rrbracket \mathcal{X}_{4} \\ \mathcal{X}_{6} = \mathcal{X}_{5} \\ \mathcal{X}_{7} = \mathcal{X}_{5} \cup \mathbb{C} \llbracket i \leftarrow i+1 \rrbracket \mathcal{X}_{6} \\ \mathcal{X}_{8} = \mathbb{C} \llbracket i \geq n \rrbracket \mathcal{X}_{4} \end{array}$$

• initial states $\mathcal{I} \stackrel{\text{def}}{=} \{ (\ell 1, \rho) | \rho \in \mathcal{I}_1 \}$ for some $\mathcal{I}_1 \subseteq \mathcal{E}$,

• $C[\![\cdot]\!] : \mathcal{P}(\mathcal{E}) \to \mathcal{P}(\mathcal{E})$ model assignments and tests (see next slide).

Forward reachability equation system: construction

We derive the equation system $eq({}^{\ell}stat^{\ell'})$ from the program syntax ${}^{\ell}stat^{\ell'}$ by structural induction: $eq({}^{\ell 1}X \leftarrow e^{\ell 2}) \stackrel{\text{def}}{=} \{ \mathcal{X}_{\ell 2} = C[[X \leftarrow e]] \mathcal{X}_{\ell 1} \}$ $eq({}^{\ell 1}\text{if } e \bowtie 0 \text{ then } {}^{\ell 2}s^{\ell 3}) \stackrel{\text{def}}{=} \{ \mathcal{X}_{\ell 2} = C[[e \bowtie 0]] \mathcal{X}_{\ell 1}, \mathcal{X}_{\ell 3} = \mathcal{X}_{\ell 3'} \cup C[[e \bowtie 0]] \mathcal{X}_{\ell 1} \} \cup eq({}^{\ell 2}s^{\ell 3'})$ $eq({}^{\ell 1}\text{while } {}^{\ell 2}e \bowtie 0 \text{ do } {}^{\ell 3}s^{\ell 4}) \stackrel{\text{def}}{=} \{ \mathcal{X}_{\ell 2} = \mathcal{X}_{\ell 1} \cup \mathcal{X}_{\ell 4'}, \mathcal{X}_{\ell 3} = C[[e \bowtie 0]] \mathcal{X}_{\ell 2}, \mathcal{X}_{\ell 4} = C[[e \bowtie 0]] \mathcal{X}_{\ell 2} \} \cup eq({}^{\ell 3}s^{\ell 4'})$ $eq({}^{\ell 1}s_1; {}^{\ell 2}s_2{}^{\ell 3}) \stackrel{\text{def}}{=} eq({}^{\ell 1}s_1{}^{\ell 2}) \cup ({}^{\ell 2}s_2{}^{\ell 3})$

where:

• $\mathcal{X}^{\ell 3'}$, $\mathcal{X}^{\ell 4'}$ are fresh variables storing intermediate results

•
$$C[X \leftarrow e] \mathcal{X} \stackrel{\text{def}}{=} \{ \rho[X \mapsto v] \mid \rho \in \mathcal{X}, v \in E[[e]] \rho \}$$

 $C[[e \bowtie 0]] \mathcal{X} \stackrel{\text{def}}{=} \{ \rho \in \mathcal{X} \mid \exists v \in E[[\rho]] \rho : v \bowtie 0 \}$

 $\cup -morphisms$ in a complete lattice \Longrightarrow a smallest solution exists

pre: co-reachability state semantics

Backward reachability

 $\mathcal{C}(\mathcal{F})$: states co-reachable from \mathcal{F} in the transition system:

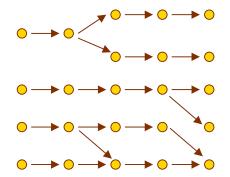
$$\mathcal{C}(\mathcal{F}) \stackrel{\text{def}}{=} \{ \sigma \,|\, \exists n \ge 0, \sigma_0, \dots, \sigma_n; \sigma = \sigma_0, \sigma_n \in \mathcal{F}, \forall i; \sigma_i \to \sigma_{i+1} \} \\ = \bigcup_{n \ge 0} \, \operatorname{pre}_{\tau}^n(\mathcal{F})$$

 $\mathcal{C}(\mathcal{F})$ can also be expressed in fixpoint form:

$$\mathcal{C}(\mathcal{F}) = \mathsf{lfp} \ F_{\mathcal{C}} \ \mathsf{where} \ F_{\mathcal{C}}(S) \stackrel{\mathrm{def}}{=} \mathcal{F} \cup \mathsf{pre}_{\tau}(S)$$

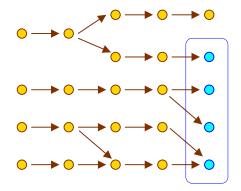
<u>Alternate characterization</u>: $C(\mathcal{F}) = \mathsf{lfp}_{\mathcal{F}} \ G_{\mathcal{C}} \text{ where } G_{\mathcal{C}}(S) = S \cup \mathsf{pre}_{\tau}(S)$ <u>Justification</u>: $C(\mathcal{F}) \text{ in } \tau \text{ is exactly } \mathcal{R}(\mathcal{F}) \text{ in } \tau^{-1}.$

Backward reachability: graphical illustration



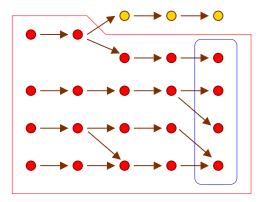
Transition system.

Backward reachability: graphical illustration



Final states \mathcal{F} .

Backward reachability: graphical illustration



States co-reachable from \mathcal{F} .

Backward reachability: applications

• $\mathcal{I} \cap \mathcal{C}(\mathcal{B} \setminus \mathcal{F})$

Initial states that have at least one erroneous execution.

- initial states \mathcal{I} : $i \in [0, 100]$ at •
- final states \mathcal{F} : any memory state at •
- blocking states \mathcal{B} : final, or j > 200 at any location
- $\mathcal{I} \cap \mathcal{C}(\mathcal{B} \setminus \mathcal{F})$: at •, i > 20

I ∩ (Σ \ C(B))
 Initial states that necessarily cause the program to loop.

 Iterate forward and backward analyses interactively ⇒ abstract debugging [Bour93].

Backward reachability equation system: example

Principle:

As before, reorganize transitions by label $\ell \in \mathcal{L}$, to get an equation system on $(\mathcal{X}_{\ell})_{\ell}$, with $\mathcal{X}_{\ell} \subseteq \mathcal{E}$

Example:

$$\begin{array}{l} \ell^{1} i \leftarrow 2; \\ \ell^{2} n \leftarrow [-\infty, +\infty]; \\ \ell^{3} \text{ while } \ell^{4} i < n \text{ do} \\ \ell^{5} \text{ if } [0,1] = 0 \text{ then} \\ \ell^{6} i \leftarrow i+1 \end{array} \\ \ell^{7} \\ \ell^{8} \end{array} \qquad \begin{array}{l} \mathcal{X}_{1} = \mathbb{C} \llbracket i \rightarrow 2 \rrbracket \mathcal{X}_{2} \\ \mathcal{X}_{2} = \mathbb{C} \llbracket n \rightarrow [-\infty, +\infty] \rrbracket \mathcal{X}_{3} \\ \mathcal{X}_{3} = \mathcal{X}_{4} \\ \mathcal{X}_{4} = \mathbb{C} \llbracket i < n \rrbracket \mathcal{X}_{5} \cup \mathbb{C} \llbracket i \geq n \rrbracket \mathcal{X}_{8} \\ \mathcal{X}_{6} = \mathbb{C} \llbracket i \rightarrow i+1 \rrbracket \mathcal{X}_{7} \\ \mathcal{X}_{7} = \mathcal{X}_{4} \\ \mathcal{X}_{8} = \mathcal{F}_{8} \end{array}$$

• final states $\mathcal{F} \stackrel{\text{def}}{=} \{ (\ell 8, \rho) | \rho \in \mathcal{F}_8 \}$ for some $\mathcal{F}_8 \subseteq \mathcal{E}$,

• $C[X \to e] \mathcal{X} \stackrel{\text{def}}{=} \{ \rho \mid \exists v \in E[[e]] \rho : \rho[X \mapsto v] \in X \}.$

$\widetilde{\text{pre:}}$ pre-condition state semantics

Sufficient preconditions

 $\mathcal{S}(\mathcal{Y})$: states with executions staying in \mathcal{Y} .

$$\begin{aligned} \mathcal{S}(\mathcal{Y}) &\stackrel{\text{def}}{=} \{ \sigma \, | \, \forall n \geq 0, \sigma_0, \dots, \sigma_n : (\sigma = \sigma_0 \land \forall i : \sigma_i \to \sigma_{i+1}) \implies \sigma_n \in \mathcal{Y} \} \\ &= \bigcap_{n \geq 0} \, \widetilde{\mathsf{pre}}_{\tau}^n(\mathcal{Y}) \end{aligned}$$

$\mathcal{S}(\mathcal{Y})$ can be expressed in fixpoint form:

$$\mathcal{S}(\mathcal{Y}) = \mathsf{gfp} \, F_{\mathcal{S}} \text{ where } F_{\mathcal{S}}(S) \stackrel{\text{\tiny def}}{=} \mathcal{Y} \cap \widetilde{\mathsf{pre}}_{\tau}(S)$$

proof sketch: similar to that of $\mathcal{R}(\mathcal{I})$, in the dual.

$$\begin{split} &F_{\mathcal{S}} \text{ is continuous in the dual CPO }(\mathcal{P}(\Sigma),\supseteq), \text{ because }\widetilde{\text{pre}}_{\tau} \text{ is:} \\ &F_{\mathcal{S}}(\cap_{i\in I}A_i)=\cap_{i\in I}F_{\mathcal{S}}(A_i). \\ &\text{By Kleene's theorem in the dual, gfp } F_{\mathcal{S}}=\cap_{n\in\mathbb{N}}F_{\mathcal{S}}^n(\Sigma). \\ &\text{We would prove by recurrence that }F_{\mathcal{S}}^n(\Sigma)=\cap_{i< n}\widetilde{\text{pre}}_{\tau}^i(\mathcal{Y}). \end{split}$$

Sufficient preconditions and reachability

Correspondence with reachability:

We have a Galois connection:

$$(\mathcal{P}(\Sigma),\subseteq) \xleftarrow{\mathcal{S}}{\mathcal{R}} (\mathcal{P}(\Sigma),\subseteq)$$

R(*I*) ⊆ *Y* ⇔ *I* ⊆ *S*(*Y*) definition of a Galois connection all executions from *I* stay in *Y* ⇔ *I* includes only sufficient pre-conditions for *Y*

• so $\mathcal{S}(\mathcal{Y}) = \bigcup \{ X \mid \mathcal{R}(X) \subseteq \mathcal{Y} \}$

by Galois connection property $\mathcal{S}(\mathcal{Y}) \text{ is the largest initial set whose reachability is in } \mathcal{Y}$

We retrieve Dijkstra's weakest liberal preconditions.

(proof sketch on next slide)

course 02	
-----------	--

Sufficient preconditions and reachability (proof)

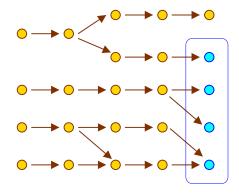
proof sketch:

- Recall that $\mathcal{R}(\mathcal{I}) = \operatorname{lfp}_{\mathcal{I}} G_{\mathcal{R}}$ where $G_{\mathcal{R}}(S) = S \cup \operatorname{post}_{\tau}(S)$. Likewise, $\mathcal{S}(\mathcal{Y}) = \operatorname{gfp}_{\mathcal{Y}} G_{\mathcal{S}}$ where $G_{\mathcal{S}}(S) = S \cap \widetilde{\operatorname{pre}}_{\tau}(S)$.
- Recall the Galois connection $(\mathcal{P}(\Sigma), \subseteq) \xrightarrow{\stackrel{\widetilde{\text{pre}}_{\tau}}{\text{post}_{\tau}}} (\mathcal{P}(\Sigma), \subseteq).$ As a consequence $(\mathcal{P}(\Sigma), \subseteq) \xrightarrow{G_{\mathcal{S}}} (\mathcal{P}(\Sigma), \subseteq).$

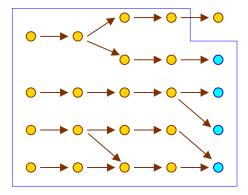
The Galois connection can be lifted to fixpoint operators:

$$(\mathcal{P}(\Sigma),\subseteq) \xleftarrow[x\mapsto \mathsf{gfp}_x \ \mathcal{G}_{\mathcal{S}}]{\mathcal{F}(\Sigma),\subseteq} (\mathcal{P}(\Sigma),\subseteq).$$

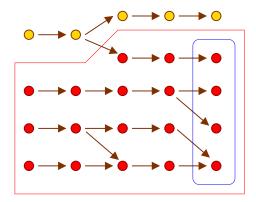
Exercise: complete the proof sketch.



Final states \mathcal{F} . Goal: when stopping, stop in \mathcal{F} .

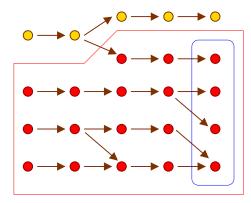


Goal: avoid stopping in a non-final state (i.e., error state) but passing through a non-blocking state is not (yet) an error \implies consider $\mathcal{Y} = \mathcal{F} \cup (\Sigma \setminus \mathcal{B})$.



Sufficient preconditions $\mathcal{S}(\mathcal{Y})$ to stop in \mathcal{F} .

(without forcing the program to stop at all)



Sufficient preconditions $\mathcal{S}(\mathcal{Y})$ to stop in \mathcal{F} .

(without forcing the program to stop at all)

Note: $\mathcal{S}(\mathcal{Y}) \subset \mathcal{C}(\mathcal{F})$

Sufficient preconditions: application

Initial states such that all executions are correct: $\mathcal{I} \cap \mathcal{S}(\mathcal{F} \cup (\Sigma \setminus \mathcal{B})).$

(the only blocking states reachable from initial states are final states)

program

• $i \leftarrow 0;$ while i < 100 do $i \leftarrow i + 1;$ $j \leftarrow j + [0, 1]$ done •

- ullet initial states \mathcal{I} : $j\in [0,10]$ at ullet
- final states \mathcal{F} : any memory state at •
- blocking states B: final, or j > 105 at any location
- $\mathcal{I} \cap \mathcal{S}(\mathcal{F} \cup (\Sigma \setminus \mathcal{B}))$: at •, $j \in [0, 5]$ (note that $\mathcal{I} \cap \mathcal{C}(\mathcal{F} \cup (\Sigma \setminus \mathcal{B}))$ gives \mathcal{I})

<u>Applications:</u> infer contracts; optimize (hoist) tests; infer counter-examples.

Trace semantics

Traces and trace operations

Sequences, traces

<u>Trace</u>: sequence of elements from Σ

- ϵ : empty trace (unique)
- σ : trace of length 1 (assimilated to a state)
- $\sigma_0, \ldots, \sigma_{n-1}$: trace of length n
- $\sigma_0, \ldots, \sigma_n, \ldots$: infinite trace (length ω)

Trace sets:

- Σ^n : the set of traces of length *n*
- $\Sigma^{\leq n} \stackrel{\text{def}}{=} \cup_{i \leq n} \Sigma^i$: the set of traces of length at most *n*
- $\Sigma^* \stackrel{\text{def}}{=} \cup_{i \in \mathbb{N}} \Sigma^i$: the set of finite traces
- Σ^{ω} : the set of infinite traces
- $\Sigma^{\infty} \stackrel{\text{def}}{=} \Sigma^* \cup \Sigma^{\omega}$: the set of all traces

Traces of a transition system

Execution traces:

Non-empty sequences of states linked by the transition relation τ .

- can be finite (in $\mathcal{P}(\Sigma^*)$) or infinite (in $\mathcal{P}(\Sigma^{\omega})$)
- can be anchored at initial states, or final states, or none

Atomic traces:

- $\mathcal{I}:$ initial states \simeq set of traces of length 1
- \mathcal{F} : final states \simeq set of traces of length 1
- τ : transition relation \simeq set of traces of length 2 $(\{\sigma, \sigma' \mid \sigma \to \sigma'\})$

(as
$$\Sigma\simeq\Sigma^1$$
 and $\Sigma\times\Sigma\simeq\Sigma^2)$

Trace operations

Operations on traces:

- length: $|t| \in \mathbb{N} \cup \{\omega\}$ of a trace $t \in \Sigma^{\infty}$
- concatenation ·
 - $(\sigma_0, \ldots, \sigma_n) \cdot (\sigma'_0, \ldots) \stackrel{\text{def}}{=} \sigma_0, \ldots, \sigma_n, \sigma'_0, \ldots$ (append to a finite trace)
 - $t \cdot t' \stackrel{\text{def}}{=} t$ if $t \in \Sigma^{\omega}$ (append to an infinite trace does nothing)
 - $\epsilon \cdot t \stackrel{\text{def}}{=} t \cdot \epsilon \stackrel{\text{def}}{=} t$ (ϵ is neutral)
- junction \frown
 - $(\sigma_0, \ldots, \sigma_n)^{\frown}(\sigma'_0, \sigma'_1 \ldots) \stackrel{\text{def}}{=} \sigma_0, \ldots, \sigma_n, \sigma'_1, \ldots$ when $\sigma_n = \sigma'_0$ undefined if $\sigma_n \neq \sigma'_0$
 - $\epsilon \hat{} t$ and $t \hat{} \epsilon$ are undefined
 - $t^{\frown}t' \stackrel{\text{def}}{=} t$, if $t \in \Sigma^{\omega}$

Trace operations (cont.)

Extension to sets of traces:

•
$$A \cdot B \stackrel{\text{def}}{=} \{ a \cdot b \mid a \in A, b \in B \}$$

{ e } is the neutral element for \cdot

•
$$A^{\frown}B \stackrel{\text{def}}{=} \{a^{\frown}b \mid a \in A, b \in B, a^{\frown}b \text{ defined} \}$$

 Σ is the neutral element for \frown

Note: $A^n \neq \{ a^n \, | \, a \in A \}$, $A^{\frown n} \neq \{ a^{\frown n} \, | \, a \in A \}$ when |A| > 1

Finite prefix trace semantics

Prefix trace semantics

 $\mathcal{T}_p(\mathcal{I})$: partial, finite execution traces starting in \mathcal{I} .

$$\begin{aligned} \mathcal{T}_{p}(\mathcal{I}) &\stackrel{\text{def}}{=} \{ \sigma_{0}, \dots, \sigma_{n} \mid n \geq 0, \sigma_{0} \in \mathcal{I}, \forall i: \sigma_{i} \to \sigma_{i+1} \} \\ &= \bigcup_{n \geq 0} \mathcal{I}^{\frown}(\tau^{\frown n}) \end{aligned}$$

(traces of length *n*, for any *n*, starting in \mathcal{I} and following τ)

 $\mathcal{T}_p(\mathcal{I})$ can be expressed in fixpoint form:

 $\mathcal{T}_{p}(\mathcal{I}) = \mathsf{lfp} \, F_{p}$ where $F_{p}(T) \stackrel{\text{\tiny def}}{=} \mathcal{I} \cup T^{\frown} \tau$

(F_p appends a transition to each trace, and adds back \mathcal{I})

(proof on next slide)

Prefix trace semantics: proof

proof of:
$$\mathcal{T}_{p}(\mathcal{I}) = \operatorname{lfp} F_{p}$$
 where $F_{p}(T) = \mathcal{I} \cup T^{\frown} \tau$

Similar to the proof of $\mathcal{R}(\mathcal{I}) = \operatorname{lfp} F_{\mathcal{R}}$ where $F_{\mathcal{R}}(S) \stackrel{\operatorname{def}}{=} \mathcal{I} \cup \operatorname{post}_{\tau}(S)$.

$$\begin{array}{l} F_{p} \text{ is continuous in a CPO } (\mathcal{P}(\Sigma^{*}), \subseteq): \\ F_{p}(\cup_{i \in I} T_{i}) \\ = & \mathcal{I} \cup (\cup_{i \in I} T_{i})^{\frown} \tau \\ = & \mathcal{I} \cup (\cup_{i \in I} T_{i}^{\frown} \tau) = \cup_{i \in I} (\mathcal{I} \cup T_{i}^{\frown} \tau) \\ \text{hence (Kleene), Ifp } F_{p} = \cup_{n \geq 0} F_{p}^{i}(\emptyset) \end{array}$$

We prove by recurrence on *n* that $\forall n: F_p^n(\emptyset) = \bigcup_{i < n} \mathcal{I}^{\frown} \tau^{\frown i}$:

•
$$F_{\rho}^{0}(\emptyset) = \emptyset$$
,
• $F_{\rho}^{n+1}(\emptyset)$
= $\mathcal{I} \cup F_{\rho}^{n}(\emptyset) \cap \tau$
= $\mathcal{I} \cup (\bigcup_{i < n} \mathcal{I} \cap \tau^{-i}) \cap \tau$
= $\mathcal{I} \cup \bigcup_{i < n} (\mathcal{I} \cap \tau^{-i}) \cap \tau$
= $\mathcal{I} \cap \tau^{-0} \cup \bigcup_{i < n} (\mathcal{I} \cap \tau^{-i+1})$
= $\bigcup_{i < n+1} \mathcal{I} \cap \tau^{-i}$

Thus, Ifp $F_p = \bigcup_{n \in \mathbb{N}} F_p^n(\emptyset) = \bigcup_{n \in \mathbb{N}} \bigcup_{i < n} \mathcal{I}^{\frown} \tau^{\frown i} = \bigcup_{i \in \mathbb{N}} \mathcal{I}^{\frown} \tau^{\frown i}$.

Note: we also have $\mathcal{T}_{p}(\mathcal{I}) = \mathsf{lfp}_{\mathcal{I}} \ G_{p}$ where $G_{p}(T) = T \cup T^{\frown} \tau$.

Trace semantics Prefix trace semantics: graphical illustration

$$\begin{array}{c} & \mathcal{I} \stackrel{\text{def}}{=} \{a\} \\ \tau \stackrel{\text{def}}{=} \{(a, b), (b, b), (b, c)\} \end{array}$$

Finite prefix trace semantics

Iterates:
$$\mathcal{T}_p(\mathcal{I}) = \mathsf{lfp} \ F_p$$
 where $F_p(\mathcal{T}) \stackrel{\text{def}}{=} \mathcal{I} \cup \mathcal{T}^\frown \tau$.

•
$$F_{p}^{0}(\emptyset) = \emptyset$$

• $F_{p}^{1}(\emptyset) = \mathcal{I} = \{a\}$
• $F_{p}^{2}(\emptyset) = \{a, ab\}$
• $F_{p}^{3}(\emptyset) = \{a, ab, abb, abc\}$
• $F_{p}^{n}(\emptyset) = \{a, ab^{i}, ab^{j}c \mid i \in [1, n-1], j \in [1, n-2]\}$
• $\mathcal{T}_{p}(\mathcal{I}) = \bigcup_{n \geq 0} F_{p}^{n}(\emptyset) = \{a, ab^{i}, ab^{i}c \mid i \geq 1\}$

Prefix trace semantics: expressive power

The prefix trace semantics is the collection of finite observations of program executions.

 \implies Semantics of testing.

Limitations:

- no information on infinite executions, (we will add infinite traces later)
- can bound maximal execution time: T_p(I) ⊆ Σ^{≤n} but cannot bound minimal execution time. (we will consider maximal traces later)

Abstracting traces into states

Idea: view state semantics as abstractions of traces semantics.

We have a Galois embedding between finite traces and states:

$$(\mathcal{P}(\Sigma^*),\subseteq) \stackrel{\gamma_p}{\xleftarrow{}} (\mathcal{P}(\Sigma),\subseteq)$$

- $\alpha_p(T) \stackrel{\text{def}}{=} \{ \sigma \in \Sigma \mid \exists \sigma_0, \dots, \sigma_n \in T : \sigma = \sigma_n \}$ (last state in traces in T)
- $\gamma_p(S) \stackrel{\text{def}}{=} \{ \sigma_0, \ldots, \sigma_n \in \Sigma^* \mid \sigma_n \in S \}$

(traces ending in a state in S)

(proof on next slide)

Abstracting traces into states (proof)

proof of: (α_p, γ_p) forms a Galois embedding.

Instead of the definition $\alpha(c) \subseteq a \iff c \subseteq \gamma(a)$, we use the alternate characterization of Galois connections: α and γ are monotonic, $\gamma \circ \alpha$ is extensive, and $\alpha \circ \gamma$ is reductive.

Embedding means that, additionally, $\alpha \circ \gamma = id$.

• α_p , γ_p are \cup -morphisms, hence monotonic

•
$$(\gamma_{p} \circ \alpha_{p})(T)$$

= { $\sigma_{0}, \dots, \sigma_{n} | \sigma_{n} \in \alpha_{p}(T)$ }
= { $\sigma_{0}, \dots, \sigma_{n} | \exists \sigma'_{0}, \dots, \sigma'_{m} \in T: \sigma_{n} = \sigma'_{m}$ }
 $\supseteq T$

•
$$(\alpha_p \circ \gamma_p)(S)$$

= { $\sigma \mid \exists \sigma_0, \dots, \sigma_n \in \gamma_p(S): \sigma = \sigma_n$ }
= { $\sigma \mid \exists \sigma_0, \dots, \sigma_n: \sigma_n \in S, \sigma = \sigma_n$ }
= S

Abstracting prefix traces into reachability

Recall that:

- $\mathcal{T}_{\rho}(\mathcal{I}) = \operatorname{lfp} F_{\rho}$ where $F_{\rho}(T) \stackrel{\text{def}}{=} \mathcal{I} \cup T^{\frown} \tau$,
- $\mathcal{R}(\mathcal{I}) = \mathsf{lfp} \, F_{\mathcal{R}} \, \mathsf{where} \, F_{\mathcal{R}}(S) \stackrel{\mathrm{def}}{=} \mathcal{I} \cup \mathsf{post}_{\tau}(S),$

•
$$(\mathcal{P}(\Sigma^*), \subseteq) \xrightarrow{\gamma_p} (\mathcal{P}(\Sigma), \subseteq).$$

We have: $\alpha_p \circ F_p = F_R \circ \alpha_p$;

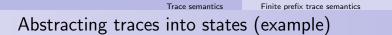
by fixpoint transfer, we get: $\alpha_p(\mathcal{T}_p(\mathcal{I})) = \mathcal{R}(\mathcal{I})$.

(proof on next slide)

Abstracting prefix traces into reachability (proof)

Finite prefix trace semantics

Trace semantics



• prefix trace semantics:

i and *j* are increasing and $0 \le j \le i \le 100$

• forward reachable state semantics:

 $0 \le j \le i \le 100$

 \implies the abstraction forgets the ordering of states.

Prefix closure

Prefix partial order: \preceq on Σ^{∞}

 $x \leq y \iff \exists u \in \Sigma^{\infty} : x \cdot u = y$

 (Σ^∞, \preceq) is a CPO, while (Σ^*, \preceq) is not complete.

<u>Prefix closure:</u> $\rho_p : \mathcal{P}(\Sigma^{\infty}) \to \mathcal{P}(\Sigma^{\infty})$ $\rho_p(\mathcal{T}) \stackrel{\text{def}}{=} \{ u \mid \exists t \in \mathcal{T} : u \leq t, u \neq \epsilon \}$

 ρ_p is an upper closure operator on $\mathcal{P}(\Sigma^{\infty} \setminus \{\epsilon\})$. (monotonic, extensive $T \subseteq \rho_p(T)$, idempotent $\rho_p \circ \rho_p = \rho_p$)

The prefix trace semantics is closed by prefix: $\rho_p(\mathcal{T}_p(\mathcal{I})) = \mathcal{T}_p(\mathcal{I}).$

(note that $\epsilon \notin \mathcal{T}_p(\mathcal{I})$, which is why we disallowed ϵ in ρ_p)

Finite suffix trace semantics

Suffix trace semantics

Similar results on the suffix trace semantics, going backwards from \mathcal{F} :

• $\mathcal{T}_{s}(\mathcal{F}) \stackrel{\text{def}}{=} \{ \sigma_{0}, \dots, \sigma_{n} \mid n \geq 0, \sigma_{n} \in \mathcal{F}, \forall i: \sigma_{i} \rightarrow \sigma_{i+1} \}$ (traces following τ and ending in a state in \mathcal{F})

•
$$\mathcal{T}_s(\mathcal{F}) = \bigcup_{n \ge 0} \tau^n \mathcal{F}$$

• $\mathcal{T}_{s}(\mathcal{F}) = \operatorname{lfp} F_{s}$ where $F_{s}(T) \stackrel{\text{def}}{=} \mathcal{F} \cup \tau^{\frown} T$

(F_s prepends a transition to each trace, and adds back \mathcal{F})

- $\alpha_{s}(\mathcal{T}_{s}(\mathcal{F})) = \mathcal{C}(\mathcal{F})$ where $\alpha_{s}(\mathcal{T}) \stackrel{\text{def}}{=} \{ \sigma \mid \exists \sigma_{0}, \dots, \sigma_{n} \in \mathcal{T} : \sigma = \sigma_{0} \}$
- $\rho_s(\mathcal{T}_s(\mathcal{F})) = \mathcal{T}_s(\mathcal{F})$ where $\rho_s(\mathcal{T}) \stackrel{\text{def}}{=} \{ u \mid \exists t \in \Sigma^\infty : t \cdot u \in \mathcal{T}, u \neq \epsilon \}$ (closed by suffix)

Trace semantics Suffix trace semantics: graphical illustration

$$\begin{array}{c} & \mathcal{F} \stackrel{\text{def}}{=} \{c\} \\ \tau \stackrel{\text{def}}{=} \{(a, b), (b, b), (b, c)\} \end{array}$$

Finite suffix trace semantics

Iterates:
$$\mathcal{T}_{s}(\mathcal{F}) = \mathsf{lfp} \, \mathsf{F}_{s}$$
 where $\mathsf{F}_{s}(T) \stackrel{\text{def}}{=} \mathcal{F} \cup \tau^{\frown} T$.

•
$$F_s^0(\emptyset) = \emptyset$$

• $F_s^1(\emptyset) = \mathcal{F} = \{c\}$
• $F_s^2(\emptyset) = \{c, bc\}$
• $F_s^3(\emptyset) = \{c, bc, bbc, abc\}$
• $F_s^n(\emptyset) = \{c, b^i c, ab^j c \mid i \in [1, n - 1], j \in [1, n - 2]\}$
• $\mathcal{T}_s(\mathcal{F}) = \bigcup_{n \ge 0} F_s^n(\emptyset) = \{c, b^i c, ab^i c \mid i \ge 1\}$

Finite partial trace semantics

Finite partial trace semantics

$\mathcal{T}:$ all finite partial finite execution traces.

(not necessarily starting in \mathcal{I} or ending in \mathcal{F})

$$\mathcal{T} \stackrel{\text{def}}{=} \{ \sigma_0, \dots, \sigma_n \mid n \ge 0, \forall i: \sigma_i \to \sigma_{i+1} \}$$

= $\bigcup_{n \ge 0} \Sigma^{\frown} \tau^{\frown n}$
= $\bigcup_{n \ge 0} \tau^{\frown n \frown} \Sigma$

- *T* = *T*_p(Σ), hence *T* = lfp *F*_{p*} where *F*_{p*}(*T*) ^{def} = Σ ∪ *T*[¬]τ
 (prefix partial traces from any initial state)
- $\mathcal{T} = \mathcal{T}_{s}(\Sigma)$, hence $\mathcal{T} = \text{lfp } F_{s*}$ where $F_{s*}(T) \stackrel{\text{def}}{=} \Sigma \cup \tau^{\frown} T$ (suffix partial traces to any final state)

•
$$F_{p*}^n(\emptyset) = F_{s*}^n(\emptyset) = \bigcup_{i < n} \Sigma^{\frown} \tau^{\frown i} = \bigcup_{i < n} \tau^{\frown i} \Sigma = \mathcal{T} \cap \Sigma^{< n}$$

- $\mathcal{T}_p(\mathcal{I}) = \mathcal{T} \cap (\mathcal{I} \cdot \Sigma^*)$ (restricted initial states)
- $\mathcal{T}_{s}(\mathcal{F}) = \mathcal{T} \cap (\Sigma^{*} \cdot \mathcal{F})$ (restricted final states)

Partial trace semantics: graphical illustration

$$\begin{array}{c} \bullet \\ a \\ b \\ b \\ c \end{array} \qquad \tau \stackrel{\text{def}}{=} \{(a, b), (b, b), (b, c)\}$$

<u>Iterates:</u> $\mathcal{T}(\Sigma) = \mathsf{lfp} \, F_{p*} \text{ where } F_{p*}(T) \stackrel{\text{def}}{=} \Sigma \cup T^{\frown} \tau.$

• $F^0_{p*}(\emptyset) = \emptyset$

•
$$F^{1}_{p*}(\emptyset) = \Sigma = \{a, b, c\}$$

•
$$F_{p*}^2(\emptyset) = \{a, b, c, ab, bb, bc\}$$

- *F*³_{p*}(∅) = {a, b, c, ab, bb, bc, abb, abc, bbb, bbc}
- $F_{p*}^n(\emptyset) = \{ ab^i, ab^jc, b^ic, b^k \mid i \in [0, n-1], j \in [1, n-2], k \in [1, n] \}$
- $\mathcal{T} = \bigcup_{n \ge 0} F_{p*}^n(\emptyset) = \{ ab^i, ab^j c, b^i c, b^j \mid i \ge 0, j > 1 \}$

(using $F_{s*}(T) \stackrel{\text{def}}{=} \Sigma \cup \tau^{\frown} T$, we get the exact same iterates)

Idea: anchor partial traces at initial states \mathcal{I} .

We have a Galois connection:

$$(\mathcal{P}(\Sigma^*),\subseteq) \xrightarrow{\gamma_{\mathcal{I}}} (\mathcal{P}(\Sigma^*),\subseteq)$$

• $\alpha_{\mathcal{I}}(T) \stackrel{\text{def}}{=} T \cap (\mathcal{I} \cdot \Sigma^*)$ (keep only traces starting in \mathcal{I}) • $\gamma_{\mathcal{I}}(T) \stackrel{\text{def}}{=} T \cup ((\Sigma \setminus \mathcal{I}) \cdot \Sigma^*)$ (add all traces not starting in \mathcal{I})

We then have: $\mathcal{T}_p(\mathcal{I}) = \alpha_{\mathcal{I}}(\mathcal{T}).$

(similarly $\mathcal{T}_{s}(\mathcal{F}) = \alpha_{\mathcal{F}}(\mathcal{T})$ where $\alpha_{\mathcal{F}}(\mathcal{T}) \stackrel{\text{def}}{=} \mathcal{T} \cap (\Sigma^{*} \cdot \mathcal{F}))$

(proof on next slide)

Abstracting partial traces to prefix traces (proof)

proof

 $\begin{array}{l} \alpha_{\mathcal{I}} \text{ and } \gamma_{\mathcal{I}} \text{ are monotonic.} \\ (\alpha_{\mathcal{I}} \circ \gamma_{\mathcal{I}})(\mathcal{T}) = (\mathcal{T} \cup (\Sigma \setminus \mathcal{I}) \cdot \Sigma^*) \cap \mathcal{I} \cdot \Sigma^*) = \mathcal{T} \cap \mathcal{I} \cdot \Sigma^* \subseteq \mathcal{T}. \\ (\gamma_{\mathcal{I}} \circ \alpha_{\mathcal{I}})(\mathcal{T}) = (\mathcal{T} \cap \mathcal{I} \cdot \Sigma^*) \cup (\Sigma \setminus \mathcal{I}) \cdot \Sigma^* = \mathcal{T} \cup (\Sigma \setminus \mathcal{I}) \cdot \Sigma^* \supseteq \mathcal{T}. \\ \text{So, we have a Galois connection.} \end{array}$

A direct proof of $\mathcal{T}_p(\mathcal{I}) = \alpha_{\mathcal{I}}(\mathcal{T})$ is straightforward, by definition of \mathcal{T}_p , $\alpha_{\mathcal{I}}$, and \mathcal{T} .

We can also retrieve the result by fixpoint transfer.

$$\begin{aligned} \mathcal{T} &= \mathsf{lfp} \ F_{p*} \ \mathsf{where} \ F_{p*}(T) \stackrel{\mathrm{def}}{=} \ \Sigma \cup T^{\frown} \tau. \\ \mathcal{T}_{p} &= \mathsf{lfp} \ F_{p} \ \mathsf{where} \ F_{p}(T) \stackrel{\mathrm{def}}{=} \ \mathcal{I} \cup T^{\frown} \tau. \\ \mathsf{We} \ \mathsf{have:} \ (\alpha_{\mathcal{I}} \circ F_{p*})(T) &= (\Sigma \cup T^{\frown} \tau) \cap (\mathcal{I} \cdot \Sigma^{*}) = \\ \mathcal{I} \cup ((T^{\frown} \tau) \cap (\mathcal{I} \cdot \Sigma^{*}) = \mathcal{I} \cup ((T \cap (\mathcal{I} \cdot \Sigma^{*}))^{\frown} \tau) = (F_{p} \circ \alpha_{\mathcal{I}})(T). \end{aligned}$$

Maximal finite and infinite trace semantics

Maximal traces

<u>Maximal traces:</u> $\mathcal{M}_{\infty} \in \mathcal{P}(\Sigma^{\infty})$

- \bullet sequences of states linked by the transition relation $\tau,$
- start in any state ($\mathcal{I} = \Sigma$),
- either finite and stop in a blocking state ($\mathcal{F} = \mathcal{B}$),
- or infinite.

maximal traces cannot be "extended" by adding a new transition in τ at their end

$$\mathcal{M}_{\infty} \stackrel{\text{def}}{=} \{ \sigma_{0}, \dots, \sigma_{n} \in \Sigma^{*} \mid \sigma_{n} \in \mathcal{B}, \forall i < n: \sigma_{i} \to \sigma_{i+1} \} \cup \\ \{ \sigma_{0}, \dots, \sigma_{n}, \dots \in \Sigma^{\omega} \mid \forall i < \omega: \sigma_{i} \to \sigma_{i+1} \}$$

(can be anchored at \mathcal{I} and \mathcal{F} as: $\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}) \cap ((\Sigma^* \cdot \mathcal{F}) \cup \Sigma^{\omega}))$

Partitioned fixpoint formulation of maximal traces

 $\underline{\textbf{Goal:}} \quad \text{we look for a fixpoint characterization of } \mathcal{M}_{\infty}.$

We consider separately finite and infinite maximal traces.

Finite traces:

From the suffix partial trace semantics, recall: $\mathcal{M}_{\infty} \cap \Sigma^* = \mathcal{T}_{s}(\mathcal{B}) = \operatorname{lfp} F_{s}$ where $F_{s}(\mathcal{T}) \stackrel{\text{def}}{=} \mathcal{B} \cup \tau^{\frown} \mathcal{T}$ in $(\mathcal{P}(\Sigma^*), \subseteq)$.

Infinite traces:

Additionally, we will prove: $\mathcal{M}_{\infty} \cap \Sigma^{\omega} = \mathsf{gfp} \ G_s$ where $G_s(\mathcal{T}) \stackrel{\text{def}}{=} \tau^{\frown} \mathcal{T}$ in $(\mathcal{P}(\Sigma^{\omega}), \subseteq)$.

(proof on next slide)

Partitioned fixpoint formulation of maximal traces (proof)

$$\mathcal{M}_{\infty} \cap \Sigma^{\omega} = \operatorname{gfp} G_{s}$$

where $G_{s}(T) \stackrel{\text{def}}{=} \tau^{\frown} T$ in $(\mathcal{P}(\Sigma^{\omega}), \subseteq)$

proof:

 G_s is continuous in $(\mathcal{P}(\Sigma^{\omega}), \supseteq)$: $G_s(\cap_{i \in I} T_i) = \cap_{i \in I} G_s(T_i)$. By Kleene's theorem in the dual: gfp $G_s = \cap_{n \in \mathbb{N}} G_s^n(\Sigma^{\omega})$. We prove by recurrence on n that $\forall n: G_s^n(\Sigma^{\omega}) = \tau^{\frown n} \cap \Sigma^{\omega}$:

•
$$G_s^0(\Sigma^\omega) = \Sigma^\omega = \tau^{\frown} \Sigma^\omega$$
,

•
$$G_s^{n+1}(\Sigma^{\omega}) = \tau^{\frown}G_s^n(\Sigma^{\omega}) = \tau^{\frown}(\tau^{\frown}n^{\frown}\Sigma^{\omega}) = \tau^{\frown}n^{+1}^{\frown}\Sigma^{\omega}.$$

gfp
$$G_s = \bigcap_{n \in \mathbb{N}} \tau^{n} \Sigma^{\omega}$$

= { $\sigma_0, \ldots \in \Sigma^{\omega} | \forall n \ge 0: \sigma_0, \ldots, \sigma_{n-1} \in \tau^{n}$ }
= { $\sigma_0, \ldots \in \Sigma^{\omega} | \forall n \ge 0: \forall i < n: \sigma_i \to \sigma_{i+1}$ }
= $\mathcal{M}_{\infty} \cap \Sigma^{\omega}$

Infinite trace semantics: graphical illustration

$$\mathcal{B} \stackrel{\text{def}}{=} \{c\}$$

$$\tau \stackrel{\text{def}}{=} \{(a, b), (b, b), (b, c)\}$$

<u>Iterates:</u> $\mathcal{M}_{\infty} \cap \Sigma^{\omega} = \operatorname{gfp} G_{s}$ where $G_{s}(T) \stackrel{\text{def}}{=} \tau^{\frown} T$.

•
$$G^0_s(\Sigma^\omega) = \Sigma^\omega$$

•
$$G^1_s(\Sigma^\omega) = ab\Sigma^\omega \cup bb\Sigma^\omega \cup bc\Sigma^\omega$$

- $G_s^2(\Sigma^\omega) = abb\Sigma^\omega \cup bbb\Sigma^\omega \cup abc\Sigma^\omega \cup bbc\Sigma^\omega$
- $G_s^3(\Sigma^\omega) = abbb\Sigma^\omega \cup bbbb\Sigma^\omega \cup abbc\Sigma^\omega \cup bbbc\Sigma^\omega$
- $G_{s}^{n}(\Sigma^{\omega}) = \{ ab^{n}t, b^{n+1}t, ab^{n-1}ct, b^{n}ct \mid t \in \Sigma^{\omega} \}$
- $\mathcal{M}_{\infty} \cap \Sigma^{\omega} = \cap_{n \geq 0} G_s^n(\Sigma^{\omega}) = \{ab^{\omega}, b^{\omega}\}$

Least fixpoint formulation of maximal traces

Fixpoint fusion

$$\begin{split} \mathcal{M}_{\infty} \cap \Sigma^* \text{ is best defined on } (\Sigma^*, \subseteq, \cup, \cap, \emptyset, \Sigma^*). \\ \mathcal{M}_{\infty} \cap \Sigma^{\omega} \text{ is best defined on } (\Sigma^{\omega}, \supseteq, \cap, \cup, \Sigma^{\omega}, \emptyset). \end{split}$$

We mix them into a new complete lattice $(\Sigma^{\infty}, \sqsubseteq, \sqcup, \sqcap, \bot, \top)$:

- $A \sqsubseteq B \stackrel{\text{def}}{\iff} (A \cap \Sigma^*) \subseteq (B \cap \Sigma^*) \land (A \cap \Sigma^{\omega}) \supseteq (B \cap \Sigma^{\omega})$ • $A \sqcup B \stackrel{\text{def}}{=} ((A \cap \Sigma^*) \cup (B \cap \Sigma^*)) \cup ((A \cap \Sigma^{\omega}) \cap (B \cap \Sigma^{\omega}))$
- $A \sqcup B = ((A \sqcup \Sigma^*) \cup (B \sqcup \Sigma^*)) \cup ((A \sqcup \Sigma^*) \sqcup (B \sqcup \Sigma^*))$
- $A \sqcap B \stackrel{\text{def}}{=} ((A \cap \Sigma^*) \cap (B \cap \Sigma^*)) \cup ((A \cap \Sigma^\omega) \cup (B \cap \Sigma^\omega))$
- $\perp \stackrel{\text{def}}{=} \Sigma^{\omega}$
- $\top \stackrel{\text{def}}{=} \Sigma^*$

In this lattice, $\mathcal{M}_{\infty} = \mathsf{lfp} \ F_s$ where $F_s(T) \stackrel{\text{def}}{=} \mathcal{B} \cup \tau^{\frown} T$.

(proof on next slides)

Fixpoint fusion theorem

Theorem: fixpoint fusion

If $X_1 = \operatorname{lfp} F_1$ in $(\mathcal{P}(\mathcal{D}_1), \sqsubseteq_1)$ and $X_2 = \operatorname{lfp} F_2$ in $(\mathcal{P}(\mathcal{D}_2), \sqsubseteq_2)$ and $\mathcal{D}_1 \cap \mathcal{D}_2 = \emptyset$,

then $X_1 \cup X_2 = \text{lfp } F$ in $(\mathcal{P}(\mathcal{D}_1 \cup \mathcal{D}_2), \sqsubseteq)$ where:

- $F(X) \stackrel{\text{def}}{=} F_1(X \cap \mathcal{D}_1) \cup F_2(X \cap \mathcal{D}_2),$
- $A \sqsubseteq B \iff (A \cap \mathcal{D}_1) \sqsubseteq_1 (B \cap \mathcal{D}_1) \land (A \cap \mathcal{D}_2) \sqsubseteq_2 (B \cap \mathcal{D}_2).$

proof:

We have:

 $F(X_1 \cup X_2) = F_1((X_1 \cup X_2) \cap D_1) \cup F_2((X_1 \cup X_2) \cap D_2) = F_1(X_1) \cup F_2(X_2) = X_1 \cup X_2,$ hence $X_1 \cup X_2$ is a fixpoint of F.

Let Y be a fixpoint. Then $Y = F(Y) = F_1(Y \cap D_1) \cup F_2(Y \cap D_2)$, hence, $Y \cap D_1 = F_1(Y \cap D_1)$ and $Y \cap D_1$ is a fixpoint of F_1 . Thus, $X_1 \sqsubseteq_1 Y \cap D_1$. Likewise, $X_2 \sqsubseteq_2 Y \cap D_2$. We deduce that $X = X_1 \cup X_2 \sqsubseteq (Y \cap D_1) \cup (Y \cap D_2) = Y$, and so, X is F's least fixpoint.

<u>note:</u> we also have gfp $F = \text{gfp } F_1 \cup \text{gfp } F_2$.

Least fixpoint formulation of maximal traces (proof)

We are now ready to finish the proof that $\mathcal{M}_{\infty} = \mathsf{lfp} \ F_s$ where $F_s(T) \stackrel{\text{def}}{=} \mathcal{B} \cup \tau^{\frown} T$

proof:

We have:

•
$$\mathcal{M}_{\infty} \cap \Sigma^* = \mathsf{lfp} \, F_s \, \mathsf{in} \, (\mathcal{P}(\Sigma^*), \subseteq),$$

•
$$\mathcal{M}_{\infty} \cap \Sigma^{\omega} = \mathsf{lfp} \ \mathcal{G}_s \ \mathsf{in} \ (\mathcal{P}(\Sigma^{\omega}), \supseteq) \ \mathsf{where} \ \mathcal{G}_s(\mathcal{T}) \stackrel{\mathrm{def}}{=} \tau^{\frown} \mathcal{T},$$

• in
$$\mathcal{P}(\Sigma^{\infty})$$
, we have
 $F_s(A) = (F_s(A) \cap \Sigma^*) \cup (F_s(A) \cap \Sigma^{\omega}) = F_s(A \cap \Sigma^*) \cup G_s(A \cap \Sigma^{\omega}).$

So, by fixpoint fusion in $(\mathcal{P}(\Sigma^{\infty}), \sqsubseteq)$, we have: $\mathcal{M}_{\infty} = (\mathcal{M}_{\infty} \cap \Sigma^{*}) \cup (\mathcal{M}_{\infty} \cap \Sigma^{\omega}) = \text{lfp } F_{\epsilon}.$

Abstracting maximal traces into partial traces

Finite and infinite partial trace semantics

Idea: complete the partial traces \mathcal{T} with infinite traces.

 \mathcal{T}_{∞} : all finite and infinite sequences of states linked by the transition relation τ :

$$\mathcal{T}_{\infty} \stackrel{\text{def}}{=} \{ \sigma_0, \dots, \sigma_n \in \Sigma^* \mid \forall i < n : \sigma_i \to \sigma_{i+1} \} \cup \\ \{ \sigma_0, \dots, \sigma_n, \dots \in \Sigma^\omega \mid \forall i < \omega : \sigma_i \to \sigma_{i+1} \}$$

(partial finite traces do not necessarily end in a blocking state)

Fixpoint form similar to \mathcal{M}_{∞} : $\mathcal{T}_{\infty} = \mathsf{lfp} \ F_{s*} \text{ in } (\mathcal{P}(\Sigma^{\infty}), \sqsubseteq) \text{ where } F_{s*}(T) \stackrel{\text{def}}{=} \Sigma \cup \tau^{\frown} T,$

proof: similar to the proof of
$$\mathcal{M}_{\infty} = \operatorname{lfp} F_s$$
.

Finite trace abstraction

Finite partial traces \mathcal{T} are an abstraction of all partial traces \mathcal{T}_{∞} .

We have a Galois embedding:

$$(\mathcal{P}(\Sigma^{\infty}),\sqsubseteq) \xleftarrow{\gamma_*}{\alpha_*} (\mathcal{P}(\Sigma^*),\subseteq)$$

- \sqsubseteq is the fused ordering on $\Sigma^* \cup \Sigma^{\omega}$: $A \sqsubseteq B \iff (A \cap \Sigma^*) \subseteq (B \cap \Sigma^*) \land (A \cap \Sigma^{\omega}) \supseteq (B \cap \Sigma^{\omega})$
- $\alpha_*(T) \stackrel{\text{def}}{=} T \cap \Sigma^*$

(remove infinite traces)

• $\gamma_*(T) \stackrel{\text{\tiny def}}{=} T$

(embedding)

• $\mathcal{T} = \alpha_*(\mathcal{T}_\infty)$

(proof on next slide)

Finite trace abstraction (proof)

proof:

We have Galois embedding because:

- α_* and γ_* are monotonic,
- given $T \subseteq \Sigma^*$, we have $(\alpha_* \circ \gamma_*)(T) = T \cap \Sigma^* = T$,
- $(\gamma_* \circ \alpha_*)(T) = T \cap \Sigma^* \supseteq T$, as we only remove infinite traces.

Recall that $\mathcal{T}_{\infty} = \operatorname{lfp} F_{s*}$ in $(\mathcal{P}(\Sigma^{\infty}), \sqsubseteq)$ and $\mathcal{T} = \operatorname{lfp} F_{s*}$ in $(\mathcal{P}(\Sigma^{*}), \subseteq)$, where $F_{s*}(\mathcal{T}) \stackrel{\text{def}}{=} \Sigma \cup \mathcal{T}^{\frown} \tau$. As $\alpha_{*} \circ F_{s*} = F_{s*} \circ \alpha_{*}$ and $\alpha_{*}(\emptyset) = \emptyset$, we can apply the fixpoint transfer theorem to get $\alpha_{*}(\mathcal{T}_{\infty}) = \mathcal{T}$.

Prefix abstraction

Idea: complete maximal traces by adding (non-empty) prefixes. We have a Galois connection:

$$(\mathcal{P}(\Sigma^{\infty} \setminus \{\epsilon\}), \subseteq) \xleftarrow{\gamma_{\preceq}}{\alpha_{\preceq}} (\mathcal{P}(\Sigma^{\infty} \setminus \{\epsilon\}), \subseteq)$$

• $\alpha_{\preceq}(T) \stackrel{\text{def}}{=} \{ t \in \Sigma^{\infty} \setminus \{\epsilon\} \mid \exists u \in T : t \preceq u \}$

(set of all non-empty prefixes of traces in T)

۲

 $\gamma_{\preceq}(T) \stackrel{\text{def}}{=} \{ t \in \Sigma^{\infty} \setminus \{\epsilon\} \, | \, \forall u \in \Sigma^{\infty} \setminus \{\epsilon\} \colon u \preceq t \implies u \in T \}$ (traces with non-empty prefixes in *T*)

proof:

 α_{\preceq} and γ_{\preceq} are monotonic. $(\alpha_{\preceq} \circ \gamma_{\preceq})(T) = \{ t \in T \mid \rho_{\rho}(t) \subseteq T \} \subseteq T$ (prefix-closed trace sets). $(\gamma_{\prec} \circ \alpha_{\prec})(T) = \rho_{\rho}(T) \supseteq T.$

course 02

Program Semantics

Antoine Miné

Abstraction from maximal traces to partial traces

Finite and infinite partial traces \mathcal{T}_{∞} are an abstraction of maximal traces \mathcal{M}_{∞} : $\mathcal{T}_{\infty} = \alpha_{\preceq}(\mathcal{M}_{\infty})$.

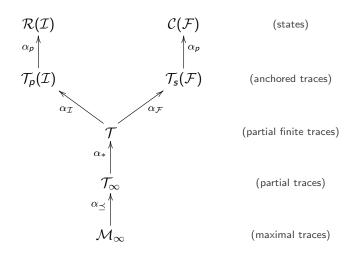
proof:

Firstly, \mathcal{T}_{∞} and $\alpha_{\preceq}(\mathcal{M}_{\infty})$ coincide on infinite traces. Indeed, $\mathcal{T}_{\infty} \cap \Sigma^{\omega} = \mathcal{M}_{\infty} \cap \Sigma^{\omega}$ and α_{\preceq} does not add infinite traces, so: $\mathcal{T}_{\infty} \cap \Sigma^{\omega} = \alpha_{\preceq}(\mathcal{M}_{\infty}) \cap \Sigma^{\omega}$. We now prove that they also coincide on finite traces. Assume $\sigma_0, \ldots, \sigma_n \in \alpha_{\preceq}(\mathcal{M}_{\infty})$, then $\forall i < n: \sigma_i \to \sigma_{i+1}$, so, $\sigma_0, \ldots, \sigma_n \in \mathcal{T}_{\infty}$.

Assume $\sigma_0, \ldots, \sigma_n \in \mathcal{T}_{\infty}$, then it can be completed into a maximal trace, either finite or infinite, and so, $\sigma_0, \ldots, \sigma_n \in \alpha_{\preceq}(\mathcal{M}_{\infty})$.

Note: no fixpoint transfer applies here.

(Partial) hierarchy of semantics



Relational semantics

Big-step semantics

Finite big-step semantics

Pairs of states linked by a sequence of transitions in τ .

$$\mathcal{BS} \stackrel{\text{def}}{=} \{ (\sigma_0, \sigma_n) \in \Sigma \times \Sigma \mid n \ge 0, \exists \sigma_1, \dots, \sigma_{n-1} : \forall i < n : \sigma_i \to \sigma_{i+1} \} \}$$

(symmetric and transitive closure of τ)

Fixpoint form:

 $\mathcal{BS} = \mathsf{lfp} \, F_{\mathcal{B}}$ where $F_{\mathcal{B}}(R) \stackrel{\text{def}}{=} id \cup \{ (\sigma, \sigma'') | \exists \sigma' : (\sigma, \sigma') \in R, \sigma' \to \sigma'' \}.$

Relational abstraction

Relational abstraction: allows skipping intermediate steps. We have a Galois embedding:

$$(\mathcal{P}(\Sigma^*),\subseteq) \xrightarrow{\gamma_{io}} (\mathcal{P}(\Sigma \times \Sigma),\subseteq)$$

•
$$\alpha_{io}(T) \stackrel{\text{def}}{=} \{ (\sigma, \sigma') | \exists \sigma_0, \dots, \sigma_n \in T : \sigma = \sigma_0, \sigma' = \sigma_n \}$$

(first and last state of a trace in T)

• $\gamma_{io}(R) \stackrel{\text{def}}{=} \{ \sigma_0, \dots, \sigma_n \in \Sigma^* \mid \exists (\sigma, \sigma') \in R : \sigma = \sigma_0, \sigma' = \sigma_n \}$ (traces respecting the first and last states from R)

proof sketch:

 γ_{io} and α_{io} are monotonic. $(\gamma_{io} \circ \alpha_{io})(T) = \{ \sigma_0, \dots, \sigma_n \mid \exists \sigma'_0, \dots, \sigma'_m \in T : \sigma_0 = \sigma'_0, \sigma_n = \sigma'_m \}.$ $(\alpha_{io} \circ \gamma_{io})(R) = R.$

Finite big-step semantics as an abstraction

The finite big-step semantics is an abstraction of the finite trace semantics: $\mathcal{BS} = \alpha_{io}(\mathcal{T})$.

proof sketch: by fixpoint transfer.

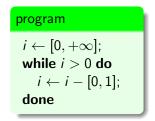
We have $\mathcal{T} = \operatorname{lfp} F_{p*}$ where $F_{p*}(T) \stackrel{\text{def}}{=} \Sigma \cup T^{\frown} \tau$. Moreover, $F_B(R) \stackrel{\text{def}}{=} id \cup \{ (\sigma, \sigma'') | \exists \sigma' : (\sigma, \sigma') \in R, \sigma' \to \sigma'' \}$. Then, $\alpha_{io} \circ F_{p*} = F_B \circ \alpha_{io}$ because $\alpha_{io}(\Sigma) = id$ and $\alpha_{io}(T^{\frown} \tau) = \{ (\sigma, \sigma'') | \exists \sigma' : (\sigma, \sigma') \in \alpha_{io}(T) \land \sigma' \to \sigma'' \}$. By fixpoint transfer: $\alpha_{io}(\mathcal{T}) = \operatorname{lfp} F_B$.

We have a similar result using $F_{s*}(T) \stackrel{\text{def}}{=} \Sigma \cup \tau^{\frown} T$ and $F'_B(R) \stackrel{\text{def}}{=} id \cup \{ (\sigma, \sigma'') | \exists \sigma' : (\sigma', \sigma'') \in R \land \sigma \to \sigma' \}.$

Relational semantics

Big-step semantics

Finite big-step semantics (example)



Finite big-step semantics \mathcal{BS} : { $(\rho, \rho') | \mathbf{0} \le \rho'(i) \le \rho(i)$ }.

Relational denotational semantics

Denotational semantics (in relation form)

In the denotational semantics, we forget all the intermediate steps and only keep the input / output relation:

- $(\sigma, \sigma') \in \Sigma \times \mathcal{B}$: finite execution starting in σ , stopping in σ' ,
- $(\sigma, \circlearrowleft)$: non-terminating execution starting in σ .

(\neq big-step semantics: we no longer include ($\sigma,\sigma')$ if σ' is not blocking!)

Construction by abstraction: of the maximal trace semantics $\mathcal{M}_\infty.$

$$(\mathcal{P}(\Sigma^{\infty}),\subseteq) \xleftarrow{\gamma_d}{\alpha_d} (\mathcal{P}(\Sigma \times (\Sigma \cup \{\circlearrowleft\})),\subseteq)$$

- $\alpha_d(T) \stackrel{\text{def}}{=} \alpha_{io}(T \cap \Sigma^*) \cup \{ (\sigma, \circlearrowleft) \mid \exists t \in \Sigma^\omega : \sigma \cdot t \in T \}$
- $\gamma_d(R) \stackrel{\text{def}}{=} \gamma_{io}(R \cap (\Sigma \times \Sigma)) \cup \{ \sigma \cdot t \, | \, (\sigma, \circlearrowleft) \in R, t \in \Sigma^{\omega} \}$

(extension of $(\alpha_{io}, \gamma_{io})$ to infinite traces)

The denotational semantics is $\mathcal{DS} \stackrel{\text{def}}{=} \alpha_d(\mathcal{M}_\infty)$.

course 02

Program Semantics

Antoine Miné

Denotational fixpoint semantics

Idea: as \mathcal{M}_{∞} , separate terminating and non-terminating behaviors, and use a fixpoint fusion theorem.

We have: $\mathcal{DS} = \mathsf{lfp} F_d$ in $(\mathcal{P}(\Sigma \times (\Sigma \cup \{ \circlearrowleft \})), \sqsubseteq^*, \sqcup^*, \sqcap^*, \bot^*, \top^*)$, where • $\perp^* \stackrel{\text{def}}{=} \{ (\sigma, \circlearrowleft) \mid \sigma \in \Sigma \}$ • $\top^* \stackrel{\text{def}}{=} \{ (\sigma, \sigma') | \sigma, \sigma' \in \Sigma \}$ • $A \sqsubset^* B \iff ((A \cap \top^*) \subset (B \cap \top^*)) \land ((A \cap \bot^*) \supset (B \cap \bot^*))$ • $A \sqcup^* B \stackrel{\text{def}}{=} ((A \cap \top^*) \cup (B \cap \top^*)) \cup ((A \cap \bot^*) \cap (B \cap \bot^*))$ • $A \sqcap^* B \stackrel{\text{def}}{=} ((A \cap \top^*) \cap (B \cap \top^*)) \cup ((A \cap \bot^*) \cup (B \cap \bot^*))$ • $F_d(R) \stackrel{\text{def}}{=} \{(\sigma, \sigma) \mid \sigma \in \mathcal{B}\} \cup$ $\{(\sigma, \sigma'') \mid \exists \sigma': \sigma \to \sigma' \land (\sigma', \sigma'') \in R\}$

Denotational fixpoint semantics (proof)

proof:

We cannot use directly a fixpoint transfer on $\mathcal{M}_{\infty} = \mathsf{lfp} \, F_s$ in $(\mathcal{P}(\Sigma^{\infty}), \sqsubseteq)$ because our Galois connection (α_d, γ_d) uses the \subseteq order, not \sqsubseteq !

Instead, we use fixpoint transfer separately on finite and infinite executions, and then apply fixpoint fusion.

Recall that $\mathcal{M}_{\infty} \cap \Sigma^* = \operatorname{lfp} F_s$ in $(\mathcal{P}(\Sigma^*), \subseteq)$ where $F_s(T) \stackrel{\text{def}}{=} \mathcal{B} \cup \tau^{\frown} T$ and $\mathcal{M}_{\infty} \cap \Sigma^{\omega} = \operatorname{gfp} G_s$ in $(\mathcal{P}(\Sigma^{\omega}), \subseteq)$ where $G_s(T) \stackrel{\text{def}}{=} \cup \tau^{\frown} T$.

For finite execution, we have $\alpha_d \circ F_s = F_d \circ \alpha_d$ in $\mathcal{P}(\Sigma^*) \to \mathcal{P}(\Sigma \times \Sigma)$. We can apply directly fixpoint transfer and get that: $\mathcal{DS} \cap (\Sigma \times \Sigma) = \text{lfp } F_d$.

(proof continued on next slide)

Denotational fixpoint semantics (proof cont.)

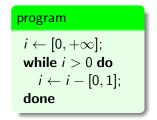
proof (continued): proof sketch for infinite executions

We have
$$\alpha_d \circ G_s = G_d \circ \alpha_d$$
 in $\mathcal{P}(\Sigma^{\omega}) \to \mathcal{P}(\Sigma \times \{ \circlearrowright \})$, where $G_d(R) \stackrel{\text{def}}{=} \{ (\sigma, \sigma'') | \exists \sigma' : \sigma \to \sigma' \land (\sigma', \sigma'') \in R \}.$

A candidate proof would be to apply a fixpoint transfer theorem to $\mathcal{M}_{\infty} \cap \Sigma^{\omega} = \operatorname{gfp} G_{\mathcal{S}}$, in the dual, replacing lfp with gfp, and \cup with \cap . However, the proof of the theorem, which required α to be continous, would require α to be co-continuous in the dual, i.e., $\alpha_d(\cap_{i \in I} S_i) = \cap_{\in I} \alpha_d(S_i)$. This does not hold. Consider for example: $I = \mathbb{N}$ and $S_i = \{a^n b^{\omega} \mid n > i\}$: $\cap_{i \in \mathbb{N}} S_i = \emptyset$, but $\forall i: \alpha_d(S_i) = \{(a, \bigcirc)\}$.

We use instead a fixpoint transfer based on Tarksi's theorem. We have gfp $G_s = \bigcup \{X \mid X \subseteq G_s(X)\}$. Thus, $\alpha_d(\text{gfp } G_s) = \alpha_d(\bigcup \{X \mid X \subseteq G_s(X)\}) = \bigcup \{\alpha_d(X) \mid X \subseteq G_s(X)\}$ as α_d is a complete \cup morphism. The proof is finished by noting that the commutation $\alpha_d \circ G_s = G_d \circ \alpha_d$ and the Galois embedding (α_d, γ_d) imply that $\{\alpha_d(X) \mid X \subseteq G_s(X)\} = \{\alpha_d(X) \mid \alpha_d(X) \subseteq G_d(\alpha_d(X))\} = \{Y \mid Y \subseteq G_d(Y)\}$.

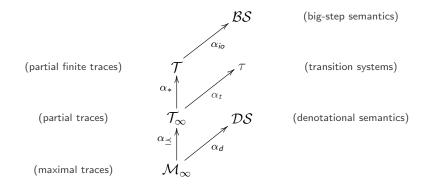
(the complete proof can be found in [Cous02])



Denotational semantics \mathcal{DS} : { $(\rho, \rho') | \rho(i) \ge 0 \land \rho'(i) = 0$ } \cup { $(\rho, \circlearrowleft) | \rho(i) \ge 0$ }.

(quite different from the big-step semantics)

Another part of the hierarchy of semantics



See [Cou82] for more semantics in this diagram.

Note: we show transition systems as an abstraction of the partial trace semantics this is left as exercise (see assignment).

Properties and proofs

State properties

State properties

 $\underline{\text{State property:}} \quad P \in \mathcal{P}(\Sigma).$

Verification problem: $\mathcal{R}(\mathcal{I}) \subseteq P$.

(all the states reachable from \mathcal{I} are in P)

Examples:

- absence of blocking: $P \stackrel{\text{def}}{=} \Sigma \setminus \mathcal{B}$,
- the variables remain in a safe range,
- dangerous program locations cannot be reached.

Invariance proof method

Invariance proof method: find an inductive invariant $I \subseteq \Sigma$

• $\mathcal{I} \subseteq I$

(contains initial states)

• $\forall \sigma \in I : \sigma \to \sigma' \implies \sigma' \in I$

(invariant by program transition)

that implies the desired property: $I \subseteq P$.

Link with the state semantics $\mathcal{R}(\mathcal{I})$:

Given $F_{\mathcal{R}}(S) \stackrel{\text{def}}{=} \mathcal{I} \cup \text{post}_{\tau}(S)$, we have $F_{\mathcal{R}}(I) \subseteq I$ $\implies I$ is a post-fixpoint of $F_{\mathcal{R}}$.

Recall that $\mathcal{R}(\mathcal{I}) = \operatorname{lfp} F_{\mathcal{R}}$ $\implies \mathcal{R}(\mathcal{I})$ is the tightest inductive invariant.

Link with Hoare logic

Hoare logic: proof method where we

- \bullet annotate program points with local sate invariants in $\mathcal{P}(\Sigma)$
- use logic rules to prove their correctness

 $\frac{\{P\} \operatorname{stat} \{R\} \quad \{R\} \quad \{R\} \quad \{Q\} \\ \overline{\{P[e/X]\} X \leftarrow e\{P\}} \quad \overline{\{P\} \operatorname{stat}_1 \operatorname{stat}_2 \{Q\}} \\ \frac{\{P \land b\} \operatorname{stat} \{Q\} \quad P \land \neg b \Rightarrow Q}{\{P\} \text{ if } b \text{ then stat} \{Q\}} \quad \frac{\{P \land b\} \operatorname{stat} \{P\}}{\{P\} \text{ while } b \text{ do stat} \{P \land \neg b\}} \\ \frac{\{P\} \operatorname{stat} \{Q\} \quad P' \Rightarrow P \quad Q \Rightarrow Q'}{\{P'\} \operatorname{stat} \{Q'\}}$

Link with the state semantics $\mathcal{R}(\mathcal{I})$:

Recall the equation system $(\mathcal{X}_{\ell})_{\ell \in \mathcal{L}} = F_{eq}((\mathcal{X}_{\ell})_{\ell \in \mathcal{L}})$ obtained by partitioning reachability $F_{\mathcal{R}}$ by control point $(\mathcal{P}(\Sigma), \subseteq) \xrightarrow{\qquad \gamma_{\mathcal{L}} \\ \alpha_{\mathcal{L}}} (\mathcal{L} \to \mathcal{P}(\mathcal{E}), \subseteq).$

- any post-fixpoint of F_{eq} gives valid Hoare triples
- If F_{eq} gives the tightest Hoare triples

Trace properties

Trace properties

 $\frac{\text{Trace property:}}{P \in \mathcal{P}(\Sigma^{\infty})}$

 $\underline{\text{Verification problem:}} \quad \mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}) \subseteq P$

(or, equivalently, as $\mathcal{M}_{\infty} \subseteq P'$ where $P' \stackrel{\mathrm{def}}{=} P \cup ((\Sigma \setminus \mathcal{I}) \cdot \Sigma^{\infty}))$

Examples:

- termination: $P \stackrel{\text{def}}{=} \Sigma^*$,
- non-termination: $P \stackrel{\text{def}}{=} \Sigma^{\omega}$,
- any state property $S \subseteq \Sigma$: $P \stackrel{\text{def}}{=} S^{\infty}$,
- maximal execution time: $P \stackrel{\text{def}}{=} \Sigma^{\leq k}$,
- minimal execution time: $P \stackrel{\text{def}}{=} \Sigma^{\geq k}$,
- ordering, e.g.: $P \stackrel{\text{def}}{=} (\Sigma \setminus \{b\})^* \cdot a \cdot \Sigma^* \cdot b \cdot \Sigma^{\infty}$.

(a and b occur, and a occurs before b)

Safety properties

- **Idea:** a safety property *P* models that "nothing bad ever occurs"
 - P is provable by exhaustive testing; (observe the prefix trace semantics: T_p(I) ⊆ P)
 - *P* is disprovable by finding a single finite execution not in *P*.

Examples:

- any state property: $P \stackrel{\text{def}}{=} S^{\infty}$ for $S \subseteq \Sigma$,
- ordering: P ^{def} = Σ[∞] \ ((Σ \ {a})* ⋅ b ⋅ Σ[∞]), (no b can appear without an a before, but we can have only a, or neither a nor b) (not a state property)
- but termination $P \stackrel{\text{def}}{=} \Sigma^*$ is not a safety property. (disproving requires exhibiting an *infinite* execution)

Definition of safety properties

<u>Reminder</u>: finite prefix abstraction (simplified to allow ϵ) $(\mathcal{P}(\Sigma^{\infty}), \subseteq) \xrightarrow{\gamma_{*\preceq}} (\mathcal{P}(\Sigma^{*}), \subseteq)$ • $\alpha_{*\preceq}(T) \stackrel{\text{def}}{=} \{ t \in \Sigma^{*} | \exists u \in T : t \preceq u \}$ • $\gamma_{*\preceq}(T) \stackrel{\text{def}}{=} \{ t \in \Sigma^{\infty} | \forall u \in \Sigma^{*} : u \preceq t \implies u \in T \}$

The associated upper closure $\rho_{*\preceq} \stackrel{\text{def}}{=} \gamma_{\preceq} \circ \alpha_{\preceq}$ is: $\rho_{*\preceq} = \lim \circ \rho_p$ where:

•
$$\rho_{\rho}(T) \stackrel{\text{def}}{=} \{ u \in \Sigma^{\infty} \mid \exists t \in T : u \leq t \},$$

•
$$\lim(T) \stackrel{\text{def}}{=} T \cup \{ t \in \Sigma^{\omega} \mid \forall u \in \Sigma^* \colon u \leq t \implies u \in T \}.$$

Definition: $P \in \mathcal{P}(\Sigma^{\infty})$ is a safety property if $P = \rho_{*\preceq}(P)$.

Definition of safety properties (examples)

Definition: $P \subseteq \mathcal{P}(\Sigma^{\infty})$ is a safety property if $P = \rho_{*\preceq}(P)$.

Examples and counter-examples:

• state property $P \stackrel{\text{def}}{=} S^{\infty}$ for $S \subseteq \Sigma$:

 $\rho_p(S^\infty) = \lim(S^\infty) = S^\infty \Longrightarrow \text{ safety};$

• termination $P \stackrel{\text{def}}{=} \Sigma^*$:

 $\rho_{\rho}(\Sigma^{*}) = \Sigma^{*}, \text{ but } \lim(\Sigma^{*}) = \Sigma^{\infty} \neq \Sigma^{*} \Longrightarrow \text{ not safety;}$

• even number of steps $P \stackrel{\text{def}}{=} (\Sigma^2)^{\infty}$: $\rho_P((\Sigma^2)^{\infty}) = \Sigma^{\infty} \neq (\Sigma^2)^{\infty} \implies \text{not safety.}$

Proving safety properties

Invariance proof method: find an inductive invariant /

- set of finite traces $I \subseteq \Sigma^*$
- $\mathcal{I} \subseteq I$

(contains traces reduced to an initial state)

• $\forall \sigma_0, \dots, \sigma_n \in I: \sigma_n \to \sigma_{n+1} \implies \sigma_0, \dots, \sigma_n, \sigma_{n+1} \in I$ (invariant by program transition)

and implies the desired property: $I \subseteq P$.

Link with the finite prefix trace semantics $\mathcal{T}_p(\mathcal{I})$:

An inductive invariant is a post-fixpoint of F_p : $F_p(I) \subseteq I$ where $F_p(T) \stackrel{\text{def}}{=} \mathcal{I} \cup T \frown \tau$. $\mathcal{T}_p(\mathcal{I}) = \text{lfp } F_p$ is the tightest inductive invariant.

Correctness of the invariant method for safety

Soundness:

if P is a safety property and an inductive invariant I exists then: $\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}) \subseteq P$

proof:

Using the Galois connection between \mathcal{M}_{∞} and \mathcal{T} , we get: $\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}) \subseteq \rho_{* \preceq}(\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty})) = \gamma_{* \preceq}(\alpha_{* \preceq}(\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}))) = \gamma_{* \preceq}(\alpha_{* \preceq}(\mathcal{M}_{\infty}) \cap (\mathcal{I} \cdot \Sigma^{*})) = \gamma_{* \preceq}(\mathcal{T} \cap (\mathcal{I} \cdot \Sigma^{*})) = \gamma_{* \preceq}(\mathcal{T}_{p}(\mathcal{I})).$ Using the link between invariants and the finite prefix trace semantics, we have: $\mathcal{T}_{p}(\mathcal{I}) \subseteq I \subseteq P.$

As P is a safety property, $P = \gamma_{*\preceq}(P)$, so, $\gamma_{*\preceq}(\mathcal{T}_p(\mathcal{I})) \subseteq \gamma_{*\preceq}(P) = P$, and so, $\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}) \subseteq P$.

Completeness: an inductive invariant always exists

proof: $\mathcal{T}_p(\mathcal{I})$ provides an inductive invariant.

Disproving safety properties

Proof method:

A safety property P can be disproved by constructing a finite prefix of execution that does not satisfy the property:

$$\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}) \not\subseteq P \implies \exists t \in \mathcal{T}_{\rho}(\mathcal{I}): t \notin P$$

proof:

By contradiction, assume that no such trace exists, i.e., $\mathcal{T}_p(\mathcal{I}) \subseteq P$.

We proved in the previous slide that this implies $\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}) \subseteq P$.

Examples:

- disproving a state property P ^{def} = S[∞]:
 ⇒ find a partial execution containing a state in Σ \ S;
- disproving an order property $P \stackrel{\text{def}}{=} \Sigma^{\infty} \setminus ((\Sigma \setminus \{a\})^* \cdot b \cdot \Sigma^{\infty})$ \Rightarrow find a partial execution where *b* appears and not *a*.

Liveness properties

Idea: liveness property $P \in \mathcal{P}(\Sigma^{\infty})$

Liveness properties model that "something good eventually occurs"

- *P* cannot be proved by testing (if nothing good happens in a prefix execution, it can still happen in the rest of the execution)
- disproving P requires exhibiting an infinite execution not in P

Examples:

- termination: $P \stackrel{\text{def}}{=} \Sigma^*$,
- inevitability: $P \stackrel{\text{def}}{=} \Sigma^* \cdot a \cdot \Sigma^\infty$,

(a eventually occurs in all executions)

• state properties are not liveness properties.

Definition of liveness properties

Definition: $P \in \mathcal{P}(\Sigma^{\infty})$ is a liveness property if $\rho_{*\preceq}(P) = \Sigma^{\infty}$.

Examples and counter-examples:

• termination $P \stackrel{\text{def}}{=} \Sigma^*$:

 $ho_{
ho}(\Sigma^*) = \Sigma^*$ and $\lim(\Sigma^*) = \Sigma^{\infty} \Longrightarrow$ liveness;

• inevitability:
$$P \stackrel{\text{def}}{=} \Sigma^* \cdot a \cdot \Sigma^{\infty}$$

 $\rho_p(P) = P \cup \Sigma^* \text{ and } \lim(P \cup \Sigma^*) = \Sigma^{\infty} \implies \text{liveness};$

• state property
$$P \stackrel{\text{def}}{=} S^{\infty}$$
 for $S \subseteq \Sigma$:

 $\rho_p(S^{\infty}) = \lim(S^{\infty}) = S^{\infty} \neq \Sigma^{\infty}$ if $S \neq \Sigma \Longrightarrow$ not liveness;

• maximal execution time $P \stackrel{\text{def}}{=} \Sigma^{\leq k}$:

 $\rho_{\rho}(\Sigma^{\leq k}) = \lim(\Sigma^{\leq k}) = \Sigma^{\leq k} \neq \Sigma^{\infty} \Longrightarrow \text{ not liveness;}$

• the only property which is both safety and liveness is $\Sigma^\infty.$

Proving liveness properties

Variance proof method: (informal definition)

Find a decreasing quantity until something good happens.

Example: termination proof

• find $f : \Sigma \to S$ where (S, \sqsubseteq) is well-ordered;

(f is called a "ranking function")

- $\sigma \in \mathcal{B} \implies \mathbf{f} = \min \mathcal{S};$
- $\sigma \to \sigma' \implies f(\sigma') \sqsubset f(\sigma).$

(f counts the number of steps remaining before termination)

Disproving liveness properties

Property:

If *P* is a liveness property, then $\forall t \in \Sigma^* : \exists u \in P : t \leq u$.

proof:

By definition of liveness, $\rho_{*\preceq}(P) = \Sigma^{\infty}$, so $t \in \rho_{*\preceq}(P) = \lim(\alpha_{\rho}(P))$. As $t \in \Sigma^{*}$ and lim only adds infinite traces, $t \in \alpha_{\rho}(P)$.

By definition of α_p , $\exists u \in P: t \leq u$.

Consequence:

• liveness cannot be disproved by testing.

Trace topology

- A topology on a set can be defined as:
- either a family of open sets (closed under union)
- or family of closed sets (closed under intersection)

Trace topology: on sets of traces in Σ^∞

- the closed sets are: $\mathcal{C} \stackrel{\text{def}}{=} \{ P \in \mathcal{P}(\Sigma^{\infty}) | P \text{ is a safety property} \}$
- the open sets can be derived as $\mathcal{O} \stackrel{\text{def}}{=} \{ \Sigma^{\infty} \setminus c \, | \, c \in \mathcal{C} \}$

Topological closure: $\rho : \mathcal{P}(X) \to \mathcal{P}(X)$

- $\rho(x) \stackrel{\text{def}}{=} \cap \{ c \in \mathcal{C} \mid x \subseteq c \} \text{ (upper closure operator in } (\mathcal{P}(X), \subseteq)) \}$
- on our trace topology, $\rho = \rho_{* \preceq}$.

Dense sets:

- $x \subseteq X$ is dense if $\rho(x) = X$;
- on our trace topology, dense sets are liveness properties.

Decomposition theorem

Theorem: decomposition on a topological space

Any set $x \subseteq X$ is the intersection of a closed set and a dense set.

proof:

We have $x = \rho(x) \cap (x \cup (X \setminus \rho(x)))$. Indeed: $\rho(x) \cap (x \cup (X \setminus \rho(x))) = (\rho(x) \cap x) \cup (\rho(x) \cap (X \setminus \rho(x))) = \rho(x) \cap x = x \text{ as } x \subseteq \rho(x).$

ρ(x) is closed

•
$$x \cup (X \setminus \rho(x))$$
 is dense because: $\rho(x \cup (X \setminus \rho(x))) \supseteq \rho(x) \cup \rho(X \setminus \rho(x))$
 $\supseteq \rho(x) \cup (X \setminus \rho(x))$
 $= X$

Consequence: on trace properties

Every trace property is the conjunction of a safety property and a liveness property.

proving a trace property can be decomposed into a soundness proof and a liveness proof

Beyond trace properties

Some verification problems cannot be expressed as $\mathcal{M}_{\infty}\subseteq \textit{P}$

Examples:

• Program equivalence

Do two programs (Σ, τ_1) and (Σ, τ_2) have the exact same executions? i.e., $\mathcal{M}_{\infty}[\tau_1] = \mathcal{M}_{\infty}[\tau_2]$

• Non-interference

Does changing the initial value of X change its final value? $\forall \sigma_0, \dots, \sigma_n \in \mathcal{M}_{\infty} : \forall \sigma'_0 : \sigma_0 \equiv \sigma'_0 \Longrightarrow$ $\exists \sigma'_0, \dots, \sigma'_m \in \mathcal{M}_{\infty} : \sigma'_m \equiv \sigma_m$ where $(\ell, \rho) \equiv (\ell', \rho') \iff \ell = \ell' \land \forall V \neq X : \rho(V) = \rho'(V)$

 $\underbrace{ \text{New verification problem:} } \quad \mathcal{M}_\infty \in H \text{ where } H \in \mathcal{P}(\mathcal{P}(\Sigma^\infty))$

- generalizes trace properties: $\mathcal{M}_{\infty} \subseteq P$ reduces to $\mathcal{M}_{\infty} \in \mathcal{P}(P)$;
- program equivalence is $\mathcal{M}_{\infty}[\tau_1] \in {\mathcal{M}_{\infty}[\tau_2]};$ etc.

Reading assignment: hyperproperties.

course 02

Program Semantics

Bibliography

[Bour93] **F. Bourdoncle**. Abstract debugging of higher-order imperative languages. In PLDI, 46-55, ACM Press, 1993.

[Cous02] **P. Cousot**. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. In Theoretical Comp. Sc., 277(1–2):47–103.

[Plot81] **G. Plotkin**. *The origins of structural operational semantics*. In J. of Logic and Algebraic Prog., 60:60-61, 1981.