Non-Relational Numerical Abstract Domains

MPRI 2-6: Abstract Interpretation, application to verification and static analysis

Antoine Miné

year 2016-2017
course 03
28 September 2016

Abstract interpretation: LIP6 Colloquium

Talk by Patrick Cousot at Paris 6, 29 September 2016, 18h00 https://www.lip6.fr/colloquium/

Introduction

Invariant discovery

Goal: find intermittent numerical invariants (at each program point, properties of numerical variables)

```
Example
X:=[0,10]; Y:=100;
    while X>=0 do
        // loop invariant?
        X:=X-1;
        Y:=Y+10
    done
    // value of X and Y?
```


Invariant discovery

Goal: find intermittent numerical invariants (at each program point, properties of numerical variables)

Example

$$
\begin{aligned}
& \mathrm{X}:= \\
& \quad {[0,10] ; \mathrm{Y}:=100 ; } \\
& \text { while } \mathrm{X}>=0,0 \mathrm{do} \\
& / / \mathrm{X} \in[0,10], \mathrm{Y} \in[100,200] \\
& \mathrm{X}:=\mathrm{X}-1 ; \\
& / / \mathrm{X} \in[-1,9], \mathrm{Y} \in[100,200] \\
& \mathrm{Y}:=\mathrm{Y}+10 \\
& / / \mathrm{X} \in[-1,9], \mathrm{Y} \in[110,210] \\
& \text { done } \\
& / / \mathrm{X}=-1, \mathrm{Y} \in[110,210]
\end{aligned}
$$

Variable bounds

Invariant discovery

Hope: find the strongest intermittent numerical invariants (at each program point, the strongest properties of numerical variables)

Example

$$
\begin{aligned}
& \mathrm{X}:=[0,10] ; \mathrm{Y}:=100 \text {; } \\
& / / X \in[0,10], Y=100 \\
& \text { while } X>=0 \text { do } \\
& / / X \in[0,10], 10 X+Y \in[100,200] \cap 10 \mathbb{Z} \\
& \mathrm{X}:=\mathrm{X}-1 \text {; } \\
& / / X \in[-1,9], 10 X+Y \in[90,190] \cap 10 \mathbb{Z} \\
& \mathrm{Y}:=\mathrm{Y}+10 \\
& / / X \in[-1,9], 10 X+Y \in[100,200] \cap 10 \mathbb{Z} \\
& \text { done } \\
& / / X=-1, Y \in[110,210] \cap 10 \mathbb{Z}
\end{aligned}
$$

Variable bounds, linear relations and congruences
Application: prove the absence of run-time error (overflow, array access, ...)

Forward-backward analysis

```
sign function
X:=[-100,100];
if X=O then Z:=O else
        Y:=X;
        if Y < O then Y:=-Y;
        Z:=X/Y
fi
```


Forward-backward analysis

sign function

$$
\begin{aligned}
& X:=[-100,100] ;(X \in[-100,100]) \\
& \text { if } X=0 \text { then } Z:=0 \text { else }(X \in[-100,100]) \\
& \quad Y:=X ;(X, Y \in[-100,100]) \\
& \text { if } Y<0 \text { then } Y:=-Y ;(X \in[-100,100], Y \in[0,100]) \\
& Z:=X / Y \quad(X \in[-100,100], Y \in[0,100]) \\
& \text { fi }
\end{aligned}
$$

Forward interval analysis (possible division by 0)

Forward-backward analysis

sign function

$$
\begin{aligned}
& \mathrm{X}:=[-100,100] ;(\perp) \\
& \text { if } \mathrm{X}=0 \text { then } \mathrm{Z}:=0 \text { else }(\mathrm{X}=0) \\
& \mathrm{Y}:=\mathrm{X} ;(\mathrm{Y}=0) \\
& \text { if } \mathrm{Y}<0 \text { then } \mathrm{Y}:=-\mathrm{Y} ;(\mathrm{Y}=0) \\
& \mathrm{Z}:=\mathrm{X} / \mathrm{Y}(\mathrm{Y}=0) \\
& \mathrm{fi}
\end{aligned}
$$

Backward interval analysis

- infer (tight) necessary conditions on inputs to reach a given point in a given state ($\mathrm{Y}=0$ at the end of the program)
- refine and focus the result of a forward analysis (prove the absence of division by zero) [Bour93b]

Academic implementation: Apron and Interproc

Apron: library of numerical abstractions [Jean09]

Interproc: on-line analyzer for a toy language, based on Apron

http://pop-art.inrialpes.fr/interproc/interprocweb.cgi

Outline

- Generalities, notations
- Presentation of a few numerical abstract domains (non-relational)
- sign domains
- constant domain
- interval domain
- simple congruence domain
- Reduced products of domains
- Bibliography

Generalities and notations

Syntax

Expression syntax

Toy language:

- fixed, finite set of variables \mathbb{V},
- one datatype: scalars in $\mathbb{\square}$, with $\mathbb{\square} \in\{\mathbb{Z}, \mathbb{Q}, \mathbb{R}\}$ (and later, floating-point numbers \mathbb{F})
- no procedure arithmetic expressions:

\exp	$::=$	V	variable $\mathrm{V} \in \mathbb{V}$
		$-\exp$	negation
	$\exp \diamond \exp$	binary operation: $\diamond \in\{+,-, \times, /\}$	
	$\left[c, c^{\prime}\right]$	constant range, $c, c^{\prime} \in \mathbb{\square} \cup\{ \pm \infty\}$	
		c is a shorthand for $[c, c]$	

Programs (as control-flow graphs)

commands:

$$
\begin{array}{clll}
\operatorname{com} & ::= & \mathrm{V}:=\exp & \\
& & \text { assignment into } \mathrm{V} \in \mathbb{V} \\
& \exp \bowtie 0 & \text { test, } \bowtie \in\{=,<,>,<=,>=,<>\}
\end{array}
$$

programs: as control-flow graphs

$$
P \stackrel{\text { def }}{=}(L, e, x, A) \left\lvert\, \begin{array}{ll}
L & \text { program points (labels) } \\
e & \text { entry point: } e \in L \\
x & \text { exit point: } x \in L \\
A & \text { arcs: } A \subseteq L \times \operatorname{com} \times L
\end{array}\right.
$$

Example

Structured programs can be easily compiled into a CFG.
We use structured program as examples, but present our analysis formally on CFG.

Concrete semantics

Forward concrete semantics

Semantics of expressions: $\quad E \llbracket e \rrbracket:(\mathbb{V} \rightarrow \mathbb{Q}) \rightarrow \mathcal{P}(0)$
The evaluation of e in ρ gives a set of values:

$$
\begin{array}{lll}
\mathrm{E} \llbracket\left[c, c^{\prime} \rrbracket \rrbracket \rho\right. & \stackrel{\text { def }}{=} & \left\{x \in \mathbb{L} \mid c \leq x \leq c^{\prime}\right\} \\
\mathrm{E} \llbracket \mathrm{~V} \rrbracket \rho & \stackrel{\text { def }}{=} & \{\rho(\mathrm{V})\} \\
\mathrm{E} \llbracket-e \rrbracket \rho & \stackrel{\text { def }}{=} & \{-v \mid v \in \mathrm{E} \llbracket e \rrbracket \rho\} \\
\mathrm{E} \llbracket e_{1}+e_{2} \rrbracket \rho & \stackrel{\text { def }}{=} & \left\{v_{1}+v_{2} \mid v_{1} \in \mathrm{E} \llbracket e_{1} \rrbracket \rho, v_{2} \in \mathrm{E} \llbracket e_{2} \rrbracket \rho\right\} \\
\mathrm{E} \llbracket e_{1}-e_{2} \rrbracket \rho & \stackrel{\text { def }}{=} & \left\{v_{1}-v_{2} \mid v_{1} \in \mathbb{E} \llbracket e_{1} \rrbracket \rho, v_{2} \in \mathrm{E} \llbracket e_{2} \rrbracket \rho\right\} \\
\mathrm{E} \llbracket e_{1} \times e_{2} \rrbracket \rho & \stackrel{\text { def }}{=} & \left\{v_{1} \times v_{2} \mid v_{1} \in \mathbb{E} \llbracket e_{1} \rrbracket \rho, v_{2} \in \mathrm{E} \llbracket e_{2} \rrbracket \rho\right\} \\
\mathrm{E} \llbracket e_{1} / e_{2} \rrbracket \rho & \stackrel{\text { def }}{=} & \left\{v_{1} / v_{2} \mid v_{1} \in \mathrm{E} \llbracket e_{1} \rrbracket \rho, v_{2} \in \mathrm{E} \llbracket e_{2} \rrbracket \rho, v_{2} \neq 0\right\}
\end{array}
$$

Semantics of commands:

$$
\subset \llbracket c \rrbracket: \mathcal{P}(\mathbb{V} \rightarrow \square) \rightarrow \mathcal{P}(\mathbb{V} \rightarrow \square)
$$

A transfer function for c defines a relation on environments:

$$
\begin{array}{lll}
C \llbracket v:=e \rrbracket \mathcal{X} & \xlongequal{\text { def }} & \{\rho[v \mapsto v \rrbracket \mid \rho \in \mathcal{X}, v \in \mathrm{E} \llbracket e \rrbracket \rho\} \\
C \llbracket e \bowtie 0 \rrbracket \mathcal{X} & \stackrel{\text { def }}{=} & \{\rho \mid \rho \in \mathcal{X}, \exists v \in \mathrm{E} \llbracket e \rrbracket \rho, v \bowtie 0\}
\end{array}
$$

It relates the environments after the execution of a command to the environments before.

Complete join morphism: $C \llbracket c \rrbracket \mathcal{X}=\bigcup_{\rho \in \mathcal{X}} \subset \llbracket c \rrbracket\{\rho\}$.

Forward concrete semantics (cont.)

Semantics of programs: $\quad \mathrm{P} \llbracket(L, e, x, A) \rrbracket: L \rightarrow \mathcal{P}(\mathbb{V} \rightarrow \mathbb{)})$

$$
\mathrm{P} \llbracket(L, e, x, A) \rrbracket \ell \text { is the most precise invariant at } \ell \in L .
$$

It is the smallest solution of a recursive equation system $\left(\mathcal{X}_{\ell}\right)_{\ell \in L}$:

$$
\begin{array}{ll}
\text { Semantic equation system } \\
\mathcal{X}_{e} & \\
\mathcal{X}_{\ell \neq e}=\bigcup_{\left(\ell^{\prime}, c, \ell\right) \in A} \subset \llbracket c \rrbracket \mathcal{X}_{\ell^{\prime}} & \text { (given initial state) }
\end{array}
$$

Tarski's Theorem: this smallest solution exists and is unique.

- $\mathcal{D} \stackrel{\text { def }}{=}(\mathcal{P}(\mathbb{V} \rightarrow \mathbb{\square}), \subseteq, \cup, \cap, \emptyset,(\mathbb{V} \rightarrow \mathbb{\square}))$ is a complete lattice,
- each $M_{\ell}: \mathcal{X}_{\ell} \mapsto \quad \bigcup \subset \llbracket c \rrbracket \mathcal{X}_{\ell^{\prime}}$ is monotonic in \mathcal{D}.

$$
\left(\ell^{\prime}, c, \ell\right) \in A
$$

\Rightarrow the solution is the least fixpoint of $\left(M_{\ell}\right)_{\ell \in L}$.

Forward concrete semantics (example)

Loop invariant:

$$
\mathcal{X}_{3}=\{\rho \mid \rho(\mathrm{X}) \in[0,10], 10 \rho(\mathrm{X})+\rho(\mathrm{Y}) \in[100,200] \cap 10 \mathbb{Z}\}
$$

Resolution

Resolution by increasing iterations:

$$
\left\{\begin{array} { l l l }
{ \mathcal { X } _ { e } ^ { 0 } } & { \stackrel { \text { def } } { = } } & { \mathcal { X } _ { e } } \\
{ \mathcal { X } _ { \ell \neq e } ^ { 0 } } & { \stackrel { \text { def } } { = } } & { \emptyset }
\end{array} \left\{\begin{array}{lll}
\mathcal{X}_{e}^{n+1} & \stackrel{\text { def }}{=} & \mathcal{X}_{e} \\
\mathcal{X}_{\ell \neq e}^{n+1} & \stackrel{\text { def }}{=} & \bigcup_{\left(\ell^{\prime}, c, \ell\right) \in A} \mathrm{C} c \rrbracket \mathcal{X}_{\ell^{\prime}}^{n}
\end{array}\right.\right.
$$

Converges in ω iterations to a least solution, because each $C \llbracket c \rrbracket$ is continuous in the CPO \mathcal{D}.
(Kleene fixpoint theorem)

Resolution (example)

$$
\left\{\begin{array}{rlrl}
\mathcal{X}_{1}= & \mathbb{Z}^{2} & & \mathbb{Z}^{2} \\
\mathcal{X}_{2}=\mathrm{C} \llbracket \mathrm{X}:= & \left\lceil 0,10 \rrbracket \rrbracket \mathcal{X}_{1}\right. & & \emptyset \\
\mathcal{X}_{3}= & \mathrm{C} \llbracket \mathrm{Y}:=100 \rrbracket \mathcal{X}_{2} \cup & \emptyset \\
& \mathrm{C} \llbracket \mathrm{Y}:=\mathrm{Y}+10 \rrbracket \mathcal{X}_{5} & & \\
\mathcal{X}_{4}=\mathrm{C} \llbracket \mathrm{X} \geq 0 \rrbracket \mathcal{X}_{3} & \emptyset \\
& & \\
\mathcal{X}_{5}=\mathrm{C} \llbracket \mathrm{X}:=\mathrm{X}-1 \rrbracket \mathcal{X}_{4} & \emptyset \\
\mathcal{X}_{6}=\mathrm{C} \llbracket \mathrm{X}<0 \rrbracket \mathcal{X}_{3} & \emptyset
\end{array}\right.
$$

Resolution (example)

$$
\left\{\begin{array}{rlrl}
\mathcal{X}_{1}=\mathbb{Z}^{2} & \mathbb{Z}^{2} & \text { iteration } 1 \\
\mathcal{X}_{2}=\mathrm{C} \llbracket \mathrm{x}:=\left\lceil 0,10 \rrbracket \rrbracket \mathcal{X}_{1}\right. & & {[0,10] \times \mathbb{Z}} \\
\mathcal{X}_{3}= & \mathrm{C} \llbracket \mathrm{Y}:=100 \rrbracket \mathcal{X}_{2} \cup & \emptyset \\
& \mathrm{C} \llbracket \mathrm{Y}:=\mathrm{Y}+10 \rrbracket \mathcal{X}_{5} & & \\
\mathcal{X}_{4}=\mathrm{C} \llbracket \mathrm{x} \geq 0 \rrbracket \mathcal{X}_{3} & \emptyset \\
\mathcal{X}_{5}=\mathrm{C} \llbracket \mathrm{x}:=\mathrm{x}-1 \rrbracket \mathcal{X}_{4} & \emptyset \\
\mathcal{X}_{6}=\mathrm{C} \llbracket \mathrm{X}<0 \rrbracket \mathcal{X}_{3} & \emptyset
\end{array}\right.
$$

Resolution (example)

$$
\left\{\begin{array}{rlrl}
\mathcal{X}_{1}= & \mathbb{Z}^{2} & \mathbb{Z}^{2} & \text { iteration } 2 \\
\mathcal{X}_{2}=\mathrm{C} \llbracket \mathrm{x}:=\left[0,10 \rrbracket \rrbracket \mathcal{X}_{1}\right. & & {[0,10] \times \mathbb{Z}} \\
\mathcal{X}_{3}= & C \llbracket \mathrm{Y}:=100 \rrbracket \mathcal{X}_{2} \cup & & \{(0,100), \ldots,(10,100)\} \\
& \mathrm{C} \llbracket:=\mathrm{Y}+10 \rrbracket \mathcal{X}_{5} & & \\
\mathcal{X}_{4}=\mathrm{C} \llbracket \mathrm{x} \geq 0 \rrbracket \mathcal{X}_{3} & \emptyset \\
& & \emptyset \\
\mathcal{X}_{5}=\mathrm{C} \llbracket \mathrm{X}:=\mathrm{x}-1 \rrbracket \mathcal{X}_{4} & \emptyset \\
\mathcal{X}_{6}=\mathrm{C} \llbracket \mathrm{X}<0 \rrbracket \mathcal{X}_{3} & \emptyset
\end{array}\right.
$$

Resolution (example)

$$
\left\{\right.
$$

Resolution (example)

$$
\begin{cases}\mathcal{X}_{1}=\mathbb{Z}^{2} & \multicolumn{1}{c}{\text { iteration } 4} \\ \mathcal{X}_{2}=\mathrm{C} \llbracket \mathrm{X}:=\left[0,10 \rrbracket \rrbracket \mathcal{X}_{1}\right. & {[0,10] \times \mathbb{Z}} \\ \mathcal{X}_{3}=\mathrm{C} \llbracket \mathrm{Y}:=100 \rrbracket \mathcal{X}_{2} \cup & \{(0,100), \ldots,(10,100)\} \\ \mathrm{C} \llbracket \mathrm{Y}:=\mathrm{Y}+10 \rrbracket \mathcal{X}_{5} & \\ \mathcal{X}_{4}=\mathrm{C} \llbracket \mathrm{x} \geq 0 \rrbracket \mathcal{X}_{3} & \{(0,100), \ldots,(10,100)\} \\ \mathcal{X}_{5}=\mathrm{C} \llbracket \mathrm{X}:=\mathrm{x}-1 \rrbracket \mathcal{X}_{4} & \{(-1,100), \ldots,(9,100)\} \\ \mathcal{X}_{6}=\mathrm{C} \llbracket \mathrm{X}<0 \rrbracket \mathcal{X}_{3} & \emptyset\end{cases}
$$

Resolution (example)

$$
\left\{\right.
$$

Resolution (example)

$$
\begin{cases}\mathcal{X}_{1}=\mathbb{Z}^{2} & \multicolumn{1}{c}{\text { iteration } 6} \\ \mathcal{X}_{2}=\mathrm{C} \llbracket \mathrm{X}:=\left[0,10 \rrbracket \rrbracket \mathcal{X}_{1}\right. & {[0,10] \times \mathbb{Z}} \\ \mathcal{X}_{3}=\mathrm{C} \llbracket \mathrm{Y}:=100 \rrbracket \mathcal{X}_{2} \cup & \{(0,100), \ldots,(10,100), \\ \mathrm{C} \llbracket \mathrm{Y}:=\mathrm{Y}+10 \rrbracket \mathcal{X}_{5} & (-1,110), \ldots,(9,110)\} \\ \mathcal{X}_{4}=\mathrm{C} \llbracket \mathrm{x} \geq 0 \rrbracket \mathcal{X}_{3} & \{(0,100), \ldots,(10,100), \\ & (0,110), \ldots,(9,110)\} \\ \mathcal{X}_{5}=\mathrm{C} \llbracket \mathrm{x}:=\mathrm{x}-1 \rrbracket \mathcal{X}_{4} & \{(-1,100), \ldots,(9,100)\} \\ & \\ \mathcal{X}_{6}=\mathrm{C} \llbracket \mathrm{X}<0 \rrbracket \mathcal{X}_{3} & \{(-1,110)\}\end{cases}
$$

Resolution (example)

$$
\begin{cases}\mathcal{X}_{1}=\mathbb{Z}^{2} & \multicolumn{1}{c}{\text { iteration } 7} \\ \mathcal{X}_{2}=\mathrm{C} \llbracket \mathrm{X}:=\left[0,10 \rrbracket \rrbracket \mathcal{X}_{1}\right. & {[0,10] \times \mathbb{Z}} \\ \mathcal{X}_{3}=\mathrm{C} \llbracket \mathrm{Y}:=100 \rrbracket \mathcal{X}_{2} \cup & \{(0,100), \ldots,(10,100), \\ \mathrm{C} \llbracket \mathrm{Y}:=\mathrm{Y}+10 \rrbracket \mathcal{X}_{5} & (-1,110), \ldots,(9,110)\} \\ \mathcal{X}_{4}=\mathrm{C} \llbracket \mathrm{x} \geq 0 \rrbracket \mathcal{X}_{3} & \{(0,100), \ldots,(10,100), \\ & (0,110), \ldots,(9,110)\} \\ & \{(-1,100), \ldots,(9,100), \\ \mathcal{X}_{5}=\mathrm{C} \llbracket \mathrm{X}:=\mathrm{x}-1 \rrbracket \mathcal{X}_{4} & (-1,110), \ldots,(8,110)\} \\ & \{(-1,110)\}\end{cases}
$$

Resolution (example)

$$
\begin{cases}\mathcal{X}_{1}=\mathbb{Z}^{2} & \multicolumn{1}{c}{\text { iteration } 8} \\ \mathcal{X}_{2}=\mathrm{C} \llbracket \mathrm{X}:=\left[0,10 \rrbracket \rrbracket \mathcal{X}_{1}\right. & {[0,10] \times \mathbb{Z}} \\ \mathcal{X}_{3}=\mathrm{C} \llbracket \mathrm{Y}:=100 \rrbracket \mathcal{X}_{2} \cup & \{(0,100), \ldots,(10,100), \\ \mathrm{C} \llbracket \mathrm{Y}:=\mathrm{Y}+10 \rrbracket \mathcal{X}_{5} & (-1,110), \ldots,(9,110), \\ \mathcal{X}_{4}=\mathrm{C} \llbracket \mathrm{x} \geq 0 \rrbracket \mathcal{X}_{3} & (-1,120), \ldots,(8,120)\} \\ & (0,100), \ldots,(10,100), \\ & (0,110), \ldots,(9,110)\} \\ \mathcal{X}_{5}=\mathrm{C} \llbracket \mathrm{X}:=\mathrm{x}-1 \rrbracket \mathcal{X}_{4} & \{(-1,100), \ldots,(9,100), \\ & (-1,110), \ldots,(8,110)\} \\ & \{(-1,110)\}\end{cases}
$$

Resolution (example)

$$
\begin{aligned}
& \left(\mathcal{X}_{1}=\mathbb{Z}^{2}\right. \\
& \mathcal{X}_{2}=\mathrm{C} \llbracket \mathrm{x}:=[0,10] \rrbracket \mathcal{X}_{1} \\
& \mathcal{X}_{3}=\mathrm{C} \llbracket \mathrm{Y}:=100 \rrbracket \mathcal{X}_{2} \cup \\
& \mathrm{C} \llbracket \mathrm{Y}:=\mathrm{Y}+10 \rrbracket \mathcal{X}_{5} \\
& \mathcal{X}_{4}=\mathrm{C} \llbracket \mathrm{X} \geq 0 \rrbracket \mathcal{X}_{3} \\
& \mathcal{X}_{5}=\mathrm{C} \llbracket \mathrm{x}:=\mathrm{x}-1 \rrbracket \mathcal{X}_{4} \\
& \mathcal{X}_{6}=\mathrm{C} \llbracket \mathrm{X}<0 \rrbracket \mathcal{X}_{3} \\
& \geq 2 \\
& {[0,10] \times \mathbb{Z}} \\
& \{(0,100), \ldots,(10,100) \text {, } \\
& (-1,110), \ldots,(9,110) \text {, } \\
& (-1,120), \ldots,(8,120)\} \\
& \{(0,100), \ldots,(10,100) \text {, } \\
& (0,110), \ldots,(9,110) \text {, } \\
& (0,120), \ldots,(8,120)\} \\
& \{(-1,100), \ldots,(9,100) \text {, } \\
& (-1,110), \ldots,(8,110)\} \\
& \{(-1,110),(-1,120)\}
\end{aligned}
$$

Resolution (example)

$$
\begin{aligned}
& \mathcal{X}_{1}=\mathbb{Z}^{2} \\
& \mathcal{X}_{2}=\mathrm{C} \llbracket \mathrm{x}:=\left[0,10 \rrbracket \rrbracket \mathcal{X}_{1}\right. \\
& \mathcal{X}_{3}=\mathrm{C} \llbracket \mathrm{Y}:=100 \rrbracket \mathcal{X}_{2} \cup \\
& \mathrm{C} \llbracket \mathrm{Y}:=\mathrm{Y}+10 \rrbracket \mathcal{X}_{5} \\
& \mathcal{X}_{4}=\mathrm{C} \llbracket \mathrm{x} \geq 0 \rrbracket \mathcal{X}_{3} \\
& \mathcal{X}_{5}=\mathrm{C} \llbracket \mathrm{x}:=\mathrm{x}-1 \rrbracket \mathcal{X}_{4} \\
& \mathcal{X}_{6}=\mathrm{C} \llbracket \mathrm{X}<0 \rrbracket \mathcal{X}_{3} \\
& \geq 2 \\
& {[0,10] \times \mathbb{Z}} \\
& \{(0,100), \ldots,(10,100) \text {, } \\
& (-1,110), \ldots,(9,110) \text {, } \\
& (-1,120), \ldots,(8,120)\} \\
& \{(0,100), \ldots,(10,100) \text {, } \\
& (0,110), \ldots,(9,110) \text {, } \\
& (0,120), \ldots,(8,120)\} \\
& \{(-1,100), \ldots,(9,100) \text {, } \\
& (-1,110), \ldots,(8,110) \text {, } \\
& (-1,120), \ldots,(7,120)\} \\
& \{(-1,110),(-1,120)\}
\end{aligned}
$$

Resolution (example)

$$
\begin{cases}\mathcal{X}_{1}=\mathbb{Z}^{2} & \multicolumn{1}{c}{\text { iteration } \ldots} \\ & \mathbb{Z}^{2} \\ \mathcal{X}_{2}=\mathrm{C} \llbracket \mathrm{X}:=\left[0,10 \rrbracket \rrbracket \mathcal{X}_{1}\right. & {[0,10] \times \mathbb{Z}} \\ & \\ \mathcal{X}_{3}=\mathrm{C} \llbracket \mathrm{Y}:=100 \rrbracket \mathcal{X}_{2} \cup & \{(0,100), \ldots,(10,100), \\ & \mathrm{C} \llbracket \mathrm{Y}:=\mathrm{Y}+10 \rrbracket \mathcal{X}_{5} \\ & (-1,110), \ldots,(9,110), \\ \mathcal{X}_{4}=\mathrm{C} \llbracket \mathrm{X} \geq 0 \rrbracket \mathcal{X}_{3} & (-1,120), \ldots,(8,120), \ldots\} \\ & \{(0,100), \ldots,(10,100), \\ & (0,110), \ldots,(9,110), \ldots\} \\ & (0,120), \ldots,(8,120), \ldots\} \\ \mathcal{X}_{5}=\mathrm{C} \llbracket \mathrm{x}:=\mathrm{x}-1 \rrbracket \mathcal{X}_{4} & \{(-1,100), \ldots,(1,10), \\ & (-1,110), \ldots,(8,110), \\ & (-1,120), \ldots,(7,120), \ldots\} \\ \mathcal{X}_{6}=\mathrm{C} \llbracket \mathrm{X}<0 \rrbracket \mathcal{X}_{3} & \{(-1,110),(-1,120), \ldots\}\end{cases}
$$

Backward concrete semantics

Semantics of commands: $\quad \overleftarrow{C} \llbracket c \rrbracket: \mathcal{P}(\mathbb{V} \rightarrow \mathbb{\square}) \rightarrow \mathcal{P}(\mathbb{V} \rightarrow \square)$

$$
\begin{array}{ll}
\overleftarrow{C} \llbracket V:=e \rrbracket \mathcal{X} & \stackrel{\text { def }}{=} \\
\overleftarrow{C} \llbracket e \bowtie 0 \rrbracket \mathcal{X} & \stackrel{\text { def }}{=} \\
\overleftarrow{C} \llbracket e \bowtie 0 \rrbracket \exists v \in \mathrm{E} \llbracket e \rrbracket \rho, \rho[\mathrm{~V} \mapsto v] \in \mathcal{X}\}
\end{array}
$$

(necessary conditions on ρ to have a successor in \mathcal{X} by c)
Refinement decreasing iterations: given:

- a solution $\left(\mathcal{X}_{\ell}\right)_{\ell \in L}$ of the forward system
- an output criterion \mathcal{Y}_{x}
compute a least fixpoint by decreasing iterations [Bour93b]

$$
\begin{aligned}
& \left\{\begin{array}{lll}
\mathcal{Y}_{x}^{0} & \text { def } & \mathcal{X}_{x} \cap \mathcal{Y}_{x} \\
\mathcal{Y}_{\ell \neq x}^{0} & \stackrel{\text { def }}{=} & \mathcal{X}_{\ell}
\end{array}\right. \\
& \left\{\begin{array}{lll}
\mathcal{Y}_{x}^{n+1} & \stackrel{\text { def }}{=} & \mathcal{X}_{x} \cap \mathcal{Y}_{x} \\
\mathcal{Y}_{\ell \neq x}^{n+1} & \stackrel{\text { def }}{=} & \mathcal{X}_{\ell} \cap\left(\bigcup_{\left(\ell, c, \ell^{\prime}\right) \in A} \overleftarrow{C} \llbracket c \rrbracket \mathcal{Y}_{\ell^{\prime}}^{n}\right)
\end{array}\right.
\end{aligned}
$$

Limit to automation

We wish to perform automatic numerical invariant discovery.

Theoretical problems

- elements of $\mathcal{P}(\mathbb{V} \rightarrow \mathbb{\square})$ are not computer representable
- transfer functions $C \llbracket c \rrbracket, \overleftarrow{C} \llbracket c \rrbracket$ are not computable
- lattice iterations in $\mathcal{P}(\mathbb{V} \rightarrow \mathbb{\square})$ are transfinite

Finding the best invariant is an undecidable problem

Note:

Even when 『 is finite, a concrete analysis is not tractable:

- representing elements in $\mathcal{P}(\mathbb{V} \rightarrow \mathbb{\square})$ in extension is expensive
- computing $C \llbracket c \rrbracket, \overleftarrow{C} \llbracket c \rrbracket$ explicitly is expensive
- the lattice $\mathcal{P}(\mathbb{V} \rightarrow \mathbb{\square})$ has a large height (\Rightarrow many iterations)

Abstraction

Numerical abstract domains

A numerical abstract domain is given by:

- a subset of $\mathcal{P}(\mathbb{V} \rightarrow \mathbb{\square})$
(a set of environment sets)
together with a machine encoding,
- effective and sound abstract operators,
- an iteration strategy ensuring convergence in finite time.

Numerical abstract domain examples

Numerical abstract domains (cont.)

Representation: given by

- a set \mathcal{D}^{\sharp} of machine-representable abstract values,
- a partial order ($\left.\mathcal{D}^{\sharp}, \sqsubseteq, \perp^{\sharp}, T^{\sharp}\right)$
relating the amount of information given by abstract values,
- a concretization function $\gamma: \mathcal{D}^{\sharp} \rightarrow \mathcal{P}(\mathbb{V} \rightarrow \mathbb{\square})$ giving a concrete meaning to each abstract element.

Required algebraic properties:

- γ should be monotonic for $\sqsubseteq: \mathcal{X}^{\sharp} \sqsubseteq \mathcal{Y}^{\sharp} \Longrightarrow \gamma\left(\mathcal{X}^{\sharp}\right) \subseteq \gamma\left(\mathcal{Y}^{\sharp}\right)$,
- $\gamma\left(\perp^{\sharp}\right)=\emptyset$,
- $\gamma\left(\top^{\sharp}\right)=\mathbb{V} \rightarrow \mathbb{\square}$.

Note: γ need not be one-to-one.

Numerical abstract domains (cont.)

Abstract operators: we require:

- sound, effective, abstract transfer functions $C^{\sharp} \llbracket c \rrbracket, \overleftarrow{C}^{\sharp} \llbracket c \rrbracket$ for all commands c,
- sound, effective, abstract set operators $\cup^{\sharp}, \cap^{\sharp}$,
- an algorithm to decide the ordering \sqsubseteq.

Soundness criterion:

F^{\sharp} is a sound abstraction of a n-ary operator F if:

$$
\forall \mathcal{X}_{1}^{\sharp}, \ldots, \mathcal{X}_{n}^{\sharp} \in D^{\sharp}, F\left(\gamma\left(\mathcal{X}_{1}^{\sharp}\right), \ldots, \gamma\left(\mathcal{X}_{n}^{\sharp}\right)\right) \subseteq \gamma\left(F^{\sharp}\left(\mathcal{X}_{1}^{\sharp}, \ldots, \mathcal{X}_{n}^{\sharp}\right)\right)
$$

Both semantic and algorithmic aspects.

Abstract semantics

Abstract semantic equation system

$$
\mathcal{X}^{\sharp}: L \rightarrow \mathcal{D}^{\sharp}
$$

$$
\mathcal{X}_{\ell}^{\sharp} \sqsupseteq\left\{\begin{array}{ccc}
\mathcal{X}_{e}^{\sharp} & \text { if } \ell=e & \text { (where } \left.\mathcal{X}_{e} \subseteq \gamma\left(\mathcal{X}_{e}^{\sharp}\right)\right) \\
\bigcup_{\left(\ell^{\prime}, c, \ell\right) \in A}^{\sharp} C^{\sharp} \llbracket c \rrbracket \mathcal{X}_{\ell^{\prime}}^{\sharp} & \text { if } \ell \neq e & \text { (abstract transfer function) }
\end{array}\right.
$$

Soundness Theorem

Any solution $\left(\mathcal{X}_{\ell}^{\sharp}\right)_{\ell \in L}$ is a sound over-approximation of the concrete collecting semantics:

$$
\forall \ell \in L, \gamma\left(\mathcal{X}_{\ell}^{\sharp}\right) \supseteq \mathcal{X}_{\ell} \quad \left\lvert\, \begin{aligned}
& \text { where } \mathcal{X}_{\ell} \text { is the smallest solution of } \\
& \mathcal{X}_{\ell} \\
& \mathcal{X}_{\ell}=\underset{\left(\ell^{\prime}, c, \ell\right) \in A}{ } c \llbracket c \rrbracket \mathcal{X}_{\ell^{\prime}} \\
& \text { given } \\
& \text { if } \ell \neq e
\end{aligned}\right.
$$

Iteration strategy

$\underline{\text { Resolution by iterations in } \mathcal{D}^{\sharp} \text { : }}$
To effectively solve the abstract system, we require:

- an iteration ordering on abstract equations (which equation(s) are applied at a given iteration)
- a widening operator ∇ to speed-up the convergence, if there are infinite strictly increasing chains in D^{\sharp}.
$\nabla:\left(\mathcal{D}^{\sharp} \times \mathcal{D}^{\sharp}\right) \rightarrow \mathcal{D}^{\sharp}$ is a widening if:
- it is sound: $\quad \gamma\left(\mathcal{X}^{\sharp}\right) \cup \gamma\left(\mathcal{Y}^{\sharp}\right) \subseteq \gamma\left(\mathcal{X}^{\sharp} \nabla \mathcal{Y}^{\sharp}\right)$
- it enforces termination:
\forall sequence $\left(\mathcal{Y}_{i}^{\sharp}\right)_{i \in \mathbb{N}}$
the sequence $\mathcal{X}_{0}^{\sharp}=\mathcal{Y}_{0}^{\sharp}, \mathcal{X}_{i+1}^{\sharp}=\mathcal{X}_{i}^{\sharp} \nabla \mathcal{Y}_{i+1}^{\sharp}$
stabilizes in finite time: $\exists n<\omega, \mathcal{X}_{n+1}^{\sharp}=\mathcal{X}_{n}^{\sharp}$
(note: $\exists n, \forall m \geq n, \mathcal{X}_{m+1}^{\sharp}=\mathcal{X}_{m}^{\sharp}$ is not required)

Abstract analysis

$\mathcal{W} \subseteq L$ is a set of widening points if every CFG cycle has a point in \mathcal{W}.
Forward analysis:

$$
\begin{aligned}
& \mathcal{X}_{e}^{\sharp 0} \stackrel{\text { def }}{=} \mathcal{X}_{e}^{\sharp} \text { given, such that } \mathcal{X}_{e} \subseteq \gamma\left(\mathcal{X}_{e}^{\sharp}\right) \\
& \mathcal{X}_{\ell \neq e}^{\sharp 0} \stackrel{\text { def }}{=} \perp^{\sharp} \\
& \mathcal{X}_{\ell}^{\sharp n+1} \stackrel{\text { def }}{=} \begin{cases}\mathcal{X}_{e}^{\sharp} & \text { if } \ell=e \\
\bigcup_{\left(\ell^{\prime}, c, \ell\right) \in A}^{\sharp} C^{\sharp} \llbracket c \rrbracket \mathcal{X}_{\ell^{\prime}}^{\sharp n} & \text { if } \ell \notin \mathcal{W}, \ell \neq e \\
\mathcal{X}_{\ell}^{\sharp n} \nabla \bigcup_{\left(\ell^{\prime}, c, \ell\right) \in A}^{\sharp} C^{\sharp} \llbracket c \rrbracket \mathcal{X}_{\ell^{\prime}}^{\sharp n} & \text { if } \ell \in \mathcal{W}, \ell \neq e\end{cases}
\end{aligned}
$$

- termination: for some $\delta, \forall \ell, \mathcal{X}_{\ell}^{\sharp \delta+1}=\mathcal{X}_{\ell}^{\sharp \delta}$
- soundness: $\forall \ell \in L, \mathcal{X}_{\ell} \subseteq \gamma\left(\mathcal{X}_{\ell}^{\sharp \delta}\right)$
- can be refined by decreasing iterations with narrowing Δ (presented later)
- here, apply every equation at each step, but other iteration scheme are possible (worklist, chaotic iterations, see [Bour93a])

Abstract analysis (proof)

Proof of soundness:
Suppose that $\forall \ell, \mathcal{X}_{\ell}^{\sharp \delta+1}=\mathcal{X}_{\ell}^{\sharp \delta}$.
If $\ell=e$, by definition: $\mathcal{X}_{e}^{\sharp \delta}=\mathcal{X}_{e}^{\sharp}$ and $\mathcal{X}_{e} \subseteq \gamma\left(\mathcal{X}_{e}^{\sharp \delta}\right)$.
If $\ell \neq e, \ell \notin \mathcal{W}$, then $\mathcal{X}_{\ell}^{\sharp \delta}=\mathcal{X}_{\ell}^{\sharp \delta+1}=\cup_{\left(\ell^{\prime}, c, \ell\right) \in A}^{\sharp} C^{\sharp} \llbracket c \rrbracket \mathcal{X}_{\ell^{\prime}}^{\sharp} \delta$.
By soundness of \cup^{\sharp} and $C^{\sharp} \llbracket c \rrbracket, \gamma\left(\mathcal{X}_{\ell}^{\sharp \delta}\right) \supseteq \cup_{\left(\ell^{\prime}, c, \ell\right) \in A} C \llbracket c \rrbracket \gamma\left(\mathcal{X}_{\ell^{\prime}}^{\sharp} \delta\right)$.
If $\ell \neq e, \ell \in \mathcal{W}$, then $\mathcal{X}_{\ell}^{\sharp \delta}=\mathcal{X}_{\ell}^{\sharp \delta+1}=\mathcal{X}_{\ell}^{\sharp \delta} \nabla \cup_{\left(\ell^{\prime}, c, \ell\right) \in A}^{\sharp} C \sharp \llbracket c \rrbracket \mathcal{X}_{\ell^{\prime}}^{\sharp} \delta$.
By soundness of $\nabla, \gamma\left(\mathcal{X}_{\ell}^{\sharp \delta}\right) \supseteq \gamma\left(\cup_{\left(\ell^{\prime}, c, \ell\right) \in A}^{\sharp} C^{\sharp} \llbracket c \rrbracket \mathcal{X}_{\ell^{\prime}}^{\sharp}\right)$,
and so we also have $\gamma\left(\mathcal{X}_{\ell}^{\sharp \delta}\right) \supseteq \cup_{\left(\ell^{\prime}, c, \ell\right) \in A} \subset \llbracket c \rrbracket \gamma\left(\mathcal{X}_{\ell^{\prime}}^{\sharp}\right)$.
We have proved that $\lambda \ell . \gamma\left(\mathcal{X}_{\ell}^{\sharp \delta}\right)$ is a postfixpoint of the concrete equation system. Hence, it is greater than its least solution.

Abstract analysis (proof)

Proof of termination:

Suppose that the iteration does not terminate in finite time.
Given a label $\ell \in L$, we denote by $i_{\ell}^{1}, \ldots, i_{\ell}^{k}, \ldots$ the increasing sequence of unstable indices, i.e., such that $\forall k, \mathcal{X}_{\ell}^{i_{l}^{k}+1} \neq \mathcal{X}_{\ell}^{\sharp i}{ }_{\ell}^{k}$.
As the iteration is not stable, $\forall n, \exists \ell, \mathcal{X}_{\ell}^{\sharp n} \neq \mathcal{X}_{\ell}^{\sharp n+1}$.
Hence, the sequence $\left(i_{\ell}^{k}\right)_{k}$ is infinite for at least one $\ell \in L$.
We argue that $\exists \ell \in \mathcal{W}$ such that $\left(i_{\ell}^{k}\right)_{k}$ is infinite as, otherwise,
$N=\max \left\{i_{\ell}^{k} \mid \ell \in \mathcal{W}\right\}+|L|$ is finite and satisfies: $\forall n \geq N, \forall \ell \in L, \mathcal{X}_{\ell}^{\sharp n}=\mathcal{X}_{\ell}^{\sharp n+1}$, contradicting our assumption.
For such a $\ell \in \mathcal{W}$, consider the subsequence $\mathcal{Y}_{k}^{\sharp}=\mathcal{X}_{\ell}^{\sharp} i_{\ell}^{i k}$ comprised of the unstable iterates of $\mathcal{X}_{\ell}^{\sharp}$.
Then $\mathcal{Y}^{\sharp k+1}=\mathcal{Y}^{\sharp k} \nabla \mathcal{Z}^{\sharp k}$ for some sequence $\mathcal{Z}^{\sharp k}$.
The subsequence is infinite and $\forall k, \mathcal{Y}^{\sharp k+1} \neq \mathcal{Y}^{\sharp k}$, which contradicts the definition of ∇.

Hence, the iteration must terminate in finite time.

Abstract analysis (cont.)

Backward refinement:

Given a forward analysis result \mathcal{X}^{\sharp} and an abstract output \mathcal{Y}_{x}^{\sharp}.

$$
\begin{aligned}
& \mathcal{Y}_{x}^{\sharp 0} \stackrel{\text { def }}{=} \mathcal{X}_{x}^{\sharp} \cap^{\sharp} \mathcal{Y}_{x}^{\sharp} \\
& \mathcal{Y}_{\ell \neq x}^{\sharp 0} \stackrel{\text { def }}{=} \mathcal{X}_{\ell}^{\sharp}
\end{aligned}
$$

$$
\mathcal{Y}_{\ell}^{\sharp n+1} \stackrel{\text { def }}{=} \begin{cases}\mathcal{X}_{x}^{\sharp} \cap^{\sharp} \mathcal{Y}_{x}^{\sharp} & \text { if } \ell=x \\ \mathcal{X}_{\ell}^{\sharp} \cap^{\sharp} \bigcup_{\left(\ell, c, \ell^{\prime}\right) \in A}^{\sharp} \overleftarrow{C^{\sharp} \llbracket c \rrbracket \mathcal{Y}_{\ell^{\prime}}^{\sharp n}} & \text { if } \ell \notin \mathcal{W}, \ell \neq x \\ \mathcal{Y}_{\ell}^{\sharp n} \triangle\left(\mathcal{X}_{\ell}^{\sharp} \cap^{\sharp} \bigcup_{\left(\ell, c, \ell^{\prime}\right) \in A}^{\sharp} \overleftarrow{\left.\overleftarrow{C}^{\sharp} \llbracket c \rrbracket \mathcal{Y}_{\ell^{\prime}}^{\sharp n}\right)}\right. & \text { if } \ell \in \mathcal{W}, \ell \neq x\end{cases}
$$

\triangle overapproximates \cap while enforcing the convergence of decreasing iterations (the definition will be given later, on intervals)

Forward-backward analyses can be iterated [Bour93b].

Exact and best abstractions: Reminders

Galois connection:

$$
(\mathcal{D}, \subseteq) \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}}\left(\mathcal{D}^{\sharp}, \sqsubseteq\right)
$$

- α, γ monotonic and $\forall \mathcal{X}, \mathcal{Y}^{\sharp}, \alpha(\mathcal{X}) \sqsubseteq \mathcal{Y}^{\sharp} \Longleftrightarrow \mathcal{X} \subseteq \gamma\left(\mathcal{Y}^{\sharp}\right)$
- \Rightarrow elements \mathcal{X} have a best abstraction: $\alpha(\mathcal{X})$
- \Rightarrow operators F have a best abstraction: $F^{\sharp}=\alpha \circ F \circ \gamma$

Sometimes, no α exists:

- $\left\{\gamma\left(\mathcal{Y}^{\sharp}\right) \mid \mathcal{X} \subseteq \gamma\left(\mathcal{Y}^{\sharp}\right)\right\}$ has no greatest lower bound
- abstract elements with the same γ have no best representation $\alpha \circ F \circ \gamma$ may still be defined for some F (partial α)

Concretization-based optimality:

- sound abstraction: $\gamma \circ F^{\sharp} \supseteq F \circ \gamma$
- exact abstraction: $\gamma \circ F^{\sharp}=F \circ \gamma$
- optimal abstraction: $\gamma\left(\mathcal{X}^{\sharp}\right)$ minimal in $\left\{\gamma\left(\mathcal{Y}^{\sharp}\right) \mid \mathcal{X} \subseteq \gamma\left(\mathcal{Y}^{\sharp}\right)\right\}$

Non-relational domains

Value abstract domain

Idea: start from an abstraction of values $\mathcal{P}(\mathbb{\square})$
Numerical value abstract domain:

\mathcal{B}^{\sharp}	abstract values, machine-representable
$\gamma_{b}: \mathcal{B}^{\sharp} \rightarrow \mathcal{P}(\square)$	concretization
\sqsubseteq_{b}	partial order
$\perp_{b}^{\sharp}, \top_{b}^{\sharp}$	represent \emptyset and $\mathbb{\square}$
$\cup_{b}^{\sharp}, \cap_{b}^{\sharp}$	abstractions of \cup and \cap
∇_{b}	extrapolation operator
$\alpha_{b}: \mathcal{P}(\square) \rightarrow \mathcal{B}^{\sharp}$	abstraction (optional)

Derived abstract domain

$$
\mathcal{D}^{\sharp} \stackrel{\text { def }}{=}\left(\mathbb{V} \rightarrow\left(\mathcal{B}^{\sharp} \backslash\left\{\perp_{b}^{\sharp}\right\}\right)\right) \cup\left\{\perp^{\sharp}\right\}
$$

- point-wise extension: $\mathcal{X}^{\sharp} \in \mathcal{D}^{\sharp}$ is a vector of elements in \mathcal{B}^{\sharp} (e.g. using arrays of size |V|)
- smashed \perp^{\sharp} (avoids redundant representations of \emptyset)

Definitions on \mathcal{D}^{\sharp} derived from \mathcal{B}^{\sharp} :

$$
\begin{aligned}
& \gamma\left(\mathcal{X}^{\sharp}\right) \stackrel{\text { def }}{=} \begin{cases}\emptyset & \text { if } \mathcal{X}^{\sharp}=\perp^{\sharp} \\
\left\{\rho \mid \forall \mathrm{V}, \rho(\mathrm{~V}) \in \gamma_{b}\left(\mathcal{X}^{\sharp}(\mathrm{V})\right)\right\} & \text { otherwise }\end{cases} \\
& \alpha(\mathcal{X}) \stackrel{\text { def }}{=} \begin{cases}\perp^{\sharp} & \text { if } \mathcal{X}=\emptyset \\
\lambda \mathrm{V} \cdot \alpha_{b}(\{\rho(\mathrm{~V}) \mid \rho \in \mathcal{X}\}) & \text { otherwise }\end{cases} \\
& T^{\sharp} \stackrel{\text { def }}{=} \lambda \mathrm{V} \cdot T_{b}^{\sharp}
\end{aligned}
$$

Derived abstract domain (cont.)

$$
\begin{aligned}
& \mathcal{X}^{\sharp} \sqsubseteq \mathcal{Y}^{\sharp} \stackrel{\text { def }}{\Longrightarrow} \mathcal{X}^{\sharp}=\perp^{\sharp} \vee\left(\mathcal{X}^{\sharp}, \mathcal{Y}^{\sharp} \neq \perp^{\sharp} \wedge \forall \mathrm{v}, \mathcal{X}^{\sharp}(\mathrm{v}) \sqsubseteq_{b} \mathcal{Y}^{\sharp}(\mathrm{v})\right) \\
& \mathcal{X}^{\sharp} \cup^{\sharp} \mathcal{Y}^{\sharp} \stackrel{\text { def }}{=} \begin{cases}= & \text { if } \mathcal{Y}^{\sharp}=\perp^{\sharp}=\perp^{\sharp} \\
\mathcal{X}^{\sharp} \\
\lambda \mathrm{V} \cdot \mathcal{X}^{\sharp}(\mathrm{v}) \cup_{b}^{\sharp} \mathcal{Y}^{\sharp}(\mathrm{v}) & \text { otherwise }\end{cases} \\
& \mathcal{X}^{\sharp} \nabla \mathcal{Y}^{\sharp} \stackrel{\text { def }}{=} \begin{cases}\mathcal{Y}^{\sharp} & \text { if } \mathcal{X}^{\sharp}=\perp^{\sharp} \\
\mathcal{X}^{\sharp} & \text { if } \mathcal{Y}^{\sharp}=\perp^{\sharp} \\
\lambda \mathrm{V} \cdot \mathcal{X}^{\sharp}(\mathrm{v}) \nabla_{b} \mathcal{Y}^{\sharp}(\mathrm{v}) & \text { otherwise }\end{cases} \\
& \mathcal{X}^{\sharp} \cap^{\sharp} \mathcal{Y}^{\sharp} \stackrel{\text { def }}{=} \begin{cases}\mathcal{X}^{\sharp}=\perp^{\sharp} \text { or } \mathcal{Y}^{\sharp}=\perp^{\sharp} \\
\perp^{\sharp} & \text { if } \exists \mathrm{v}, \mathcal{X}^{\sharp}(\mathrm{v}) \cap_{b}^{\sharp} \mathcal{Y}^{\sharp}(\mathrm{v})=\perp_{b}^{\sharp} \\
\lambda \mathrm{V} \cdot \mathcal{X}^{\sharp}(\mathrm{v}) \cap_{b}^{\sharp} \mathcal{Y}^{\sharp}(\mathrm{v}) & \text { otherwise }\end{cases}
\end{aligned}
$$

We will see later how to derive $C^{\sharp} \llbracket c \rrbracket, \overleftarrow{C}^{\sharp} \llbracket c \rrbracket$ using:

- abstract operators $+_{b}^{\#}, \ldots$ for $C^{\sharp} \llbracket \mathrm{V}:=e \rrbracket$
- backward abstract operators $\overleftarrow{+}_{b}^{\sharp}, \ldots$
for $\overleftarrow{C}^{\sharp} \llbracket \mathrm{V}:=e \rrbracket$ and $C^{\sharp} \llbracket e \bowtie 0 \rrbracket^{\sharp}$

Cartesian abstraction

Non-relational domains "forget" all relationships between variables.
Cartesian abstraction:
Upper closure operator $\rho_{c}: \mathcal{P}(\mathbb{V} \rightarrow \mathbb{\square}) \rightarrow \mathcal{P}(\mathbb{V} \rightarrow \mathbb{\square})$

$$
\rho_{c}(\mathcal{X}) \stackrel{\text { def }}{=}\left\{\rho \in \mathbb{V} \rightarrow \mathbb{\square} \mid \forall \mathrm{V} \in \mathbb{V}, \exists \rho^{\prime} \in \mathcal{X}, \rho(\mathrm{V})=\rho^{\prime}(\mathrm{V})\right\}
$$

A domain is non relational if $\rho \circ \gamma=\gamma$, i.e. it cannot distinguish between \mathcal{X} and \mathcal{X}^{\prime} if $\rho_{c}(\mathcal{X})=\rho_{c}\left(\mathcal{X}^{\prime}\right)$.

Example: $\rho_{c}(\{(X, Y) \mid X \in\{0,2\}, Y \in\{0,2\}, X+Y \leq 2\})=\{0,2\} \times\{0,2\}$.

Generic non-relational abstract assignments

Given: sound abstract versions in \mathcal{B}^{\sharp} of all arithmetic operators:

$$
\begin{array}{ccll}
{\left[c, c^{\prime}\right]_{b}^{\sharp}:} & \left\{x \mid c \leq x \leq c^{\prime}\right\} & \subseteq & \gamma_{b}\left(\left[c, c^{\prime}\right]_{b}^{\sharp}\right) \\
-\frac{\#}{\sharp}: & \left\{-x \mid x \in \gamma_{b}\left(\mathcal{X}_{b}^{\sharp}\right)\right\} & \subseteq & \gamma_{b}\left(-\frac{\sharp}{b} \mathcal{X}_{b}^{\sharp}\right) \\
+{ }_{b}^{\sharp}: & \left\{x+y \mid x \in \gamma_{b}\left(\mathcal{X}_{b}^{\sharp}\right), y \in \gamma_{b}\left(\mathcal{Y}_{b}^{\sharp}\right)\right\} & \subseteq & \gamma_{b}\left(\mathcal{X}_{b}^{\sharp}+\frac{\sharp}{b} \mathcal{Y}_{b}^{\sharp}\right)
\end{array}
$$

We can define:

- an abstract semantics of expressions: $\quad E^{\sharp} \llbracket e \rrbracket: \mathcal{D}^{\sharp} \rightarrow \mathcal{B}^{\sharp}$

$$
E^{\sharp} \llbracket e \rrbracket \perp \sharp \quad \quad \stackrel{\text { def }}{=} \quad \perp_{b}^{\sharp}
$$

$$
\begin{array}{lll}
\text { if } \mathcal{X}^{\sharp} \neq \perp^{\sharp}: & & \\
& E^{\sharp} \llbracket\left[c, c^{\prime}\right] \rrbracket \mathcal{X}^{\sharp} & \stackrel{\text { def }}{=} \\
E^{\sharp} \llbracket \mathrm{V} \rrbracket \mathcal{X}^{\sharp} & \stackrel{\text { def }}{=} & \mathcal{X}^{\sharp}(\mathrm{v}) \\
\mathrm{E}^{\sharp} \llbracket-e \rrbracket \mathcal{X}^{\sharp} & \stackrel{\text { def }}{=} & -\frac{\sharp}{b} \mathrm{E}^{\sharp} \llbracket e \rrbracket \mathcal{X}^{\sharp} \\
\mathrm{E}^{\sharp} \llbracket e_{1}+e_{2} \rrbracket \mathcal{X}^{\sharp} & \stackrel{\text { def }}{=} & \mathrm{E}^{\sharp} \llbracket e_{1} \rrbracket \mathcal{X}^{\sharp}++_{b}^{\sharp} \mathrm{E}^{\sharp} \llbracket e_{2} \rrbracket \mathcal{X}^{\sharp}
\end{array}
$$

Generic non-relational abstract assignments (cont.)

We can then define:

- an abstract assignment:

$$
\begin{aligned}
& \mathrm{C}^{\sharp} \llbracket \mathrm{V}:=e \rrbracket \mathcal{X}^{\sharp} \stackrel{\text { def }}{=} \begin{cases}\perp^{\sharp} & \text { if } \mathcal{V}_{b}^{\sharp}=\perp_{b}^{\sharp} \\
\mathcal{X}^{\sharp}\left[\mathrm{V} \mapsto \mathcal{V}_{b}^{\sharp}\right] & \text { otherwise }\end{cases} \\
& \text { where } \mathcal{V}_{b}^{\sharp}=\mathrm{E}^{\sharp} \llbracket e \rrbracket \mathcal{X}^{\sharp} .
\end{aligned}
$$

$\underline{\text { Using a Galois connection }\left(\alpha_{b}, \gamma_{b}\right) \text { : }}$
We can define best abstract arithmetic operators:

$$
\begin{array}{ccl}
{\left[c, c^{\prime}\right]_{b}^{\sharp}} & \stackrel{\text { def }}{=} & \alpha_{b}\left(\left\{x \mid c \leq x \leq c^{\prime}\right\}\right) \\
-\frac{\sharp}{b} \mathcal{X}_{b}^{\sharp} & \stackrel{\text { def }}{=} & \alpha_{b}\left(\left\{-x \mid x \in \gamma\left(\mathcal{X}_{b}^{\sharp}\right)\right\}\right) \\
\mathcal{X}_{b}^{\sharp}+\frac{{ }_{b}^{\sharp}}{\sharp} \mathcal{Y}_{b}^{\sharp} & \stackrel{\text { def }}{=} & \alpha_{b}\left(\left\{x+y \mid x \in \gamma\left(\mathcal{X}_{b}^{\sharp}\right), y \in \gamma\left(\mathcal{Y}_{b}^{\sharp}\right)\right\}\right)
\end{array}
$$

Note: in general, $\mathrm{E}^{\sharp} \llbracket e \rrbracket$ is less precise than $\alpha_{b} \circ \mathrm{E} \llbracket e \rrbracket \circ \gamma$

$$
\text { e.g. } \quad e=\mathrm{V}-\mathrm{V} \text { and } \gamma_{b}(\mathcal{X} \sharp(\mathrm{~V}))=[0,1]
$$

The sign domain

The sign lattices

Hasse diagram: for the lattice $\left(\mathcal{B}^{\sharp}, \sqsubseteq_{b}, \perp_{b}^{\sharp}, T_{b}^{\sharp}\right)$

The extended sign domain is a refinement of the simple sign domain.
The diagram implicitly defines \cup^{\sharp} and \cap^{\sharp} as the least upper bound and greatest lower bound for \sqsubseteq.

Operations on simple signs

Abstraction α : there is a Galois connection between \mathcal{B}^{\sharp} and $\mathcal{P}(\mathbb{\square})$:

$$
\alpha_{b}(S) \stackrel{\text { def }}{=} \begin{cases}\perp_{b}^{\sharp} & \text { if } S=\emptyset \\ 0 & \text { if } S=\{0\} \\ \geq 0 & \text { else if } \forall s \in S, s \geq 0 \\ \leq 0 & \text { else if } \forall s \in S, s \leq 0 \\ \top_{b}^{\sharp} & \text { otherwise }\end{cases}
$$

Derived abstract arithmetic operators:

$$
\begin{aligned}
& c_{b}^{\#} \stackrel{\text { def }}{=} \alpha_{b}(\{c\})= \begin{cases}0 & \text { if } c=0 \\
\leq 0 & \text { if } c<0 \\
\geq 0 & \text { if } c>0\end{cases} \\
& X^{\sharp}+{ }_{b}^{\#} Y^{\sharp} \quad \stackrel{\text { def }}{=} \alpha_{b}\left(\left\{x+y \mid x \in \gamma_{b}\left(X^{\sharp}\right), y \in \gamma_{b}\left(Y^{\sharp}\right)\right\}\right) \\
&= \begin{cases}\perp_{b}^{\#} & \text { if } X \text { or } Y^{\sharp}=\perp_{b}^{\sharp} \\
0 & \text { if } X^{\sharp}=Y^{\sharp}=0 \\
\leq 0 & \text { else if } X^{\sharp} \text { and } Y^{\sharp} \in\{0, \leq 0\} \\
\geq 0 & \text { else if } X^{\sharp} \text { and } Y^{\sharp} \in\{0, \geq 0\} \\
\top_{b}^{\#} & \text { otherwise }\end{cases}
\end{aligned}
$$

Operations on simple signs (cont.)

Abstract test examples:

$$
\begin{aligned}
& C^{\sharp} \llbracket \mathrm{X} \leq 0 \rrbracket \mathcal{X}^{\sharp} \stackrel{\text { def }}{=}\left(\left\{\begin{array}{ll}
\mathcal{X}^{\sharp}[\mathrm{X} \mapsto 0] & \text { if } \mathcal{X}^{\sharp}(\mathrm{X}) \in\{0, \geq 0\} \\
\mathcal{X}^{\sharp}[\mathrm{X} \mapsto \leq 0] & \text { if } \mathcal{X}^{\sharp}(\mathrm{X}) \in\left\{\top_{b}^{\sharp}, \leq 0\right\} \\
\perp^{\sharp} & \text { otherwise }
\end{array}\right)\right. \\
& C^{\sharp} \llbracket \mathrm{X}-c \leq 0 \rrbracket \mathcal{X}^{\sharp} \stackrel{\text { def }}{=}\left(\begin{array}{ll}
C^{\sharp} \llbracket \mathrm{X} \leq 0 \rrbracket \mathcal{X} \\
\mathcal{X}^{\sharp} & \text { if } c \leq 0 \\
C^{\sharp} \llbracket \mathrm{X}-\mathrm{Y} \leq 0 \rrbracket \mathcal{X}^{\sharp} \stackrel{\text { def }}{=} & \text { otherwise }
\end{array}\right) \\
& \begin{cases}C^{\sharp} \llbracket \mathrm{X} \leq 0 \rrbracket \mathcal{X} \sharp & \text { if } \mathcal{X}^{\sharp}(\mathrm{Y}) \in\{0, \leq 0\} \\
\mathcal{X}^{\sharp} & \cap^{\sharp} \\
C^{\sharp} \llbracket \mathrm{Y} \geq 0 \rrbracket \mathcal{X}^{\sharp} & \text { if } \mathcal{X}^{\sharp}(\mathrm{X}) \in\{0, \geq 0\} \\
\mathcal{X}^{\sharp} & \text { otherwise }\end{cases}
\end{aligned}
$$

Other cases: $\quad C^{\sharp} \llbracket \operatorname{expr} \bowtie 0 \rrbracket \mathcal{X} \sharp \stackrel{\text { def }}{=} \mathcal{X}^{\sharp}$ is always a sound abstraction.

Simple sign analysis example

Example analysis using the simple sign domain:
$\mathrm{X}:=0 ;$
while $\mathrm{X}<40$ do
$\mathrm{X}:=\mathrm{X}+1$
done

Program

$$
\left\{\begin{aligned}
\mathcal{X}_{2}^{\sharp i+1}= & \mathrm{C}^{\sharp} \llbracket \mathrm{X}:=0 \rrbracket \mathcal{X}_{1}^{\sharp i} \cup \\
& \mathrm{C}^{\sharp} \llbracket \mathrm{X}:=\mathrm{X}+1 \rrbracket \mathcal{X}_{3}^{\sharp i} \\
\mathcal{X}_{3}^{\sharp i+1}= & \mathrm{C}^{\sharp} \llbracket \mathrm{X}<40 \rrbracket \mathcal{X}_{\sharp i}^{\sharp i} \\
\mathcal{X}_{4}^{\sharp i+1}= & \mathrm{C}^{\sharp} \llbracket \mathrm{X} \geq 40 \rrbracket \mathcal{X}_{2}^{\sharp i}
\end{aligned}\right.
$$

Iteration system

ℓ	$\mathcal{X}_{\ell}^{\sharp 0}$	$\mathcal{X}_{l}^{\sharp 1}$	$\mathcal{X}_{l}^{\sharp 2}$	$\mathcal{X}_{l}^{\sharp 3}$	$\mathcal{X}_{\ell}^{\sharp 4}$	$\mathcal{X}_{\ell}^{\sharp 5}$
1	T^{\sharp}	T^{\sharp}	T^{\sharp}	T^{\sharp}	T^{\sharp}	T^{\sharp}
2	\perp^{\sharp}	$X=0$	$X=0$	$X \geq 0$	$X \geq 0$	$X \geq 0$
3	\perp^{\sharp}	\perp^{\sharp}	$X=0$	$X=0$	$X \geq 0$	$X \geq 0$
4	\perp^{\sharp}	\perp^{\sharp}	$X=0$	$X=0$	$X \geq 0$	$X \geq 0$

Iterations

The constant domain

The constant lattice

Hasse diagram:

$\mathcal{B}^{\sharp}=\mathbb{\square} \cup\left\{\top_{b}^{\sharp} ; \perp_{b}^{\sharp}\right\}$
The lattice is flat but infinite.

Operations on constants

Abstraction α : there is a Galois connection:

$$
\alpha_{b}(S) \stackrel{\text { def }}{=} \begin{cases}\perp_{b}^{\sharp} & \text { if } S=\emptyset \\ c & \text { if } S=\{c\} \\ \top_{b}^{\sharp} & \text { otherwise }\end{cases}
$$

Derived abstract arithmetic operators:

$$
\begin{array}{cl}
c_{b}^{\sharp} & \stackrel{\text { def }}{=} \quad c \\
\left(X^{\sharp}\right)+_{b}^{\sharp}\left(Y^{\sharp}\right) & \stackrel{\text { def }}{=} \begin{cases}\perp_{b}^{\sharp} & \text { if } X^{\sharp} \text { or } Y^{\sharp}=\perp_{b}^{\sharp} \\
T_{b}^{\sharp} & \text { else if } X^{\sharp} \text { or } Y^{\sharp}=T_{b}^{\sharp} \\
X^{\sharp}+Y^{\sharp} & \text { otherwise }\end{cases} \\
\left(X^{\sharp}\right) \times_{b}^{\sharp}\left(Y^{\sharp}\right) \stackrel{\text { def }}{=} \begin{cases}\perp_{b}^{\sharp} & \text { if } X^{\sharp} \text { or } Y^{\sharp}=\perp_{b}^{\sharp} \\
0 & \text { else if } X^{\sharp} \text { or } Y^{\sharp}=0 \\
T_{b}^{\sharp} & \text { else if } X^{\sharp} \text { or } Y^{\sharp}=T_{b}^{\sharp} \\
X^{\sharp} \times Y^{\sharp} & \text { otherwise }\end{cases}
\end{array}
$$

Operations on constants (cont.)

Abstract test examples:

$$
\mathrm{C}^{\sharp} \llbracket \mathrm{X}-c=0 \rrbracket \mathcal{X}^{\sharp} \stackrel{\text { def }}{=} \begin{cases}\perp^{\sharp} & \text { if } \mathcal{X}^{\sharp}(\mathrm{X}) \notin\left\{c, \mathrm{~T}_{b}^{\sharp}\right\} \\ \mathcal{X}^{\sharp}[\mathrm{X} \mapsto c] & \text { otherwise }\end{cases}
$$

$$
C^{\sharp} \llbracket \mathrm{X}-\mathrm{Y}-\mathrm{C}=0 \rrbracket \mathcal{X}^{\sharp} \stackrel{\text { def }}{=}
$$

$$
\left(\left\{\begin{array}{ll}
\mathrm{C}^{\sharp} \llbracket \mathrm{X}-\left(\mathcal{X}^{\sharp}(\mathrm{Y})+c\right)=0 \rrbracket \mathcal{X}^{\sharp} & \text { if } \mathcal{X}^{\sharp}(\mathrm{Y}) \notin\left\{\perp_{b}^{\sharp}, T_{b}^{\sharp}\right\} \\
\mathcal{X}^{\sharp}
\end{array}\right) \cap^{\sharp}\right.
$$

$$
\left(\left\{\begin{array}{ll}
\mathrm{C}^{\sharp} \llbracket \mathrm{Y}-\left(\mathcal{X}^{\sharp}(\mathrm{X})-c\right)=0 \rrbracket \mathcal{X}^{\sharp} & \text { if } \mathcal{X}^{\sharp}(\mathrm{X}) \notin\left\{\perp_{b}^{\sharp}, \mathrm{T}_{b}^{\sharp}\right\} \\
\text { otherwise }
\end{array}\right)\right.
$$

Constant analysis example

\mathcal{B}^{\sharp} has finite height, the $\left(\mathcal{X}_{\ell}^{\sharp i}\right)$ converge in finite time.
(even though \mathcal{B}^{\sharp} is infinite...)
Analysis example:

$$
\begin{aligned}
& \mathrm{X}:=0 ; Y:=10 ; \\
& \text { while } \mathrm{X}<100 \text { do } \\
& \mathrm{Y}:=\mathrm{Y}-3 ; \\
& \mathrm{X}:=\mathrm{X}+\mathrm{Y} ; \\
& \mathrm{Y}:=\mathrm{Y}+3 \\
& \text { done }
\end{aligned}
$$

The constant analysis finds, at \bullet, the invariant: $\left\{\begin{array}{l}X=T_{b}^{\sharp} \\ Y=7\end{array}\right.$
Note: the analysis can find constants that do not appear syntactically in the program.

The interval domain

The interval lattice

Introduced by [Cous76].

$$
\begin{aligned}
& \mathcal{B}^{\sharp} \stackrel{\text { def }}{=}\{[a, b] \mid a \in \square \cup\{-\infty\}, b \in \square \cup\{+\infty\}, a \leq b\} \cup\left\{\perp_{b}^{\#}\right\} \\
& {[-\infty,+\infty]} \\
& \ldots[-\infty, 1] \ldots[-\infty, 9] \ldots[-1,+\infty] \quad[0,+\infty] \ldots
\end{aligned}
$$

Note: intervals are open at infinite bounds $+\infty,-\infty$.

The interval lattice (cont.)

Galois connection $\left(\alpha_{b}, \gamma_{b}\right)$:

$$
\begin{array}{ll}
\gamma_{b}([a, b]) & \stackrel{\text { def }}{=}\{x \in \square \mid a \leq x \leq b\} \\
\alpha_{b}(\mathcal{X}) & \stackrel{\text { def }}{=} \begin{cases}\perp_{b}^{\sharp} & \text { if } \mathcal{X}=\emptyset \\
{[\min \mathcal{X}, \max \mathcal{X}]} & \text { otherwise }\end{cases}
\end{array}
$$

If $\mathbb{Q}=\mathbb{Q}, \alpha_{b}$ is not always defined...
Partial order:

$$
\begin{array}{ccl}
{[a, b] \sqsubseteq_{b}[c, d]} & \stackrel{\text { def }}{\Longrightarrow} & a \geq c \text { and } b \leq d \\
\top_{b}^{\sharp} & \stackrel{\text { def }}{=} &]-\infty,+\infty[\\
{[a, b] \cup_{b}^{\sharp}[c, d]} & \stackrel{\text { def }}{=} & {[\min (a, c), \max (b, d)]} \\
{[a, b] \cap_{b}^{\sharp}[c, d]} & \stackrel{\text { def }}{=} & \begin{cases}{[\max (a, c), \min (b, d)]} \\
\perp_{b}^{\sharp} & \text { if max } \leq \min \end{cases} \\
& & \text { otherwise }
\end{array}
$$

If $\mathbb{Q} \neq \mathbb{Q}$, it is a complete lattice.

Interval abstract arithmetic operators

$$
\begin{aligned}
& {\left[c, c^{\prime}\right]_{b}^{\nexists} \quad \stackrel{\text { def }}{=} \quad\left[c, c^{\prime}\right]} \\
& -\frac{\square}{b}[a, b] \quad \stackrel{\text { def }}{=}[-b,-a] \\
& {[a, b]+\frac{b_{b}^{\#}}{\#}[c, d] \stackrel{\text { def }}{=}[a+c, b+d]} \\
& {[a, b]-\frac{\text { b }}{\#}[c, d] \stackrel{\text { def }}{=}[a-d, b-c]} \\
& {[a, b] \times{ }_{b}^{\sharp}[c, d] \stackrel{\text { def }}{=} \quad[\min (a c, a d, b c, b d), \max (a c, a d, b c, b d)]} \\
& {[a, b] /{ }_{b}^{\sharp}[c, d] \stackrel{\text { def }}{=} \begin{cases}\perp_{b}^{\sharp} & \text { if } c=d=0 \\
{[\min (a / c, a / d, b / c, b / d),} & \text { else if } 0 \leq c \\
\max (a / c, a / d, b / c, b / d)] & \text { else if } d \leq 0 \\
{[-b,-a] /{ }_{b}^{\sharp}[-d,-c]} & \text { otherwise }\end{cases} } \\
& \text { where } \mid \pm \infty \times 0=0, \quad 0 / 0=0, \quad \forall x, x / \pm \infty=0 \\
& \forall x>0, x / 0=+\infty, \quad \forall x<0, x / 0=-\infty
\end{aligned}
$$

Operators are strict: $-{ }_{b}^{\sharp} \perp_{b}^{\sharp}=\perp_{b}^{\sharp},[a, b]+{ }_{b}^{\sharp} \perp_{b}^{\sharp}=\perp_{b}^{\sharp}$, etc.

Exactness and optimality: Example proofs

Proof: exactness of $+\frac{\sharp}{b}$

$$
\begin{aligned}
& \left\{x+y \mid x \in \gamma_{b}([a, b]), y \in \gamma_{b}([c, d])\right\} \\
= & \{x+y \mid a \leq x \leq b \wedge c \leq y \leq d\} \\
= & \{z \mid a+c \leq z \leq b+d\} \\
= & \gamma_{b}([a+c, b+d]) \\
= & \gamma_{b}\left([a, b]+\frac{\sharp}{\sharp}[c, d]\right)
\end{aligned}
$$

Proof optimality of $\cup_{b}^{\#}$

$$
\begin{aligned}
& \alpha_{b}\left(\gamma_{b}([a, b]) \cup \gamma_{b}([c, d])\right) \\
= & \alpha_{b}(\{x \mid a \leq x \leq b\} \cup\{x \mid c \leq x \leq d\}) \\
= & \alpha_{b}(\{x \mid a \leq x \leq b \vee c \leq x \leq d\}) \\
= & {[\min \{x \mid a \leq x \leq b \vee c \leq x \leq d\}, \max \{x \mid a \leq x \leq b \vee c \leq x \leq d\}] } \\
= & {[\min (a, c), \max (b, d)] } \\
= & {[a, b] \cup b \cup_{b}^{\sharp}[c, d] }
\end{aligned}
$$

but \cup_{b}^{\sharp} is not exact

Generic interval abstract tests, step 1

Example: $C^{\sharp} \llbracket \mathrm{X}+\mathrm{Y}-\mathrm{Z} \leq 0 \rrbracket \mathcal{X}^{\sharp}$

$$
\text { with } \mathcal{X}^{\sharp}=\{\mathrm{X} \mapsto[0,10], \mathrm{Y} \mapsto[2,10], \mathrm{Z} \mapsto[3,5]\}
$$

First step: annotate the expression tree with intervals

Bottom-up evaluation similar to interval expression evaluation using $+{ }_{b}^{\sharp},-\frac{\square}{b}$, etc. but storing intervals at each node.

Generic interval abstract tests, step 2

Example: $C^{\sharp} \llbracket \mathrm{X}+\mathrm{Y}-\mathrm{Z} \leq 0 \rrbracket \mathcal{X}^{\sharp}$
with $\mathcal{X}^{\sharp}=\{\mathrm{X} \mapsto[0,10], \mathrm{Y} \mapsto[2,10], \mathrm{Z} \mapsto[3,5]\}$
Second step: top-down expression refinement.

(4)

- refine the root interval, knowing that the result should be negative;
- propagate refined intervals downwards;
- intervals at leaf variables provide new information to store into \mathcal{X}^{\sharp}. $\{X \mapsto[0,3], Y \mapsto[2,5], Z \mapsto[3,5]\}$

Backward arithmetic and comparison operators

In general, we need sound backward arithmetic and comparison operators that refine their arguments given a result.

Soundness condition: for $\overleftarrow{\leq}_{0_{b}}^{\sharp}, \overleftarrow{+}_{b}^{\sharp}, \overleftarrow{-}_{b}^{\sharp}, \ldots$

$$
\begin{aligned}
& \mathcal{X}_{b}^{\sharp \prime}=\overleftarrow{\leq} 0_{b}^{\sharp}\left(\mathcal{X}_{b}^{\sharp}\right) \Longrightarrow \\
& \quad\left\{x \in \gamma_{b}\left(\mathcal{X}_{b}^{\sharp}\right) \mid x \leq 0\right\} \subseteq \gamma_{b}\left(\mathcal{X}_{b}^{\sharp \prime}\right) \subseteq \gamma_{b}\left(\mathcal{X}_{b}^{\sharp}\right) \\
& \mathcal{X}_{b}^{\sharp \prime}=\overleftarrow{\leq}{ }_{b}^{\sharp}\left(\mathcal{X}_{b}^{\sharp}, \mathcal{R}_{\sharp}^{\sharp}\right) \Longrightarrow \\
& \quad\left\{x \mid x \in \gamma_{b}\left(\mathcal{X}_{b}^{\sharp}\right),-x \in \gamma_{b}\left(\mathcal{R}_{b}^{\sharp}\right)\right\} \subseteq \gamma_{b}\left(\mathcal{X}_{b}^{\sharp \prime}\right) \subseteq \gamma_{b}\left(\mathcal{X}_{b}^{\sharp}\right) \\
& \left(\mathcal{X}_{b}^{\sharp \prime}, \mathcal{Y}_{b}^{\sharp \prime}\right)=\overleftarrow{+} \not \mathcal{T}_{b}^{\sharp}\left(\mathcal{X}_{b}^{\sharp}, \mathcal{Y}_{b}^{\sharp}, \mathcal{R}_{b}^{\sharp}\right) \Longrightarrow \\
& \quad\left\{x \in \gamma_{b}\left(\mathcal{X}_{b}^{\sharp}\right) \mid \exists y \in \gamma_{b}\left(\mathcal{Y}_{b}^{\sharp}\right), x+y \in \gamma_{b}\left(\mathcal{R}_{b}^{\sharp}\right)\right\} \subseteq \gamma_{b}\left(\mathcal{X}_{b}^{\sharp \prime}\right) \subseteq \gamma_{b}\left(\mathcal{X}_{b}^{\sharp}\right) \\
& \quad\left\{y \in \gamma_{b}\left(\mathcal{Y}_{b}^{\sharp}\right) \mid \exists x \in \gamma_{b}\left(\mathcal{X}_{b}^{\sharp}\right), x+y \in \gamma_{b}\left(\mathcal{R}_{b}^{\sharp}\right)\right\} \subseteq \gamma_{b}\left(\mathcal{Y}_{b}^{\sharp \prime}\right) \subseteq \gamma_{b}\left(\mathcal{Y}_{b}^{\sharp}\right)
\end{aligned}
$$

Note: best backward operators can be designed with α_{b} :
e.g. for $\overleftarrow{\Psi}_{b}^{\#}: \mathcal{X}_{b}^{\sharp \prime}=\alpha_{b}\left(\left\{x \in \gamma_{b}\left(\mathcal{X}_{b}^{\sharp}\right) \mid \exists y \in \gamma_{b}\left(\mathcal{Y}_{b}^{\sharp}\right), x+y \in \gamma_{b}\left(\mathcal{R}_{b}^{\sharp}\right)\right\}\right)$

Generic backward operator construction

Synthesizing (non optimal) backward arithmetic operators from forward arithmetic operators.

$$
\begin{aligned}
& \left.\left.\overleftarrow{\leq} 0_{b}^{\sharp}\left(\mathcal{X}_{b}^{\sharp}\right) \stackrel{\text { def }}{=} \mathcal{X}_{b}^{\sharp} \cap_{b}^{\#}\right]-\infty, 0\right]_{b}^{\#} \\
& \underset{-}{\sharp}\left(\mathcal{X}_{b}^{\sharp}, \mathcal{R}_{b}^{\sharp}\right) \stackrel{\text { def }}{=} \mathcal{X}_{b}^{\sharp} \cap_{b}^{\sharp}\left(-\frac{\sharp}{b} \mathcal{R}_{b}^{\sharp}\right) \\
& \overleftarrow{+}{ }_{b}^{\sharp}\left(\mathcal{X}_{b}^{\sharp}, \mathcal{Y}_{b}^{\sharp}, \mathcal{R}_{b}^{\sharp}\right) \stackrel{\text { def }}{=}\left(\mathcal{X}_{b}^{\#} \cap_{b}^{\sharp}\left(\mathcal{R}_{b}^{\#}-{ }_{b}^{\#} \mathcal{Y}_{b}^{\#}\right), \mathcal{Y}_{b}^{\#} \cap_{b}^{\#}\left(\mathcal{R}_{b}^{\#}-{ }_{b}^{\#} \mathcal{X}_{b}^{\sharp}\right)\right) \\
& \overleftarrow{\leftarrow}{ }_{b}^{\sharp}\left(\mathcal{X}_{b}^{\sharp}, \mathcal{Y}_{b}^{\sharp}, \mathcal{R}_{b}^{\sharp}\right) \stackrel{\text { def }}{=}\left(\mathcal{X}_{b}^{\sharp} \cap_{b}^{\sharp}\left(\mathcal{R}_{b}^{\#}+_{b}^{\#} \mathcal{Y}_{b}^{\#}\right), \mathcal{Y}_{b}^{\#} \cap_{b}^{\#}\left(\mathcal{X}_{b}^{\#}-\frac{\#}{b} \mathcal{R}_{b}^{\sharp}\right)\right) \\
& \overleftarrow{\times}{ }_{b}^{\sharp}\left(\mathcal{X}_{b}^{\sharp}, \mathcal{Y}_{b}^{\sharp}, \mathcal{R}_{b}^{\sharp}\right) \stackrel{\text { def }}{=}\left(\mathcal{X}_{b}^{\sharp} \cap_{b}^{\sharp}\left(\mathcal{R}_{b}^{\#} /_{b}^{\sharp} \mathcal{Y}_{b}^{\sharp}\right), \mathcal{Y}_{b}^{\sharp} \cap_{b}^{\sharp}\left(\mathcal{R}_{b}^{\#} /_{b}^{\sharp} \mathcal{X}_{b}^{\sharp}\right)\right) \\
& \overleftarrow{/}_{b}^{\sharp}\left(\mathcal{X}_{b}^{\sharp}, \mathcal{Y}_{b}^{\sharp}, \mathcal{R}_{b}^{\sharp}\right) \stackrel{\text { def }}{=}\left(\mathcal{X}_{b}^{\sharp} \cap_{b}^{\sharp}\left(\mathcal{S}_{b}^{\sharp} \times \frac{\sharp}{b} \mathcal{Y}_{b}^{\sharp}\right), \mathcal{Y}_{b}^{\sharp} \cap_{b}^{\sharp}\left(\left(\mathcal{X}_{b}^{\sharp} /{ }_{b}^{\sharp} \mathcal{S}_{b}^{\sharp}\right) \cup_{b}^{\#}[0,0]_{b}^{\sharp}\right)\right) \\
& \text { where } \mathcal{S}_{b}^{\sharp}= \begin{cases}\mathcal{R}_{b}^{\#} & \text { if } \mathbb{\square} \neq \mathbb{Z} \\
\mathcal{R}_{b}^{\#}+{ }_{b}^{\sharp}[-1,1]_{b}^{\#} & \text { if } \mathbb{\square}=\mathbb{Z} \text { (as / rounds) }\end{cases}
\end{aligned}
$$

Note: $\overleftarrow{\delta}_{b}^{\sharp}\left(\mathcal{X}_{b}^{\sharp}, \mathcal{Y}_{b}^{\sharp}, \mathcal{R}_{b}^{\sharp}\right)=\left(\mathcal{X}_{b}^{\sharp}, \mathcal{Y}_{b}^{\sharp}\right)$ is always sound (no refinement).

Interval backward operators

Applying the generic construction to the interval domain:

$$
\begin{aligned}
& \overleftarrow{\leq 0}_{b}^{\sharp}([a, b]) \stackrel{\text { def }}{=} \begin{cases}{[a, \min (b, 0)]} & \text { if } a \geq 0 \\
\perp_{b}^{\sharp} & \text { otherwise }\end{cases} \\
& \overleftarrow{-}_{b}^{\sharp}([a, b],[r, s]) \stackrel{\text { def }}{=}[a, b] \cap_{b}^{\sharp}[-s,-r] \\
& \overleftarrow{\Psi}_{b}^{\sharp}([a, b],[c, d],[r, s]) \stackrel{\text { def }}{=}\left([a, b] \cap_{b}^{\sharp}[r-d, s-c],\right. \\
& \left.[c, d] \cap_{b}^{\sharp}[r-b, s-a]\right)
\end{aligned}
$$

Generic non-relational backward assignment

Abstract function: $\quad \overleftarrow{C}^{\sharp} \llbracket \mathrm{V}:=e \rrbracket\left(\mathcal{X}^{\sharp}, \mathcal{R}^{\sharp}\right)$
over-approximates $\gamma\left(\mathcal{X}^{\sharp}\right) \cap \overleftarrow{C} \llbracket \mathrm{~V}:=e \rrbracket \gamma\left(\mathcal{R}^{\sharp}\right)$ given:

- an abstract pre-condition $\mathcal{X} \sharp$ to refine,
- according to a given abstract post-condition \mathcal{R}^{\sharp}.

Algorithm: similar to the abstract test

- annotate variable leaves based on $\mathcal{X}^{\sharp} \cap^{\sharp}\left(\mathcal{R}^{\sharp}\left[\mathrm{V} \mapsto \mathrm{T}_{b}^{\sharp}\right]\right)$;
- evaluate bottom-up using forward operators $\diamond_{b}^{\#}$;
- intersect the root with $\mathcal{R}^{\sharp}(\mathrm{V})$;
- refine top-down using backward operators $\overleftarrow{\delta}_{b}^{\#}$;
- return \mathcal{X}^{\sharp} intersected with values at variable leaves.

Note:

- local iterations can also be used
- fallback: $\overleftarrow{C}^{\sharp} \llbracket \mathrm{V}:=e \rrbracket\left(\mathcal{X}^{\sharp}, \mathcal{R}^{\sharp}\right)=\mathcal{X}^{\sharp} \cap^{\sharp}\left(\mathcal{R}^{\sharp}\left[\mathrm{V} \mapsto \mathrm{T}_{b}^{\sharp}\right]\right)$

Interval backward assignment example

Example: $\overleftarrow{C}^{\sharp} \llbracket \mathrm{X}:=\mathrm{X}+\mathrm{Y}-\mathrm{Z} \rrbracket\left(\mathcal{X}^{\sharp}, \mathcal{R}^{\sharp}\right)$ with $\mathcal{X}^{\sharp}=\{\mathrm{X} \mapsto[0,10], \mathrm{Y} \mapsto[2,10], \mathrm{Z} \mapsto[1,5]\}$ and $\mathcal{R}^{\sharp}=\{\mathrm{X} \mapsto[-6,6], \mathrm{Y} \mapsto[2,10], \mathrm{Z} \mapsto[2,6]\}$

Interval widening

Widening on non-relational domains:
Given a value widening ∇_{b} : $\mathcal{B}^{\sharp} \times \mathcal{B}^{\sharp} \rightarrow \mathcal{B}^{\sharp}$, we extend it point-wisely into a widening $\nabla: \mathcal{D}^{\sharp} \times \mathcal{D}^{\sharp} \rightarrow \mathcal{D}^{\sharp}$:

$$
\mathcal{X}^{\sharp} \nabla \mathcal{Y}^{\sharp} \stackrel{\text { def }}{=} \lambda \mathrm{V} \cdot\left(\mathcal{X}^{\sharp}(\mathrm{V}) \nabla_{b} \mathcal{Y}^{\sharp}(\mathrm{V})\right)
$$

Interval widening example:
$\perp^{\sharp} \quad \nabla_{b} \quad X^{\sharp} \stackrel{\text { def }}{=} X^{\sharp}$
$[a, b] \quad \nabla_{b} \quad[c, d] \stackrel{\text { def }}{=}\left[\left\{\begin{array}{ll}a & \text { if } a \leq c \\ -\infty & \text { otherwise }\end{array},\left\{\begin{array}{ll}b & \text { if } b \geq d \\ +\infty & \text { otherwise }\end{array}\right]\right.\right.$
Unstable bounds are set to $\pm \infty$.

Analysis with widening example

Analysis example with $\mathcal{W}=\{2\}$

ℓ	$\mathcal{X}_{\ell}^{\sharp 0}$	$\mathcal{X}_{\ell}^{\sharp 1}$	$\mathcal{X}_{\ell}^{\sharp 2}$	$\mathcal{X}_{\ell}^{\sharp 3}$	$\mathcal{X}_{\ell}^{\sharp 4}$	$\mathcal{X}_{\ell}^{\sharp 5}$
1	$\top \sharp$					
2∇	\perp^{\sharp}	$=0$	$=0$	≥ 0	≥ 0	≥ 0
3	\perp^{\sharp}	$\perp^{\#}$	$=0$	$=0$	$\in[0,39]$	$\in[0,39]$
4	\perp^{\sharp}	$\perp^{\#}$	$\perp^{\#}$	\perp^{\sharp}	≥ 40	≥ 40

More precisely, at the widening point:

$$
\begin{aligned}
& \mathcal{X}_{2}^{\sharp 1}=\perp^{\sharp} \nabla_{b}\left([0,0] \cup_{b}^{\sharp} \perp^{\sharp}\right)=\perp^{\sharp} \quad \nabla_{b}[0,0]=[0,0] \\
& \mathcal{X}_{2}^{\sharp 2}=[0,0] \quad \nabla_{b}\left([0,0] \cup_{b}^{\sharp} \perp^{\sharp}\right)=[0,0] \quad \nabla_{b}[0,0]=[0,0] \\
& \mathcal{X}_{2}^{\sharp 3}=[0,0] \quad \nabla_{b}\left([0,0] \cup_{b}^{\sharp}[1,1]\right)=[0,0] \quad \nabla_{b}[0,1]=[0,+\infty[\\
& \mathcal{X}_{2}^{\sharp 4}=\left[0,+\infty\left[\nabla_{b}\left([0,0] \cup_{b}^{\sharp}[1,40]\right)=\left[0,+\infty\left[\nabla_{b}[0,40]=[0,+\infty[\right.\right.\right.\right.
\end{aligned}
$$

Note that the most precise interval abstraction would be $X \in[0,40]$ at 2 , and $X=40$ at 4 .

Influence of the widening point and iteration strategy

Changing \mathcal{W} changes the analysis result

Example: The analysis is less precise for $\mathcal{W}=\{3\}$.

ℓ	$\mathcal{X}_{\ell}^{\sharp 1}$	$\mathcal{X}_{\ell}^{\sharp 2}$	$\mathcal{X}_{\ell}^{\sharp 3}$	$\mathcal{X}_{\ell}^{\sharp 4}$	$\mathcal{X}_{\ell}^{\sharp 5}$	$\mathcal{X}_{\ell}^{\sharp 6}$
1	T\#	T\#	T\#	T\#	T\#	T\#
2	$=0$	$=0$	$\in[0,1]$	$\in[0,1]$	≥ 0	≥ 0
3∇	$\perp^{\#}$	$=0$	$=0$	≥ 0	≥ 0	≥ 0
4	$\perp^{\#}$	L\#	$\perp^{\#}$	$\perp^{\#}$	$\perp^{\#}$	≥ 40

Intuition: extrapolation to $+\infty$ is no longer contained by the tests.

Chaotic iterations

Changing the iteration order changes the analysis result in the presence of a widening.

Narrowing

Using a widening makes the analysis less precise.
Some precision can be retrieved by using a narrowing \triangle.

Definition: narrowing \triangle

Binary operator $\mathcal{D}^{\sharp} \times \mathcal{D}^{\sharp} \rightarrow \mathcal{D}^{\sharp}$ such that:

- $\left(\mathcal{X}^{\sharp} \cap^{\sharp} \mathcal{Y}^{\sharp}\right) \sqsubseteq\left(\mathcal{X}^{\sharp} \triangle \mathcal{Y}^{\sharp}\right) \sqsubseteq \mathcal{X}^{\sharp}$,
- for all sequences $\left(\mathcal{X}_{i}^{\sharp}\right)$, the decreasing sequence $\left(\mathcal{Y}_{i}^{\sharp}\right)$
defined by $\begin{cases}\mathcal{Y}_{0}^{\sharp} & \stackrel{\text { def }}{=} \mathcal{X}_{0}^{\sharp} \\ \mathcal{Y}_{i+1}^{\sharp} & \stackrel{\text { def }}{=} \\ \mathcal{Y}_{i}^{\sharp} \Delta \mathcal{X}_{i+1}^{\sharp}\end{cases}$
is stationary.
This is not the dual of a widening!

Narrowing examples

Trivial narrowing:
$\mathcal{X}^{\sharp} \triangle \mathcal{Y}^{\sharp} \stackrel{\text { def }}{=} \mathcal{X}^{\sharp}$ is a correct narrowing.
Finite-time intersection narrowing:
$\mathcal{X}^{\sharp i} \Delta \mathcal{Y}^{\sharp} \stackrel{\text { def }}{=} \begin{cases}\mathcal{X}^{\sharp i} \cap^{\sharp} \mathcal{Y}^{\sharp} & \text { if } i \leq N \\ \mathcal{X}^{\sharp i} & \text { if } i>N\end{cases}$
Interval narrowing:
$[a, b] \Delta_{b}[c, d] \stackrel{\text { def }}{=}\left[\left\{\begin{array}{ll}c & \text { if } a=-\infty \\ a & \text { otherwise }\end{array},\left\{\begin{array}{ll}d & \text { if } b=+\infty \\ b & \text { otherwise }\end{array}\right]\right.\right.$
(refine only infinite bounds)
Point-wise extension to $\mathcal{D}^{\sharp}: \quad \mathcal{X}^{\sharp} \Delta \mathcal{Y}^{\sharp} \stackrel{\text { def }}{=} \lambda \mathrm{V} .\left(\mathcal{X}^{\sharp}(\mathrm{V}) \Delta_{b} \mathcal{Y}^{\sharp}(\mathrm{V})\right)$

Iterations with narrowing

Let $\mathcal{X}_{\ell}^{\sharp \delta}$ be the result after widening stabilisation, i.e.:

$$
\mathcal{X}_{\ell}^{\sharp \delta} \sqsupseteq\left\{\begin{array}{cl}
T^{\sharp} & \text { if } \ell=e \\
\bigcup_{\left(\ell^{\prime}, c, \ell\right) \in A}^{\sharp} C^{\sharp} \llbracket c \rrbracket \mathcal{X}_{\ell^{\prime}}^{\sharp \delta} & \text { if } \ell \neq e
\end{array}\right.
$$

The following sequence is computed:

- the sequence $\left(\mathcal{Y}_{\ell}^{\sharp i}\right)$ is decreasing and converges in finite time,
- all $\left(\mathcal{Y}_{\ell}^{\sharp i}\right)$ are solutions of the abstract semantic system.

Analysis with narrowing example

Example with $\mathcal{W}=\{2\}$

Narrowing at 2 gives:

$$
\begin{aligned}
& \mathcal{Y}_{2}^{\sharp 1}=\left[0,+\infty\left[\Delta_{b}\left([0,0] \cup_{b}^{\sharp}[1,40]\right)=\left[0,+\infty\left[\Delta_{b}[0,40]=[0,40]\right.\right.\right.\right. \\
& \mathcal{Y}_{2}^{\sharp 2}=[0,40] \Delta_{b}\left([0,0] \cup_{b}^{\sharp}[1,40]\right)=[0,40] \Delta_{b}[0,40]=[0,40]
\end{aligned}
$$

Then $\mathcal{Y}_{2}^{\sharp 2}: \mathrm{X} \in[0,40]$ gives $\mathcal{Y}_{4}^{\sharp 3}: \mathrm{X}=40$.
We found the most precise invariants!

Improving the widening

Example of imprecise analysis

intervals	extended signs	intervals with ∇_{b}^{\prime}	
ℓ	with ∇_{b}	$T \neq \#$	$T \sharp$
2∇	$X \leq 40$	$X \geq 0$	$X \in[0,40]$
3	$X \leq 40$	$X>0$	$X \in[0,40]$
4	$X=0$	$X=0$	$X=0$

The interval domain cannot prove that $\mathrm{X} \geq 0$ at 2 , while the (less powerful) sign domain can!

Solution: improve the interval widening
$[a, b] \nabla_{b}^{\prime}[c, d] \stackrel{\text { def }}{=}\left[\left\{\begin{array}{ll}a & \text { if } a \leq c \\ 0 & \text { if } 0 \leq c<a \\ -\infty & \text { otherwise }\end{array} \quad, \quad\left\{\begin{array}{ll}b & \text { if } b \geq d \\ 0 & \text { if } 0 \geq b>d \\ +\infty & \text { otherwise }\end{array}\right]\right.\right.$
(∇_{b}^{\prime} checks the stability of 0)

Widening with thresholds

Analysis problem:

```
X:=0;
while - 1=1 do
    if [0,1]=0 then
        X:=X+1;
        if X>40 then X:=0 fi
    fi
done
```

We wish to prove that $X \in[0,40]$ at \bullet.

- Widening at - finds the loop invariant $X \in[0,+\infty[$.

$$
\mathcal{X}_{*}^{\sharp}=[0,0] \nabla_{b}([0,0] \cup \sharp[0,1])=[0,0] \nabla_{b}[0,1]=[0,+\infty[
$$

- Narrowing is unable to refine the invariant:
$\mathcal{Y}_{\bullet}^{\sharp}=\left[0,+\infty\left[\Delta_{b}([0,0] \cup \sharp[0,+\infty[)=[0,+\infty[\right.\right.$
(the code that limits X is not executed at every loop iteration)

Widening with thresholds (cont.)

Solution:

Choose a finite set T of thresholds containing $+\infty$ and $-\infty$.

Definition: widening with thresholds ∇_{b}^{T}

$$
\begin{aligned}
{[a, b] \nabla_{b}^{T}[c, d] \stackrel{\text { def }}{=} } & {\left[\left\{\begin{array}{ll}
a & \text { if } a \leq c \\
\max \{x \in T \mid x \leq c\} & \text { otherwise }
\end{array}\right.\right.} \\
& \left\{\begin{array}{ll}
b & \text { if } b \geq d \\
\min \{x \in T \mid x \geq d\} & \text { otherwise }
\end{array}\right]
\end{aligned}
$$

The widening tests and stops at the first stable bound in T.

Widening with thresholds (cont.)

Applications:

- On the previous example, we find: $\mathrm{X} \in[0, \min \{x \in T \mid x \geq 40\}]$.
- Useful when it is easy to find a 'good' set T. Example: array bound-checking
- Useful if an over-approximation of the bound is sufficient. Example: arithmetic overflow checking

Limitations: only works if some non- ∞ bound in T is stable.
Example: with $T=\{5,15\}$

while $1=1$ do
$X:=X+1 ;$ if $X>10$ then $X=0 \mathrm{fi}$ while $1=1$ do done
$X:=X+1 ;$ if $X<>10$ then $X=0 ~ f i ~$ done
15 is stable stable bound

The congruence domain

The congruence lattice

$$
\begin{aligned}
& \mathcal{B}^{\sharp} \stackrel{\text { def }}{=}\{(a \mathbb{Z}+b) \mid a \in \mathbb{N}, b \in \mathbb{Z}\} \cup\left\{\perp_{b}^{\sharp}\right\} \\
& 1 \mathbb{Z}+0
\end{aligned}
$$

Introduced by Granger [Gran89].
We take $\mathbb{\square}=\mathbb{Z}$.

The congruence lattice (cont.)

Concretization:

$$
\gamma_{b}\left(\mathcal{X}_{b}^{\sharp}\right) \stackrel{\text { def }}{=} \begin{cases}\{a k+b \mid k \in \mathbb{Z}\} & \text { if } \mathcal{X}_{b}^{\sharp}=(a \mathbb{Z}+b) \\ \emptyset & \text { if } \mathcal{X}_{b}^{\sharp}=\perp_{b}^{\sharp}\end{cases}
$$

Note that $\gamma(0 \mathbb{Z}+b)=\{b\}$.
γ_{b} is not injective: $\gamma_{b}(2 \mathbb{Z}+1)=\gamma_{b}(2 \mathbb{Z}+3)$.

Definitions:

Given $x, x^{\prime} \in \mathbb{Z}, y, y^{\prime} \in \mathbb{N}$, we define:

- $y / y^{\prime} \stackrel{\text { def }}{\Longleftrightarrow} y$ divides $y^{\prime}\left(\exists k \in \mathbb{N}, y^{\prime}=k y\right) \quad$ (note that $\forall y: y / 0$)
- $x \equiv x^{\prime}[y] \stackrel{\text { def }}{\Longleftrightarrow} y /\left|x-x^{\prime}\right| \quad$ (in particular, $x \equiv x^{\prime}[0] \Longleftrightarrow x=x^{\prime}$)
- \vee is the LCM, extended with $y \vee 0 \stackrel{\text { def }}{=} 0 \vee y \stackrel{\text { def }}{=} 0$
- \wedge is the GCD, extended with $y \wedge 0 \stackrel{\text { def }}{=} 0 \wedge y \stackrel{\text { def }}{=} y$
$(\mathbb{N}, /, \vee, \wedge, 1,0)$ is a complete distributive lattice.

Abstract congruence operators

Complete lattice structure on \mathcal{B}^{\sharp} :

- $(a \mathbb{Z}+b) \sqsubseteq_{b}\left(a^{\prime} \mathbb{Z}+b^{\prime}\right) \stackrel{\text { def }}{\Longleftrightarrow} a^{\prime} / a$ and $b \equiv b^{\prime}\left[a^{\prime}\right]$
- $T_{b}^{\sharp} \stackrel{\text { def }}{=}(1 \mathbb{Z}+0)$
- $(a \mathbb{Z}+b) \cup_{b}^{\sharp}\left(a^{\prime} \mathbb{Z}+b^{\prime}\right) \stackrel{\text { def }}{=}\left(a \wedge a^{\prime} \wedge\left|b-b^{\prime}\right|\right) \mathbb{Z}+b$
- $(a \mathbb{Z}+b) \cap_{b}^{\sharp}\left(a^{\prime} \mathbb{Z}+b^{\prime}\right) \stackrel{\text { def }}{=} \begin{cases}\left(a \vee a^{\prime}\right) \mathbb{Z}+b^{\prime \prime} & \text { if } b \equiv b^{\prime}\left[a \wedge a^{\prime}\right] \\ \perp_{b}^{\sharp} & \text { otherwise }\end{cases}$
$b^{\prime \prime}$ such that $b^{\prime \prime} \equiv b\left[a \vee a^{\prime}\right] \equiv b^{\prime}\left[a \vee a^{\prime}\right]$ is given
by Bezout's Theorem.
Galois connection: $\quad \alpha_{b}(\mathcal{X})=\bigcup_{c \in \mathcal{X}}^{\sharp}(0 \mathbb{Z}+c)$
(up to equivalence $a \mathbb{Z}+b \equiv a^{\prime} \mathbb{Z}+b^{\prime} \stackrel{\text { def }}{\Longleftrightarrow} a=a^{\prime} \wedge b \equiv b^{\prime}[a]$)

Abstract congruence operators (cont.)

Arithmetic operators:

Abstract congruence operators (cont.)

Test operators:

$$
\overleftarrow{\leq 0}_{b}^{\sharp}(a \mathbb{Z}+b) \quad \stackrel{\text { def }}{=} \quad \begin{cases}\perp_{b}^{\sharp} & \text { if } a=0, b>0 \\ a \mathbb{Z}+b & \text { otherwise }\end{cases}
$$

Note: better than the generic $\left.\left.\overleftarrow{\leq} 0_{b}^{\sharp}\left(\mathcal{X}_{b}^{\sharp}\right) \stackrel{\text { def }}{=} \mathcal{X}_{b}^{\sharp} \cap_{b}^{\sharp}\right]-\infty, 0\right]_{b}^{\sharp}=\mathcal{X}_{b}^{\sharp}$

Extrapolation operators:

- no infinite increasing chain \Longrightarrow no need for ∇
- infinite decreasing chains $\Longrightarrow \Delta$ needed

$$
(a \mathbb{Z}+b) \Delta_{b}\left(a^{\prime} \mathbb{Z}+b^{\prime}\right) \stackrel{\text { def }}{=} \begin{cases}a^{\prime} \mathbb{Z}+b^{\prime} & \text { if } a=1 \\ a \mathbb{Z}+b & \text { otherwise }\end{cases}
$$

Note: $\mathcal{X}^{\sharp} \Delta \mathcal{Y}^{\sharp} \stackrel{\text { def }}{=} \mathcal{X}^{\sharp}$ is always a narrowing.

Reduced products of domains

Non-reduced product of domains

Product representation:

Cartesian product $\mathcal{D}_{1 \times 2}^{\sharp}$ of \mathcal{D}_{1}^{\sharp} and $\mathcal{D}_{2}^{\#}$:

- $\mathcal{D}_{1 \times 2}^{\sharp} \stackrel{\text { def }}{=} \mathcal{D}_{1}^{\sharp} \times \mathcal{D}_{2}^{\#}$
- $\gamma_{1 \times 2}\left(\mathcal{X}_{1}^{\sharp}, \mathcal{X}_{2}^{\sharp}\right) \stackrel{\text { def }}{=} \gamma_{1}\left(\mathcal{X}_{1}^{\sharp}\right) \cap \gamma_{2}\left(\mathcal{X}_{2}^{\sharp}\right)$
- $\alpha_{1 \times 2}(\mathcal{X}) \stackrel{\text { def }}{=}\left(\alpha_{1}(\mathcal{X}), \alpha_{2}(\mathcal{X})\right)$
- $\left(\mathcal{X}_{1}^{\sharp}, \mathcal{X}_{2}^{\sharp}\right) \sqsubseteq_{1 \times 2}\left(\mathcal{Y}_{1}^{\sharp}, \mathcal{Y}_{2}^{\sharp}\right) \stackrel{\text { def }}{\Longleftrightarrow} \mathcal{X}_{1}^{\sharp} \sqsubseteq_{1} \mathcal{Y}_{1}^{\sharp}$ and $\mathcal{X}_{2}^{\sharp} \sqsubseteq_{2} \mathcal{Y}_{2}^{\sharp}$

Abstract operators: performed in parallel on both components:

- $\left(\mathcal{X}_{1}^{\sharp}, \mathcal{X}_{2}^{\sharp}\right) \cup_{1 \times 2}^{\sharp}\left(\mathcal{Y}_{1}^{\sharp}, \mathcal{Y}_{2}^{\sharp}\right) \stackrel{\text { def }}{=}\left(\mathcal{X}_{1}^{\sharp} \cup_{1}^{\sharp} \mathcal{Y}_{1}^{\sharp}, \mathcal{X}_{2}^{\sharp} \cup_{2}^{\#} \mathcal{Y}_{2}^{\sharp}\right)$
- $\left(\mathcal{X}_{1}^{\sharp}, \mathcal{X}_{2}^{\sharp}\right) \nabla_{1 \times 2}\left(\mathcal{Y}_{1}^{\sharp}, \mathcal{Y}_{2}^{\sharp}\right) \stackrel{\text { def }}{=}\left(\mathcal{X}_{1}^{\sharp} \nabla_{1} \mathcal{Y}_{1}^{\sharp}, \mathcal{X}_{2}^{\sharp} \nabla_{2} \mathcal{Y}_{2}^{\sharp}\right)$
- $C^{\sharp} \llbracket c \rrbracket 1 \times 2\left(\mathcal{X}_{1}^{\sharp}, \mathcal{X}_{2}^{\sharp}\right) \stackrel{\text { def }}{=}\left(C^{\sharp} \llbracket c \rrbracket_{1}\left(\mathcal{X}_{1}^{\sharp}\right), C^{\sharp} \llbracket c \rrbracket_{2}\left(\mathcal{X}_{2}^{\sharp}\right)\right)$

Non-reduced product example

The product analysis is no more precise than two separate analyses.
Example: interval-congruence product:

$$
\begin{aligned}
& \mathrm{X}:=1 \text {; } \\
& \text { while } \mathrm{X}-10<=0 \text { do } \\
& \quad \mathrm{X}:=\mathrm{X}+2 \\
& \text { done; } \\
& \text { if } \mathrm{X}-12>=0 \text { then } \mathrm{X}:=0^{\star} \text { fi }
\end{aligned}
$$

	interval	congruence	product
\bullet	$\mathrm{X} \in[11,12]$	$\mathrm{X} \equiv 1[2]$	$\mathrm{X}=11$
\bullet	$\mathrm{X}=12$	$\mathrm{X} \equiv 1[2]$	\emptyset
\star	$\mathrm{X}=0$	$\mathrm{X}=0$	$\mathrm{X}=0$

We cannot prove that the if branch is never taken!

Fully-reduced product

Definition:

Given the Galois connections $\left(\alpha_{1}, \gamma_{1}\right)$ and $\left(\alpha_{2}, \gamma_{2}\right)$ on \mathcal{D}_{1}^{\sharp} and $\mathcal{D}_{2}^{\#}$ we define the reduction operator ρ as:

$$
\begin{aligned}
& \rho: \mathcal{D}_{1 \times 2}^{\sharp} \rightarrow \mathcal{D}_{1 \times 2}^{\sharp} \\
& \rho\left(\mathcal{X}_{1}^{\sharp}, \mathcal{X}_{2}^{\sharp}\right) \stackrel{\text { def }}{=}\left(\alpha_{1}\left(\gamma_{1}\left(\mathcal{X}_{1}^{\sharp}\right) \cap \gamma_{2}\left(\mathcal{X}_{2}^{\sharp}\right)\right), \alpha_{2}\left(\gamma_{1}\left(\mathcal{X}_{1}^{\sharp}\right) \cap \gamma_{2}\left(\mathcal{X}_{2}^{\sharp}\right)\right)\right)
\end{aligned}
$$

ρ propagates information between domains.
Application:
We can reduce the result of each abstract operator, except ∇ :

- $\left(\mathcal{X}_{1}^{\sharp}, \mathcal{X}_{2}^{\sharp}\right) \cup_{1 \times 2}^{\sharp}\left(\mathcal{Y}_{1}^{\sharp}, \mathcal{Y}_{2}^{\sharp}\right) \stackrel{\text { def }}{=} \rho\left(\mathcal{X}_{1}^{\sharp} \cup_{1}^{\sharp} \mathcal{Y}_{1}^{\sharp}, \mathcal{X}_{2}^{\sharp} \cup_{2}^{\sharp} \mathcal{Y}_{2}^{\sharp}\right)$,
- $C^{\sharp} \llbracket c \rrbracket_{1 \times 2}\left(\mathcal{X}_{1}^{\sharp}, \mathcal{X}_{2}^{\sharp}\right) \stackrel{\text { def }}{=} \rho\left(C^{\sharp} \llbracket c \rrbracket_{1}\left(\mathcal{X}_{1}^{\sharp}\right), C^{\sharp} \llbracket c \rrbracket_{2}\left(\mathcal{X}_{2}^{\sharp}\right)\right)$.

We refrain from reducing after a widening ∇, this may jeopardize the convergence (octagon domain example).

Fully-reduced product example

Reduction example: between the interval and congruence domains:
Noting: $\quad a^{\prime} \stackrel{\text { def }}{=} \min \{x \geq a \mid x \equiv d[c]\}$

$$
b^{\prime} \stackrel{\text { def }}{=} \max \{x \leq b \mid x \equiv d[c]\}
$$

We get:

$$
\rho_{b}([a, b], c \mathbb{Z}+d) \stackrel{\text { def }}{=} \begin{cases}\left(\perp_{b}^{\sharp}, \perp_{b}^{\sharp}\right) & \text { if } a^{\prime}>b^{\prime} \\ \left(\left[a^{\prime}, a^{\prime}\right], 0 \mathbb{Z}+a^{\prime}\right) & \text { if } a^{\prime}=b^{\prime} \\ \left(\left[a^{\prime}, b^{\prime}\right], c \mathbb{Z}+d\right) & \text { if } a^{\prime}<b^{\prime}\end{cases}
$$

extended point-wisely to ρ on \mathcal{D}^{\sharp}.
Application:

- $\rho_{b}([10,11], 2 \mathbb{Z}+1)=([11,11], 0 \mathbb{Z}+11)$
(proves that the branch is never taken on our example)
- $\rho_{b}([1,3], 4 \mathbb{Z})=\left(\perp_{b}^{\sharp}, \perp_{b}^{\sharp}\right)$

Partially-reduced product

Definition: of a partial reduction:
any function $\rho: \mathcal{D}_{1 \times 2}^{\sharp} \rightarrow \mathcal{D}_{1 \times 2}^{\sharp}$ such that:
$\left(\mathcal{Y}_{1}^{\sharp}, \mathcal{Y}_{2}^{\sharp}\right)=\rho\left(\mathcal{X}_{1}^{\sharp}, \mathcal{X}_{2}^{\sharp}\right) \Longrightarrow\left\{\begin{array}{l}\gamma_{1 \times 2}\left(\mathcal{Y}_{1}^{\sharp}, \mathcal{Y}_{2}^{\sharp}\right)=\gamma_{1 \times 2}\left(\mathcal{X}_{1}^{\sharp}, \mathcal{X}_{2}^{\sharp}\right) \\ \gamma_{1}\left(\mathcal{Y}_{1}^{\sharp}\right) \subseteq \gamma_{1}\left(\mathcal{X}_{1}^{\sharp}\right) \\ \gamma_{2}\left(\mathcal{Y}_{2}^{\sharp}\right) \subseteq \gamma_{2}\left(\mathcal{X}_{2}^{\sharp}\right)\end{array}\right.$
Useful when:

- there is no Galois connection, or
- a full reduction exists but is expensive to compute.

Partial reduction example:

$$
\rho\left(\mathcal{X}_{1}^{\sharp}, \mathcal{X}_{2}^{\sharp}\right) \stackrel{\text { def }}{=} \begin{cases}\left(\perp^{\sharp}, \perp^{\sharp}\right) & \text { if } \mathcal{X}_{1}^{\sharp}=\perp^{\sharp} \text { or } \mathcal{X}_{2}^{\sharp}=\perp^{\sharp} \\ \left(\mathcal{X}_{1}^{\sharp}, \mathcal{X}_{2}^{\sharp}\right) & \text { otherwise }\end{cases}
$$

(works on all domains)
For more complex examples, see [Blan03].

Bibliography

Bibliography

[Anco10] C. Ancourt, F. Coelho \& F. Irigoin. A modular static analysis approach to affine loop invariants detection. In Proc. NSAD'10, ENTCS, Elsevier, 2010.
[Berd07] J. Berdine, A. Chawdhary, B. Cook, D. Distefano \&
P. O'Hearn. Variance analyses from invariances analyses. In

Proc. POPL'07 211-224, ACM, 2007.
[Blan03] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux \& X. Rival. A static analyzer for large safety-critical software. In Proc. PLDI'03, 196-207, ACM, 2003.
[Bour93a] F. Bourdoncle. Efficient chaotic iteration strategies with widenings. In Proc. FMPA'93, LNCS 735, 128-141, Springer, 1993.
[Bour93b] F. Bourdoncle. Assertion-based debugging of imperative programs by abstract interpretation. In Proc. ESEC'93, 501-516, Springer, 1993.

Bibliography (cont.)

[Cous76] P. Cousot \& R. Cousot. Static determination of dynamic properties of programs. In Proc. ISP'76, Dunod, 1976.
[Dor01] N. Dor, M. Rodeh \& M. Sagiv. Cleanness checking of string manipulations in C programs via integer analysis. In Proc. SAS'01, LNCS 2126, 194-212, Springer, 2001.
[Girb06] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler \& O. Temam. Semi-automatic composition of loop transformations for deep parallelism and memory hierarchies. In J. of Parallel Prog., 34(3):261-317, 2006.
[Gran89] P. Granger. Static analysis of arithmetical congruences. In JCM, 3(4-5):165-190, 1989.
[Gran92] P. Granger. Improving the results of static analyses of programs by local decreasing iterations. In Proc. FSTTCSC'92, LNCS 652, 68-79, Springer, 1992.

Bibliography (cont.)

[Gran97] P. Granger. Static analyses of congruence properties on rational numbers. In Proc. SAS'97, LNCS 1302, 278-292, Springer, 1997.
[Jean09] B. Jeannet \& A. Miné. Apron: A library of numerical abstract domains for static analysis. In Proc. CAV'09, LNCS 5643, 661-667, Springer, 2009, http://apron.cri.ensmp.fr/library.
[Mine06] A. Miné. Field-sensitive value analysis of embedded C programs with union types and pointer arithmetics. In Proc. LCTES'06, 54-63, ACM, 2006.
[Vene02] A. Venet. Nonuniform alias analysis of recursive data structures and arrays. In Proc. SAS'02, LNCS 2477, 36-51, Springer, 2002.

