Memory abstraction 1 MPRI — Cours 2.6 "Interprétation abstraite : application à la vérification et à l'analyse statique"

Xavier Rival

INRIA, ENS, CNRS

Oct, 19th. 2016

Outline

Memory models

- Towards memory properties
- Formalizing concrete memory states
- Treatment of errors
- Language semantics

2) Abstraction of arrays

- 3 Basic pointer analyses
- 4 Three valued logic heap abstraction

5 Conclusion

Overview of the lecture

So far, we have shown numeric abstract domains

- non relational: intervals, congruences...
- relational: polyhedra, octagons, ellipsoids...

• How to deal with non purely numeric states ?

• How to reason about complex data-structures ?

 \Rightarrow a very broad topic, and two lectures:

This lecture

- overview memory models and memory properties
- abstraction of arrays
- abstraction of pointer structures / shape analysis

Next lecture: abstractions based on separation logic

Assumptions

Imperative programs viewed as transition systems:

- set of control states: L (program points)
- set of variables: X (all assumed globals)
- set of values: V (so far: V consists of integers (or floats) only)
- set of memory states: \mathbb{M} (so far: $\mathbb{M} = \mathbb{X} \to \mathbb{V}$)
- error state: Ω
- states: \mathbb{S}

$$\begin{array}{rcl} \mathbb{S} & = & \mathbb{L} \times \mathbb{M} \\ \mathbb{S}_{\Omega} & = & \mathbb{S} \uplus \{ \Omega \} \end{array}$$

• transition relation:

 $(\rightarrow)\subseteq \mathbb{S}\times \mathbb{S}_\Omega$

Abstraction of sets of states described by domain \mathbb{D}^{\sharp} and concretization $\gamma : (\mathbb{D}^{\sharp}, \sqsubseteq^{\sharp}) \longrightarrow (\mathcal{P}(\mathbb{S}), \subseteq)$

Programs: syntax

We start from the same language syntax and will extend l-values:

1	::= 	I-valules x 	$(x \in X)$ we will add other kinds of l-values pointers, array dereference
е	::=	expressions	
		С	$(c\in\mathbb{V})$
	Í	1	(Ivalue)
	İ	$\mathbf{e} \oplus \mathbf{e}$	(arithoperation, comparison)
s	::=	statements	
		l = e	(assignment)
		s;s;	(sequence)
	i	if(e){s}	(condition)
	ĺ	while(e){s}	

Programs: semantics

We assume classical definitions for:

- I-values: $\llbracket l \rrbracket : \mathbb{M} \to \mathbb{X}$
- expressions: $\llbracket e \rrbracket : \mathbb{M} \to \mathbb{V}$
- programs and statements:
 - we assume a label before each statement
 - each statement defines a set of transition (\rightarrow)

In this course, we rely on the usual reachable states semantics

Reachable states semantics

The reachable states are computed as $[\![\mathcal{S}]\!]_{\mathcal{R}} = I\!fpF$ where

$$\begin{array}{rccc} F: & \mathcal{P}(\mathbb{S}) & \longrightarrow & \mathcal{P}(\mathbb{S}) \\ & X & \longmapsto & \mathbb{S}_{\mathcal{I}} \cup \{s \in \mathbb{S} \mid \exists s' \in X, \ s' \to s\} \end{array}$$

Programs: semantics abstraction

We assume a memory abstraction:

- $\bullet\,$ memory abstract domain $\mathbb{D}_{\mathrm{mem}}^{\sharp}$
- concretization function $\gamma_{mem}: \mathbb{D}_{mem}^{\sharp} \to \mathcal{P}(\mathbb{M})$

Reachable states abstractionWe construct $\mathbb{D}^{\sharp} = \mathbb{L} \to \mathbb{D}^{\sharp}_{mem}$ and: $\gamma : \mathbb{D}^{\sharp} \longrightarrow \mathcal{P}(\mathbb{S})$ $\chi^{\sharp} \longmapsto \{(\ell, m) \in \mathbb{S} \mid m \in \gamma_{mem}(X^{\sharp}(\ell))\}$

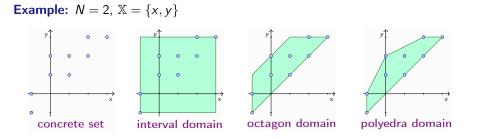
The whole question is how do we choose $\mathbb{D}_{mem}^{\sharp}, \gamma_{mem}...$

- previous lectures: X is fixed and finite and, V is scalars (integers or floats), thus, $\mathbb{M} \equiv \mathbb{V}^n$
- today, we will extend the language and the abstractions

Abstraction of purely numeric memory states

Purely numeric case

- $\bullet~\mathbb{V}$ is a set of values of the same kind
- e.g., integers (\mathbb{Z}), machine integers ($\mathbb{Z} \cap [-2^{63}, 2^{63} 1]$)...
- If the set of variables is fixed, we can use any abstraction for $\mathbb{V}^{\mathcal{N}}$



Heterogeneous memory states

In real life languages, there are many kinds of values:

- scalars (integers of various sizes, boolean, floating-point values)...
- pointers, arrays...

Heterogeneous memory states

- **types:** *t*₀, *t*₁, . . .
- values: $\mathbb{V} = \mathbb{V}_{t_0} \uplus \mathbb{V}_{t_1} \uplus \ldots$

• finitely many variables; each has a fixed type: $\mathbb{X} = \mathbb{X}_{t_0} \uplus \mathbb{X}_{t_1} \uplus \dots$

• memory states:

$$\mathbb{M} = \mathbb{X}_{t_0} \to \mathbb{V}_{t_0} \times \mathbb{X}_{t_1} \to \mathbb{V}_{t_1} \dots$$

- At a later point, we will add pointers: t_0 denotes pointers, $\mathbb{V} = \ldots \uplus \mathbb{V}_{addr}$
- For the moment, we let t_0 be integers, and t_1 be booleans

Heterogeneous memory states: non relational abstraction

Principle: compose abstractions for sets of memory states of each type

Non relational abstraction of heterogeneous memory states

• $\mathbb{M} \equiv \mathbb{M}_0 \times \mathbb{M}_1 \times \ldots$ where $\mathbb{M}_i = \mathbb{X}_i \to \mathbb{V}_i$

• Concretization function (case with two types) $\gamma_{\mathrm{nr}}: \mathcal{P}(\mathbb{M}_0) \times \mathcal{P}(\mathbb{M}_1) \longrightarrow \mathcal{P}(\mathbb{M})$ $(m_0^{\sharp}, m_1^{\sharp}) \longmapsto \{(m_0, m_1) \mid \forall i, m_i \in m_i^{\sharp}\}$

Example: $\mathbb{V} = \mathbb{V}_{int} \uplus \mathbb{V}_{bool}$, thus, $\mathbb{M} = \mathbb{M}_{int} \times \mathbb{M}_{bool}$

Abstraction of $\mathcal{P}(\mathbb{X}_{int} \to \mathbb{V}_{int})$:

- intervals
- polyhedra...

Abstraction of $\mathcal{P}(\mathbb{X}_{bool} \rightarrow \mathbb{V}_{bool})$:

- lattice of boolean constants
- partitioning abstraction

Memory structures

- $\bullet\,$ To describe memories, the definition $\mathbb{M}=\mathbb{X}\to\mathbb{V}$ is too restrictive
- It ignores many ways of organizing data in the memory states

Common structures (non exhaustive list)

• Structures, records, tuples:

sequences of cells accessed with fields

• Arrays:

similar to structures; indexes are integers in [0, n-1]

• Pointers:

numeric values corresponding to the address of a memory cell

• Strings and buffers:

blocks with a sequence of elements and a terminating element (*e.g.*, *null character*)

• Closures (functional languages):

pointer to function code and (partial) list of arguments)

Specific properties to verify

Memory safety

Absence of memory errors (crashes, or undefined behaviors)

Pointer errors:

• Dereference of a null pointer / of an invalid pointer

Access errors:

• Out of bounds array access, buffer overruns (often used for attacks)

Invariance properties

Data should not become corrupted (values or structures...)

- Preservation of structures, e.g., lists should remain connected
- Preservation of invariants, e.g., of balanced trees

Properties to verify: examples

A program closing a list of file descriptors

```
\label{eq:list} \begin{array}{l} \label{eq:list} \mbox{//l points to a list} \\ \mbox{c = l;} \\ \mbox{while}(c \neq \mbox{NULL}) \{ \\ \mbox{close}(c \rightarrow \mbox{FD}); \\ \mbox{c = c } \rightarrow \mbox{next;} \\ \} \end{array}
```

Correctness properties

memory safety

- 1 is supposed to store all file descriptors at all times will its structure be preserved ? yes, no breakage of a next link
- O closure of all the descriptors

Examples of structure preservation properties

- Algorithms manipulating trees, lists...
- Libraries of algorithms on balanced trees
- Not guaranteed by the language !

e.g., balancing of Maps was wrong in the OCaml standard library...

A more realistic model

Not all memory cell corresponds to a variable

- a variable may correspond to several cells (structures...)
- dynamically allocated cells correspond to no variable at all...

Environment + Heap

- \bullet Addresses are values: $\mathbb{V}_{\mathrm{addr}} \subseteq \mathbb{V}$
- Environments $e \in \mathbb{E}$ map variables into their addresses
- Heaps $(h \in \mathbb{H})$ map addresses into values

\mathbb{E}	=	$\mathbb{X} \to \mathbb{V}_{\mathrm{addr}}$
\mathbb{H}	=	$\mathbb{V}_{\mathrm{addr}} \to \mathbb{V}$

h is actually only a partial function

• Memory states (or memories): $\mathbb{M} = \mathbb{E} \times \mathbb{H}$

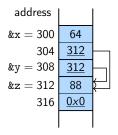
Avoid confusion between heap (function from addresses to values) and dynamic allocation space (often referred to as "heap")

Example of a concrete memory state (variables)

- $\bullet\,$ x and z are two list elements containing values 64 and 88, and where the former points to the latter
- y stores a pointer to z

Memory layout

(pointer values underlined)

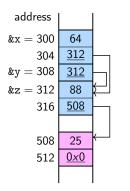


e :	x y z	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	300 308 312
<i>h</i> :		\mapsto	64 312 312 88 0

Example of a concrete memory state (variables + dyn. cell)

- same configuration
- + z points to a dynamically allocated list element (in purple)

Memory layout



e :	x y z	$\begin{array}{c} \mapsto \\ \mapsto \\ \mapsto \end{array}$	300 308 312
<i>h</i> :	300 304 308 312 316 508 512	$\begin{array}{c} \uparrow \\ \uparrow $	64 312 312 88 508 25 0

Extending the semantic domains

Some slight modifications to the semantics of the initial language:

- \bullet Values are addresses: $\mathbb{V}_{\mathrm{addr}} \subseteq \mathbb{V}$
- \bullet L-values evaluate into addresses: $[\![1]\!]:\mathbb{M}\to\mathbb{V}_{\mathrm{addr}}$

$$\llbracket x \rrbracket (e, h) = e(x)$$

• Semantics of expressions $[\![e]\!]:\mathbb{M}\to\mathbb{V},$ mostly unchanged

$$[1](e, h) = h([1](e, h))$$

• Semantics of assignment $l_0 : l := e; l_1 : ...:$

$$(l_0, e, h_0) \longrightarrow (l_1, e, h_1)$$

where

$$\mathit{h}_1 = \mathit{h}_0[\llbracket \mathtt{l} \rrbracket(\mathit{e}, \mathit{h}_0) \leftarrow \llbracket \mathtt{e} \rrbracket(\mathit{e}, \mathit{h}_0)$$

Realistic definitions of memory states

Our model is still not very accurate for most languages

- Memory cells do not all have the same size
- Memory management algorithms usually do not treat cells one by one, e.g., malloc returns a pointer to a block applying free to that pointer will dispose the whole block

Other refined models

- Partition of the memory in blocks with a base address and a size
- Partition of blocks into cells with a size
- Description of fields with an offset
- Description of pointer values with a base address and an offset

For a **very formal** description of concrete memory states: see **CompCert** project source files (Coq formalization)

Xavier Rival (INRIA, ENS, CNRS)

Language semantics: program crash

- In an abnormal situation, the program will crash
- Advantage: very clear semantics
- Disadvantage (for the compiler designer): dynamic checks are required

Error state

- Ω denotes an error configuration
- Ω is a **blocking**: $(\rightarrow) \subseteq \mathbb{S} \times ({\Omega} \uplus \mathbb{S})$

OCaml:

• out-of-bound array access:

Exception: Invalid_argument "index out of bounds".

• no notion of a null pointer

Java:

• exception in case of out-of-bound array access, null dereference: java.lang.ArrayIndexOutOfBoundsException

Xavier Rival (INRIA, ENS, CNRS)

Language semantics: undefined behaviors

- The behavior of the program is **not specified** when an abnormal situation is encountered
- Advantage: easy implementation (often architecture driven)
- Disadvantage: unintuitive semantics, errors hard to reproduce
- different compilers may make different choices...
- or in fact, make no choice at all (= let the program evaluate even when performing invalid actions)

Modeling of undefined behavior

- Very hard to capture what a program operation may modify
- Abnormal situation at (l_0, m_0) such that $\forall m_1 \in \mathbb{M}, \ (l_0, m_0) \rightarrow (l_1, m_1)$

• In C:

Array out-of-bound accesses and dangling pointer dereferences lead to undefined behavior (and potentially, memory corruption) whereas a null-pointer dereference always result into a crash

Xavier Rival (INRIA, ENS, CNRS)

Memory abstraction

Composite objects

How are contiguous blocks of information organized ?

Java objects, OCaml struct types

- sets of fields
- each field has a type
- no assumption on physical storage, no pointer arithmetics

C composite structures and unions

- physical mapping defined by the norm
- each field has a specified size and a specified alignment
- union types / casts: implementations may allow several views

Pointers and records / structures / objects

Many languages provide **pointers** or **references** and allow to manipulate **addresses**, but with different levels of expressiveness

What kind of objects can be referred to by a pointer ?

Pointers only to records / structures / objects

- Java: only pointers to objects
- OCaml: only pointers to records, structures...

Pointers to fields

C: pointers to any valid cell...
 struct {int a; int b} x;
 int * y = &(x · b);

Pointer arithmetics

What kind of operations can be performed on a pointer ?

Classical pointer operations

- Pointer dereference:
 - *p returns the contents of the cell of address p
- "Address of" operator: &x returns the address of variable x
- Can be analyzed with a **rather coarse pointer model** *e.g.*, symbolic base + symbolic field

Arithmetics on pointers, requiring a more precise model

• Addition of a numeric constant:

p + n: address contained in p + n times the size of the type of p Interaction with pointer casts...

• Pointer subtraction: returns a numeric offset

String operations

- Many **data-structures** can be handled in very different ways depending on the language
- Strings are just one example

OCaml strings

- Abstract type: representation not part of the language definition
- Type safe implementation
 - no buffer orverrun
 - exception for out of bound accesses
 - i.e., like arrays
- Most operations generate new string structures

C strings

- A string is an array of characters (char *) with a terminal zero character
- **Direct access** to string elements (array dereference)
- String copy operation strcpy(s,"foo_bar"):
 - copies "foo_bar" into s
 - undefined behavior if length of s < 7

Manual memory management

Allocation of unbounded memory space

- How are new memory blocks created by the program ?
- How do old memory blocks get freed ?

OCaml memory management

- implicit allocation when declaring a new object
- garbage collection: purely automatic process, that frees unreachable blocks

C memory management

- manual allocation: malloc operation returns a pointer to a new block
- manual de-allocation: free operation (block base address)

Manual memory management is not safe:

- memory leaks: growing unreachable memory region; memory exhaustion
- dangling pointers if freeing a block that is still referred to

Summary on the memory model

Choices to fix a memory model

- Clear error cases or undefined behaviors for analysis, a semantics with clear error cases is preferable
- Composite objects: structure fully exposed or not
- Pointers to objct fields: allowed or not
- **Pointer arithmetic**: allowed or not *i.e.*, are pointer values symbolic values or numeric values
- Memory management: automatic or manual

In this course, we start with a simple model, and add specific features one by one (arrays, pointers) in order to study corresponding abstractions

Outline

Memory models

Abstraction of arrays

- A micro language for manipulating arrays
- Verifying safety of array operations
- Abstraction of array contents
- Abstraction of array properties

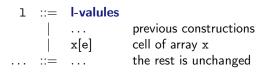
3 Basic pointer analyses

4 Three valued logic heap abstraction

5 Conclusion

Programs: extension with arrays

Extension of the syntax:



Extension of the states:

• if x is an **array variable**, and corresponds to an array of **length** *N*, we have *N* cells corresponding to it, with addresses

$$\{e(\mathbf{x})+0, e(\mathbf{x})+s, \ldots, e(\mathbf{x})+(N-1)\cdot s\}$$

where *s* is the **size of a base type value** (8 bytes for a 64-bit int)

Extension of the semantics, case of an array cell read:

$$\llbracket \mathbf{x}[\mathbf{e}] \rrbracket (e, h) = \begin{cases} e(\mathbf{x}) + i \cdot s & \text{if } \llbracket \mathbf{e} \rrbracket (e, h) = i \in [0, N-1] \\ \Omega & \text{otherwise} \end{cases}$$

Example

```
// a is an integer array of length n
bool s;
do{
    s = false;
    for(int i = 0; i < n - 1; i = i + 1){
        if(a[i] < a[i + 1]){
            swap(a, i, i + 1);
            s = true;
        }
    }
} while(s);
```

Properties to verify by static analysis

Safety property: the program will not crash (no index out of bound)

- **Contents property:** if the values in the array are in [0, 100] before, they are also in that range after
- **O Global array property:** at the end, the array is sorted

Outline

Memory models

Abstraction of arrays

- A micro language for manipulating arrays
- Verifying safety of array operations
- Abstraction of array contents
- Abstraction of array properties

3 Basic pointer analyses

4 Three valued logic heap abstraction

5 Conclusion

Expressing correctness of array operations

Goal of the analysis: establish safety

Prove the absence of runtime error due to array reads / writes, *i.e.*, that no Ω will ever arise

Safety verification:

- At label $\ell,$ the analysis computes a local abstraction of the set of reachable memory states $\Phi^\sharp(\ell)$
- If a statement at label ℓ performs array read or write operation x[e], where x is an array of length n, the analysis simply needs to establish ∀m ∈ γ_{mem}(Φ[♯](ℓ)), [[e]](m) ∈ [0, n − 1]
- In many cases, this can be done with an interval abstraction ... but not always (exercise: when would it not be enough ?)

For now, we ignore the array contents (exercise: when does this fail ?)

Verifying correctness of array operations

Case where intervals are enough:

```
// x array of length 40
int i = 0;
while(i < 40){
    printf("%d;",x[i]);
    i = i + 1;
}</pre>
```

- interval analysis establishes that i ∈ [0; 39] at the loop head
- this allows the verification of the code

Case where intervals cannot represent precise enough invariants:

```
//x array of length 40
inti,j;
if(0 ≤ i && i < j)
    if(j < 41)
        printf("%d;",x[i]);</pre>
```

- in the concrete, $\mathtt{i} \in [0,39]$ at the array access point
- to establish this in the abstract, after the first test, relation i < j need be represented
- e.g., octagon abstract domain

Outline

Memory models

Abstraction of arrays

- A micro language for manipulating arrays
- Verifying safety of array operations
- Abstraction of array contents
- Abstraction of array properties

3 Basic pointer analyses

4 Three valued logic heap abstraction

5 Conclusion

Elementwise abstraction

Goal of the analysis: abstract contents

Inferring invariants about the contents of the array

- e.g., that the values in the array are in a given range
- e.g., in order to verify the safety of x[y[i+j]+k] or y=n/x[i]

Assumption:

- One array t, of known, fixed length n (element size s)
- Scalar variables x_0, x_1, \dots, x_{m-1}

Elementwise abstraction

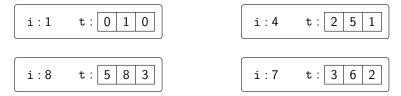
- Each concrete cell is mapped into one abstract cell
- \mathbb{D}^{\sharp} should simply be an abstraction of $\mathcal{P}(\mathbb{V}^{m+n})$ (relational or not)

Abstract and concrete memory cell addresses: $\mathbb{C}^{\sharp} = \mathbb{V}_{\text{addr}} = \{\& x_0, \dots, \& x_{m-1}\} \cup \{\& \overline{t}, \& \overline{t} + 1 \cdot s, \dots, \& \overline{t} + (n-1) \cdot s\}$

Xavier Rival (INRIA, ENS, CNRS)

Elementwise abstraction example

We consider the following set of concrete states:



The elementwise abstraction produces the following vectors:

(1, 0, 1, 0)	(4, 2, 5, 1)
(8, 5, 8, 3)	(7, 3, 6, 2)

After applying the **interval abstraction**, we get:

```
([1,8],[0,5],[1,8],[0,3])
```

This is **precise** but **costly** if arrays are big; also we need to know statically the length of arrays...

Xavier Rival (INRIA, ENS, CNRS)

Post-condition for an assignment: example 1

Assignment $t[0] = 6$ Pre-co	ondition:	t: [0,1] [1,2]	
--	-----------	---------	---------	--

• concrete pre-condition:

t:	1	1	
			_

• effect of the assignment in the concrete and post-condition:

t:	6	1	
			_

Thus, we obtain the **abstract post-condition**:

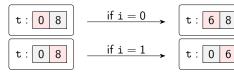
This analysis step is precise, but what if the index is not known so precisely ?

Post-condition for an assignment: example 2

Assignment t[i] = 6 | Pre-condition: $i \in [0, 1] \land | t : [0, 0] | [8, 8]$

o concrete pre-condition:

• effect of the assignment in the concrete and post-condition:



Thus, we obtain the **abstract post-condition**:

This analysis step looks quite coarse, but it is actually fine here: each cell may get the new value or keep the old one...

Xavier Rival (INRIA, ENS, CNRS)

6

Two kinds of abstract updates

Strong updates

- One modified concrete cell abstracted by one, precisely known abstract cell
- The effect of the update is computed precisely by the analysis

Strong updates are the **most favorable case**, as new information is computed precisely, and known information is not lost (example 1)

Weak updates

- The modified concrete cell cannot be mapped into a well identified abstract cell
- The resulting abstract information is obtained by joining the new value and the old information

In the example we have just seen, the weak update loses no information...

Array smashing abstraction: abstraction into one cell

The elementwise abstraction is too costly:

- high number of abstract cells if the arrays are big
- will not work if the size of arrays is not known statically

Alternative: use fewer abstract cells, e.g., a single cell

Assumption: *m* scalar variables, one array \bar{t} of length *n*

Array smashing

- \bullet All cells of the array are mapped into one abstract cell $\bar{\rm t}$
- Concrete cells:
 - $\mathbb{V}_{\mathrm{addr}} = \{\texttt{\&x}_0, \dots, \texttt{\&x}_{m-1}\} \cup \{\texttt{\&t}, \texttt{\&t} + 1 \cdot s, \dots, \texttt{\&t} + (n-1) \cdot s\}$
- Abstract cells: $\mathbb{C}^{\sharp} = \{ \& x_0, \dots, \& x_{m-1} \} \cup \{ \& \overline{t} \}$
- \mathbb{D}^{\sharp} should simply be an abstraction of $\mathcal{P}(\mathbb{V}^{m+1})$

This also works if the size of the array is not known statically: int $\mathtt{n}=\ldots$; int $\mathtt{t}[\mathtt{n}];$

Xavier Rival (INRIA, ENS, CNRS)

Array smashing abstraction

Definition

- Abstract domain $\mathcal{P}(\mathbb{C}^{\sharp} \to \mathcal{P}(\mathbb{V}))$
- Abstraction function:

$$lpha_{ ext{smash}}(H) = \left\{ egin{array}{ccc} \& \mathbf{x}_i & \mapsto & \{h(\mathbf{x}_i)\} \ \& \mathbf{t} & \mapsto & \{h(\& \mathbf{t}+0), \dots, h(\& \mathbf{t}+n-1)\} \end{array} \middle| h \in H
ight\}$$

Example, with no variable and an array of length 2:

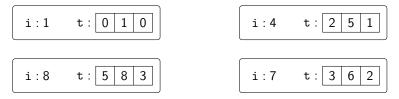
• Set of concrete states H:

$$\left\{ \begin{array}{ccc} t[0] & \mapsto & 0 \\ t[1] & \mapsto & 10 \end{array} \right\}, \quad \left\{ \begin{array}{ccc} t[0] & \mapsto & 2 \\ t[1] & \mapsto & 11 \end{array} \right\}, \quad \left\{ \begin{array}{ccc} t[0] & \mapsto & 1 \\ t[1] & \mapsto & 12 \end{array} \right\}$$

- Smashing abstraction produces $\{\{0, 10\}, \{2, 11\}, \{1, 12\}\}$
- After non relational abstraction, we obtain $\& \overline{t} \mapsto \{0,1,2,10,11,12\}$

Array smashing abstraction example

We consider the following set of concrete states:



The smashing abstraction produces the following vectors:

 $\begin{array}{ll} (\{1\},\{0,1,0\}) & (\{4\},\{2,5,1\}) \\ (\{8\},\{5,8,3\}) & (\{7\},\{3,6,2\}) \end{array}$

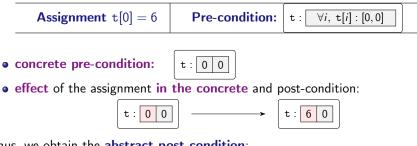
After non relational abstraction:

$$\begin{array}{rcl} \texttt{\&i} & \longmapsto & \{1,4,8,7\} \\ \texttt{\&t} & \longmapsto & \{0,1,2,3,5,6,8\} \end{array}$$

After applying the **interval abstraction**, we get: ([1,8], [0,8])

Xavier Rival (INRIA, ENS, CNRS)

Post-condition for an assignment: example



Thus, we obtain the **abstract post-condition**:

∀*i*, t[*i*] : [0,6] t :|

Consequence:

the analysis of t[0] = 6; t[1] = 6; will also produce

> $\forall i, t[i] : [0, 6]$ t :

This is a another case of weak-update, resulting in significant precision loss

Weak-updates

Weak updates

- The modified concrete cell cannot be mapped into a well identified abstract cell
- The resulting abstract information is obtained by joining the new value and the old information

To summarize:

abstraction	$t[0] = \dots$	t[[<i>a</i> , <i>b</i>]] =	
element-wise	strong update	weak update	
smashing	weak update	weak update	

- relatively to the abstraction, a weak update may be precise (as in the examples)
- however, successions of weak updates will prevent from inferring invariants such as correctness of initialization

Xavier Rival (INRIA, ENS, CNRS)

Weak updates and strong updates: example

```
\label{eq:constraint} \begin{array}{l} // \texttt{x} \text{ uninitialized array of length } n \\ \text{int } i = 0; \\ \text{while}(i < n) \{ \\ \texttt{x}[i] = 0; \\ \texttt{i} = i + 1; \\ \} \end{array}
```

Elementwise abstraction:

- initially $\forall i, \ m^{\sharp}(\texttt{\&t}+i\cdot s) = \top$
- if loop unrolled completely, at the end, $\forall i, m^{\sharp}(\&t + i \cdot s) = [0, 0]$
- weak updates, if the loop is not unrolled; then, at the end ∀i, m[#](&t + i ⋅ s) = ⊤

Smashing abstraction:

- initially $m^{\sharp}(\bar{\mathtt{t}}) = \top$
- weak updates at each step (whatever the unrolling that is performed); at the end: m[#](t) = ⊤
- Weak updates may cause a serious loss of precision
- Workaround ahead: more complex array abstractions may help

Other forms of array smashing

• Smashing does not have to affect the whole array

• Efficient smashing strategies can be found

Segment smashing:

- abstraction of the array cells into {t
 ₀,...,t
 _{k-1}} where t
 _i corresponds to a segment of the array
- useful when sub-segments have interesting properties
- issue: determine the segment by analysis

Modulo smashing:

- abstraction of the array cells into {\$\vec{t}_0, \ldots, \$\vec{t}_{k-1}\$} where \$\vec{t}_i\$ corresponds to a repeating set of offsets {\$\vec{k}\vec{t} + k \cdot i \cdot s | k \cdot i < n\$}
- useful for arrays of structures
- **issue**: determine *k* by analysis

Outline

Memory models

Abstraction of arrays

- A micro language for manipulating arrays
- Verifying safety of array operations
- Abstraction of array contents
- Abstraction of array properties

3 Basic pointer analyses

4 Three valued logic heap abstraction

5 Conclusion

Example array properties

Goal of the analysis: precisely abstract contents

Discover non trivial properties of array regions

- Initialization to a constant (e.g., 0)
- Sortedness

Array initialization loop

Hand proof sketch:

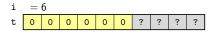
- At iteration k, i = k and the segment $t[0], \dots t[k-1]$ is initialized
- At the loop exit, i = n and the whole array is initialized

To complete the proof, we need to express properties on segments

Array segment properties

Array initialization loop //t integer array of length n int i = 0; while(i < n){ t[i] = 0; i = i + 1;</pre>

Concrete state after 6 iterations:



Corresponding abstract state:

$$\begin{array}{l|ll} \mathbf{i} & \in [1, 10] \\ \mathbf{t} & \boxed{\mathbf{zero}_{\mathbf{\bar{t}}}(\mathbf{0}, \mathbf{i} - 1)} & \top \end{array}$$

Array segment predicates

Definition

An **array segment predicate** is an abstract predicate that describes the contents of a contiguous series of cells in the array, such as:

- Initialization: $zero_t(i, j)$ iff t initialized to 0 between i and j
- Sortedness: sort_t(i, j) iff t sorted between i and j

Examples:

• array satisfying **zero**_t(2, 6):

 \bullet array satisfying $\textbf{sort}_t(1,3)$ and $\textbf{sort}_t(6,8)\text{:}$

i = 6
t
$$\begin{bmatrix} 8 & 2 & 5 & 6 & 8 & 11 & 1 & 2 & 3 & 2 \end{bmatrix}$$

Composing sortedness predicates

As part of the proof, predicates need be composed

$$\begin{split} \mathbf{zero}_{\mathbf{t}}(i,j) \wedge \mathbf{zero}_{\bar{\mathbf{t}}}(j+1,k) &\Rightarrow \mathbf{zero}_{\mathbf{t}}(i,k) \\ \mathbf{t}[j] = 0 &\Rightarrow \mathbf{zero}_{\mathbf{t}}(j,j) \\ \mathbf{zero}_{\mathbf{t}}(i,j) \wedge \mathbf{t}[j+1] = 0 &\Rightarrow \mathbf{zero}_{\mathbf{t}}(i,j+1) \\ &\mathbf{sort}_{\mathbf{t}}(i,j) \wedge \mathbf{sort}_{\bar{\mathbf{t}}}(j+1,k) &\Rightarrow \mathbf{sort}_{\mathbf{t}}(i,k) \\ \mathbf{t}[j] \leq \mathbf{t}[j+1] \wedge \mathbf{sort}_{\mathbf{t}}(i,j) \wedge \mathbf{sort}_{\bar{\mathbf{t}}}(j+1,k) &\Rightarrow \mathbf{sort}_{\mathbf{t}}(i,k) \end{split}$$

• counter example for the fourth line: for [0; 3; 9; 2; 4; 8], we have:

 $\mathbf{sort}_t(0,2) \wedge \mathbf{sort}_t(3,5)$ but not $\mathbf{sort}_t(0,5)$

Another sortedness predicate: $sort_t(i, j, \min, \max)$

$$B \leq C \wedge \operatorname{sort}_{t}(i, j, A, B) \wedge \operatorname{sort}_{\overline{t}}(j+1, k, C, D) \hspace{2mm} \Rightarrow \hspace{2mm} \operatorname{sort}_{t}(i, k, A, D)$$

Xavier Rival (INRIA, ENS, CNRS)

Analysis operators (for predicate **zero**)

Assignment transfer function:

- Identify segments that may be modified
- If a single segment is impacted, split it
- Oo a strong update

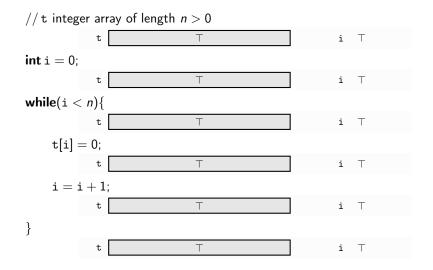
For instance, for an array of length n:

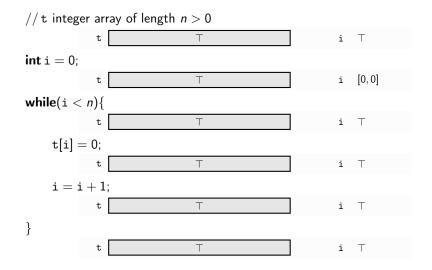
$$\begin{split} \text{zero}_{t}(0,n-1) \wedge 0 \leq i < n & \stackrel{t[i]=?}{\longrightarrow} \quad \text{zero}_{t}(0,i-1) \wedge \text{zero}_{t}(i+1,n-1) \\ & \top \wedge 0 \leq i < n \quad \stackrel{t[i]=0}{\longrightarrow} \quad \text{zero}_{t}(i,i) \end{split}$$

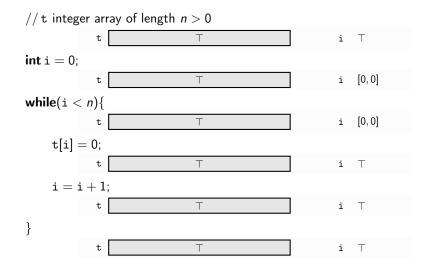
Abstract join operator: generalizes bounds

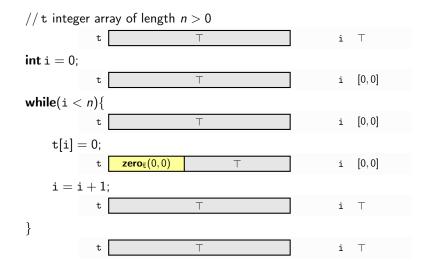
$$\begin{array}{l} (\top \wedge \mathtt{i} = 0 < n) \ \sqcup^{\sharp} (\mathtt{zero}_{\mathtt{t}}(0,0) \wedge \mathtt{i} = 1 < n) \\ = (\mathtt{zero}_{\mathtt{t}}(0,\mathtt{i}-1) \wedge 0 \leq \mathtt{i} < n) \end{array}$$

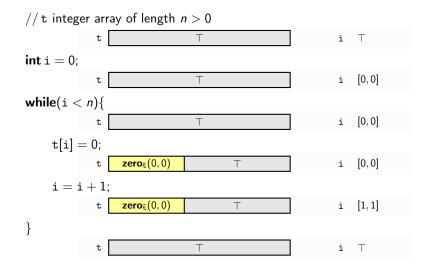
• this union introduces an empty initialized segment in the left hand side

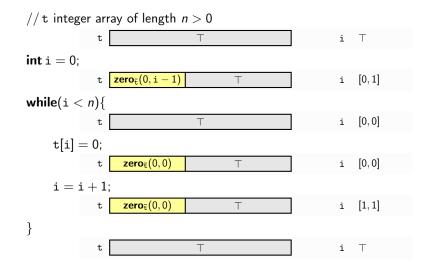


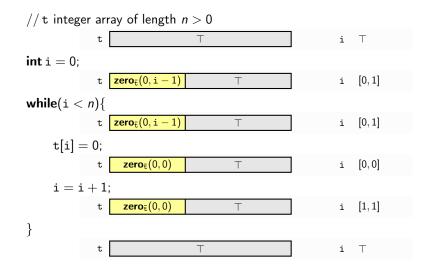


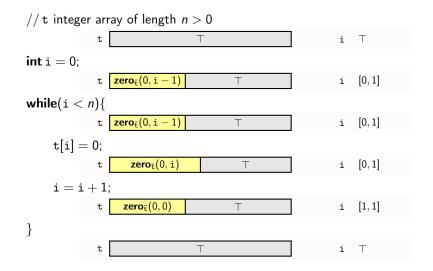


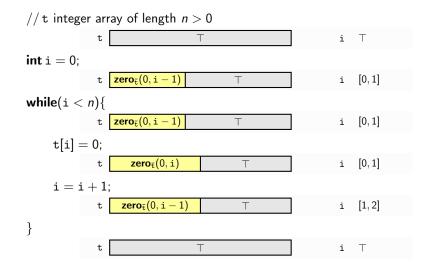


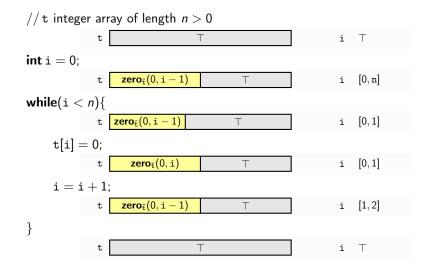


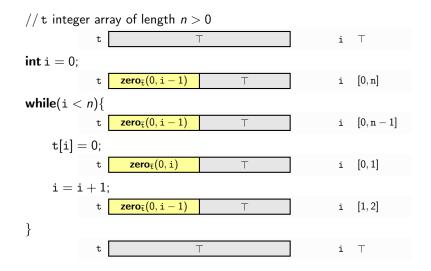


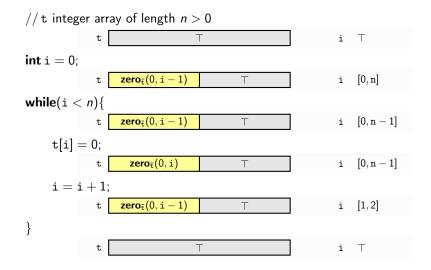


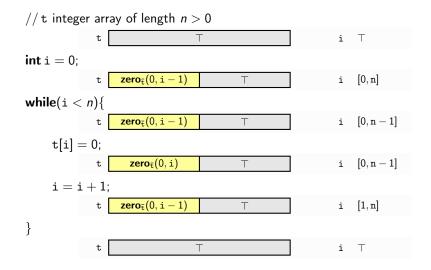


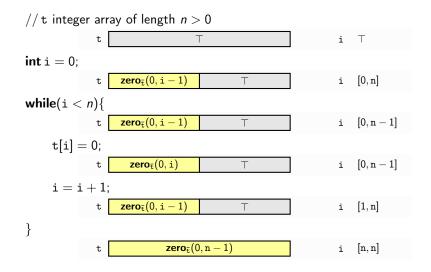












Partitioning of arrays

Array partitions

A partition of an array t of length *n* is a sequence $\mathcal{P} = \{e_0, \ldots, e_k\}$ of symbolic expressions where

- e_i denotes the lower (*resp.*, upper) bound of element *i* (*resp. i* 1) of the partition
- e_0 should be equal to 0 (and e_k to n)

Example:

• set of four concrete states:

ſ	$\mathtt{i}=\mathtt{1}$	$\left[0,4,1,2,3,5 ight]$	i = 3	$\left[2,2,4,5,1,8\right]$
Ì	i = 2	$\left[0,1,5,2,3,4\right]$	i=5	$\left[0,2,4,6,7,9\right]$

- partition: $\{0, i+1, 6\}$
- note that the array is always
 - sorted between 0 and i
 - \blacktriangleright sorted between i $+\,1$ and 5

Abstraction based on array partitions

Segment and array abstraction

An **array segmentation** is given by a partition $\mathcal{P} = \{e_0, \ldots, e_k\}$ and a set of abstract properties $\{P_0, \ldots, P_{k-1}\}$. Its concretization is the set of memory states m = (e, h) such that

$$\forall i, \ [t[v], t[v+1], \dots, t[w-1]] \text{ satisfies } P_i, \text{ where } \begin{cases} v = [\![e_i]\!](m) \\ w = [\![e_{i+1}]\!](m) \end{cases}$$

• Partitions can be:

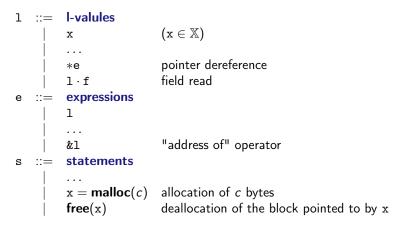
- static, i.e., pre-computed by another analysis [HP'08]
- dynamic, *i.e.*, computed as part of the analysis [CCL'11] (more complex abstract domain structure with partitions *and* predicates)
- Example: array initialization

Outline

- Memory models
- 2 Abstraction of arrays
- 3 Basic pointer analyses
- 4 Three valued logic heap abstraction
- 5 Conclusion

Programs with pointers: syntax

Syntax extension: quite a few additional constructions



We do not consider pointer arithmetics here

Programs with pointers: semantics

Case of I-values:

$$\begin{split} \llbracket \mathbf{x} \rrbracket(e, h) &= e(\mathbf{x}) \\ \llbracket * \mathbf{e} \rrbracket(e, h) &= \begin{cases} h(\llbracket \mathbf{e} \rrbracket(e, h)) & \text{if } \llbracket \mathbf{e} \rrbracket(e, h) \neq \mathbf{0} \land \llbracket \mathbf{e} \rrbracket(e, h) \in \mathbf{Dom}(h) \\ \Omega & \text{otherwise} \\ \llbracket \mathbf{l} \cdot \mathbf{f} \rrbracket(e, h) &= \llbracket \mathbf{l} \rrbracket(e, h) + \mathbf{offset}(\mathbf{f}) \text{ (numeric offset)} \end{split}$$

Case of expressions:

$$\llbracket 1 \rrbracket (e, h) = h(\llbracket 1 \rrbracket (e, h))$$
 (evaluates into the contents)
$$\llbracket k1 \rrbracket (e, h) = \llbracket 1 \rrbracket (e, h)$$
 (evaluates into the address)

Case of statements:

- memory allocation x = malloc(c): $(e, h) \rightarrow (e, h')$ where $h' = h[e(x) \leftarrow k] \uplus \{k \mapsto v_k, k+1 \mapsto v_{k+1}, \dots, k+c-1 \mapsto v_{k+c-1}\}$ and $k, \dots, k+c-1$ are fresh and unused in h
- memory deallocation free(x): $(e, h) \rightarrow (e, h')$ where k = e(x) and $h = h' \uplus \{k \mapsto v_k, k+1 \mapsto v_{k+1}, \dots, k+c-1 \mapsto v_{k+c-1}\}$

Pointer non relational abstractions

We rely on the **non relational abstraction of heterogeneous states** that was introduced earlier, with a few changes:

- $\bullet \ \mathbb{V} = \mathbb{V}_{\mathrm{addr}} \uplus \mathbb{V}_{\mathrm{int}}$
- $\mathbb{X} = \mathbb{X}_{addr} \uplus \mathbb{X}_{int} \uplus \dots$
- concrete memory cells now include structure fields, and fields of dynamically allocated regions
- abstract cells \mathbb{C}^{\sharp} finitely summarize concrete cells
- we apply a **non relational abstraction** to pointer locations, based on $\mathbb{D}_{ptr}^{\sharp}$ and $\gamma_{ptr} : \mathbb{D}_{ptr}^{\sharp} \to \mathcal{P}(\mathbb{V}_{addr})$ (other location abstracted in the same way as before, *e.g.*, non relationally)

We will see several instances of this kind of abstraction

Pointer non relational abstraction: null pointers

The dereference of a null pointer will cause a crash

To establish safety: compute which pointers may be null

- we may also use a lattice with a fourth element = NULL exercise: what do we gain using this lattice ?
- very lightweight, can typically resolve rather trivial cases
- useful for C, but also for Java

Pointer non relational abstraction: dangling pointers

The dereferece of a null pointer will cause a crash

To establish safety: compute which pointers may be dangling



- very lightweight, can typically resolve rather trivial cases
- useful for C, useless for Java (initialization requirement + GC)

Pointer non relational abstraction: points-to sets

Determine where a pointer may store a reference to

1: int x, y; 2: int * p; 3: y = 9;4: p = &x;5: *p = 0;

- what is the final value for x ? 0, since it is modified at line 5...
- what is the final value for y ?
 9, since it is not modified at line 5...

Basic pointer abstraction

 \bullet We assume a set of abstract memory locations \mathbb{A}^{\sharp} is fixed:

$$\mathbb{A}^{\sharp} = \{\texttt{\&x},\texttt{\&y},\ldots,\texttt{\&t},a_0,a_1,\ldots,a_N\}$$

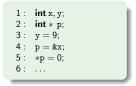
- Concrete addresses are abstracted into \mathbb{A}^{\sharp} by $\phi_{\mathbb{A}} : \mathbb{A} \to \mathbb{A}^{\sharp} \uplus \{\top\}$
- A pointer value is abstracted by the abstraction of the addresses it may point to, *i.e.*, D[#]_{ptr} = P(A[#]) and γ_{ptr}(a[#]) = {a ∈ A | φ_A(a) = a[#]}

• example: p may point to {&x}

Xavier Rival (INRIA, ENS, CNRS)

Points-to sets computation example

Example code:



Abstract locations: {&x, &y, &p} Analysis results:

	&x	&y	۷å	
1	Т	Т	Т	
2	Т	Т	Т	
3	Т	Т	Т	
4	Т	[9, 9]	Т	
5	Т	[9, 9]	{&x}	
6	[0, 0]	[9, 9]	$\{\&x\}$	

Points-to sets computation and imprecision

$$\begin{array}{rl} x \in [-10, -5]; \ y \in [5, 10] \\ 1: & \mbox{int} * \ p; \\ 2: & \mbox{if}(?) \{ \\ 3: & p = \& x; \\ 4: & \} \ else \ \{ \\ 5: & p = \& y; \\ 6: & \} \\ 7: & \ *p = 0; \\ 8: & \hdots \end{array}$$

	x%	&у	&р
1	[-10, -5]	[5, 10]	Т
2	[-10, -5]	[5, 10]	Т
3	[-10, -5]	[5, 10]	Т
4	[-10, -5]	[5, 10]	{&x}
5	[-10, -5]	[5, 10]	Т
6	[-10, -5]	[5, 10]	{&y}
7	[-10, -5]	[5, 10]	{&x, &y}
8	[-10, 0]	[0, 10]	$\{\&x,\&y\}$

What is the final range for x ?
What is the final range for y ?
Abstract locations: {&x,&y,&p}

Imprecise results

- The abstract information about both x and y are weakened
- The fact that $x \neq y$ is lost

Weak-updates

As in array analysis, we encounter:

Weak updates

- The modified concrete cell cannot be mapped into a well identified abstract cell
- The resulting abstract information is obtained by joining the new value and the old information

Effect in pointer analysis, in the case of an assignment:

- if the points-to set contains **exactly one element**, the analysis can perform a **strong update**
- if the points-to set may contain **more than one element**, the analysis needs to perform a **weak-update**

Pointer aliasing based on equivalence on access paths

Aliasing relation Given m = (e, h), pointers p and q are aliases iff h(e(p)) = h(e(q))

Abstraction to infer pointer aliasing properties

• An access path describes a sequence of operations to compute an I-value (*i.e.*, an address); *e.g.*:

$$a ::= x \mid a \cdot f \mid * a$$

• An abstraction for aliasing is an over-approximation for equivalence relations over access paths

Examples of aliasing abstractions:

- set abstractions: map from access paths to their equivalence class (ex: {{ $p_0, p_1, \&x$ }, { p_2, p_3 }, ...})
- numerical relations, to describe aliasing among paths of the form x(->n)^k (ex: {{x(->n)^k, &(x(->n)^{k+1}) | k ∈ ℕ})

Limitation of basic pointer analyses

Weak updates:

- imprecision in updates that spread out as soon as points-to set contain several elements
- impact client analyses severely (as for array analyses)

Unsatisfactory abstraction of unbounded memory:

- common assumption that \mathbb{C}^{\sharp} be finite
- programs using dynamic allocations often perform unbounded numbers of malloc calls (*e.g.*, allocation of a list)

Unable to express well structural invariants:

- for instance, that a structure should be a list, a tree...
- very indirect abstraction in numeric / path equivalence abstration

Shape abstraction:

We will use similar ideas as for array segment analyses

Outline

Memory models

- 2 Abstraction of arrays
- 3 Basic pointer analyses

4 Three valued logic heap abstraction

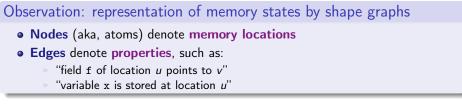
- Building an abstract domain
- Weakening abstract elements
- Computation of transfer functions

5 Conclusion

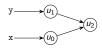
An abstract representation of memory states: shape graphs

Goal of the static analysis

Infer structural invariants of programs using unbounded heap



Two alias pointers:



A list of length 2:

\Rightarrow We need to over-approximate sets of shape graphs

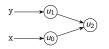
Three valued logic heap abstraction

Shape graphs and their representation

Description with predicates

- Boolean encoding: nodes are atoms u_0, u_1, \ldots
- Predicates over atoms:
 - x(u): variable x contains the address of u
 - n(u, v): field of u points to v
- Truth values: traditionally noted 0 and 1 in the TVLA litterature

Two alias pointers:



	x	у	\mapsto	u ₀	<i>u</i> ₁	<i>u</i> ₂
u ₀	1	0	u ₀	0	0	1
u_1	0	1	u_1	0	0	1
<i>u</i> ₂	0	0	<i>u</i> ₂	0	0	0

A list of length 2:

	x	$\cdot n \mapsto$	<i>u</i> 0	<i>u</i> ₁	<i>и</i> 2
u ₀	1	u ₀	0	1	0
<i>u</i> ₁	0	<i>u</i> ₁	0	0	1
<i>u</i> ₂	0	<i>u</i> ₂	0	0	0

Three valued logic heap abstraction

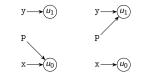
Unknown value: three valued logic

How to abstract away some information ? *i.e.*, to abstract several graphs into one ?

Example: pointer variable p alias with x or y

A boolean lattice

- Use predicate tables
- Add a \top boolean value; (denoted to by $\frac{1}{2}$ in TVLA papers)



- Graph representation: dotted edges
- Abstract graph:

Summary nodes

At this point, we cannot talk about **unbounded memory states** with **finitely many** nodes

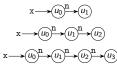
An idea

- Choose a node to represent several concrete nodes
- Similar to smashing

Definition: summary node

A summary node is an atom that may denote several concrete atoms

Lists of lengths 1, 2, 3:



Attempt at a summary graph:

• Edges to u_1 are dotted

A few interesting predicates

We have already seen:

- x(u): variable x contains the address of u
- n(u, v): field of u points to v
- $\underline{sum}(u)$: whether u is a summary node (convention: either 0 or $\frac{1}{2}$)

The properties of lists are not well-captured in

$$x \longrightarrow u_0$$

We need to add more information, e.g., about connectedness

"Is shared" $\underline{sh}(u)$ if and only if

$$\exists v_0, v_1, \begin{cases} v_0 \neq v_1 \\ \land & \mathbf{n}(v_0, u) \\ \land & \mathbf{n}(v_1, u) \end{cases}$$

Predicates defined by transitive closure

• **Reachability**: $\underline{\mathbf{r}}(u, v)$ if and only if

$$u = v \lor \exists u_0, \ n(u, u_0) \land \underline{r}(u_0, v)$$

- Acyclicity: $\underline{acy}(v)$
 - similar, with a negation

Three structures

Definition: 3-structures

A 3-structure is a tuple $(\mathcal{U}, \mathcal{P}, \phi)$:

- a set $\mathcal{U} = \{u_0, u_1, \dots, u_m\}$ of atoms
- a set \$\mathcal{P} = {p_0, p_1, \ldots, p_n}\$ of predicates (we write \$k_i\$ for the arity of predicate \$p_i\$)
- a truth table ϕ such that $\phi(p_i, u_{l_1}, \dots, u_{l_{k_i}})$ denotes the truth value of p_i for $u_{l_1}, \dots, u_{l_{k_i}}$ note: truth values are elements of the lattice $\{0, \frac{1}{2}, 1\}$

$$\mathbf{x} \longrightarrow (u_0)^{\mathbf{n}} \qquad \qquad \begin{cases} \mathcal{U} = \{u_0, u_1\} \\ \mathcal{P} = \{\mathbf{x}(\cdot), \mathbf{n}(\cdot, \cdot), \underline{\operatorname{sum}}(\cdot)\} \end{cases}$$

	x	sum	n	u ₀	<i>u</i> ₁
u ₀	1	0	U ₀	0	1
<i>u</i> ₁	0	$\frac{1}{2}$	<i>u</i> ₁	0	0

In the following we build up an abstract domain of 3-structures

Embedding

- How to compare two 3-structures ?
- How to describe the concretization of 3-structures ?

The embedding principle

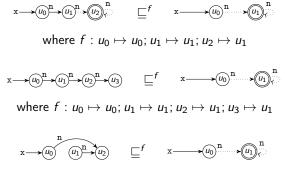
Let $S_0 = (\mathcal{U}_0, \mathcal{P}, \phi_0)$ and $S_1 = (\mathcal{U}_1, \mathcal{P}, \phi_1)$ be two three structures, with the same sets of predicates. Let $f : \mathcal{U}_0 \to \mathcal{U}_1$, surjective. We say that f embeds S_0 into S_1 iff

> for all predicate $p \in \mathcal{P}$ or arity k, for all $u_{l_1}, \ldots, u_{l_{k_i}} \in \mathcal{U}_0$, $\phi_0(u_{l_1}, \ldots, u_{l_{k_i}}) \sqsubseteq \phi_1(f(u_{l_1}), \ldots, f(u_{l_{k_i}}))$

Then, we write $S_0 \sqsubseteq^f S_1$

Note: we use the order \sqsubseteq of the lattice $\{0, \frac{1}{2}, 1\}$

Embedding examples



where $f : u_0 \mapsto u_0; u_1 \mapsto u_1; u_2 \mapsto u_1$

- Reachability would be necessary to constrain it be a list
- Alternatively: cells should not be shared

Two structures and concretization

Concrete states correspond to 2-structures

A 3-structure $(\mathcal{U}, \mathcal{P}, \phi)$ is a 2-structure, if and only if ϕ always returns in $\{0, 1\}$

- A 2-structure defines a set of concrete memory states (*e*, *h*) obtained by mapping symbols to addresses, that are compatible with the predicates of the structure
- We let stores(S) denote the stores corresponding to 2-structure S

Concretization of a 3-structure

$$\gamma(\mathcal{S}) = \bigcup \{ \text{stores}(\mathcal{S}') \mid \mathcal{S}' \text{ 2-structure s.t. } \exists f, \mathcal{S}' \sqsubseteq^f \mathcal{S} \}$$

Concretization examples

Without reachability:

$$x \longrightarrow (u_0)^n (u_1)^n (u_2) \qquad \sqsubseteq^f \qquad x \longrightarrow (u_0)^n (u_1)^n (u_1)^n (u_2)^n (u_2)^n (u_1)^n (u_2)^n (u_2)^n (u_1)^n (u_2)^n (u_2)^$$

where $f : u_0 \mapsto u_0; u_1 \mapsto u_1; u_2 \mapsto u_1; u_3 \mapsto u_1$

With reachability:

$$x \longrightarrow (u_0^n) \xrightarrow{n} (u_1) \xrightarrow{n} (u_2) \qquad \sqsubseteq^f \qquad x \longrightarrow (u_0^n) \xrightarrow{n} (u_1)_f^n \qquad \underline{r}(u_0, u_1)$$

where $f: u_0 \mapsto u_0; u_1 \mapsto u_1; u_2 \mapsto u_1$

Principle for the design of sound transfer functions

How to carry out static analysis using 3-structures ?

- Concrete states correspond to 2-structures
- The analysis should track 3-structures, thus the analysis correctness should rely on the embedding relation

Embedding theorem

- Let $S_0 = (\mathcal{U}_0, \mathcal{P}, \phi_0)$ and $S_1 = (\mathcal{U}_1, \mathcal{P}, \phi_1)$ be two three structures, with the same sets of predicates
- Let $f: \mathcal{U}_0 \to \mathcal{U}_1$, such that $\mathcal{S}_0 \sqsubseteq^f \mathcal{S}_1$
- Let Ψ be a logical formula, with variables in X
- Let $g:X
 ightarrow\mathcal{U}_0$ be an assignment for the variables of Ψ

Then,

```
[\![\Psi_{|g}]\!](\mathcal{S}_0) \sqsubseteq [\![\Psi_{|f \circ g}]\!](\mathcal{S}_1)
```

Principle for the design of sound transfer functions

Transfer functions for static analysis

- Semantics of concrete statements encoded into boolean formulas
- Evaluation in the abstract is sound (embedding theorem)

Example:

analysis of an assignment $\mathbf{y} := \mathbf{x}$

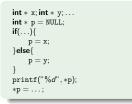
- **2** add the constraint y'(u) = x(u)
- rename y' into y

Advantages:

- abstract transfer functions derive directly from the concrete transfer functions (intuition: $\alpha \circ f \circ \gamma$...)
- the same solution works for weakest pre-conditions

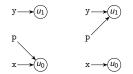
A powerset abstraction

- Do 3-structures allow for a sufficient level of precision ?
- How to over-approximate a set of 2-structures ?



After the if statement:

abstracting would be imprecise



Powerset abstraction

- Shape analyzers usually rely on a powerset abstract domain based on disjunctive completion of a finite lattice
 TVLA manipulates finite disjunctions of 3 structures
 - *i.e.*, TVLA manipulates **finite disjunctions** of 3-structures
- How to ensure disjunctions will not grow infinite ?

Canonical abstraction

Canonicalization principle

Let \mathcal{L} be a lattice, $\mathcal{L}' \subseteq \mathcal{L}$ be a finite sub-lattice and **can** : $\mathcal{L} \to \mathcal{L}'$:

- operator can is called canonicalization if and only if it defines an upper closure operator
- then it defines a canonicalization operator can : $\mathcal{P}(\mathcal{L}) \rightarrow \mathcal{P}(\mathcal{L}')$:

$$can(\mathcal{E}) = \{can(x) \mid x \in \mathcal{E}\}$$

To make the powerset domain work, we simply need a can over 3-structures

A canonicalization over 3-structures

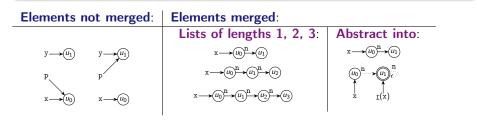
- We assume there are *n* variables x_1, \ldots, x_n Thus the number of unary predicates is finite
- Sub-lattice: structures with atoms distinguished by the values of the unary predicates (or *abstraction predicates*) x₁,...,x_n

Canonical abstraction

We assume the analysis relies on unary predicates for canonicalization. The analysis design may choose another set of predicates than the unary predicates for the sub-lattice representation

Canonical abstraction by truth blurring

- **O** Identify nodes that have different abstraction predicates
- When several nodes have the same abstraction predicate introduce a summary node
- Compute new predicate values by doing a join over truth values



Assignment: a simple case

Statement $l_0 : y = y \rightarrow n; l_1 : ...$ **Pre-condition** \mathcal{S} $x, y \rightarrow (u_0^n \rightarrow (u_1^n \rightarrow (u_2^n \rightarrow (u$

Transfer function computation:

- It should produce an over-approximation of $\{m_1 \in \mathbb{M} \mid (l_0, m_0) \rightarrow (l_1, m_1)\}$
- **Encoding** using "**primed predicates**" to denote predicates **after** the evaluation of the assignment, to evaluate them in the same structure (non primed variables are removed afterwards and primed variables renamed):

$$egin{array}{rll} \mathbf{x}'(u) &=& \mathbf{x}(u) \ \mathbf{y}'(u) &=& \exists v, \ \mathbf{y}(v) \wedge \mathbf{n}(v,u) \ \mathbf{n}'(u,v) &=& \mathbf{n}(u,v) \end{array}$$

• Result:

 $(u_0)^n \rightarrow (u_1)^n \rightarrow (u_2)$

This is exactly the expected result

Assignment: a more involved case

• Let us try to resolve the update in the same way as before:

$$egin{array}{rll} \mathbf{x}'(u) &=& \mathbf{x}(u) \ \mathbf{y}'(u) &=& \exists v, \ \mathbf{y}(v) \wedge \mathbf{n}(v,u) \ \mathbf{n}'(u,v) &=& \mathbf{n}(u,v) \end{array}$$

• We cannot resolve y':

$$\begin{cases} \mathbf{y}'(u_0) = \mathbf{0} \\ \mathbf{y}'(u_1) = \frac{1}{2} \end{cases}$$

Imprecision: after the statement, y may point to anywhere in the list, save for the first element...

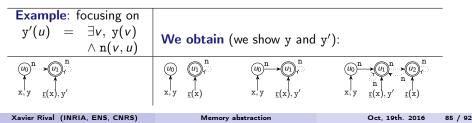
The assignment transfer function cannot be computed immediately
We need to refine the 3-structure first

Focus

Focusing on a formula

We assume a 3-structure S and a boolean formula f are given, we call a **focusing** S on f the generation of a set \hat{S} such that:

- f evaluates to 0 or 1 on all elements of $\hat{\mathcal{S}}$
- precision was gained: $\forall \mathcal{S}' \in \hat{\mathcal{S}}, \ \mathcal{S}' \sqsubseteq \mathcal{S}$
- soundness is preserved: $\gamma(S) = \bigcup \{ \gamma(S') \mid S' \in \hat{S} \}$
- Focusing algorithms are complex and tricky
- Involves splitting of summary nodes, solving of boolean constraints



Focus and coerce

Some of the 3-structures generated by focus are not precise

 u_1 is reachable from x, but there is no sequence of n fields: this structure has empty concretization

 u_0 has an n-field to u_1 so u_1 denotes a unique atom and cannot be a summary node

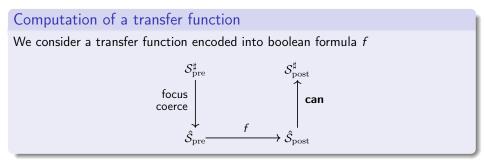
Coerce operation

It enforces logical constraints among predicates and discards 3-structures with an empty concretization

Result:



Focus, transfer, abstract...



Soundness proof steps:

- Sound encoding of the semantics of program statements into formulas (typically, no loss of precision at this stage)
- G focusing produces a refined over-approximation (disjunction)
- **o** canonicalization over-approximates graphs (truth blurring)

A common picture in shape analysis

Xavier Rival (INRIA, ENS, CNRS)

Memory abstraction

Outline

- Memory models
- 2 Abstraction of arrays
- 3 Basic pointer analyses
- 4 Three valued logic heap abstraction
- 5 Conclusion

Summarization: one abstract cell, many concrete cells

Large / unbounded numbers of concrete cells need to be abstracted

- Array blocks may have large number of elements
- Dynamic memory allocation functions may be called an unbounded number of times

Summary abstract cell

A summary abstract cell describes several concrete cells. A summary abstract variable describes several concrete values.

• Formalization based on a function mapping concrete cells into the abstract cells that represent them:

$$\phi_{\mathbb{A}}:\mathbb{A}\to\mathbb{A}^{\sharp}$$

ullet Analysis operations should reason on abstract states up-to $\phi_{\mathbb{A}}$

Updates: weak vs strong

Memory updates may be very imprecise

Several typical cases:

- update to a cell that cannot be determined precisely
 i.e., affecting an abstract cell among A[#] ⊆ A[#], where |A[#]| > 1
- e update to a summary cell

In those cases, the abstract update joins previous values and new values

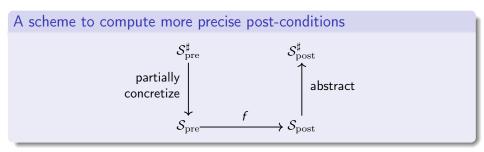
Weak updates

- The modified concrete cell cannot be mapped into a well identified abstract cell
- The resulting abstract information is obtained by joining the new value and the old information

Concretize partially, update, abstract

Summaries can be refined locally for better precision

- Array segment predicates can be split into predicates over smaller segments for abstract transfer functions
- The information over **TVLA summary nodes** can be refined using disjunctions for the computation of abstract post-conditions



Bibliography

- [HP'08]: Discovering properties about arrays in simple programs. Nicolas Halbwachs, Mathias Péron. In PLDI'08, pages 339-348, 2008.
- [CCL'11]: A parametric segmentation functor for fully automatic and scalable array content analysis.
 Patrick Cousot, Radhia Cousot, Francesco Logozzo. In POPL'11, pages 105-118, 2011.
- [AD'94]: Interprocedural may alias analysis for pointers: beyond *k*-limiting. Alain Deutsch. In PLDI'94, pages 230–241, 1994.
- [SRW'99]: Parametric Shape Analysis via 3-Valued Logic. Shmuel Sagiv, Thomas W. Reps et Reinhard Wilhelm. In POPL'99, pages 105–118, 1999.