MPRI

The Arithmetic-Geometric Progression Abstract Domain

VMCAI 2005

Jérôme Feret
Laboratoire d'Informatique de l'École Normale Supérieure
INRIA, ÉNS, CNRS
http://www.di.ens.fr/~feret

Overview

1. Introduction
2. Case study
3. Arithmetic-geometric progressions
4. Benchmarks
5. Conclusion

Issue

- In automatically generated programs using floating point arithmetics, some computations may diverge because of rounding errors.
- We prove the absence of floating point number overflows: we bound rounding errors at each loop iteration by a linear combination of the loop inputs; we get bounds on the values that depends exponentially on the program execution time.
- We use non polynomial constraints. Our domain is both precise (no false alarm) and efficient (linear in memory / $n \ln (n)$ in time).

Overview

1. Introduction
2. Case study
3. Arithmetic-geometric progressions
4. Benchmarks
5. Conclusion

Running example (in \mathbb{R})

$$
\begin{aligned}
& 1: X:=0 ; k:=0 ; \\
& 2: \text { while }(k<1000)\{ \\
& 3: \quad \text { if }(?)\{X \in[-10 ; 10]\} ; \\
& 4: \quad X:=X / 3 ; \\
& 5: \quad X:=3 \times X ; \\
& 6: \quad \mathrm{k}:=\mathrm{k}+1 ; \\
& 7: \quad\}
\end{aligned}
$$

Interval analysis: first loop iteration

$1: X:=0 ; k:=0$;
2 : while $(k<1000)$ \{

$$
X=0
$$

3 : if (?) $\{X \in[-10 ; 10]\}$;

$$
X=0
$$

4: $\quad X:=X / 3 ;$

$$
|X| \leq 10
$$

$$
|X| \leq \frac{10}{3}
$$

5: $\quad X:=3 \times X ;$

$$
|X| \leq 10
$$

6: $\quad \mathrm{k}:=\mathrm{k}+1$;
7: \}

Interval analysis: Invariant

$$
\begin{array}{ll}
1: X:=0 ; k:=0 ; & X=0 \\
2: \text { while }(k<1000)\{ & |X| \leq 10 \\
3: \text { if }(?)\{X \in[-10 ; 10]\} ; & |X| \leq 10 \\
4: X:=X / 3 ; & |X| \leq \frac{10}{3} \\
5: X:=3 \times X ; & |X| \leq 10 \\
6: \quad k:=k+1 ; & \\
7: \quad\} & |X| \leq 10
\end{array}
$$

Including rounding errors [MinéEsoporou]

$$
\begin{aligned}
& 1: X:=0 ; k:=0 ; \\
& 2: \\
& 3: \quad \text { while }(k<1000)\{ \\
& 4: \quad X:=X / 3+\left[-\varepsilon_{1} ; \varepsilon_{1}\right] . X+\left[-\varepsilon_{2} ; \varepsilon_{2}\right] ; \\
& 5: \quad X:=3 \times X+\left[-\varepsilon_{3} ; \varepsilon_{3}\right] . X+\left[-\varepsilon_{4} ; \varepsilon_{4}\right] ; \\
& 6: \quad k:=k+1 ; \\
& 7: \quad\}
\end{aligned}
$$

The constants $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$, and $\varepsilon_{4}(\geq 0)$ are computed by other domains.

Interval analysis

Let $M \geq 0$ be a bound:

```
    \(1: X:=0 ; k:=0 ;\)
    2: while \((k<1000)\) \{
    \(3: \quad\) if (?) \(\{X \in[-10 ; 10]\}\);
                \(|X| \leq \max (M, 10)\)
    4: \(\quad X:=X / 3+\left[-\varepsilon_{1} ; \varepsilon_{1}\right] \cdot X+\left[-\varepsilon_{2} ; \varepsilon_{2}\right] ;\)
                \(|X| \leq\left(\varepsilon_{1}+\frac{1}{3}\right) \times \max (M, 10)+\varepsilon_{2}\)
    5: \(\quad X:=3 \times X+\left[-\varepsilon_{3} ; \varepsilon_{3}\right] . X+\left[-\varepsilon_{4} ; \varepsilon_{4}\right]\);
                        \(|X| \leq(1+a) \times \max (M, 10)+b\)
    6: \(\quad \mathrm{k}:=\mathrm{k}+1\);
    7: \}
with \(a=3 \times \varepsilon_{1}+\frac{\varepsilon_{3}}{3}+\varepsilon_{1} \times \varepsilon_{3}\) and \(b=\varepsilon_{2} \times\left(3+\varepsilon_{3}\right)+\varepsilon_{4}\).
```


Ari.-geo. analysis: first iteration

$$
\begin{array}{lrl}
1: X:=0 ; k:=0 ; & X=0, k=0 \\
2: & \text { while }(k<1000)\{ & X=0 \\
3: & \text { if }(?)\{X \in[-10 ; 10]\} ; & |X| \leq 10 \\
4: & X:=X / 3+\left[-\varepsilon_{1} ; \varepsilon_{1}\right] \cdot X+\left[-\varepsilon_{2} ; \varepsilon_{2}\right] ; & |X| \leq\left[v \mapsto\left(\frac{1}{3}+\varepsilon_{1}\right) \times v+\varepsilon_{2}\right](10) \\
5: & X:=3 \times X+\left[-\varepsilon_{3} ; \varepsilon_{3}\right] \cdot X+\left[-\varepsilon_{4} ; \varepsilon_{4}\right] ; & |X| \leq f^{(1)}(10) \\
6: & k:=k+1 ; & |X| \leq f^{(k)}(10), k=1 \\
7: & \} &
\end{array}
$$

with $f=\left[v \mapsto\left(1+3 \times \varepsilon_{1}+\frac{\varepsilon_{3}}{3}+\varepsilon_{1} \times \varepsilon_{3}\right) \times v+\varepsilon_{2} \times\left(3+\varepsilon_{3}\right)+\varepsilon_{4}\right]$.

Ari.-geo. analysis: Invariant

$1: X:=0 ; k:=0$;

$$
x=0, k=0
$$

2: while $(\mathrm{k}<1000)$ \{

$$
|X| \leq f^{(k)}(10)
$$

$3: \quad$ if (?) $\{X \in[-10 ; 10]\}$;

$$
|X| \leq f^{(k)}(10)
$$

4: $\quad X:=X / 3+\left[-\varepsilon_{1} ; \varepsilon_{1}\right] \cdot X+\left[-\varepsilon_{2} ; \varepsilon_{2}\right] ;$

$$
|X| \leq\left(\frac{1}{3}+\varepsilon_{1}\right) \times\left(f^{(k)}(10)\right)+\varepsilon_{2}
$$

5: $\quad X:=3 \times X+\left[-\varepsilon_{3} ; \varepsilon_{3}\right] \cdot X+\left[-\varepsilon_{4} ; \varepsilon_{4}\right] ;$

$$
|X| \leq f\left(f^{(k)}(10)\right)
$$

6: $k:=k+1$;

$$
|X| \leq f^{(k)}(10)
$$

7: \}

$$
|X| \leq f^{(1000)}(10)
$$

with $f=\left[v \mapsto\left(1+3 \times \varepsilon_{1}+\frac{\varepsilon_{3}}{3}+\varepsilon_{1} \times \varepsilon_{3}\right) \times v+\varepsilon_{2} \times\left(3+\varepsilon_{3}\right)+\varepsilon_{4}\right]$.

Analysis session

Overview

1. Introduction
2. Case study
3. Arithmetic-geometric progressions
4. Benchmarks
5. Conclusion

Arithmetic-geometric progressions (in \mathbb{R})

An arithmetic-geometric progression is a 5 -tuple in $\left(\mathbb{R}^{+}\right)^{5}$.
An arithmetic-geometric progression denotes a function in $\mathbb{N} \rightarrow \mathbb{R}^{+}$:

$$
\beta_{\mathbb{R}}\left(M, a, b, a^{\prime}, b^{\prime}\right)(k) \triangleq[v \mapsto a \times v+b]\left(\left[v \mapsto a^{\prime} \times v+b^{\prime}\right]^{(k)}(M)\right)
$$

Thus,

- k is the loop counter;
- M is an initial value;
- $[v \mapsto a \times v+b]$ describes the current iteration;
- $\left[v \mapsto a^{\prime} \times v+b^{\prime}\right]^{(k)}$ describes the first k iterations.

A concretization $\gamma_{\mathbb{R}}$ maps each element $d \in\left(\mathbb{R}^{+}\right)^{5}$ to a set $\gamma_{\mathbb{R}}(\mathrm{d}) \subseteq\left(\mathbb{N} \rightarrow \mathbb{R}^{+}\right)$ defined as:

$$
\left\{f\left|\forall k \in \mathbb{N},|f(k)| \leq \beta_{\mathbb{R}}(d)(k)\right\}\right.
$$

Monotonicity

Let $d=\left(M, a, b, a^{\prime}, b^{\prime}\right)$ and $d=\left(M, a, b, a^{\prime}, b^{\prime}\right)$ be two arithmetic-geometric progressions.

If:

- $M \leq M$,
- $a \leq a, a^{\prime} \leq a^{\prime}$,
- $\mathrm{b} \leq \mathrm{b}, \mathrm{b}^{\prime} \leq \mathrm{b}^{\prime}$.

Then:

$$
\forall k \in \mathbb{N}, \beta_{\mathbb{R}}(d)(k) \leq \beta_{\mathbb{R}}(d)(k)
$$

Disjunction

Let $d=\left(M, a, b, a^{\prime}, b^{\prime}\right)$ and $d=\left(M, a, b, a^{\prime}, b^{\prime}\right)$ be two arithmetic-geometric progressions.

We define:

$$
d \sqcup_{\mathbb{R}} d \stackrel{\Delta}{=}\left(M, a, b, a^{\prime}, b^{\prime}\right)
$$

where:

- $M \stackrel{\Delta}{=} \max (M, M)$,
- $a \triangleq \max (a, a), a^{\prime} \stackrel{\Delta}{=} \max \left(a^{\prime}, a^{\prime}\right)$,
- $\mathrm{b} \stackrel{\Delta}{=} \max (\mathrm{b}, \mathrm{b}), \mathrm{b}^{\prime} \stackrel{\Delta}{=} \max \left(\mathrm{b}^{\prime}, \mathrm{b}^{\prime}\right)$,

For any $k \in \mathbb{N}, \beta_{\mathbb{R}}\left(d \sqcup_{\mathbb{R}} d\right)(k) \geq \max \left(\beta_{\mathbb{R}}(d)(k), \beta_{\mathbb{R}}(d)(k)\right)$.

Conjunction

Let d and d be two arithmetic-geometric progressions.

1. If d and d are comparable (component-wise), we take the smaller one:

$$
\mathrm{d} \sqcap_{\mathbb{R}} \mathrm{d} \stackrel{\Delta}{=} \operatorname{Inf} f_{\leq}\{\mathrm{d} ; \mathrm{d}\} .
$$

2. Otherwise, we use a parametric strategy:

$$
\mathrm{d} \sqcap_{\mathbb{R}} \mathrm{d} \in\{\mathrm{~d} ; \mathrm{d}\} .
$$

For any $k \in \mathbb{N}, \beta_{\mathbb{R}}\left(d \sqcap_{\mathbb{R}} d\right)(k) \geq \min \left(\beta_{\mathbb{R}}(d)(k), \beta_{\mathbb{R}}(d)(k)\right)$.

Assignment (I/III)

We have:

$$
\begin{array}{lr}
\beta_{\mathbb{R}}\left(M, a, b, a^{\prime}, b^{\prime}\right)(k)=a \times\left(M+b^{\prime} \times k\right)+b & \text { when } a^{\prime}=1 \\
\beta_{\mathbb{R}}\left(M, a, b, a^{\prime}, b^{\prime}\right)(k)=a \times\left(\left(a^{\prime}\right)^{k} \times\left(M-\frac{b^{\prime}}{1-a^{\prime}}\right)+\frac{b^{\prime}}{1-a^{\prime}}\right)+b & \text { when } a^{\prime} \neq 1 .
\end{array}
$$

Thus:

1. for any $a, a^{\prime}, M, b, b^{\prime}, \lambda \in \mathbb{R}^{+}$,

$$
\lambda \times\left(\beta_{\mathbb{R}}\left(M, a, b, a^{\prime}, b^{\prime}\right)(k)\right)=\beta_{\mathbb{R}}\left(\lambda \times M, a, \lambda \times b, a^{\prime}, \lambda \times b^{\prime}\right)(k)
$$

2. for any $a, a^{\prime}, M, b, b^{\prime}, M, b, b^{\prime} \in \mathbb{R}^{+}$, for any $k \in \mathbb{N}$,
$\beta_{\mathbb{R}}\left(M, a, b, a^{\prime}, b^{\prime}\right)(k)+\beta_{\mathbb{R}}\left(M, a, b, a^{\prime}, b\right)(k)=\beta_{\mathbb{R}}\left(M+M, a, b+b, a^{\prime}, b^{\prime}+b^{\prime}\right)(k)$.

Assignment (II/III)

For $k \in \mathbb{N}$, if:

$$
\left|X_{i}\right| \leq \beta_{\mathbb{R}}\left(M_{i}, a_{i}, b_{i}, a_{i}^{\prime}, b_{i}^{\prime}\right)(k)
$$

then:

$$
\frac{\left|B+\sum \alpha_{i} \times X_{i}\right|-|B|}{\sum\left|\alpha_{i}\right|} \leq \beta_{\mathbb{R}}\left(\frac{\sum\left|\alpha_{i}\right| \times M_{i}}{\sum\left|\alpha_{i}\right|}, \operatorname{Max}\left(a_{i}\right), \frac{\sum\left|\alpha_{i}\right| \times b_{i}}{\sum\left|\alpha_{i}\right|}, \operatorname{Max}\left(a_{i}^{\prime}\right), \frac{\sum\left|\alpha_{i}\right| \times b_{i}^{\prime}}{\sum\left|\alpha_{i}\right|}\right)(k)
$$

so:
$\left|B+\sum \alpha_{i} \times X_{i}\right| \leq \beta_{\mathbb{R}}\left(\frac{\sum\left|\alpha_{i}\right| \times M_{i}}{\sum\left|\alpha_{i}\right|}, \sum\left|\alpha_{i}\right| \times \operatorname{Max}\left(a_{i}\right), \frac{\sum\left|\alpha_{i}\right| \times b_{i}}{\sum\left|\alpha_{i}\right|}+|B|, \operatorname{Max}\left(a_{i}^{\prime}\right), \frac{\sum\left|\alpha_{i}\right| \times b_{i}^{\prime}}{\sum\left|\alpha_{i}\right|}\right)(k)$

Assignment (III/III)

If for $k \in \mathbb{N},|X| \leq \beta_{\mathbb{R}}\left(M_{X}, a_{X}, b_{X}, a_{X}^{\prime}, b_{X}^{\prime}\right)(k)$ and $|Y| \leq \beta_{\mathbb{R}}\left(M_{Y}, a_{Y}, b_{Y}, a_{\gamma}^{\prime}, b_{Y}^{\prime}\right)(k)$, then:

1. increment:

$$
|X+3| \leq \beta_{\mathbb{R}}\left(M_{x}, a_{x}, b_{x}+3, a_{x}^{\prime}, b_{x}^{\prime}\right)(k)
$$

2. multiplication:

$$
|3 \times X| \leq \beta_{\mathbb{R}}\left(M_{X}, 3 \times a_{X}, b_{X}, a_{x}^{\prime}, b_{X}^{\prime}\right)(k)
$$

3. barycentric mean:

$$
\left|\frac{X+Y}{2}\right| \leq \beta_{\mathbb{R}}\left(\frac{M_{X}+M_{Y}}{2}, \operatorname{Max}\left(a_{X}, a_{Y}\right), \frac{b_{X}+b_{Y}}{2}, \operatorname{Max}\left(a_{X}^{\prime}, a_{Y}^{\prime}\right), \frac{b_{X}^{\prime}+b_{Y}^{\prime}}{2}\right)(k)
$$

Parametric strategies can be used to transform expressions.

Projection I

$$
\begin{array}{lr}
\beta_{\mathbb{R}}\left(M, a, b, a^{\prime}, b^{\prime}\right)(k)=a \times\left(M+b^{\prime} \times k\right)+b & \text { when } a^{\prime}=1 \\
\beta_{\mathbb{R}}\left(M, a, b, a^{\prime}, b^{\prime}\right)(k)=a \times\left(\left(a^{\prime}\right)^{k} \times\left(M-\frac{b^{\prime}}{1-a^{\prime}}\right)+\frac{b^{\prime}}{1-a^{\prime}}\right)+b & \text { when } a^{\prime} \neq 1 .
\end{array}
$$

Thus, for any $d \in\left(\mathbb{R}^{+}\right)^{5}$,
the function $\left[k \mapsto \beta_{\mathbb{R}}(d)(k)\right]$ is:

- either monotonic,
- or anti-monotonic.

$$
\left\{\begin{array}{l}
a^{\prime}>1, \\
a^{\prime}=1, \\
a^{\prime}<1 \text { and } M<\frac{b^{\prime}}{1-a^{\prime}}, \\
a^{\prime}<1 \text { and } M>\frac{b^{\prime}}{1-a^{\prime}} .
\end{array}\right.
$$

Projection II

Let $\mathrm{d} \in\left(\mathbb{R}^{+}\right)^{5}$ and $\mathrm{k}_{\text {max }} \in \mathbb{N}$.
$\operatorname{bound}\left(\mathrm{d}, \mathrm{k}_{\max }\right) \triangleq \max \left(\beta_{\mathbb{R}}(\mathrm{d})(0), \beta_{\mathbb{R}}(\mathrm{d})\left(\mathrm{k}_{\max }\right)\right)$

For any $k \in \mathbb{N}$ such that $0 \leq k \leq k_{\text {max }}$:

$$
\beta(\mathrm{d})(\mathrm{k}) \leq \text { bound }\left(\mathrm{d}, \mathrm{k}_{\max }\right) .
$$

Incrementing the loop counter

We integrate the current iteration into the first k iterations:

- the first $k+1$ iterations are chosen as the worst case among the first k iterations and the current iteration;
- the current iteration is reset.

Thus:

$$
\operatorname{next}_{\mathbb{R}}\left(M, a, b, a^{\prime}, b^{\prime}\right) \triangleq \triangleq\left(M, 1,0, \max \left(a, a^{\prime}\right), \max \left(b, b^{\prime}\right)\right)
$$

For any $k \in \mathbb{N}, d \in\left(\mathbb{R}^{+}\right)^{5}, \beta_{\mathbb{R}}(d)(k) \leq \beta_{\mathbb{R}}\left(n \operatorname{ext} t_{\mathbb{R}}(d)\right)(k+1)$.

About floating point numbers

Floating point numbers occur:

1. in the concrete semantics:

Floating point expressions are translated into real expressions with interval coefficients [Miné-ESOP'04].
In other abstract domains, we handle real numbers.
2. in the abstract domain implementation:

For efficiency purpose, we implement each primitive in floating point arithmetics: each real is safely approximated by an interval with floating point number bounds.

Overview

1. Introduction
2. Case study
3. Arithmetic-geometric progressions
4. Benchmarks
5. Conclusion

Applications

Arithmetic-geometric progressions provide bounds for :

1. division by α followed by multiplication by α :
\Longrightarrow our running example;
2. barycentric means:
\Longrightarrow at each loop iteration, the value of a variable X is computed as a barycentric mean of some previous values of X (not necessarily the last values);
3. bounded incremented variables:
\Longrightarrow it replaces the former domain that bounds the difference and the sum between each variable and the loop counter.

Benchmarks

We analyze three programs in the same family on a AMD Opteron 248, 8 Gb of RAM (analyses use only 2 Gb of RAM).

lines of C	70,000			216,000			379,000		
global variables	13,400			7,500			9,000		
iterations	80	63	37	229	223	53	253	286	74
time/iteration	1mn14s	1mn21s	1mn16s	4mn04s	5mn13s	4mn40s	$7 \mathrm{mn33s}$	$9 \mathrm{mn42s}$	8mn17s
analysis time	2h18mn	2h05mn	47mn	15h34mn	19h24mn	4h08mn	31h53mn	43h51mn	10h14mn
false alarms	625	24	0	769	64	0	1482	188	0

1. without using computation time;
2. with the former loop counter domain, (without the arithmetic-geometric domain);
3. with the arithmetic-geometric domain, (without the former loop counter domain).

Overview

1. Introduction
2. Case study
3. Arithmetic-geometric progressions
4. Benchmarks
5. Conclusion

A new abstract domain

- non polynomial constraints;
- sound with respect to rounding errors (both in the concrete semantics and in the domain implementation);
- accurate
(we infer bounds on the values that depend on the execution time of the program);
- efficient:
- in time: $\mathcal{O}(n \times \ln (n))$ per abstract iteration
(n denotes the program size),
- in memory: at most 5 coefficients per variable in the program,
- sparse implementation.
http://www.astree.ens.fr

