Correction
 MPRI 2-6

Antoine Miné

September 20, 2016

Problem 1

1. The concrete evaluation gives:

$$
\begin{aligned}
& \operatorname{wrap}[-128,127](\operatorname{wrap}[0,255](\{-1,0,1\})+\operatorname{wrap}[0,255](\{-1,0,1\})) \\
= & \operatorname{wrap}[-128,127](\{0,1,255\}+\{0,1,255\}) \\
= & \operatorname{wrap}[-128,127](\{0,1,2,255,256,510\}) \\
= & \{-2,-1,0,1,2\}
\end{aligned}
$$

2. We define the optimal wrap $[\ell, h]_{i}^{\sharp}$ as:

$$
\begin{aligned}
& \operatorname{wrap}[\ell, h]_{i}^{\sharp}([a, b]) \\
= & \alpha_{i}\left(\operatorname{wrap}[\ell, h]_{i}^{\sharp}\left(\gamma_{i}([a, b])\right)\right) \\
= & {[\min \{\operatorname{wrap}[\ell, h](v) \mid v \in[a, b]\}, \max \{\operatorname{wrap}[\ell, h](v) \mid v \in[a, b]\}] }
\end{aligned}
$$

where α_{i} and γ_{i} are the interval abstraction and the interval concretization.
We then have two cases:

- either a and b are contained in a single interval of the form $[\ell+h]+k(h-\ell+1)$, i.e., if $\exists k: \ell+k(h-\ell+1) \leq a \leq b \leq h+k(h-\ell+1)$. In that case, wrap $[\ell, h]_{i}^{\sharp}([a, b])=$ $[a-k(h-\ell+1), b-k(h-\ell+1)]=[\operatorname{wrap}[\ell, h](a), \operatorname{wrap}[\ell, h](b)] ;$
- otherwise, $\operatorname{wrap}[\ell, h]_{i}^{\sharp}([a, b])=[\ell, h]$, as the interval $[a, b]$ contains both a point x such that $\operatorname{wrap}[\ell, h](x)=\ell$ and a point y such that $\operatorname{wrap}[\ell, h](y)=h$.

The operator is exact if and only if:

- either we are in the first case: $\exists k: \ell+k(h-\ell+1) \leq a \leq b \leq h+k(h-\ell+1)$;
- or $b-a \geq h-\ell$, which implies $\{\operatorname{wrap}[\ell, h](v) \mid v \in[a, b]\}=[\ell, h]$ in the concrete anyway.

An example of non-exact application of the operator is wrap $[0,255]^{\sharp}([-1,0])=[0,255]$ as, in the concrete, we would get the set $\{0,255\}$.
3. We get:

$$
\begin{aligned}
& \operatorname{wrap}[-128,127]_{i}^{\sharp}\left(\operatorname{wrap}[0,255]_{i}^{\sharp}\left(x^{\sharp}\right)+{ }_{i}^{\sharp} \operatorname{wrap}[0,255]_{i}^{\sharp}\left(y^{\sharp}\right)\right) \\
= & \operatorname{wrap}[-128,127]_{i}^{\sharp}\left(\operatorname{wrap}[0,255]_{i}^{\sharp}([-1,1])+{ }_{i}^{\sharp} \operatorname{wrap}[0,255]_{i}^{\sharp}(y[-1,1])\right) \\
= & \operatorname{wrap}[-128,127]_{i}^{\sharp}\left([0,255]++_{i}^{\sharp}[0,255]\right) \\
= & \operatorname{wrap}[-128,127]_{i}^{\sharp}([0,510]) \\
= & {[-128,127] }
\end{aligned}
$$

The concrete is, by question $1,\{-2,-1,0,1,2\}$. Note that it can be exactly represented as an interval $[-2,2]$, yet, the evaluation of the expression in the interval domain gives a much coarser result: $[-128,127]$. Hence, the abstract result is neither exact nor optimal.
This imprecision is caused by the accumulated loss of precision due to applying several optimal but non-exact operators in sequence (in general, the composition of optimal but non-exact operators is not an optimal operator). In particular, the first applications of wrap $[0,255]_{i}^{\sharp}$ results in a non-recoverable loss of precision.
4. The set of values $V \stackrel{\text { def }}{=}\{0,1,4\}$ can be abstracted both as $x^{\sharp} \stackrel{\text { def }}{=}[0,1]+3 \mathbb{Z}$ and as $y^{\sharp} \stackrel{\text { def }}{=}[0,1]+4 \mathbb{Z}$. Moreover, both abstract values are minimal in \mathcal{D}_{m}, i.e., no z^{\sharp} such that $\gamma_{m}\left(z^{\sharp}\right) \subsetneq \gamma_{m}\left(x^{\sharp}\right)$ or $\gamma_{m}\left(z^{\sharp}\right) \subsetneq \gamma_{m}\left(y^{\sharp}\right)$ can satisfy $V \subseteq \gamma_{m}\left(z^{\sharp}\right)$. If it existed, α_{m} would allow constructing a unique minimal element $\alpha_{m}(V)$ overapproximating V.
5. To design an abstraction $+\frac{\sharp}{m}$ of + in \mathcal{D}_{m}, we add separately the interval component and the modular component:

$$
\left(\left[a_{1}, b_{1}\right]+k_{1} \mathbb{Z}\right)+{ }_{m}^{\sharp}\left(\left[a_{2}, b_{2}\right]+k_{2} \mathbb{Z}\right) \stackrel{\text { def }}{=}\left[a_{1}+a_{2}, b_{1}+b_{2}\right]+\operatorname{gcd}\left(k_{1}, k_{1}\right) \mathbb{Z}
$$

The operator is sound because, given $x_{1}=c_{1}+k_{1} n_{1}, x_{2}=c_{2}+k_{2} n_{2}$ where $c_{1} \in\left[a_{1}, b_{1}\right]$ and $c_{2} \in\left[a_{2}, b_{2}\right]$, we have $x_{1}+x_{2}=\left(c_{1}+c_{2}\right)+\left(k_{1} n_{1}+k_{2} n_{2}\right)$, where $c_{1}+c_{2} \in\left[a_{1}+a_{2}, b_{1}+b_{2}\right]=$ $\left[a_{1}, b_{1}\right]+\left[a_{2}+b_{2}\right]$ and $k_{1} n_{1}+k_{2} n_{2} \in k_{1} \mathbb{Z}+k_{2} \mathbb{Z}=\operatorname{gcd}\left(k_{1}, k_{2}\right) \mathbb{Z}$. Note that, in this definition, gcd is extended to \mathbb{N} by defining $\forall x: \operatorname{gcd}(0, x)=\operatorname{gcd}(x, 0)=x$ (similarly to the simple congruence domain seen in the course).

For $w r a p[\ell, h]_{m}^{\sharp}([a, b]+k \mathbb{Z})$ we consider two different cases:
(a) when the result, in the concrete, can be exactly represented as an interval, we return this interval; this can be checked by ensuring that $[a, b]+k \mathbb{Z}$ does not cross any boundary in $\ell+(h-\ell+1) \mathbb{Z}$, i.e., that $[a, b]$ does not cross any boundary in $\ell+(h-$ $\ell+1) \mathbb{Z}+k \mathbb{Z}=\ell+\operatorname{gcd}(k, h-\ell+1) \mathbb{Z} ;$
(b) otherwise, we keep the interval component intact and adjust the modular component so that the result corresponds to the argument modulo $h-\ell+1$; i.e., we add $(h-\ell+1) \mathbb{Z}$ to $[a, b]+k \mathbb{Z}$ to get $[a, b]+\operatorname{gcd}(h-\ell+1, k) \mathbb{Z}$.

We get:

$$
\begin{aligned}
& \operatorname{wrap}[\ell, h]_{m}^{\sharp}([a, b]+k \mathbb{Z}) \stackrel{\text { def }}{=} \\
& \left.\qquad\left\{\begin{array}{ll}
{[w r a p}
\end{array} \ell, h\right](a), \text { wrap }[\ell, h](b)\right]+0 \mathbb{Z} \\
& {[a, b]+k^{\prime} \mathbb{Z}} \\
& \text { if }\left(\ell+k^{\prime} \mathbb{Z}\right) \cap[a+1, b]=\emptyset \\
& \text { where } k^{\prime} \stackrel{\text { def }}{=} \operatorname{gcd}(k, h-\ell+1)
\end{aligned}
$$

In our example, both applications of $w r a p[0,255]_{m}^{\#}$ exercise the second case of the definition, while the application of $\operatorname{wrap}[-128,127]_{m}^{\sharp}$ exercises the first case. We get:

$$
\begin{aligned}
& \operatorname{wrap}[-128,127]_{m}^{\sharp}\left(\operatorname{wrap}[0,255]_{m}^{\sharp}\left(x^{\sharp}\right)+{ }_{m}^{\sharp} \operatorname{wrap}[0,255]_{m}^{\sharp}\left(y^{\sharp}\right)\right) \\
= & \operatorname{wrap}[-128,127]_{m}^{\sharp}\left(\operatorname{wrap}[0,255]_{m}^{\sharp}([-1,1]+0 \mathbb{Z})+{ }_{m}^{\sharp} \operatorname{wrap}[0,255]_{m}^{\sharp}(y[-1,1]+0 \mathbb{Z})\right) \\
= & \operatorname{wrap}[-128,127]_{m}^{\sharp}\left([-1,1]+256 \mathbb{Z}+{ }_{m}^{\sharp}[-1,1]+256 \mathbb{Z}\right) \\
= & \operatorname{wrap}[-128,127]_{m}^{\sharp}([-2,2]+256 \mathbb{Z}) \\
= & {[-2,2] }
\end{aligned}
$$

Hence, the result is optimal.

Problem 2

1. In the concrete, the set $X \subseteq \mathbb{R}$ of possible values for the variable X is given by the smallest solution of the equation:

$$
X=\{0\} \cup\{\alpha x+b \mid x \in X, b \in[0, \beta]\}
$$

which can be computed using Kleene iterations as:

$$
X=\cup_{i} F^{i}(\emptyset) \text { where } F(S) \stackrel{\text { def }}{=}\{0\} \cup\{\alpha x+b \mid x \in S, b \in[0, \beta]\}
$$

We can prove by recurrence on i that $F^{i}(\emptyset)=\left[0, \sum_{k<i} \alpha^{k} \beta\right]$. The limit of this interval is the following interval, open at its upper bound: $\cup_{i} F^{i}=\left[0, \sum_{k} \alpha^{k} \beta[\right.$. We have two cases:
(a) if $0 \leq \alpha<1$, then the limit is $[0, m[$ where $m \stackrel{\text { def }}{=} \beta /(1-\alpha)$;
(b) if $\alpha \geq 1$, then the limit is $[0,+\infty[$.

In the following, we will consider only the first case.
2. An interval $\left[0, m^{\prime}\right]$ is an inductive invariant if and only if it is a post-fixpoint of F, i.e.: $F\left(\left[0, m^{\prime}\right]\right) \subseteq\left[0, m^{\prime}\right]$. As $F\left(\left[0, m^{\prime}\right]\right)=\left[0, \alpha m^{\prime}+\beta\right]$, we deduce that $\left[0, m^{\prime}\right]$ is an inductive invariant if and only if $\alpha m^{\prime}+\beta \leq m^{\prime}$, i.e., $m^{\prime} \geq \beta /(1-\alpha)=m$.
3. An analysis using the interval domain and the widening with threshold set T will find the smallest interval inductive invariant whose upper bound is in T. By the answer to the previous question, it will thus find an interval of the form $\left[0, m^{\prime}\right]$ where $m^{\prime} \xlongequal{\text { def }} \min \left\{m^{\prime} \in\right.$ $\left.T \mid m^{\prime} \geq \beta /(1-\alpha)\right\}$.
In order to find a bounded interval invariant, it is necessary and sufficient to ensure that T contains a value greater than or equal to $\beta /(1-\alpha)$ and strictly smaller than $+\infty$.
The most precise invariant representable in the interval domain is $[0, \beta /(1-\alpha)]$ (as we cannot represent open intervals). In order to find the most precise interval invariant, it is necessary and sufficient to have $\beta /(1-\alpha) \in T$.
4. Assume that the result of an interval analysis is the interval $[0, a]$ where $a \neq+\infty$.

A first decreasing iteration will give $F([0, a])=[0, \alpha a+\beta]$. We know, by the previous question that $a \geq \beta /(1-\alpha)$; this implies $a(1-\alpha) \geq \beta$ and then $a \geq a \alpha+\beta$. We thus get $F([0, a]) \subseteq[0, a]$. When the invariant is not optimal, i.e., $a>\beta /(1-\alpha)$ the inclusion is strict. By using decreasing iterations, we can compute a sequence $F^{i}([0, a])$ that converges to the optimal invariant $[0, \beta /(1-\alpha)]$. The decreasing sequence of intervals is infinite, so, a narrowing must be used to converge in finite time (possibly to an interval between the optimal $[0, \beta /(1-\alpha)]$ and the original invariant found $[0, a])$.
5. The first increasing iterates in the interval domain are:

$$
\begin{aligned}
& F^{0}(\emptyset)=\emptyset \\
& F^{1}(\emptyset)=[0,0] \\
& F^{2}(\emptyset)=[0, \beta] \\
& F^{3}(\emptyset)=[0, \alpha \beta+\beta]
\end{aligned}
$$

Denoting x_{i} the upper bound of $F^{i}(\emptyset)$, we get that $\beta=x_{2}$ and $\alpha=\left(x_{3}-\beta\right) / \beta=x_{3} / x_{2}-1$. The exact concrete bound is then $\beta /(1-\alpha)=\left(x_{2}\right)^{2} /\left(2 x_{2}-x_{3}\right)$.
We can modify the classic interval widening to check, after iteration 3 , the stability of $\left(x_{2}\right)^{2} /\left(2 x_{2}-x_{3}\right)$. The new widening takes, as parameter, in addition to the two last iterates, the iteration count i. More precisely, the increasing sequence of intervals computed will now be $X_{i+1}=X_{i} \nabla_{i} F\left(X_{i}\right)$ where, at iteration i, the widening is defined as:

$$
[a, b] \nabla_{i}[c, d] \stackrel{\text { def }}{=} \begin{cases}{[c, d]} & \text { if } c \leq a=b \leq d \\ {\left[0, b^{2} /(2 b-d)\right]} & \text { if } a=c=0 \wedge b^{2} /(2 b-d) \geq b, d \wedge i=2 \\ {[a, b] \nabla[c, d]} & \text { otherwise }\end{cases}
$$

where ∇ is the classic interval widening:

$$
[a, b] \nabla[c, d] \stackrel{\text { def }}{=}\left[\left\{\begin{array}{ll}
a & \text { if } a \leq c \\
-\infty & \text { otherwise }
\end{array},\left\{\begin{array}{ll}
b & \text { if } b \geq d \\
+\infty & \text { otherwise }
\end{array}\right]\right.\right.
$$

The first case $c \leq a=b \leq d$ ensures that, at iteration 1, when the upper bound goes from 0 to β, it is not immediately widened to $+\infty$. The second case ensures that, at iteration 2 , the limit $\beta /(1-\alpha)=b^{2} /(2 b-d)$ is chosen as upper bound, if it is sound (test $\left.a=c=0 \wedge b^{2} /(2 b-d) \geq b, d\right)$. The soundness of ∇ completes the soundness proof of ∇_{i}. To prove the termination, it is sufficient to remark that a strictly increasing sequence will keep applying ∇ after a certain iterate, and so, the sequence terminates by the termination property of ∇.

