Exercices MPRI 2-6

Antoine Miné

September 20, 2016

Let Σ be a set of states. Given a transition relation $\tau \subseteq \Sigma \times \Sigma$, we denote by $\mathcal{T}[\tau]$ the set of partial finite traces obeying τ :

$$\mathcal{T}[\tau] \stackrel{\text{def}}{=} \{ (\sigma_0, \dots, \sigma_n) \in \Sigma^+ \mid \forall i < n : (\sigma_i, \sigma_{i+1}) \in \tau \} .$$

We say that the transition relation τ generates the trace set $\mathcal{T}[\tau]$.

- 1. Give a definition for S[T], the function that, given a set of traces $T \subseteq \Sigma^+$, returns the smallest transition relation (for \subseteq) that generates a set of traces containing T.
- 2. Prove that the pair S and T forms a Galois connection between trace sets in $\mathcal{P}(\Sigma^+)$ and transition relations in $\mathcal{P}(\Sigma \times \Sigma)$:

$$(\mathcal{P}(\Sigma^+),\subseteq) \xleftarrow{\mathcal{T}}_{\mathcal{S}} (\mathcal{P}(\Sigma \times \Sigma),\subseteq)$$

- 3. Prove that not all trace sets are generated by a transition relation. Give an example where S results in an approximation.
- 4. Prove that the abstraction S[T] does not lose any information on T if and only if T is closed at the same time by junction $(T^{\frown}T = T)$, by prefix, and by suffix, and if $\Sigma \subseteq T$.

Consider now the set $\mathcal{T}_{\infty}[\tau]$ of partial finite and infinite traces obeying τ :

$$\mathcal{T}_{\infty}[\tau] \stackrel{\text{def}}{=} \{ (\sigma_0, \dots, \sigma_n) \in \Sigma^+ \mid \forall i < n : (\sigma_i, \sigma_{i+1}) \in \tau \} \cup \{ (\sigma_0, \dots) \in \Sigma^\omega \mid \forall i : (\sigma_i, \sigma_{i+1}) \in \tau \}$$

5. Prove that it is possible to define a new Galois connection:

$$(\mathcal{P}(\Sigma^{\infty}),\subseteq) \xleftarrow{\mathcal{T}_{\infty}}{\mathcal{S}_{\infty}} (\mathcal{P}(\Sigma \times \Sigma),\subseteq)$$

by extending the function \mathcal{S} from Question 1 to a function $\mathcal{S}_{\infty} : \mathcal{P}(\Sigma^{\infty}) \to \mathcal{P}(\Sigma \times \Sigma)$.

- 6. Prove that, for this new Galois connection, $S_{\infty}[T]$ can lose some information on trace sets that are closed at the same time by prefix, by suffix, and by junction and contain Σ (give an example).
- 7. Provide a necessary and sufficient condition on T such that $S_{\infty}[T]$ does not lose any precision in this new Galois connection.