Plan

- Partially ordered structures
 - (complete) partial orders
 - (complete) lattices

- Fixpoints

- Abstractions
 - Galois connections, upper closure operators
 (first-class citizens)
 - Concretization-only framework
 - Operator abstraction
 - Fixpoint abstraction
Partial orders
Given a set X, a relation $\sqsubseteq \in X \times X$ is a partial order if it is:

1. reflexive: $\forall x \in X, \ x \sqsubseteq x$
2. antisymmetric: $\forall x, y \in X, (x \sqsubseteq y) \land (y \sqsubseteq x) \implies x = y$
3. transitive: $\forall x, y, z \in X, (x \sqsubseteq y) \land (y \sqsubseteq z) \implies x \sqsubseteq z$

(X, \sqsubseteq) is a poset (partially ordered set).

If we drop antisymmetry, we have a preorder instead.
Examples: partial orders

Partial orders:

- \((\mathbb{Z}, \leq)\)
 (completely ordered)

- \((\mathcal{P}(X), \subseteq)\)
 (not completely ordered: \(\{1\} \nsubseteq \{2\}, \{2\} \nsubseteq \{1\}\))

- \((S, =)\) is a poset for any \(S\)

- \((\mathbb{Z}^2, \sqsubseteq)\), where \((a, b) \sqsubseteq (a', b')\) \iff \((a \geq a') \land (b \leq b')\)
 (ordering of interval bounds that implies inclusion)
Examples: preorders

Preorders:

- \((\mathcal{P}(X), \subseteq)\), where \(a \subseteq b \iff |a| \leq |b|\) (ordered by cardinal)

- \((\mathbb{Z}^2, \subseteq)\), where

\[
(a, b) \subseteq (a', b') \iff \{ x \mid a \leq x \leq b \} \subseteq \{ x \mid a' \leq x \leq b' \}
\]

(inclusion of intervals represented by pairs of bounds)

not antisymmetric: \([1, 0] \neq [2, 0]\) but \([1, 0] \subseteq [2, 0] \subseteq [1, 0]\)

Equivalence: \(\equiv\)

\[X \equiv Y \iff (X \subseteq Y) \wedge (Y \subseteq X)\]

We obtain a partial order by quotienting by \(\equiv\).
Examples of posets (cont.)

- Given by a Hasse diagram, e.g.:

\[
\begin{align*}
g &\sqsubseteq g \\
f &\sqsubseteq f, g \\
e &\sqsubseteq e, g \\
d &\sqsubseteq d, f, g \\
c &\sqsubseteq c, e, f, g \\
b &\sqsubseteq b, c, d, e, f, g \\
a &\sqsubseteq a, b, c, d, e, f, g
\end{align*}
\]
Infinite Hasse diagram for $(\mathbb{N} \cup \{\infty\}, \leq)$:
Use of posets (informally)

Posets are a very useful notion to discuss about:

- **logic**: formulas ordered by implication \Rightarrow
- **program verification**: program semantics \subseteq specification
 (e.g.: behaviors of program \subseteq accepted behaviors)
- **approximation**: \sqsubseteq is an information order
 ("$a \sqsubseteq b$" means: "a caries more information than b")
- **iteration**: fixpoint computation
 (e.g., a computation is directed, with a limit: $X_1 \subseteq X_2 \subseteq \cdots \subseteq X_n$)
(Least) Upper bounds

- c is an upper bound of a and b if: $a \sqsubseteq c$ and $b \sqsubseteq c$

- c is a least upper bound (lub or join) of a and b if
 - c is an upper bound of a and b
 - for every upper bound d of a and b, $c \sqsubseteq d$
(Least) Upper bounds

If it exists, the lub of \(a \) and \(b \) is **unique**, and denoted as \(a \sqcup b \).

(proof: assume that \(c \) and \(d \) are both lubs of \(a \) and \(b \); by definition of lubs, \(c \sqsubseteq d \) and \(d \sqsubseteq c \); by antisymmetry of \(\sqsubseteq \), \(c = d \))

Generalized to upper bounds of arbitrary (even infinite) sets \(\sqcup Y, Y \subseteq X \)

(well-defined, as \(\sqcup \) is commutative and associative).

Similarly, we define greatest lower bounds (glb, meet) \(a \sqcap b, \sqcap Y \).

\((a \sqcap b \sqsubseteq a) \land (a \sqcap b \sqsubseteq b)\) and \(\forall c, (c \sqsubseteq a) \land (c \sqsubseteq b) \implies (c \sqsubseteq a \sqcap b)\)

Note: not all posets have lubs, glbs

(e.g.: \(a \sqcup b \) not defined on \((\{a, b\}, =) \))
$C \subseteq X$ is a chain in (X, \sqsubseteq) if it is totally ordered by \sqsubseteq:
\[\forall x, y \in C, (x \sqsubseteq y) \lor (y \sqsubseteq x). \]
Complete partial orders (CPO)

A poset \((X, \sqsubseteq)\) is a complete partial order (CPO) if every chain \(C\) (including \(\emptyset\)) has a least upper bound \(\sqcup C\).

A CPO has a least element \(\sqcup \emptyset\), denoted \(\bot\).

Examples, Counter-examples:

- \((\mathbb{N}, \leq)\) is not complete, but \((\mathbb{N} \cup \{\infty\}, \leq)\) is complete.
- \((\{x \in \mathbb{Q} \mid 0 \leq x \leq 1\}, \leq)\) is not complete, but \((\{x \in \mathbb{R} \mid 0 \leq x \leq 1\}, \leq)\) is complete.
- \((\mathcal{P}(Y), \subseteq)\) is complete for any \(Y\).
- \((X, \sqsubseteq)\) is complete if \(X\) is finite.
Complete partial order examples

\[(\mathbb{N}, \leq) \]
non-complete

\[(\mathbb{N} \cup \{ \infty \}, \leq) \]
complete
Lattices
A lattice \((X, \sqsubseteq, \sqcup, \sqcap)\) is a poset with

1. a lub \(a \sqcup b\) for every pair of elements \(a\) and \(b\);
2. a glb \(a \sqcap b\) for every pair of elements \(a\) and \(b\).

Examples:

- integers \((\mathbb{Z}, \leq, \text{max}, \text{min})\)
- integer intervals (next slide)
- divisibility (in two slides)

If we drop one condition, we have a (join or meet) semilattice.

Reference on lattices: Birkhoff [Birk76].
Example: the interval lattice

Integer intervals: \(\{ [a, b] \mid a, b \in \mathbb{Z}, a \leq b \} \cup \{ \emptyset \}, \subseteq, \cup, \cap \)

where \([a, b] \sqcup [a', b'] \overset{\text{def}}{=} \min(a, a'), \max(b, b')\).
Example: the divisibility lattice

Divisibility $(\mathbb{N}^*, |, \text{lcm}, \text{gcd})$ where $x | y \iff \exists k \in \mathbb{N}, kx = y$
Let \(P \overset{\text{def}}{=} \{ p_1, p_2, \ldots \} \) be the (infinite) set of prime numbers.

We have a correspondence \(\iota \) between \(\mathbb{N}^* \) and \(P \rightarrow \mathbb{N} \):

- \(\alpha = \iota(x) \) is the (unique) decomposition of \(x \) into prime factors
- \(\iota^{-1}(\alpha) \overset{\text{def}}{=} \prod_{a \in P} a^{\alpha(a)} = x \)
- \(\iota \) is one-to-one on functions \(P \rightarrow \mathbb{N} \) with finite support \((\alpha(a) = 0 \text{ except for finitely many factors } a) \)

We have a correspondence between \((\mathbb{N}^*, |, \text{lcm}, \text{gcd}) \) and \((\mathbb{N}, \leq, \text{max}, \text{min}) \).

Assume that \(\alpha = \iota(x) \) and \(\beta = \iota(y) \) are the decompositions of \(x \) and \(y \), then:

- \(\prod_{a \in P} a^{\max(\alpha(a), \beta(a))} = \text{lcm}(\prod_{a \in P} a^{\alpha(a)}, \prod_{a \in P} a^{\beta(a)}) = \text{lcm}(x, y) \)
- \(\prod_{a \in P} a^{\min(\alpha(a), \beta(a))} = \text{gcd}(\prod_{a \in P} a^{\alpha(a)}, \prod_{a \in P} a^{\beta(a)}) = \text{gcd}(x, y) \)
- \((\forall a: \alpha(a) \leq \beta(a)) \iff (\prod_{a \in P} a^{\alpha(a)}) | (\prod_{a \in P} a^{\beta(a)}) \iff x \mid y \)
A complete lattice \((X, \sqsubseteq, \sqcup, \sqcap, \bot, \top)\) is a poset with

1. a lub \(\sqcup S\) for every set \(S \subseteq X\)
2. a glb \(\sqcap S\) for every set \(S \subseteq X\)
3. a least element \(\bot\)
4. a greatest element \(\top\)

Notes:

1. implies 2 as \(\sqcap S = \sqcup \{y \mid \forall x \in S, y \sqsubseteq x\}\) (and 2 implies 1 as well),
2. 1 and 2 imply 3 and 4: \(\bot = \sqcup \emptyset = \sqcap X\), \(\top = \sqcap \emptyset = \sqcup X\),
3. a complete lattice is also a CPO.
Complete lattice examples

- **real segment** $[0, 1]$: $(\{ x \in \mathbb{R} \mid 0 \leq x \leq 1 \}, \leq, \text{max}, \text{min}, 0, 1)$

- **powersets** $(\mathcal{P}(S), \subseteq, \cup, \cap, \emptyset, S)$
 (next slide)

- **any finite lattice**
 ($\sqcup Y$ and $\sqcap Y$ for finite $Y \subseteq X$ are always defined)

- **integer intervals** with finite and infinite bounds:
 $\left(\{ [a, b] \mid a \in \mathbb{Z} \cup \{-\infty\}, b \in \mathbb{Z} \cup \{+\infty\}, a \leq b \} \cup \{\emptyset\}, \subseteq, \sqcup, \sqcap, \emptyset, [-\infty, +\infty] \right)$

 with $\sqcup_{i \in I} [a_i, b_i] \overset{\text{def}}{=} [\min_{i \in I} a_i, \max_{i \in I} b_i]$.
 (in two slides)
Example: the powerset complete lattice

Example: \((\mathcal{P}(\mathbb{Z}), \subseteq, \cup, \cap, \emptyset, \mathbb{Z})\)
Example: the intervals complete lattice

The integer intervals with finite and infinite bounds:
\[
\{ [a, b] \mid a \in \mathbb{Z} \cup \{-\infty\}, b \in \mathbb{Z} \cup \{+\infty\}, a \leq b \} \cup \{ \emptyset \},
\subseteq, \cup, \cap, \emptyset, [-\infty, +\infty]\
\]
Derivation

Given a (complete) lattice or partial order \((X, \sqsubseteq, \sqcup, \sqcap, \bot, \top)\) we can derive new (complete) lattices or partial orders by:

- **duality**
 \((X, \sqsubseteq', \sqcap', \sqcup', \bot', \top)\)
 - \(\sqsubseteq\) is reversed
 - \(\sqcup\) and \(\sqcap\) are switched
 - \(\bot\) and \(\top\) are switched

- **lifting** (adding a smallest element)
 \((X \cup \{\bot'\}, \sqsubseteq', \sqcup', \sqcap', \bot', \top)\)
 - \(a \sqsubseteq' b \iff a = \bot' \lor a \sqsubseteq b\)
 - \(\bot' \sqcup' a = a \sqcup' \bot' = a\), and \(a \sqcup' b = a \sqcup b\) if \(a, b \neq \bot'\)
 - \(\bot' \sqcap' a = a \sqcap' \bot' = \bot'\), and \(a \sqcap' b = a \sqcap b\) if \(a, b \neq \bot'\)
 - \(\bot'\) replaces \(\bot\)
 - \(\top\) is unchanged
Derivation (cont.)

Given (complete) lattices or partial orders:
\((X_1, \sqsubseteq_1, \sqcup_1, \sqcap_1, \bot_1, \top_1)\) and \((X_2, \sqsubseteq_2, \sqcup_2, \sqcap_2, \bot_2, \top_2)\)

We can combine them by:

- **product**
 \((X_1 \times X_2, \subseteq, \cup, \cap, \bot, \top)\) where
 - \((x, y) \subseteq (x', y') \iff x \subseteq_1 x' \land y \subseteq_2 y'\)
 - \((x, y) \cup (x', y') \overset{\text{def}}{=} (x \cup_1 x', y \cup_2 y')\)
 - \((x, y) \cap (x', y') \overset{\text{def}}{=} (x \cap_1 x', y \cap_2 y')\)
 - \(\bot \overset{\text{def}}{=} (\bot_1, \bot_2)\)
 - \(\top \overset{\text{def}}{=} (\top_1, \top_2)\)

- **smashed product** (coalescent product, merging \(\bot_1\) and \(\bot_2\))
 \(((X_1 \setminus \{\bot_1\}) \times (X_2 \setminus \{\bot_2\})) \cup \{\bot\}, \subseteq, \cup, \cap, \bot, \top)\)
 (as \(X_1 \times X_2\), but all elements of the form \((\bot_1, y)\) and \((x, \bot_2)\) are identified to a unique \(\bot\) element)
Derivation (cont.)

Given a (complete) lattice or partial order \((X, \sqsubseteq, \sqcup, \sqcap, \bot, \top)\) and a set \(S\):

- **point-wise lifting** (functions from \(S\) to \(X\))

\[(S \rightarrow X, \sqsubseteq', \sqcup', \sqcap', \bot', \top')\] where

- \(x \sqsubseteq' y \iff \forall s \in S: x(s) \sqsubseteq y(s)\)
- \(\forall s \in S: (x \cup' y)(s) \overset{\text{def}}{=} x(s) \sqcup y(s)\)
- \(\forall s \in S: (x \cap' y)(s) \overset{\text{def}}{=} x(s) \sqcap y(s)\)
- \(\forall s \in S: \bot'(s) = \bot\)
- \(\forall s \in S: \top'(s) = \top\)

- **smashed point-wise lifting**

\[((S \rightarrow (X \setminus \{\bot\})) \cup \{\bot'\}, \sqsubseteq', \sqcup', \sqcap', \bot', \top')\]

as \(S \rightarrow X\), but identify to \(\bot'\) any map \(x\) where \(\exists s \in S: x(s) = \bot\)

(e.g. map each program variable in \(S\) to an interval in \(X\))
A lattice \((X, \subseteq, \sqcup, \sqcap)\) is **distributive** if:

- \(a \sqcup (b \sqcap c) = (a \sqcup b) \sqcap (a \sqcup c)\) and
- \(a \sqcap (b \sqcup c) = (a \sqcap b) \sqcup (a \sqcap c)\)

Examples, Counter-examples:

- \((\mathcal{P}(X), \subseteq, \cup, \cap)\) is distributive
- **intervals are not distributive**

 \([0, 0] \sqcup [2, 2]) \cap [1, 1] = [0, 2] \cap [1, 1] = [1, 1] \text{ but}

 \([0, 0] \cap [1, 1]) \cup ([2, 2] \cap [1, 1]) = \emptyset \cup \emptyset = \emptyset

common cause of precision loss in static analyses:
merging abstract information early, at control-flow joins
vs. merging executions paths late, at the end of the program
Sublattice

Given a lattice \((X, \subseteq, \cup, \cap)\) and \(X' \subseteq X\),\((X', \subseteq, \cup, \cap)\) is a **sublattice** of \(X\) if \(X'\) is **closed** under \(\cup\) and \(\cap\).

Example, Counter-examples:

- if \(Y \subseteq X\), \((\mathcal{P}(Y), \subseteq, \cup, \cap, \emptyset, Y)\) is a sublattice of \((\mathcal{P}(X), \subseteq, \cup, \cap, \emptyset, X)\).

- integer intervals are **not** a sublattice of \((\mathcal{P}(\mathbb{Z}), \subseteq, \cup, \cap, \emptyset, \mathbb{Z})\)

 \([\min(a, a'), \max(b, b')] \neq [a, b] \cup [a', b']\)

 another common cause of precision loss in static analyses:

 \(\cup\) cannot represent the exact union, and loses precision.
Functions and Fixpoints
A function $f : (X_1, \sqsubseteq_1, \sqcup_1, \bot_1) \to (X_2, \sqsubseteq_2, \sqcup_2, \bot_2)$ is

- **monotonic** if
 \[\forall x, x', x \sqsubseteq_1 x' \implies f(x) \sqsubseteq_2 f(x')\]
 (aka: increasing, isotone, order-preserving, morphism)

- **strict** if $f(\bot_1) = \bot_2$

- **continuous** between CPO if
 \[\forall C \text{ chain } \subseteq X_1, \{ f(c) \mid c \in C \} \text{ is a chain in } X_2\]
 and $f(\sqcup_1 C) = \sqcup_2 \{ f(c) \mid c \in C \}$

- a (complete) \sqcup-morphism between (complete) lattices
 if $\forall S \subseteq X_1, f(\sqcup_1 S) = \sqcup_2 \{ f(s) \mid s \in S \}$

- **extensive** if $X_1 = X_2$ and $\forall x, x \sqsubseteq_1 f(x)$

- **reductive** if $X_1 = X_2$ and $\forall x, f(x) \sqsubseteq_1 x$
Fixpoints

Given \(f : (X, \sqsubseteq) \rightarrow (X, \sqsubseteq) \)

- \(x \) is a **fixpoint** of \(f \) if \(f(x) = x \)
- \(x \) is a **pre-fixpoint** of \(f \) if \(x \sqsubseteq f(x) \)
- \(x \) is a **post-fixpoint** of \(f \) if \(f(x) \sqsubseteq x \)

We may have several fixpoints (or none)

- \(\text{fp}(f) \overset{\text{def}}{=} \{ x \in X \mid f(x) = x \} \)
- \(\text{lfp}_{x} f \overset{\text{def}}{=} \min_{\sqsubseteq} \{ y \in \text{fp}(f) \mid x \sqsubseteq y \} \) if it exists
 (least fixpoint greater than \(x \))
- \(\text{lfp} f \overset{\text{def}}{=} \text{lfp}_{\perp} f \)
 (least fixpoint)
- **dually**: \(\text{gfp}_{x} f \overset{\text{def}}{=} \max_{\sqsubseteq} \{ y \in \text{fp}(f) \mid y \sqsubseteq x \} \), \(\text{gfp} f \overset{\text{def}}{=} \text{gfp}_{\top} f \)
 (greatest fixpoints)
Functions and fixpoints

Fixpoints: illustration

Course 1
Order Theory
Antoine Miné
p. 32 / 69
Monotonic function with two distinct fixpoints
Monotonic function with a unique fixpoint
Non-monotonic function with no fixpoint
Functions and fixpoints

Uses of fixpoints: examples

- Express solutions of mutually recursive equation systems

Example:

The solutions of \[
\begin{cases}
 x_1 = f(x_1, x_2) \\
 x_2 = g(x_1, x_2)
\end{cases}
\]

with \(x_1, x_2\) in lattice \(X\) are exactly the fixpoint of \(\vec{F}\) in lattice \(X \times X\), where

\[
\vec{F} \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) = \left(\begin{array}{c} f(x_1, x_2) \\ g(x_1, x_2) \end{array} \right)
\]

The least solution of the system is \(\text{lfp} \vec{F}\).
Uses of fixpoints: examples

- Close (complete) sets to satisfy a given property

Example:

\(r \subseteq X \times X \) is transitive if:

\[(a, b) \in r \land (b, c) \in r \implies (a, c) \in r\]

The transitive closure of \(r \) is the smallest transitive relation containing \(r \).

Let \(f(s) = r \cup \{ (a, c) \mid (a, b) \in s \land (b, c) \in s \} \), then lfp \(f \):

- lfp \(f \) contains \(r \)
- lfp \(f \) is transitive
- lfp \(f \) is minimal

\(\implies \) lfp \(f \) is the transitive closure of \(r \).
Tarski’s fixpoint theorem

Tarski’s theorem

If $f : X \to X$ is monotonic in a complete lattice X then $\text{fp}(f)$ is a complete lattice.

Proved by Knaster and Tarski [Tars55].
Tarski’s fixpoint theorem

Tarski’s theorem
If $f : X \rightarrow X$ is monotonic in a complete lattice X then $\text{fp}(f)$ is a complete lattice.

Proof:
We prove $\text{lfp } f = \cap \{ x \mid f(x) \sqsubseteq x \}$ (meet of post-fixpoints).
Tarski’s fixpoint theorem

Tarski’s theorem

If \(f : X \rightarrow X \) is monotonic in a complete lattice \(X \) then \(\text{fp}(f) \) is a complete lattice.

Proof:

We prove \(\text{lfp } f = \sqcap \{ x \mid f(x) \sqsubseteq x \} \) (meet of post-fixpoints).

Let \(f^* = \{ x \mid f(x) \sqsubseteq x \} \) and \(a = \sqcap f^* \).

\[\forall x \in f^*, \ a \sqsubseteq x \quad (\text{by definition of } \sqcap) \]

so \(f(a) \sqsubseteq f(x) \) (as \(f \) is monotonic)

so \(f(a) \sqsubseteq x \) (as \(x \) is a post-fixpoint).

We deduce that \(f(a) \sqsubseteq \sqcap f^* \), i.e. \(f(a) \sqsubseteq a \).
Tarski’s fixpoint theorem

Tarski’s theorem

If \(f : X \rightarrow X \) is monotonic in a complete lattice \(X \) then \(\text{fp}(f) \) is a complete lattice.

Proof:

We prove \(\text{lfp}\ f = \sqcap \{ x \mid f(x) \sqsubseteq x \} \) (meet of post-fixpoints).

\[
f(a) \sqsubseteq a
\]

so \(f(f(a)) \sqsubseteq f(a) \) (as \(f \) is monotonic)

so \(f(a) \in f^* \) (by definition of \(f^* \))

so \(a \sqsubseteq f(a) \).

We deduce that \(f(a) = a \), so \(a \in \text{fp}(f) \).

Note that \(y \in \text{fp}(f) \) implies \(y \in f^* \).

As \(a = \sqcap f^* \), \(a \sqsubseteq y \), and we deduce \(a = \text{lfp}\ f \).
Tarski’s fixpoint theorem

Tarski’s theorem

If $f : X \rightarrow X$ is monotonic in a complete lattice X then $\text{fp}(f)$ is a complete lattice.

Proof:

Given $S \subseteq \text{fp}(f)$, we prove that $\text{lfp} \sqcup S f$ exists.

Consider $X' = \{ x \in X \mid \sqcup S \subseteq x \}$. X' is a complete lattice. Moreover $\forall x' \in X', f(x') \in X'$.

f can be restricted to a monotonic function f' on X'.

We apply the preceding result, so that $\text{lfp} f' = \text{lfp} \sqcup S f$ exists.

By definition, $\text{lfp} \sqcup S f \in \text{fp}(f)$ and is smaller than any fixpoint larger than all $s \in S$.
Tarski’s fixpoint theorem

Tarski’s theorem
If \(f : X \rightarrow X \) is monotonic in a complete lattice \(X \) then \(\text{fp}(f) \) is a complete lattice.

Proof:
By duality, we construct \(\text{gfp} \ f \) and \(\text{gfp}_{\sqcap} S \ f \).

The complete lattice of fixpoints is:
\((\text{fp}(f), \sqsubseteq, \lambda S.\text{lfp}_{\sqcup} S \ f, \lambda S.\text{gfp}_{\sqcap} S \ f, \text{lfp} \ f, \text{gfp} \ f)\).

Not necessarily a sublattice of \((X, \sqsubseteq, \sqcup, \sqcap, \bot, \top)\)!
Tarski’s fixpoint theorem: example

Lattice: \(\{ \text{lfp}, \text{fp1}, \text{fp2}, \text{pre}, \text{gfp} \}, \sqcup, \sqcap, \text{lfp}, \text{gfp} \)
Fixpoint lattice: \(\{ \text{lfp}, \text{fp1}, \text{fp2}, \text{gfp} \}, \sqcup', \sqcap', \text{lfp}, \text{gfp} \)
(not a sublattice as \(\text{fp1} \sqcup \text{fp2} = \text{gfp} \) while \(\text{fp1} \sqcup \text{fp2} = \text{pre} \), but \(\text{gfp} \) is the smallest fixpoint greater than \(\text{pre} \))
“Kleene” fixpoint theorem

If $f : X \to X$ is continuous in a CPO X and $a \sqsubseteq f(a)$ then $\text{lfp}_a f$ exists.

Inspired by Kleene [Klee52].
"Kleene" fixpoint theorem

If $f : X \to X$ is continuous in a CPO X and $a \sqsubseteq f(a)$ then $\text{lfp}_a f$ exists.

We prove that $\{f^n(a) \mid n \in \mathbb{N}\}$ is a chain and $\text{lfp}_a f = \sqcup \{ f^n(a) \mid n \in \mathbb{N} \}$.
If \(f : X \to X \) is continuous in a CPO \(X \) and \(a \sqsubseteq f(a) \) then \(\text{lfp}_a f \) exists.

We prove that \(\{ f^n(a) \mid n \in \mathbb{N} \} \) is a chain and
\[
\text{lfp}_a f = \sqcup \{ f^n(a) \mid n \in \mathbb{N} \}.
\]

\(a \sqsubseteq f(a) \) by hypothesis.

\(f(a) \sqsubseteq f(f(a)) \) by monotony of \(f \).

(Note that any continuous function is monotonic.
Indeed, \(x \sqsubseteq y \implies x \sqcup y = y \implies f(x \sqcup y) = f(y) \);
by continuity \(f(x) \sqcup f(y) = f(x \sqcup y) = f(y) \), which implies \(f(x) \sqsubseteq f(y) \).

By recurrence \(\forall n, f^n(a) \sqsubseteq f^{n+1}(a) \).

Thus, \(\{ f^n(a) \mid n \in \mathbb{N} \} \) is a chain and \(\sqcup \{ f^n(a) \mid n \in \mathbb{N} \} \) exists.
“Kleene” fixpoint theorem

If \(f : X \to X \) is continuous in a CPO \(X \) and \(a \sqsubseteq f(a) \) then \(\text{lfp}_a f \) exists.

\[
f(\bigsqcup \{ f^n(a) \mid n \in \mathbb{N} \}) \\
= \bigsqcup \{ f^{n+1}(a) \mid n \in \mathbb{N} \} \quad \text{(by continuity)} \\
= a \sqcup (\bigsqcup \{ f^{n+1}(a) \mid n \in \mathbb{N} \}) \quad \text{(as all } f^{n+1}(a) \text{ are greater than } a) \\
= \bigsqcup \{ f^n(a) \mid n \in \mathbb{N} \}. \\
\]

So, \(\bigsqcup \{ f^n(a) \mid n \in \mathbb{N} \} \in \text{fp}(f) \)

Moreover, any fixpoint greater than \(a \) must also be greater than all \(f^n(a), n \in \mathbb{N} \).

So, \(\bigsqcup \{ f^n(a) \mid n \in \mathbb{N} \} = \text{lfp}_a f \).
Well-ordered sets

\((S, \subseteq)\) is a well-ordered set if:

- \(\subseteq\) is a total order on \(S\)
- every \(X \subseteq S\) such that \(X \neq \emptyset\) has a least element \(\bigcap X \in X\)

Consequences:

- any element \(x \in S\) has a successor \(x + 1 \overset{\text{def}}{=} \bigcap \{y \mid x \sqsubseteq y\}\)
 (except the greatest element, if it exists)
- if \(\not\exists y, \ x = y + 1\), \(x\) is a limit and \(x = \bigcup \{y \mid y \sqsubseteq x\}\)
 (every bounded subset \(X \subseteq S\) has a lub \(\bigcup X = \bigcap \{y \mid \forall x \in X, x \sqsubseteq y\}\))

Examples:

- \((\mathbb{N}, \leq)\) and \((\mathbb{N} \cup \{\infty\}, \leq)\) are well-ordered
- \((\mathbb{Z}, \leq), (\mathbb{R}, \leq), (\mathbb{R}^+, \leq)\) are not well-ordered
- ordinals \(0, 1, 2, \ldots, \omega, \omega + 1, \ldots\) are well-ordered (\(\omega\) is a limit)
 well-ordered sets are ordinals up to order-isomorphism
 (i.e., bijective functions \(f\) such that \(f\) and \(f^{-1}\) are monotonic)
Given a function $f : X \rightarrow X$ and $a \in X$, the transfinite iterates of f from a are:

$$
\begin{align*}
 x_0 & \overset{\text{def}}{=} a \\
 x_n & \overset{\text{def}}{=} f(x_{n-1}) \quad \text{if } n \text{ is a successor ordinal} \\
 x_n & \overset{\text{def}}{=} \bigsqcup \{ x_m \mid m < n \} \quad \text{if } n \text{ is a limit ordinal}
\end{align*}
$$

Constructive Tarski theorem

If $f : X \rightarrow X$ is monotonic in a CPO X and $a \sqsubseteq f(a)$, then $\text{lfp}_a f = x_\delta$ for some ordinal δ.

Generalisation of “Kleene” fixpoint theorem, from [Cous79].
Proof

f is monotonic in a CPO X,

\[
\begin{align*}
 x_0 & \defeq a \sqsubseteq f(a) \\
 x_n & \defeq f(x_{n-1}) \quad \text{if } n \text{ is a successor ordinal} \\
 x_n & \defeq \sqcup \{ x_m \mid m < n \} \quad \text{if } n \text{ is a limit ordinal}
\end{align*}
\]

Proof:
We prove that $\exists \delta, x_\delta = x_{\delta+1}$.

We note that $m \leq n \implies x_m \sqsubseteq x_n$.
Assume by contradiction that $\forall \delta, x_\delta = x_{\delta+1}$.
If n is a successor ordinal, then $x_{n-1} \sqsubseteq x_n$.
If n is a limit ordinal, then $\forall m < n, x_m \sqsubseteq x_n$.
Thus, all the x_n are distinct.
By choosing $n > |X|$, we arrive at a contradiction.
Thus δ exists.
Proof

\(f \) is monotonic in a CPO \(X \),
\[
\begin{align*}
x_0 & \overset{\text{def}}{=} a \sqsubseteq f(a) \\
x_n & \overset{\text{def}}{=} f(x_{n-1}) & \text{if } n \text{ is a successor ordinal} \\
x_n & \overset{\text{def}}{=} \sqcup \{ x_m \mid m < n \} & \text{if } n \text{ is a limit ordinal}
\end{align*}
\]

Proof:

Given \(\delta \) such that \(x_{\delta+1} = x_\delta \), we prove that \(x_\delta = \text{lfp}_a f \).

\(f(x_\delta) = x_{\delta+1} = x_\delta \), so \(x_\delta \in \text{fp}(f) \).

Given any \(y \in \text{fp}(f) \), \(y \sqsubseteq a \), we prove by transfinite induction that \(\forall n, x_n \sqsubseteq y \).

By definition \(x_0 = a \sqsubseteq y \).

If \(n \) is a successor ordinal, by monotony, \(x_{n-1} \sqsubseteq y \implies f(x_{n-1}) \sqsubseteq f(y) \), i.e., \(x_n \sqsubseteq y \).

If \(n \) is a limit ordinal, \(\forall m < n, x_m \sqsubseteq y \) implies \(x_n = \sqcup \{ x_m \mid m < n \} \sqsubseteq y \).

Hence, \(x_\delta \sqsubseteq y \) and \(x_\delta = \text{lfp}_a f \).
An ascending chain C in (X, \sqsubseteq) is a sequence $c_i \in X$ such that $i \leq j \implies c_i \sqsubseteq c_j$.

A poset (X, \sqsubseteq) satisfies the ascending chain condition (ACC) iff for every ascending chain C, $\exists i \in \mathbb{N}, \forall j \geq i, c_i = c_j$.

Similarly, we can define the descending chain condition (DCC).

Examples:

- the powerset poset $(\mathcal{P}(X), \subseteq)$ is ACC when X is finite
- the pointed integer poset $(\mathbb{Z} \cup \{ \bot \}, \sqsubseteq)$ where $x \sqsubseteq y \iff x = \bot \lor x = y$ is ACC and DCC
- the divisibility poset $(\mathbb{N}^*, |)$ is DCC but not ACC.
“Kleene” finite fixpoint theorem

If \(f : X \rightarrow X \) is monotonic in an ACC poset \(X \) and \(a \sqsubseteq f(a) \)
then \(\text{lfp}_a f \) exists.

Proof:
We prove \(\exists n \in \mathbb{N}, \text{lfp}_a f = f^n(a) \).

By monotony of \(f \), the sequence \(x_n = f^n(a) \) is an increasing chain.
By definition of ACC, \(\exists n \in \mathbb{N}, x_n = x_{n+1} = f(x_n) \).
Thus, \(x_n \in \text{fp}(f) \).

Obviously, \(a = x_0 \sqsubseteq f(x_n) \).
Moreover, if \(y \in \text{fp}(f) \) and \(y \sqsupseteq a \), then \(\forall i, y \sqsupseteq f^i(a) = x_i \).
Hence, \(y \sqsupseteq x_n \) and \(x_n = \text{lfp}_a (f) \).
Functions and fixpoints

Comparison of fixpoint theorems

<table>
<thead>
<tr>
<th>theorem</th>
<th>function</th>
<th>domain</th>
<th>fixpoint</th>
<th>method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tarski</td>
<td>monotonic</td>
<td>complete lattice</td>
<td>$fp(f)$</td>
<td>meet of post-fixpoints</td>
</tr>
<tr>
<td>Kleene</td>
<td>continuous</td>
<td>CPO</td>
<td>$lfp_a(f)$</td>
<td>countable iterations</td>
</tr>
<tr>
<td>constructive</td>
<td>monotonic</td>
<td>CPO</td>
<td>$lfp_a(f)$</td>
<td>transfinite iteration</td>
</tr>
<tr>
<td>Tarski ACC</td>
<td>monotonic</td>
<td>poset</td>
<td>$lfp_a(f)$</td>
<td>finite iteration</td>
</tr>
<tr>
<td>ACC Kleene</td>
<td>monotonic</td>
<td>poset</td>
<td>$lfp_a(f)$</td>
<td>finite iteration</td>
</tr>
</tbody>
</table>
Galois connections
Galois connections

Given two posets \((C, \leq)\) and \((A, \sqsubseteq)\), the pair \((\alpha : C \to A, \gamma : A \to C)\) is a Galois connection iff:

\[
\forall a \in A, \ c \in C, \ \alpha(c) \sqsubseteq a \iff c \leq \gamma(a)
\]

which is noted \((C, \leq) \xleftrightarrow{\alpha, \gamma} (A, \sqsubseteq)\).

\[\alpha\] is the upper adjoint or abstraction; \(A\) is the abstract domain.

\[\gamma\] is the lower adjoint or concretization; \(C\) is the concrete domain.
Galois connections

Galois connection example

Abstract domain of intervals of integers $\overline{\mathbb{Z}}$ represented as pairs of bounds (a, b).

We have: $(\mathcal{P}(\overline{\mathbb{Z}}), \subseteq) \xleftrightarrow{\gamma} (I, \subseteq)$

- $I \overset{\text{def}}{=} (\mathbb{Z} \cup \{-\infty\}) \times (\mathbb{Z} \cup \{+\infty\})$
- $(a, b) \subseteq (a', b') \iff (a \geq a') \land (b \leq b')$
- $\gamma(a, b) \overset{\text{def}}{=} \{ x \in \mathbb{Z} | a \leq x \leq b \}$
- $\alpha(X) \overset{\text{def}}{=} (\min X, \max X)$

proof:
Galois connections

Galois connection example

Abstract domain of **intervals of integers** \mathbb{Z} represented as **pairs of bounds** (a, b).

We have: $(\mathcal{P}(\mathbb{Z}), \subseteq) \xleftrightarrow{\gamma} (I, \subseteq)$

- $I \overset{\text{def}}{=} (\mathbb{Z} \cup \{-\infty\}) \times (\mathbb{Z} \cup \{+\infty\})$
- $(a, b) \subseteq (a', b') \iff (a \geq a') \land (b \leq b')$
- $\gamma(a, b) \overset{\text{def}}{=} \{ x \in \mathbb{Z} \mid a \leq x \leq b \}$
- $\alpha(X) \overset{\text{def}}{=} (\min X, \max X)$

proof:

$\alpha(X) \subseteq (a, b)$

$\iff \min X \geq a \land \max X \leq b$

$\iff \forall x \in X : a \leq x \leq b$

$\iff \forall x \in X : x \in \{ y \mid a \leq y \leq b \}$

$\iff \forall x \in X : x \in \gamma(a, b)$

$\iff X \subseteq \gamma(a, b)$
Properties of Galois connections

Assuming $\forall a, c, \alpha(c) \sqsubseteq a \iff c \leq \gamma(a)$, we have:

1. $\gamma \circ \alpha$ is extensive: $\forall c, c \leq \gamma(\alpha(c))$

 proof: $\alpha(c) \sqsubseteq \alpha(c) \implies c \leq \gamma(\alpha(c))$

2. $\alpha \circ \gamma$ is reductive: $\forall a, \alpha(\gamma(a)) \sqsubseteq a$

3. α is monotonic

 proof: $c \leq c' \implies c \leq \gamma(\alpha(c')) \implies \alpha(c) \sqsubseteq \alpha(c')$

4. γ is monotonic

5. $\gamma \circ \alpha \circ \gamma = \gamma$

 proof: $\alpha(\gamma(a)) \sqsubseteq \alpha(\gamma(a)) \implies \gamma(a) \leq \gamma(\alpha(\gamma(a)))$ and

 $a \sqsupseteq \alpha(\gamma(a)) \implies \gamma(a) \geq \gamma(\alpha(\gamma(a)))$

6. $\alpha \circ \gamma \circ \alpha = \alpha$

7. $\alpha \circ \gamma$ is idempotent: $\alpha \circ \gamma \circ \alpha \circ \gamma = \alpha \circ \gamma$

8. $\gamma \circ \alpha$ is idempotent
Alternate characterization

If the pair \((\alpha : C \to A, \gamma : A \to C)\) satisfies:

1. \(\gamma\) is monotonic,
2. \(\alpha\) is monotonic,
3. \(\gamma \circ \alpha\) is extensive
4. \(\alpha \circ \gamma\) is reductive

then \((\alpha, \gamma)\) is a Galois connection.

(proof left as exercise)
Uniqueness of the adjoint

Given \((C, \leq) \xleftrightarrow{\gamma \alpha} (A, \sqsubseteq)\), each adjoint can be uniquely defined in term of the other:

1. \(\alpha(c) = \bigsqcap \{ a \mid c \leq \gamma(a) \}\)
2. \(\gamma(a) = \bigvee \{ c \mid \alpha(c) \sqsubseteq a \}\)

Proof: of 1

\(\forall a, c \leq \gamma(a) \implies \alpha(c) \sqsubseteq a.\)
Hence, \(\alpha(c)\) is a lower bound of \(\{ a \mid c \leq \gamma(a) \}\).

Assume that \(a'\) is another lower bound.
Then, \(\forall a, c \leq \gamma(a) \implies a' \sqsubseteq a.\)
By Galois connection, we have then \(\forall a, \alpha(c) \sqsubseteq a \implies a' \sqsubseteq a.\)
This implies \(a' \sqsubseteq \alpha(c).\)
Hence, the greatest lower bound of \(\{ a \mid c \leq \gamma(a) \}\) exists, and equals \(\alpha(c).\)

The proof of 2 is similar (by duality).
Properties of Galois connections (cont.)

If \((\alpha : C \to A, \gamma : A \to C) \), then:

1. \(\forall X \subseteq C, \text{ if } \bigvee X \text{ exists, then } \alpha(\bigvee X) = \bigsqcup \{ \alpha(x) \mid x \in X \} \).

2. \(\forall X \subseteq A, \text{ if } \bigwedge X \text{ exists, then } \gamma(\bigwedge X) = \bigwedge \{ \gamma(x) \mid x \in X \} \).

Proof: of 1

By definition of lubs, \(\forall x \in X, x \leq \bigvee X \).

By monotony, \(\forall x \in X, \alpha(x) \subseteq \alpha(\bigvee X) \).

Hence, \(\alpha(\bigvee X) \) is an upper bound of \(\{ \alpha(x) \mid x \in X \} \).

Assume that \(y \) is another upper bound of \(\{ \alpha(x) \mid x \in X \} \).

Then, \(\forall x \in X, \alpha(x) \subseteq y \).

By Galois connection \(\forall x \in X, x \leq \gamma(y) \).

By definition of lubs, \(\bigvee X \leq \gamma(y) \).

By Galois connection, \(\alpha(\bigvee X) \subseteq y \).

Hence, \(\{ \alpha(x) \mid x \in X \} \) has a lub, which equals \(\alpha(\bigvee X) \).

The proof of 2 is similar (by duality).
Deriving Galois connections

Given \((C, \leq) \Longleftrightarrow \alpha \gamma (A, \\sqsubseteq)\), we have:

- **duality:** \((A, \sqsupseteq) \Longleftrightarrow \gamma \alpha (C, \geq)\)
 \[(\alpha(c) \sqsubseteq a \iff c \leq \gamma(a) \text{ is exactly } \gamma(a) \geq c \iff a \sqsupseteq \alpha(c))\]

- **point-wise lifting** by some set \(S\): \((S \rightarrow C, \leq) \Longleftrightarrow \hat{\gamma} \hat{\alpha} (S \rightarrow A, \sqsubseteq)\)
 where
 \[
f \leq f' \iff \forall s, f(s) \leq f'(s), \quad (\hat{\gamma}(f))(s) = \gamma(f(s)),
f \sqsubseteq f' \iff \forall s, f(s) \sqsubseteq f'(s), \quad (\hat{\alpha}(f))(s) = \alpha(f(s)).
 \]

Given \((X_1, \sqsubseteq_1) \Longleftrightarrow \gamma_1 \alpha_1 (X_2, \sqsubseteq_2) \Longleftrightarrow \gamma_2 \alpha_2 (X_3, \sqsubseteq_3)\):

- **composition:** \((X_1, \sqsubseteq_1) \Longleftrightarrow \gamma_1 \circ \gamma_2 \alpha_2 \circ \alpha_1 (X_3, \sqsubseteq_3)\)
 \[((\alpha_2 \circ \alpha_1)(c) \sqsubseteq_3 a \iff \alpha_1(c) \sqsubseteq_2 \gamma_2(a) \iff c \sqsubseteq_1 (\gamma_1 \circ \gamma_2)(a))\]
Galois embeddings

If \((C, \leq) \xleftarrow{\gamma} \xrightarrow{\alpha} (A, \sqsubseteq)\), the following properties are equivalent:

1. \(\alpha\) is surjective \((\forall a \in A, \exists c \in C, \alpha(c) = a)\)
2. \(\gamma\) is injective \((\forall a, a' \in A, \gamma(a) = \gamma(a') \implies a = a')\)
3. \(\alpha \circ \gamma = id\) \((\forall a \in A, id(a) = a)\)

Such \((\alpha, \gamma)\) is called a **Galois embedding**, which is noted \((C, \leq) \xleftarrow{\gamma} \xrightarrow{\alpha} (A, \sqsubseteq)\)

Proof:
Galois embeddings

If \((C, \leq) \leftarrow \gamma \rightarrow (A, \sqsubseteq)\), the following properties are equivalent:

1. \(\alpha\) is surjective
 \((\forall a \in A, \exists c \in C, \alpha(c) = a)\)
2. \(\gamma\) is injective
 \((\forall a, a' \in A, \gamma(a) = \gamma(a') \implies a = a')\)
3. \(\alpha \circ \gamma = id\)
 \((\forall a \in A, id(a) = a)\)

Such \((\alpha, \gamma)\) is called a **Galois embedding**, which is noted
\((C, \leq) \leftarrow \gamma \rightarrow (A, \sqsubseteq)\)

Proof: 1 \(\implies\) 2

Assume that \(\gamma(a) = \gamma(a')\).

By surjectivity, take \(c, c'\) such that \(a = \alpha(c), a' = \alpha(c')\).

Then \(\gamma(\alpha(c)) = \gamma(\alpha(c'))\).

And \(\alpha(\gamma(\alpha(c))) = \alpha(\gamma(\alpha(c'))))\).

As \(\alpha \circ \gamma \circ \alpha = \alpha\), \(\alpha(c) = \alpha(c')\).

Hence \(a = a'\).
Galois connections

Galois embeddings

If \((C, \leq) \xrightarrow{\gamma}{\alpha} (A, \sqsubseteq)\), the following properties are equivalent:

1. \(\alpha\) is surjective
 \((\forall a \in A, \exists c \in C, \alpha(c) = a)\)
2. \(\gamma\) is injective
 \((\forall a, a' \in A, \gamma(a) = \gamma(a') \implies a = a')\)
3. \(\alpha \circ \gamma = id\)
 \((\forall a \in A, id(a) = a)\)

Such \((\alpha, \gamma)\) is called a **Galois embedding**, which is noted
\((C, \leq) \xrightarrow{\gamma}{\alpha} (A, \sqsubseteq)\)

Proof: \(2 \implies 3\)

Given \(a \in A\), we know that \(\gamma(\alpha(\gamma(a))) = \gamma(a)\).
By injectivity of \(\gamma\), \(\alpha(\gamma(a)) = a\).
Galois connections

Galois embeddings

If \((C, \leq) \xleftrightarrow{\alpha} (A, \sqsubseteq)\), the following properties are equivalent:

1. \(\alpha\) is surjective
 \((\forall a \in A, \exists c \in C, \alpha(c) = a)\)

2. \(\gamma\) is injective
 \((\forall a, a' \in A, \gamma(a) = \gamma(a') \implies a = a')\)

3. \(\alpha \circ \gamma = id\)
 \((\forall a \in A, id(a) = a)\)

Such \((\alpha, \gamma)\) is called a Galois embedding, which is noted
\((C, \leq) \xleftrightarrow{\alpha} (A, \sqsubseteq)\)

Proof: 3 \(\implies\) 1

Given \(a \in A\), we have \(\alpha(\gamma(a)) = a\).
Hence, \(\exists c \in C, \alpha(c) = a\), using \(c = \gamma(a)\).
A Galois connection can be made into an embedding by quotienting A by the equivalence relation $a \equiv a' \iff \gamma(a) = \gamma(a')$.
Galois connections

Galois embedding example

Abstract domain of intervals of integers \(\mathbb{Z} \) represented as pairs of ordered bounds \((a, b)\) or \(\perp\).

We have: \((\mathcal{P}(\mathbb{Z}), \subseteq) \xrightarrow{\gamma} (I, \sqsubseteq)\)

- \(I \overset{\text{def}}{=} \{ (a, b) \mid a \in \mathbb{Z} \cup \{-\infty\}, b \in \mathbb{Z} \cup \{+\infty\}, a \leq b \} \cup \{\perp\}\)
- \((a, b) \sqsubseteq (a', b') \iff (a \geq a') \land (b \leq b'), \forall x : \perp \sqsubseteq x\)
- \(\gamma(a, b) \overset{\text{def}}{=} \{ x \in \mathbb{Z} \mid a \leq x \leq b \}, \gamma(\perp) = \emptyset\)
- \(\alpha(X) \overset{\text{def}}{=} (\min X, \max X), \text{ or } \perp \text{ if } X = \emptyset\)

proof:
Galois connections

Galois embedding example

Abstract domain of intervals of integers \(\overline{\mathbb{Z}} \) represented as pairs of ordered bounds \((a, b)\) or \(\perp\).

We have: \((\mathcal{P}(\overline{\mathbb{Z}}), \subseteq) \xleftarrow{\gamma} (I, \sqsubseteq)\)

- \(I \overset{\text{def}}{=} \{ (a, b) \mid a \in \mathbb{Z} \cup \{-\infty\}, b \in \mathbb{Z} \cup \{+\infty\}, a \leq b \} \cup \{\perp\}\)
- \((a, b) \sqsubseteq (a', b') \iff (a \geq a') \land (b \leq b'), \quad \forall x: \perp \sqsubseteq x\)
- \(\gamma(a, b) \overset{\text{def}}{=} \{ x \in \mathbb{Z} \mid a \leq x \leq b \}, \quad \gamma(\perp) = \emptyset\)
- \(\alpha(X) \overset{\text{def}}{=} (\min X, \max X), \text{ or } \perp \text{ if } X = \emptyset\)

proof:

Quotient of the “pair of bounds” domain \((\mathbb{Z} \cup \{-\infty\}) \times (\mathbb{Z} \cup \{+\infty\})\) by the relation \((a, b) \equiv (a', b') \iff \gamma(a, b) = \gamma(a', b')\)

i.e., \((a \leq b \land a = a' \land b = b') \lor (a > b \land a' > b')\).
$\rho : X \to X$ is an upper closure in the poset (X, \sqsubseteq) if it is:

1. **monotonic**: $x \sqsubseteq x' \implies \rho(x) \sqsubseteq \rho(x')$,
2. **extensive**: $x \sqsubseteq \rho(x)$, and
3. **idempotent**: $\rho \circ \rho = \rho$.
Upper closures and Galois connections

Given \((C, \leq) \xrightarrow{\gamma} (A, \sqsubseteq)\),
\(\gamma \circ \alpha\) is an upper closure on \((C, \leq)\).

Given an upper closure \(\rho\) on \((X, \sqsubseteq)\), we have a Galois embedding:
\[(X, \sqsubseteq) \xrightarrow{id} \xrightarrow{\rho} (\rho(X), \sqsubseteq)\]

\implies we can rephrase abstract interpretation using upper closures instead of Galois connections, but we lose:

- the notion of **abstract representation**

 (a data-structure \(A\) representing elements in \(\rho(X)\))

- the ability to have **several distinct** abstract representations for a single concrete object

 (non-necessarily injective \(\gamma\) versus \(id\))
Operator approximations
Abstractions in the concretization framework

Given a concrete \((C, \leq)\) and an abstract \((A, \sqsubseteq)\) poset and a **monotonic concretization** \(\gamma : A \rightarrow C\)

\((\gamma(a)\) is the “meaning” of \(a\) in \(C\); we use intervals in our examples\)

- \(a \in A\) is a **sound abstraction** of \(c \in C\) if \(c \leq \gamma(a)\).

 (e.g.: \([0, 10]\) is a sound abstraction of \(\{0, 1, 2, 5\}\) in the integer interval domain)

- \(g : A \rightarrow A\) is a **sound abstraction** of \(f : C \rightarrow C\) if \(\forall a \in A : (f \circ \gamma)(a) \leq (\gamma \circ g)(a)\).

 (e.g.: \(\lambda([a, b].[−\infty, +\infty]\) is a sound abstraction of \(\lambda X.\{x + 1 | x \in X\}\) in the interval domain)

- \(g : A \rightarrow A\) is an **exact abstraction** of \(f : C \rightarrow C\) if \(f \circ \gamma = \gamma \circ g\).

 (e.g.: \(\lambda([a, b].[a + 1, b + 1]\) is an exact abstraction of \(\lambda X.\{x + 1 | x \in X\}\) in the interval domain)
Abstractions in the Galois connection framework

Assume now that \((C, \leq) \xleftarrow{\gamma} \xrightarrow{\alpha} (A, \sqsubseteq)\).

- **sound abstractions**
 - \(c \leq \gamma(a)\) is equivalent to \(\alpha(c) \sqsubseteq a\).
 - \((f \circ \gamma)(a) \leq (\gamma \circ g)(a)\) is equivalent to \((\alpha \circ f \circ \gamma)(a) \sqsubseteq g(a)\).

- Given \(c \in C\), its **best abstraction** is \(\alpha(c)\).
 (proof: recall that \(\alpha(c) = \sqcap \{a \mid c \leq \gamma(a)\}\), so, \(\alpha(c)\) is the smallest sound abstraction of \(c\))
 (e.g.: \(\alpha(\{0, 1, 2, 5\}) = [0, 5]\) in the interval domain)

- Given \(f : C \to C\), its **best abstraction** is \(\alpha \circ f \circ \gamma\)
 (proof: \(g\) sound \(\iff\) \(\forall a, (\alpha \circ f \circ \gamma)(a) \sqsubseteq g(a)\), so \(\alpha \circ f \circ \gamma\) is the smallest sound abstraction of \(f\))
 (e.g.: \(g([a, b]) = [2a, 2b]\) is the best abstraction in the interval domain of \(f(X) = \{2x \mid x \in X\}\); it is not an exact abstraction as \(\gamma(g([0, 1])) = \{0, 1, 2\} \supsetneq \{0, 2\} = f(\gamma([0, 1]))\)
Composition of sound, best, and exact abstractions

If \(g \) and \(g' \) soundly abstract respectively \(f \) and \(f' \) then:

- if \(f \) is monotonic, then \(g \circ g' \) is a sound abstraction of \(f \circ f' \),
 \[
 \forall a, (f \circ f' \circ \gamma)(a) \leq (f \circ \gamma \circ g')(a) \leq (\gamma \circ g \circ g')(a)
 \]

- if \(g, g' \) are exact abstractions of \(f \) and \(f' \), then \(g \circ g' \) is an exact abstraction,
 \[
 f \circ f' \circ \gamma = f \circ \gamma \circ g' = \gamma \circ g \circ g'
 \]

- if \(g \) and \(g' \) are the best abstractions of \(f \) and \(f' \), then \(g \circ g' \) is not always the best abstraction!
 \[
 \text{(e.g.: } g([a, b]) = [a, \min(b, 1)] \text{ and } g'([a, b]) = [2a, 2b] \text{ are the best abstractions of } f(X) = \{ x \in X \mid x \leq 1 \} \text{ and } f'(X) = \{ 2x \mid x \in X \} \text{ in the interval domain, but } g \circ g' \text{ is not the best abstraction of } f \circ f' \text{ as } (g \circ g')([0, 1]) = [0, 1] \text{ while } (\alpha \circ f \circ f' \circ \gamma)([0, 1]) = [0, 0] \text{.)}
 \]
Fixpoint approximations
Fixpoint transfer

If we have:

- a Galois connection \((C, \leq) \xleftarrow{\gamma} (A, \sqsubseteq)\) between CPOs
- monotonic concrete and abstract functions \(f : C \to C, \ f^\# : A \to A\)
- a commutation condition \(\alpha \circ f = f^\# \circ \alpha\)
- an element \(a\) and its abstraction \(a^\# = \alpha(a)\)

then \(\alpha(\text{lfp}_a f) = \text{lfp}_{a^\#} f^\#\).

(proof on next slide)
Proof:

By the constructive Tarski theorem, lfp\(a f\) is the limit of transfinite iterations: \(a_0 \overset{\text{def}}{=} a\), \(a_{n+1} \overset{\text{def}}{=} f(a_n)\), and \(a_n \overset{\text{def}}{=} \bigvee \{ a_m \mid m < n \}\) for limit ordinals \(n\).

Likewise, lfp\(a\# f\#\) is the limit of a transfinite iteration \(a_n\).

We prove by transfinite induction that \(a_n\# = \alpha(a_n)\) for all ordinals \(n\):

- \(a_0\# = \alpha(a_0)\), by definition;
- \(a_{n+1}\# = f\#(a_n) = f\#(\alpha(a_n)) = \alpha(f(a_n)) = \alpha(a_{n+1})\) for successor ordinals, by commutation;
- \(a_n\# = \bigsqcup \{ a_m \mid m < n \} = \bigsqcup \{ \alpha(a_m) \mid m < n \} = \alpha(\bigsqcup \{ a_m \mid m < n \}) = \alpha(a_n)\) for limit ordinals, because \(\alpha\) is always continuous in Galois connections.

Hence, lfp\(a\# f\#\) = \(\alpha(\text{lfp}_a f)\).
Fixpoint approximation

If we have:

- a complete lattice \((C, \leq, \lor, \land, \bot, \top)\)
- a monotonic concrete function \(f\)
- a sound abstraction \(f^\# : A \to A\) of \(f\)
 \((\forall x^\#: (f \circ \gamma)(x^\#) \leq (\gamma \circ f^\#)(x^\#))\)
- a post-fixpoint \(a^\#\) of \(f^\#\) \((f^\#(a^\#) \sqsubseteq a^\#)\)

then \(a^\#\) is a sound abstraction of \(\text{lfp } f\): \(\text{lfp } f \leq \gamma(a^\#)\).

Proof:

By definition, \(f^\#(a^\#) \sqsubseteq a^\#\).
By monotony, \(\gamma(f^\#(a^\#)) \leq \gamma(a^\#)\).
By soundness, \(f(\gamma(a^\#)) \leq \gamma(a^\#)\).
By Tarski’s theorem \(\text{lfp } f = \land \{ x \mid f(x) \leq x \}\).

Hence, \(\text{lfp } f \leq \gamma(a^\#)\).

Other fixpoint transfer / approximation theorems can be constructed...

