Order Theory
MPRI 2–6: Abstract Interpretation, application to verification and static analysis

Antoine Miné
Year 2021–2022
Course 1
20 September 2021
Plan

- Partially ordered structures
 - (complete) partial orders
 - (complete) lattices

- Fixpoints

- Abstractions
 - Galois connections, upper closure operators
 (first-class citizens)
 - Concretization-only framework
 - Operator abstraction
 - Fixpoint abstraction
Partial orders
Given a set X, a relation $\sqsubseteq \in X \times X$ is a partial order if it is:

1. reflexive: $\forall x \in X, x \sqsubseteq x$
2. antisymmetric: $\forall x, y \in X, (x \sqsubseteq y) \land (y \sqsubseteq x) \implies x = y$
3. transitive: $\forall x, y, z \in X, (x \sqsubseteq y) \land (y \sqsubseteq z) \implies x \sqsubseteq z$

(X, \sqsubseteq) is a poset (partially ordered set).

If we drop antisymmetry, we have a preorder instead.
Partial orders:

- \((\mathbb{Z}, \leq)\)
 (completely ordered)

- \((\mathcal{P}(X), \subseteq)\)
 (not completely ordered: \{1\} \nsubseteq \{2\}, \{2\} \nsubseteq \{1\})

- \((S, =)\) is a poset for any \(S\)

- \((\mathbb{Z}^2, \sqsubseteq)\), where \((a, b) \sqsubseteq (a', b') \iff (a \geq a') \land (b \leq b')\)
 (ordering of interval bounds that implies inclusion)
Preorders:

- \((\mathcal{P}(X), \sqsubseteq)\), where \(a \sqsubseteq b \iff |a| \leq |b|\)
 (ordered by cardinal)

- \((\mathbb{Z}^2, \sqsubseteq)\), where
 \((a, b) \sqsubseteq (a', b') \iff \{ x \mid a \leq x \leq b \} \subseteq \{ x \mid a' \leq x \leq b' \}\)
 (inclusion of intervals represented by pairs of bounds)

 not antisymmetric: \([1, 0] \neq [2, 0]\) but \([1, 0] \sqsubseteq [2, 0] \sqsubseteq [1, 0]\)

Equivalence: \(\equiv\)

\(X \equiv Y \iff (X \sqsubseteq Y) \land (Y \sqsubseteq X)\)

We obtain a partial order by quotienting by \(\equiv\).
Given by a Hasse diagram, e.g.:

\[
\begin{array}{c}
g \\ \vdash \\
\vdash \\
\vdash \\\n\vdash \\
\vdash \\
a
\end{array}
\]

\[
\begin{array}{c}
g \\
\vdash \\
e \\
\vdash \\
d \\
\vdash \\
c \\
\vdash \\
b \\
\vdash \\
a
\end{array}
\]

- $g \sqsubseteq g$
- $f \sqsubseteq f, g$
- $e \sqsubseteq e, g$
- $d \sqsubseteq d, f, g$
- $c \sqsubseteq c, e, f, g$
- $b \sqsubseteq b, c, d, e, f, g$
- $a \sqsubseteq a, b, c, d, e, f, g$
Partial orders

Examples of posets (cont.)

- **Infinite Hasse diagram** for \((\mathbb{N} \cup \{\infty\}, \leq)\):

\[
\begin{align*}
\infty & \subseteq \infty \\
\vdots & \\
3 & \subseteq 1, 2, \ldots, \infty \\
2 & \\
1 & \subseteq 0, 1, 2, \ldots, \infty \\
0 &
\end{align*}
\]
Use of posets (informally)

Posets are a very useful notion to discuss about:

- **logic**: formulas ordered by implication \(\Rightarrow \)

- **program verification**: program semantics \(\sqsubseteq \) specification

 (e.g.: behaviors of program \(\subseteq \) accepted behaviors)

- **approximation**: \(\sqsubseteq \) is an information order

 ("\(a \sqsubseteq b \)" means: "\(a \) caries more information than \(b \)"")

- **iteration**: fixpoint computation

 (e.g., a computation is directed, with a limit: \(X_1 \sqsubseteq X_2 \sqsubseteq \cdots \sqsubseteq X_n \))
(Least) Upper bounds

- c is an **upper bound** of a and b if: $a \subseteq c$ and $b \subseteq c$

- c is a **least upper bound** (lub or join) of a and b if
 - c is an upper bound of a and b
 - for every upper bound d of a and b, $c \subseteq d$
(Least) Upper bounds

If it exists, the lub of a and b is **unique**, and denoted as $a \sqcup b$.

(proof: assume that c and d are both lubs of a and b; by definition of lubs, $c \sqsubseteq d$ and $d \sqsubseteq c$; by antisymmetry of \sqsubseteq, $c = d$)

Generalized to upper bounds of arbitrary (even infinite) sets $\sqcup Y$, $Y \subseteq X$

(well-defined, as \sqcup is commutative and associative).

Similarly, we define **greatest lower bounds** (glb, meet) $a \sqcap b$, $\sqcap Y$.

$$(a \sqcap b \sqsubseteq a) \land (a \sqcap b \sqsubseteq b) \land \forall c, (c \sqsubseteq a) \land (c \sqsubseteq b) \implies (c \sqsubseteq a \sqcap b)$$

Note: not all posets have lubs, glbs

(e.g.: $a \sqcup b$ not defined on $\{ a, b \}, =)$
$C \subseteq X$ is a chain in (X, \sqsubseteq) if it is totally ordered by \sqsubseteq:

$\forall x, y \in C, (x \sqsubseteq y) \lor (y \sqsubseteq x)$.
Complete partial orders (CPO)

A poset \((X, \sqsubseteq)\) is a complete partial order (CPO) if every chain \(C\) (including \(\emptyset\)) has a least upper bound \(\sqcup C\).

A CPO has a least element \(\sqcup \emptyset\), denoted \(\bot\).

Examples, Counter-examples:

- \((\mathbb{N}, \leq)\) is not complete, but \((\mathbb{N} \cup \{\infty\}, \leq)\) is complete.
- \((\{x \in \mathbb{Q}\mid 0 \leq x \leq 1\}, \leq)\) is not complete, but \((\{x \in \mathbb{R}\mid 0 \leq x \leq 1\}, \leq)\) is complete.
- \((\mathcal{P}(Y), \subseteq)\) is complete for any \(Y\).
- \((X, \sqsubseteq)\) is complete if \(X\) is finite.
Partial orders

Complete partial order examples

\[(\mathbb{N}, \leq) \quad \text{non-complete} \]

\[(\mathbb{N} \cup \{\infty\}, \leq) \quad \text{complete} \]
Lattices
A **lattice** \((X, \sqsubseteq, \sqcup, \sqcap)\) is a poset with

1. a lub \(a \sqcup b\) for every pair of elements \(a\) and \(b\);
2. a glb \(a \sqcap b\) for every pair of elements \(a\) and \(b\).

Examples:

- integers \((\mathbb{Z}, \leq, \max, \min)\)
- integer intervals (next slide)
- divisibility (in two slides)

If we drop one condition, we have a (join or meet) **semilattice**.

Reference on lattices: Birkhoff [Birk76].
Example: the interval lattice

Integer intervals: \((\{ [a, b] \mid a, b \in \mathbb{Z}, a \leq b \} \cup \{ \emptyset \}, \subseteq, \cup, \cap)\)

where \([a, b] \cup [a', b'] \overset{\text{def}}{=} [\min(a, a'), \max(b, b')]\).
Example: the divisibility lattice

Divisibility \((\mathbb{N}^*, |, \text{lcm}, \text{gcd})\) where \(x|y \iff \exists k \in \mathbb{N}, kx = y\)
Example: the divisibility lattice (cont.)

Let \(P \) \(\overset{\text{def}}{=} \{ p_1, p_2, \ldots \} \) be the (infinite) set of prime numbers.

We have a correspondence \(\iota \) between \(\mathbb{N}^* \) and \(P \to \mathbb{N} \):

- \(\alpha = \iota(x) \) is the (unique) decomposition of \(x \) into prime factors
- \(\iota^{-1}(\alpha) \overset{\text{def}}{=} \prod_{a \in P} a^{\alpha(a)} = x \)
- \(\iota \) is one-to-one on functions \(P \to \mathbb{N} \) with finite support (\(\alpha(a) = 0 \) except for finitely many factors \(a \))

We have a correspondence between \((\mathbb{N}^*, |, \text{lcm}, \text{gcd}) \) and \((\mathbb{N}, \leq, \text{max}, \text{min}) \).

Assume that \(\alpha = \iota(x) \) and \(\beta = \iota(y) \) are the decompositions of \(x \) and \(y \), then:

- \(\prod_{a \in P} a^{\max(\alpha(a), \beta(a))} = \text{lcm}(\prod_{a \in P} a^{\alpha(a)}, \prod_{a \in P} a^{\beta(a)}) = \text{lcm}(x, y) \)
- \(\prod_{a \in P} a^{\min(\alpha(a), \beta(a))} = \text{gcd}(\prod_{a \in P} a^{\alpha(a)}, \prod_{a \in P} a^{\beta(a)}) = \text{gcd}(x, y) \)
- \((\forall a : \alpha(a) \leq \beta(a)) \iff (\prod_{a \in P} a^{\alpha(a)}) \mid (\prod_{a \in P} a^{\beta(a)}) \iff x \mid y \)
Complete lattices

A complete lattice \((X, \sqsubseteq, \sqcup, \sqcap, \perp, \top)\) is a poset with

1. a lub \(\sqcup S\) for every set \(S \subseteq X\)
2. a glb \(\sqcap S\) for every set \(S \subseteq X\)
3. a least element \(\perp\)
4. a greatest element \(\top\)

Notes:

- 1 implies 2 as \(\sqcap S = \sqcup \{ y | \forall x \in S, y \sqsubseteq x \}\)
 (and 2 implies 1 as well),
- 1 and 2 imply 3 and 4: \(\perp = \sqcup \emptyset = \sqcap X\), \(\top = \sqcap \emptyset = \sqcup X\),
- a complete lattice is also a CPO.
Complete lattice examples

- **real segment** $[0, 1]$: \(\{ x \in \mathbb{R} \mid 0 \leq x \leq 1 \} , \leq, \max, \min, 0, 1 \)

- **powersets** \((\mathcal{P}(S), \subseteq, \cup, \cap, \emptyset, S) \)
 (next slide)

- any **finite lattice**
 (\(\sqcup Y \) and \(\sqcap Y\) for finite \(Y \subseteq X\) are always defined)

- **integer intervals** with finite and **infinite** bounds:
 \((\{ [a, b] \mid a \in \mathbb{Z} \cup \{-\infty\}, b \in \mathbb{Z} \cup \{+\infty\}, a \leq b \} \cup \{ \emptyset \} , \subseteq, \sqcup, \cap, \emptyset, [-\infty, +\infty]) \)
 with \(\sqcup_{i \in I} [a_i, b_i] \overset{\text{def}}{=} [\min_{i \in I} a_i, \max_{i \in I} b_i] \).
 (in two slides)
Example: the powerset complete lattice

Example: \((\mathcal{P}(\mathbb{Z}), \subseteq, \cup, \cap, \emptyset, \mathbb{Z})\)
The integer intervals with finite and infinite bounds:
$$\left\{ [a, b] \mid a \in \mathbb{Z} \cup \{-\infty\}, b \in \mathbb{Z} \cup \{+\infty\}, a \leq b \right\} \cup \{\emptyset\},$$
$$\subseteq, \cup, \cap, \emptyset, [-\infty, +\infty]$$
Derivation

Given a (complete) lattice or partial order \((X, \sqsubseteq, \sqcup, \sqcap, \bot, \top)\) we can derive new (complete) lattices or partial orders by:

- **duality** (adding a smallest element)
 \((X, \sqsubseteq, \sqcap, \sqcup, \top, \bot)\)
 - \(\sqsubseteq\) is reversed
 - \(\sqcup\) and \(\sqcap\) are switched
 - \(\bot\) and \(\top\) are switched

- **lifting** (adding a smallest element)
 \((X \cup \{\bot'\}, \sqsubseteq', \sqcap', \sqcup', \bot', \top)\)
 - \(a \sqsubseteq' b \iff a = \bot' \lor a \sqsubseteq b\)
 - \(\bot' \sqcup' a = a \sqcup' \bot' = a\), and \(a \sqcup' b = a \sqcup b\) if \(a, b \neq \bot'\)
 - \(\bot' \sqcap' a = a \sqcap' \bot' = \bot'\), and \(a \sqcap' b = a \sqcap b\) if \(a, b \neq \bot'\)
 - \(\bot'\) replaces \(\bot\)
 - \(\top\) is unchanged
Derivation (cont.)

Given (complete) lattices or partial orders:
\((X_1, \sqsubseteq_1, \sqcup_1, \sqcap_1, \bot_1, \top_1)\) and \((X_2, \sqsubseteq_2, \sqcup_2, \sqcap_2, \bot_2, \top_2)\)

We can combine them by:

- **product**
 \((X_1 \times X_2, \sqsubseteq, \sqcup, \sqcap, \bot, \top)\) where
 \[
 (x, y) \sqsubseteq (x', y') \iff x \sqsubseteq_1 x' \land y \sqsubseteq_2 y'
 \]
 \[
 (x, y) \sqcup (x', y') \overset{\text{def}}{=} (x \sqcup_1 x', y \sqcup_2 y')
 \]
 \[
 (x, y) \sqcap (x', y') \overset{\text{def}}{=} (x \sqcap_1 x', y \sqcap_2 y')
 \]
 \[
 \bot \overset{\text{def}}{=} (\bot_1, \bot_2)
 \]
 \[
 \top \overset{\text{def}}{=} (\top_1, \top_2)
 \]

- **smashed product** (coalescent product, merging \(\bot_1\) and \(\bot_2\))
 \[((X_1 \setminus \{\bot_1\}) \times (X_2 \setminus \{\bot_2\})) \cup \{\bot\}, \sqsubseteq, \sqcup, \sqcap, \bot, \top\)
 (as \(X_1 \times X_2\), but all elements of the form \((\bot_1, y)\) and \((x, \bot_2)\) are identified to a unique \(\bot\) element)
Given a (complete) lattice or partial order \((X, \sqsubseteq, \sqcup, \sqcap, \bot, \top)\) and a set \(S\):

- **point-wise lifting** (functions from \(S\) to \(X\))
 \((S \rightarrow X, \sqsubseteq', \sqcup', \sqcap', \bot', \top')\) where
 - \(x \sqsubseteq' y \iff \forall s \in S: x(s) \sqsubseteq y(s)\)
 - \(\forall s \in S: (x \sqcup' y)(s) \overset{\text{def}}{=} x(s) \sqcup y(s)\)
 - \(\forall s \in S: (x \sqcap' y)(s) \overset{\text{def}}{=} x(s) \sqcap y(s)\)
 - \(\forall s \in S: \bot'(s) = \bot\)
 - \(\forall s \in S: \top'(s) = \top\)

- **smashed point-wise lifting**
 \(((S \rightarrow (X \setminus \{\bot\})) \cup \{\bot'\}, \sqsubseteq', \sqcup', \sqcap', \bot', \top')\)

as \(S \rightarrow X\), but identify to \(\bot'\) any map \(x\) where
\(\exists s \in S: x(s) = \bot\)

(e.g. map each program variable in \(S\) to an interval in \(X\))
A lattice \((X, \subseteq, \cup, \cap)\) is **distributive** if:

- \(a \cup (b \cap c) = (a \cup b) \cap (a \cup c)\) and
- \(a \cap (b \cup c) = (a \cap b) \cup (a \cap c)\)

Examples, Counter-examples:

- \((\mathcal{P}(X), \subseteq, \cup, \cap)\) is distributive

- **Intervals are not distributive**
 \([0, 0] \cup [2, 2]) \cap [1, 1] = [0, 2] \cap [1, 1] = [1, 1] \) but
 \([0, 0] \cap [1, 1]) \cup ([2, 2] \cap [1, 1]) = \emptyset \cup \emptyset = \emptyset

Common cause of precision loss in static analyses:
merging abstract information early, at control-flow joins
vs. merging executions paths late, at the end of the program
Given a lattice \((X, \subseteq, \sqcup, \sqcap)\) and \(X' \subseteq X\)

\((X', \subseteq, \sqcup, \sqcap)\) is a sublattice of \(X\) if \(X'\) is closed under \(\sqcup\) and \(\sqcap\)

Example, Counter-examples:

- if \(Y \subseteq X\), \((\mathcal{P}(Y), \subseteq, \cup, \cap, \emptyset, Y)\) is a sublattice of \((\mathcal{P}(X), \subseteq, \cup, \cap, \emptyset, X)\)

- integer intervals are **not** a sublattice of \((\mathcal{P}(\mathbb{Z}), \subseteq, \cup, \cap, \emptyset, \mathbb{Z})\)

\([\min(a, a'), \max(b, b')]\) \(\neq [a, b] \cup [a', b']\)

another common cause of precision loss in static analyses:
\(\sqcup\) cannot represent the exact union, and loses precision
Functions and Fixpoints
A function \(f : (X_1, \sqsubseteq_1, \sqcup_1, \bot_1) \rightarrow (X_2, \sqsubseteq_2, \sqcup_2, \bot_2) \) is

- **monotonic** if
 \[
 \forall x, x', \ x \sqsubseteq_1 x' \implies f(x) \sqsubseteq_2 f(x')
 \]
 (aka: increasing, isotone, order-preserving, morphism)

- **strict** if \(f(\bot_1) = \bot_2 \)

- **continuous** between CPO if
 \[
 \forall C \text{ chain } \subseteq X_1, \ \{ f(c) \mid c \in C \} \text{ is a chain in } X_2
 \text{ and } f(\sqcup_1 C) = \sqcup_2 \{ f(c) \mid c \in C \}
 \]

- a **(complete) \sqcup- \text{morphism}** between (complete) lattices
 if \(\forall S \subseteq X_1, \ f(\sqcup_1 S) = \sqcup_2 \{ f(s) \mid s \in S \} \)

- **extensive** if \(X_1 = X_2 \) and \(\forall x, \ x \sqsubseteq_1 f(x) \)

- **reductive** if \(X_1 = X_2 \) and \(\forall x, \ f(x) \sqsubseteq_1 x \)
Fixpoints

Given $f : (X, \sqsubseteq) \to (X, \sqsubseteq)$

- x is a **fixpoint** of f if $f(x) = x$
- x is a **pre-fixpoint** of f if $x \sqsubseteq f(x)$
- x is a **post-fixpoint** of f if $f(x) \sqsubseteq x$

We may have several fixpoints (or none)

- $\text{fp}(f) \overset{\text{def}}{=} \{ x \in X \mid f(x) = x \}$
- $\text{lfp}_x f \overset{\text{def}}{=} \min_{\sqsubseteq} \{ y \in \text{fp}(f) \mid x \sqsubseteq y \}$ if it exists
 (least fixpoint greater than x)
- $\text{lfp} f \overset{\text{def}}{=} \text{lfp}_\bot f$
 (least fixpoint)
- dually: $\text{gfp}_x f \overset{\text{def}}{=} \max_{\sqsubseteq} \{ y \in \text{fp}(f) \mid y \sqsubseteq x \}$, $\text{gfp} f \overset{\text{def}}{=} \text{gfp}_\top f$
 (greatest fixpoints)
Fixpoints: example

Monotonic function with two distinct fixpoints
Monotonic function with a unique fixpoint
Non-monotonic function with no fixpoint
Express solutions of mutually recursive equation systems

Example:

The solutions of
\[
\begin{align*}
 x_1 &= f(x_1, x_2) \
 x_2 &= g(x_1, x_2)
\end{align*}
\]
with \(x_1, x_2 \) in lattice \(X \)

are exactly the fixpoint of \(\vec{F} \) in lattice \(X \times X \), where

\[
\vec{F} \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) = \left(\begin{array}{c} f(x_1, x_2) \\ g(x_1, x_2) \end{array} \right)
\]

The least solution of the system is lfp \(\vec{F} \).
Uses of fixpoints: examples

- Close (complete) sets to satisfy a given property

Example:
\[r \subseteq X \times X \text{ is transitive if:} \]
\[(a, b) \in r \wedge (b, c) \in r \implies (a, c) \in r \]

The **transitive closure** of \(r \) is the smallest transitive relation containing \(r \).

Let \(f(s) = r \cup \{ (a, c) \mid (a, b) \in s \wedge (b, c) \in s \} \), then \(\text{lfp } f \):
- \(\text{lfp } f \) contains \(r \)
- \(\text{lfp } f \) is transitive
- \(\text{lfp } f \) is minimal

\[\implies \text{lfp } f \text{ is the transitive closure of } r. \]
Tarski’s fixpoint theorem

Tarnski’s theorem

If $f : X \rightarrow X$ is monotonic in a complete lattice X then $fp(f)$ is a complete lattice.

Proved by Knaster and Tarski [Tars55].
Tarski’s fixpoint theorem

Tarski’s theorem

If $f : X \rightarrow X$ is monotonic in a complete lattice X then $\text{fp}(f)$ is a complete lattice.

Proof:

We prove $\text{lfp } f = \cap \{ x \mid f(x) \sqsubseteq x \}$ (meet of post-fixpoints).
Tarski’s fixpoint theorem

Tarski’s theorem
If $f : X \rightarrow X$ is monotonic in a complete lattice X
then $\text{fp}(f)$ is a complete lattice.

Proof:
We prove $\text{lfp } f = \sqcap \{ x \mid f(x) \sqsubseteq x \}$ (meet of post-fixpoints).
Let $f^* = \{ x \mid f(x) \sqsubseteq x \}$ and $a = \sqcap f^*$.

$\forall x \in f^*, a \sqsubseteq x$ (by definition of \sqcap)
so $f(a) \sqsubseteq f(x)$ (as f is monotonic)
so $f(a) \sqsubseteq x$ (as x is a post-fixpoint).
We deduce that $f(a) \sqsubseteq \sqcap f^*$, i.e. $f(a) \sqsubseteq a$.
Tarski’s fixpoint theorem

Tarski’s theorem

If $f : X \to X$ is monotonic in a complete lattice X then $\text{fp}(f)$ is a complete lattice.

Proof:

We prove $\text{lfp } f = \sqcap \{ x | f(x) \sqsubseteq x \}$ (meet of post-fixpoints).

\[
f(a) \sqsubseteq a
\]
so $f(f(a)) \sqsubseteq f(a)$ (as f is monotonic)
so $f(a) \in f^*$ (by definition of f^*)
so $a \sqsubseteq f(a)$.

We deduce that $f(a) = a$, so $a \in \text{fp}(f)$.

Note that $y \in \text{fp}(f)$ implies $y \in f^*$.
As $a = \sqcap f^*$, $a \sqsubseteq y$, and we deduce $a = \text{lfp } f$.
Tarski’s fixpoint theorem

Tarski’s theorem

If \(f : X \rightarrow X \) is monotonic in a complete lattice \(X \)
then \(\text{fp}(f) \) is a complete lattice.

Proof:
Given \(S \subseteq \text{fp}(f) \), we prove that \(\text{lfp}_{\sqcup S} f \) exists.

Consider \(X' = \{ x \in X \mid \sqcup S \subseteq x \} \).

\(X' \) is a complete lattice.
Moreover \(\forall x' \in X', f(x') \in X' \).

\(f \) can be restricted to a monotonic function \(f' \) on \(X' \).
We apply the preceding result, so that \(\text{lfp} f' = \text{lfp}_{\sqcup S} f \) exists.

By definition, \(\text{lfp}_{\sqcup S} f \in \text{fp}(f) \) and is smaller than any fixpoint larger than all \(s \in S \).
Tarski’s fixpoint theorem

Tarski’s theorem

If \(f : X \to X \) is monotonic in a complete lattice \(X \) then \(\text{fp}(f) \) is a complete lattice.

Proof:

By duality, we construct \(\text{gfp} f \) and \(\text{gfp}_{\sqcap S} f \).

The complete lattice of fixpoints is:

\[
(\text{fp}(f), \sqsubseteq, \lambda S.\text{lfp}_{\sqcup S} f, \lambda S.\text{gfp}_{\sqcap S} f, \text{lfp} f, \text{gfp} f).
\]

Not necessarily a sublattice of \((X, \sqsubseteq, \sqcup, \sqcap, \bot, \top)\)!
Functions and fixpoints

Tarski’s fixpoint theorem: example

Lattice: \(\{ \text{lfp, fp1, fp2, pre, gfp} \}, \sqcup, \sqcap, \text{lfp, gfp} \)

Fixpoint lattice: \(\{ \text{lfp, fp1, fp2, gfp} \}, \sqcup', \sqcap', \text{lfp, gfp} \)

(not a sublattice as \(\text{fp1} \sqcup' \text{fp2} = \text{gfp} \) while \(\text{fp1} \sqcup \text{fp2} = \text{pre} \), but \(\text{gfp} \) is the smallest fixpoint greater than \(\text{pre} \))
"Kleene" fixpoint theorem

If $f : X \to X$ is continuous in a CPO X and $a \sqsubseteq f(a)$ then $\text{lfp}_a f$ exists.

Inspired by Kleene [Klee52].
"Kleene" fixpoint theorem

If $f : X \to X$ is continuous in a CPO X and $a \sqsubseteq f(a)$ then $\text{lfp}_a f$ exists.

We prove that $\{ f^n(a) \mid n \in \mathbb{N} \}$ is a chain and
$$\text{lfp}_a f = \bigcup \{ f^n(a) \mid n \in \mathbb{N} \}.$$
“Kleene” fixpoint theorem

If \(f : X \to X \) is continuous in a CPO \(X \) and \(a \sqsubseteq f(a) \) then \(\text{lfp}_a f \) exists.

We prove that \(\{ f^n(a) \mid n \in \mathbb{N} \} \) is a chain and
\[
\text{lfp}_a f = \sqcup \{ f^n(a) \mid n \in \mathbb{N} \}.
\]

\(a \sqsubseteq f(a) \) by hypothesis.
\(f(a) \sqsubseteq f(f(a)) \) by monotony of \(f \).

(Note that any continuous function is monotonic.
Indeed, \(x \sqsubseteq y \implies x \sqcup y = y \implies f(x \sqcup y) = f(y) \);
by continuity \(f(x) \sqcup f(y) = f(x \sqcup y) = f(y) \), which implies \(f(x) \sqsubseteq f(y) \).

By recurrence \(\forall n, f^n(a) \sqsubseteq f^{n+1}(a) \).
Thus, \(\{ f^n(a) \mid n \in \mathbb{N} \} \) is a chain and \(\sqcup \{ f^n(a) \mid n \in \mathbb{N} \} \) exists.
“Kleene” fixpoint theorem

If \(f : X \rightarrow X \) is continuous in a CPO \(X \) and \(a \sqsubseteq f(a) \) then \(\text{lfp}_a f \) exists.

\[
\begin{align*}
f(\bigsqcup \{ f^n(a) \mid n \in \mathbb{N} \}) &= \bigsqcup \{ f^{n+1}(a) \mid n \in \mathbb{N} \} \quad \text{(by continuity)} \\
&= a \sqcup (\bigsqcup \{ f^{n+1}(a) \mid n \in \mathbb{N} \}) \quad \text{(as all } f^{n+1}(a) \text{ are greater than } a) \\
&= \bigsqcup \{ f^n(a) \mid n \in \mathbb{N} \}. \\
\text{So, } \bigsqcup \{ f^n(a) \mid n \in \mathbb{N} \} &\in \text{fp}(f)
\end{align*}
\]

Moreover, any fixpoint greater than \(a \) must also be greater than all \(f^n(a), n \in \mathbb{N} \).

\[
\text{So, } \bigsqcup \{ f^n(a) \mid n \in \mathbb{N} \} = \text{lfp}_a f.
\]
Well-ordered sets

(S, \sqsubseteq) is a well-ordered set if:

- \sqsubseteq is a total order on S
- every $X \subseteq S$ such that $X \neq \emptyset$ has a least element $\sqcap X \in X$

Consequences:

- any element $x \in S$ has a successor $x + 1 \overset{def}{=} \sqcap \{ y \mid x \sqsubseteq y \}$
 (except the greatest element, if it exists)
- if $\forall y, x = y + 1$, x is a limit and $x = \sqcup \{ y \mid y \sqsubseteq x \}$
 (every bounded subset $X \subseteq S$ has a lub $\sqcup X = \sqcap \{ y \mid \forall x \in X, x \sqsubseteq y \}$)

Examples:

- (\mathbb{N}, \leq) and $(\mathbb{N} \cup \{ \infty \}, \leq)$ are well-ordered
- $(\mathbb{Z}, \leq), (\mathbb{R}, \leq), (\mathbb{R}^+, \leq)$ are not well-ordered
- ordinals $0, 1, 2, \ldots, \omega, \omega + 1, \ldots$ are well-ordered (ω is a limit)
 well-ordered sets are ordinals up to order-isomorphism
 (i.e., bijective functions f such that f and f^{-1} are monotonic)
Given a function \(f : X \to X \) and \(a \in X \),
the transfinite iterates of \(f \) from \(a \) are:

\[
\begin{align*}
 x_0 & \overset{\text{def}}{=} a \\
 x_n & \overset{\text{def}}{=} f(x_{n-1}) \quad \text{if } n \text{ is a successor ordinal} \\
 x_n & \overset{\text{def}}{=} \bigsqcup \{ x_m \mid m < n \} \quad \text{if } n \text{ is a limit ordinal}
\end{align*}
\]

Constructive Tarski theorem

If \(f : X \to X \) is monotonic in a CPO \(X \) and \(a \sqsubseteq f(a) \),
then \(\text{lfp}_a f = x_\delta \) for some ordinal \(\delta \).

Generalisation of “Kleene” fixpoint theorem, from [Cous79].
Proof

\(f \) is monotonic in a CPO \(X \),

\[
\begin{cases}
 x_0 \overset{\text{def}}{=} \ a \sqsubseteq f(a) \\
 x_n \overset{\text{def}}{=} f(x_{n-1}) & \text{if } n \text{ is a successor ordinal} \\
 x_n \overset{\text{def}}{=} \sqcup \{ x_m \mid m < n \} & \text{if } n \text{ is a limit ordinal}
\end{cases}
\]

Proof:

We prove that \(\exists \delta, x_\delta = x_{\delta+1} \).

We note that \(m \leq n \implies x_m \sqsubseteq x_n \).

Assume by contradiction that \(\forall \delta, x_\delta = x_{\delta+1} \).

If \(n \) is a successor ordinal, then \(x_{n-1} \sqsubset x_n \).

If \(n \) is a limit ordinal, then \(\forall m < n, x_m \sqsubseteq x_n \).

Thus, all the \(x_n \) are distinct.

By choosing \(n > |X| \), we arrive at a contradiction.

Thus \(\delta \) exists.
Proof

\(f \) is monotonic in a CPO \(X \),

\[
\begin{align*}
 x_0 & \overset{\text{def}}{=} a \sqsubseteq f(a) \\
 x_n & \overset{\text{def}}{=} f(x_{n-1}) & \text{if } n \text{ is a successor ordinal} \\
 x_n & \overset{\text{def}}{=} \bigsqcup \{ x_m \mid m < n \} & \text{if } n \text{ is a limit ordinal}
\end{align*}
\]

Proof:
Given \(\delta \) such that \(x_{\delta+1} = x_\delta \), we prove that \(x_\delta = \text{lfp}_a f \).

\(f(x_\delta) = x_{\delta+1} = x_\delta \), so \(x_\delta \in \text{fp}(f) \).

Given any \(y \in \text{fp}(f) \), \(y \sqsubseteq a \), we prove by transfinite induction that \(\forall n, x_n \sqsubseteq y \).

By definition \(x_0 = a \sqsubseteq y \).

If \(n \) is a successor ordinal, by monotony,
\(x_{n-1} \sqsubseteq y \implies f(x_{n-1}) \sqsubseteq f(y) \), i.e., \(x_n \sqsubseteq y \).

If \(n \) is a limit ordinal, \(\forall m < n, x_m \sqsubseteq y \) implies
\(x_n = \bigsqcup \{ x_m \mid m < n \} \sqsubseteq y \).

Hence, \(x_\delta \sqsubseteq y \) and \(x_\delta = \text{lfp}_a f \).
Ascending chain condition (ACC)

An ascending chain C in (X, \sqsubseteq) is a sequence $c_i \in X$ such that $i \leq j \implies c_i \sqsubseteq c_j$.

A poset (X, \sqsubseteq) satisfies the ascending chain condition (ACC) iff for every ascending chain C, $\exists i \in \mathbb{N}$, $\forall j \geq i$, $c_i = c_j$.

Similarly, we can define the descending chain condition (DCC).

Examples:

- the powerset poset $(\mathcal{P}(X), \subseteq)$ is ACC when X is finite
- the pointed integer poset $(\mathbb{Z} \cup \{ \bot \}, \sqsubseteq)$ where $x \sqsubseteq y \iff x = \bot \lor x = y$ is ACC and DCC
- the divisibility poset $(\mathbb{N}^*, |)$ is DCC but not ACC.
Kleene fixpoints in ACC posets

"Kleene" finite fixpoint theorem

If \(f : X \rightarrow X \) is monotonic in an ACC poset \(X \) and \(a \sqsubseteq f(a) \) then \(\text{lfp}_a f \) exists.

Proof:
We prove \(\exists n \in \mathbb{N}, \text{lfp}_a f = f^n(a) \).

By monotony of \(f \), the sequence \(x_n = f^n(a) \) is an increasing chain.

By definition of ACC, \(\exists n \in \mathbb{N}, x_n = x_{n+1} = f(x_n) \).

Thus, \(x_n \in \text{fp}(f) \).

Obviously, \(a = x_0 \sqsubseteq f(x_n) \).

Moreover, if \(y \in \text{fp}(f) \) and \(y \sqsupseteq a \), then \(\forall i, y \sqsupseteq f^i(a) = x_i \).

Hence, \(y \sqsupseteq x_n \) and \(x_n = \text{lfp}_a(f) \).
Comparison of fixpoint theorems

<table>
<thead>
<tr>
<th>theorem</th>
<th>function</th>
<th>domain</th>
<th>fixpoint</th>
<th>method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tarski</td>
<td>monotonic</td>
<td>complete lattice</td>
<td>fp(f)</td>
<td>meet of post-fixpoints</td>
</tr>
<tr>
<td>Kleene</td>
<td>continuous</td>
<td>CPO</td>
<td>lfp_a(f)</td>
<td>countable iterations</td>
</tr>
<tr>
<td>constructive Tarski</td>
<td>monotonic</td>
<td>CPO</td>
<td>lfp_a(f)</td>
<td>transfinite iteration</td>
</tr>
<tr>
<td>ACC Kleene</td>
<td>monotonic</td>
<td>poset</td>
<td>lfp_a(f)</td>
<td>finite iteration</td>
</tr>
</tbody>
</table>
Galois connections
Given two posets \((C, \leq)\) and \((A, \sqsubseteq)\), the pair \((\alpha : C \to A, \gamma : A \to C)\) is a Galois connection iff:

\[
\forall a \in A, \ c \in C, \ \alpha(c) \sqsubseteq a \iff c \leq \gamma(a)
\]

which is noted \((C, \leq) \leftrightarrow \alpha \gamma (A, \sqsubseteq)\).

- \(\alpha\) is the upper adjoint or abstraction; \(A\) is the abstract domain.
- \(\gamma\) is the lower adjoint or concretization; \(C\) is the concrete domain.
Galois connections

Galois connection example

Abstract domain of intervals of integers \mathbb{Z} represented as pairs of bounds (a, b).

We have: $(\mathcal{P}(\mathbb{Z}), \subseteq) \xleftarrow{\gamma} (I, \sqsubseteq)$

- $I \overset{\text{def}}{=} (\mathbb{Z} \cup \{-\infty\}) \times (\mathbb{Z} \cup \{+\infty\})$
- $(a, b) \sqsubseteq (a', b') \iff (a \geq a') \land (b \leq b')$
- $\gamma(a, b) \overset{\text{def}}{=} \{ x \in \mathbb{Z} | a \leq x \leq b \}$
- $\alpha(X) \overset{\text{def}}{=} (\min X, \max X)$

proof:
Galois connection example

Abstract domain of intervals of integers \mathbb{Z} represented as pairs of bounds (a, b).

We have: $(\mathcal{P}(\mathbb{Z}), \subseteq) \xleftarrow{\gamma} (I, \sqsubseteq)$

- $I \overset{\text{def}}{=} (\mathbb{Z} \cup \{-\infty\}) \times (\mathbb{Z} \cup \{+\infty\})$
- $(a, b) \subseteq (a', b') \iff (a \geq a') \land (b \leq b')$
- $\gamma(a, b) \overset{\text{def}}{=} \{ x \in \mathbb{Z} \mid a \leq x \leq b \}$
- $\alpha(X) \overset{\text{def}}{=} (\min X, \max X)$

proof:

$\alpha(X) \subseteq (a, b)$

$\iff \min X \geq a \land \max X \leq b$

$\iff \forall x \in X : a \leq x \leq b$

$\iff \forall x \in X : x \in \{ y \mid a \leq y \leq b \}$

$\iff \forall x \in X : x \in \gamma(a, b)$

$\iff X \subseteq \gamma(a, b)$
Properties of Galois connections

Assuming $\forall a, c, \alpha(c) \sqsubseteq a \iff c \leq \gamma(a)$, we have:

1. **$\gamma \circ \alpha$ is extensive:** $\forall c, c \leq \gamma(\alpha(c))$

 Proof: $\alpha(c) \sqsubseteq \alpha(c) \implies c \leq \gamma(\alpha(c))$

2. **$\alpha \circ \gamma$ is reductive:** $\forall a, \alpha(\gamma(a)) \sqsubseteq a$

3. **α is monotonic**

 Proof: $c \leq c' \implies c \leq \gamma(\alpha(c')) \implies \alpha(c) \sqsubseteq \alpha(c')$

4. **γ is monotonic**

5. **$\gamma \circ \alpha \circ \gamma = \gamma$**

 Proof: $\alpha(\gamma(a)) \sqsubseteq \alpha(\gamma(a)) \implies \gamma(a) \leq \gamma(\alpha(\gamma(a)))$ and $a \sqsubseteq \alpha(\gamma(a)) \implies \gamma(a) \geq \gamma(\alpha(\gamma(a)))$

6. **$\alpha \circ \gamma \circ \alpha = \alpha$**

7. **$\alpha \circ \gamma$ is idempotent:** $\alpha \circ \gamma \circ \alpha \circ \gamma = \alpha \circ \gamma$

8. **$\gamma \circ \alpha$ is idempotent**
Alternate characterization

If the pair \((\alpha : C \to A, \gamma : A \to C)\) satisfies:

1. \(\gamma\) is monotonic,
2. \(\alpha\) is monotonic,
3. \(\gamma \circ \alpha\) is extensive
4. \(\alpha \circ \gamma\) is reductive

then \((\alpha, \gamma)\) is a Galois connection.

(proof left as exercise)
Given \((C, \leq) \leftrightarrow (A, \subseteq)\), each adjoint can be uniquely defined in term of the other:

1. \(\alpha(c) = \bigcap \{ a \mid c \leq \gamma(a) \}\)
2. \(\gamma(a) = \bigvee \{ c \mid \alpha(c) \subseteq a \}\)

Proof: of 1

\(\forall a, c \leq \gamma(a) \implies \alpha(c) \subseteq a\).

Hence, \(\alpha(c)\) is a lower bound of \(\{ a \mid c \leq \gamma(a) \}\).

Assume that \(a'\) is another lower bound.

Then, \(\forall a, c \leq \gamma(a) \implies a' \subseteq a\).

By Galois connection, we have then \(\forall a, \alpha(c) \subseteq a \implies a' \subseteq a\).

This implies \(a' \subseteq \alpha(c)\).

Hence, the greatest lower bound of \(\{ a \mid c \leq \gamma(a) \}\) exists, and equals \(\alpha(c)\).

The proof of 2 is similar (by duality).
Properties of Galois connections (cont.)

If \((\alpha : C \to A, \gamma : A \to C)\), then:

1. \(\forall X \subseteq C, \text{ if } \bigvee X \text{ exists, then } \alpha(\bigvee X) = \sqcup \{ \alpha(x) | x \in X \} \).

2. \(\forall X \subseteq A, \text{ if } \bigcap X \text{ exists, then } \gamma(\bigcap X) = \bigwedge \{ \gamma(x) | x \in X \} \).

Proof: of 1

By definition of lubs, \(\forall x \in X, x \leq \bigvee X\).
By monotony, \(\forall x \in X, \alpha(x) \sqsubseteq \alpha(\bigvee X)\).
Hence, \(\alpha(\bigvee X)\) is an upper bound of \(\{ \alpha(x) | x \in X \}\).

Assume that \(y\) is another upper bound of \(\{ \alpha(x) | x \in X \}\).
Then, \(\forall x \in X, \alpha(x) \sqsubseteq y\).
By Galois connection \(\forall x \in X, x \leq \gamma(y)\).
By definition of lubs, \(\bigvee X \leq \gamma(y)\).
By Galois connection, \(\alpha(\bigvee X) \sqsubseteq y\).
Hence, \(\{ \alpha(x) | x \in X \}\) has a lub, which equals \(\alpha(\bigvee X)\).

The proof of 2 is similar (by duality).
Given \((C, \leq) \xleftarrow{\gamma} \xrightarrow{\alpha} (A, \sqsubseteq)\), we have:

- **duality**: \((A, \sqsupseteq) \xleftarrow{\alpha} \xrightarrow{\gamma} (C, \geq)\)
 \(\alpha(c) \sqsubseteq a \iff c \leq \gamma(a)\) is exactly \(\gamma(a) \geq c \iff a \sqsupseteq \alpha(c)\)

- **point-wise lifting** by some set \(S\):
 \((S \to C, \leq) \xleftarrow{\hat{\gamma}} \xrightarrow{\hat{\alpha}} (S \to A, \sqsubseteq)\) where
 \(f \hat{\leq} f' \iff \forall s, f(s) \leq f'(s), \quad (\hat{\gamma}(f))(s) = \gamma(f(s)),\)
 \(f \hat{\sqsubseteq} f' \iff \forall s, f(s) \sqsubseteq f'(s), \quad (\hat{\alpha}(f))(s) = \alpha(f(s)).\)

Given \((X_1, \sqsubseteq_1) \xleftarrow{\gamma_1} \xrightarrow{\alpha_1} (X_2, \sqsubseteq_2) \xleftarrow{\gamma_2} \xrightarrow{\alpha_2} (X_3, \sqsubseteq_3)\):

- **composition**: \((X_1, \sqsubseteq_1) \xleftarrow{\gamma_1 \circ \gamma_2} \xrightarrow{\alpha_2 \circ \alpha_1} (X_3, \sqsubseteq_3)\)
 \(((\alpha_2 \circ \alpha_1)(c) \sqsubseteq_3 a \iff \alpha_1(c) \sqsubseteq_2 \gamma_2(a) \iff c \sqsubseteq_1 (\gamma_1 \circ \gamma_2)(a))\)
Galois embeddings

If \((C, \leq) \xleftrightarrow{\gamma} (A, \sqsubseteq)\), the following properties are equivalent:

1. \(\alpha\) is surjective \((\forall a \in A, \exists c \in C, \alpha(c) = a)\)

2. \(\gamma\) is injective \((\forall a, a' \in A, \gamma(a) = \gamma(a') \implies a = a')\)

3. \(\alpha \circ \gamma = id\) \((\forall a \in A, id(a) = a)\)

Such \((\alpha, \gamma)\) is called a Galois embedding, which is noted \((C, \leq) \xleftrightarrow{\gamma} (A, \sqsubseteq)\)

Proof:
Galois embeddings

If \((C, \leq) \xrightarrow{\alpha} \xleftarrow{\gamma} (A, \sqsubseteq)\), the following properties are equivalent:

1. \(\alpha\) is surjective \((\forall a \in A, \exists c \in C, \alpha(c) = a)\)
2. \(\gamma\) is injective \((\forall a, a' \in A, \gamma(a) = \gamma(a') \implies a = a')\)
3. \(\alpha \circ \gamma = id\) \((\forall a \in A, id(a) = a)\)

Such \((\alpha, \gamma)\) is called a Galois embedding, which is noted \((C, \leq) \xrightarrow{\alpha} \xleftarrow{\gamma} (A, \sqsubseteq)\)

Proof: 1 \(\implies\) 2

Assume that \(\gamma(a) = \gamma(a')\).
By surjectivity, take \(c, c'\) such that \(a = \alpha(c), a' = \alpha(c')\).
Then \(\gamma(\alpha(c)) = \gamma(\alpha(c'))\).
And \(\alpha(\gamma(\alpha(c))) = \alpha(\gamma(\alpha(c'))))\).
As \(\alpha \circ \gamma \circ \alpha = \alpha, \alpha(c) = \alpha(c')\).
Hence \(a = a'\).
Galois embeddings

If \((C, \leq) \xrightarrow[\alpha]{\gamma} (A, \sqsubseteq)\), the following properties are equivalent:

1. \(\alpha\) is surjective \((\forall a \in A, \exists c \in C, \alpha(c) = a)\)
2. \(\gamma\) is injective \((\forall a, a' \in A, \gamma(a) = \gamma(a') \implies a = a')\)
3. \(\alpha \circ \gamma = id\) \((\forall a \in A, id(a) = a)\)

Such \((\alpha, \gamma)\) is called a **Galois embedding**, which is noted \((C, \leq) \xrightarrow[\alpha]{\gamma} (A, \sqsubseteq)\)

Proof: 2 \(\implies\) 3

Given \(a \in A\), we know that \(\gamma(\alpha(\gamma(a))) = \gamma(a)\).
By injectivity of \(\gamma\), \(\alpha(\gamma(a)) = a\).
Galois connections

Galois embeddings

If \((C, \leq) \xleftarrow{\gamma} (A, \sqsubseteq)\), the following properties are equivalent:

1. **\(\alpha\) is surjective**

 \((\forall a \in A, \exists c \in C, \alpha(c) = a)\)

2. **\(\gamma\) is injective**

 \((\forall a, a' \in A, \gamma(a) = \gamma(a') \implies a = a')\)

3. **\(\alpha \circ \gamma = id\)**

 \((\forall a \in A, id(a) = a)\)

Such \((\alpha, \gamma)\) is called a **Galois embedding**, which is noted \((C, \leq) \xleftarrow{\gamma} (A, \sqsubseteq)\)

Proof: \(3 \implies 1\)

Given \(a \in A\), we have \(\alpha(\gamma(a)) = a\).
Hence, \(\exists c \in C, \alpha(c) = a\), using \(c = \gamma(a)\).
A Galois connection can be made into an embedding by quotienting A by the equivalence relation $a \equiv a' \iff \gamma(a) = \gamma(a')$.
Galois connections

Galois embedding example

Abstract domain of intervals of integers \(\mathbb{Z} \) represented as pairs of ordered bounds \((a, b)\) or \(\bot\).

We have: \((\mathcal{P}(\mathbb{Z}), \subseteq) \xrightarrow{\gamma} (I, \sqsubseteq)\)

- \(I \overset{\text{def}}{=} \{(a, b) \mid a \in \mathbb{Z} \cup \{-\infty\}, b \in \mathbb{Z} \cup \{+\infty\}, a \leq b\} \cup \{\bot\}\)
- \((a, b) \sqsubseteq (a', b') \iff (a \geq a') \land (b \leq b'), \quad \forall x: \bot \sqsubseteq x\)
- \(\gamma(a, b) \overset{\text{def}}{=} \{x \in \mathbb{Z} \mid a \leq x \leq b\}, \quad \gamma(\bot) = \emptyset\)
- \(\alpha(X) \overset{\text{def}}{=} (\min X, \max X), \text{ or } \bot \text{ if } X = \emptyset\)

proof:
Galois connections

Galois embedding example

Abstract domain of intervals of integers \mathbb{Z} represented as pairs of ordered bounds (a, b) or \bot.

We have: $(\mathcal{P}(\mathbb{Z}), \subseteq) \xrightarrow[\gamma]{\alpha} (I, \sqsubseteq)$

- $I \overset{\text{def}}{=} \{(a, b) \mid a \in \mathbb{Z} \cup \{-\infty\}, b \in \mathbb{Z} \cup \{+\infty\}, a \leq b\} \cup \{\bot\}$
- $(a, b) \sqsubseteq (a', b') \iff (a \geq a') \land (b \leq b')$, $\forall x: \bot \sqsubseteq x$
- $\gamma(a, b) \overset{\text{def}}{=} \{x \in \mathbb{Z} \mid a \leq x \leq b\}$, $\gamma(\bot) = \emptyset$
- $\alpha(X) \overset{\text{def}}{=} (\min X, \max X)$, or \bot if $X = \emptyset$

proof:

Quotient of the “pair of bounds” domain $(\mathbb{Z} \cup \{-\infty\}) \times (\mathbb{Z} \cup \{+\infty\})$ by the relation $(a, b) \equiv (a', b') \iff \gamma(a, b) = \gamma(a', b')$

i.e., $(a \leq b \land a = a' \land b = b') \lor (a > b \land a' > b')$.
Upper closures

\(\rho : X \to X \) is an upper closure in the poset \((X, \sqsubseteq)\) if it is:

1. **monotonic**: \(x \sqsubseteq x' \implies \rho(x) \sqsubseteq \rho(x') \),
2. **extensive**: \(x \sqsubseteq \rho(x) \), and
3. **idempotent**: \(\rho \circ \rho = \rho \).

\[\begin{align*}
\rho & : X \to X \\
\rho & \text{ is an upper closure in the poset } (X, \sqsubseteq) \\
\text{if it is:} & \\
\text{monotonic: } & x \sqsubseteq x' \implies \rho(x) \sqsubseteq \rho(x'), \\
\text{extensive: } & x \sqsubseteq \rho(x), \text{ and} \\
\text{idempotent: } & \rho \circ \rho = \rho.
\end{align*} \]
Galois connections

Upper closures and Galois connections

Given \((C, \leq) \xleftarrow{\gamma} (A, \subseteq)\),
\(\gamma \circ \alpha\) is an upper closure on \((C, \leq)\).

Given an upper closure \(\rho\) on \((X, \subseteq)\), we have a Galois embedding:
\((X, \subseteq) \xleftarrow{id} (\rho(X), \subseteq)\)

\(\Rightarrow\) we can rephrase abstract interpretation using upper closures instead of Galois connections, but we lose:

- the notion of abstract representation
 (a data-structure \(A\) representing elements in \(\rho(X)\))

- the ability to have several distinct abstract representations for a single concrete object
 (non-necessarily injective \(\gamma\) versus \(id\))
Operator approximations
Abstractions in the concretization framework

Given a concrete \((C, \leq)\) and an abstract \((A, \sqsubseteq)\) poset and a monotonic concretization \(\gamma : A \rightarrow C\)

\((\gamma(a)\) is the “meaning” of \(a\) in \(C\); we use intervals in our examples\)

- \(a \in A\) is a **sound abstraction** of \(c \in C\) if \(c \leq \gamma(a)\).

 (e.g.: \([0, 10]\) is a sound abstraction of \(\{0, 1, 2, 5\}\) in the integer interval domain)

- \(g : A \rightarrow A\) is a **sound abstraction** of \(f : C \rightarrow C\) if \(\forall a \in A : (f \circ \gamma)(a) \leq (\gamma \circ g)(a)\).

 (e.g.: \(\lambda([a, b].[−\infty, +\infty]\) is a sound abstraction of \(\lambda X.\{x + 1 | x \in X\}\) in the interval domain)

- \(g : A \rightarrow A\) is an **exact abstraction** of \(f : C \rightarrow C\) if \(f \circ \gamma = \gamma \circ g\).

 (e.g.: \(\lambda([a, b].[a + 1, b + 1]\) is an exact abstraction of \(\lambda X.\{x + 1 | x \in X\}\) in the interval domain)
Abstractions in the Galois connection framework

Assume now that $(C, \leq) \xleftrightarrow{\alpha} (A, \sqsubseteq)$.

- **sound abstractions**
 - $c \leq \gamma(a)$ is equivalent to $\alpha(c) \sqsubseteq a$.
 - $(f \circ \gamma)(a) \leq (\gamma \circ g)(a)$ is equivalent to $(\alpha \circ f \circ \gamma)(a) \sqsubseteq g(a)$.

Given $c \in C$, its **best abstraction** is $\alpha(c)$.

(proof: recall that $\alpha(c) = \cap \{ a \mid c \leq \gamma(a) \}$, so, $\alpha(c)$ is the smallest sound abstraction of c)

(e.g.: $\alpha(\{0, 1, 2, 5\}) = [0, 5]$ in the interval domain)

Given $f : C \rightarrow C$, its **best abstraction** is $\alpha \circ f \circ \gamma$

(proof: g sound $\iff \forall a, (\alpha \circ f \circ \gamma)(a) \sqsubseteq g(a)$, so $\alpha \circ f \circ \gamma$ is the smallest sound abstraction of f)

(e.g.: $g([a, b]) = [2a, 2b]$ is the best abstraction in the interval domain of $f(X) = \{ 2x \mid x \in X \}$; it is not an exact abstraction as $\gamma(g([0, 1])) = \{0, 1, 2\} \supset \{0, 2\} = f(\gamma([0, 1]))$)
If g and g' soundly abstract respectively f and f' then:

- if f is monotonic, then $g \circ g'$ is a sound abstraction of $f \circ f'$,

 $$(\text{proof: } \forall a, (f \circ f' \circ \gamma)(a) \leq (f \circ \gamma \circ g')(a) \leq (\gamma \circ g \circ g')(a))$$

- if g, g' are exact abstractions of f and f', then $g \circ g'$ is an exact abstraction,

 $$(\text{proof: } f \circ f' \circ \gamma = f \circ \gamma \circ g' = \gamma \circ g \circ g')$$

- if g and g' are the best abstractions of f and f', then $g \circ g'$ is not always the best abstraction!

 (e.g.: $g([a, b]) = [a, \min(b, 1)]$ and $g'([a, b]) = [2a, 2b]$ are the best abstractions of $f(X) = \{x \in X \mid x \leq 1\}$ and $f'(X) = \{2x \mid x \in X\}$ in the interval domain, but $g \circ g'$ is not the best abstraction of $f \circ f'$ as $(g \circ g')([0, 1]) = [0, 1]$ while $(\alpha \circ f \circ f' \circ \gamma)([0, 1]) = [0, 0]$)
Fixpoint approximations
If we have:

- a Galois connection \((C, \leq) \xleftarrow{\gamma} (A, \sqsubseteq)\) between CPOs
- monotonic concrete and abstract functions \(f : C \to C, f^\#: A \to A\)
- a commutation condition \(\alpha \circ f = f^\# \circ \alpha\)
- an element \(a\) and its abstraction \(a^\# = \alpha(a)\)

then \(\alpha(lfp_a f) = lfp_{a^\#} f^\#\).

(proof on next slide)
Proof:

By the constructive Tarksi theorem, lfp\(_a\) \(f\) is the limit of transfinite iterations:
\[a_0 \overset{\text{def}}{=} a, \; a_{n+1} \overset{\text{def}}{=} f(a_n), \text{ and } a_n \overset{\text{def}}{=} \bigvee \{ a_m \mid m < n \} \text{ for limit ordinals } n. \]
Likewise, lfp\(_a\)\(^\#\) \(f\)\(^\#\) is the limit of a transfinite iteration \(a_n\)\(^\#\).

We prove by transfinite induction that \(a_n\)^\# = \(\alpha(a_n)\) for all ordinals \(n\):

- \(a_0^\# = \alpha(a_0)\), by definition;
- \(a_{n+1}^\# = f^\#(a_n^\#) = f^\#(\alpha(a_n)) = \alpha(f(a_n)) = \alpha(a_{n+1})\) for successor ordinals, by commutation;
- \(a_n^\# = \bigsqcup \{ a_m^\# \mid m < n \} = \bigsqcup \{ \alpha(a_m) \mid m < n \} = \alpha(\bigvee \{ a_m \mid m < n \}) = \alpha(a_n)\) for limit ordinals, because \(\alpha\) is always continuous in Galois connections.

Hence, lfp\(_a\)\(^\#\) \(f\)\(^\#\) = \(\alpha(\text{lfp}_a f)\).
Fixpoint approximation

If we have:

- a complete lattice \((C, \leq, \lor, \land, \bot, \top)\)
- a monotonic concrete function \(f\)
- a sound abstraction \(f^\#: A \to A\) of \(f\)
 \((\forall x^\#: (f \circ \gamma)(x^\#) \leq (\gamma \circ f^\#)(x^\#))\)
- a post-fixpoint \(a^\#\) of \(f^\#\) \((f^\#(a^\#) \sqsubseteq a^\#)\)

then \(a^\#\) is a sound abstraction of \(\text{lfp } f\): \(\text{lfp } f \leq \gamma(a^\#)\).

Proof:

By definition, \(f^\#(a^\#) \sqsubseteq a^\#\).

By monotony, \(\gamma(f^\#(a^\#)) \leq \gamma(a^\#)\).

By soundness, \(f(\gamma(a^\#)) \leq \gamma(a^\#)\).

By Tarski’s theorem \(\text{lfp } f = \lor \{x | f(x) \leq x \}\).

Hence, \(\text{lfp } f \leq \gamma(a^\#)\).

Other fixpoint transfer / approximation theorems can be constructed...
Bibliography

