Order Theory

MPRI 2–6: Abstract Interpretation, application to verification and static analysis

Antoine Miné

Year 2022–2023

Course 1
19 September 2022
Plan

- Partially ordered structures
 - (complete) partial orders
 - (complete) lattices

- Fixpoints

- Abstractions
 - Galois connections, upper closure operators (first-class citizens)
 - Concretization-only framework
 - Operator abstraction
 - Fixpoint abstraction
Partial orders
Given a set \(X \), a relation \(\sqsubseteq \in X \times X \) is a partial order if it is:

1. reflexive: \(\forall x \in X, \ x \sqsubseteq x \)
2. antisymmetric: \(\forall x, y \in X, \ (x \sqsubseteq y) \land (y \sqsubseteq x) \implies x = y \)
3. transitive: \(\forall x, y, z \in X, \ (x \sqsubseteq y) \land (y \sqsubseteq z) \implies x \sqsubseteq z \)

\((X, \sqsubseteq)\) is a poset (partially ordered set).

If we drop antisymmetry, we have a preorder instead.
Examples: partial orders

Partial orders:

- \((\mathbb{Z}, \leq)\) (completely ordered)

- \((\mathcal{P}(X), \subseteq)\) (not completely ordered: \(\{1\} \not\subseteq \{2\}, \{2\} \not\subseteq \{1\}\))

- \((S, =)\) is a poset for any \(S\)

- \((\mathbb{Z}^2, \sqsubseteq)\), where \((a, b) \sqsubseteq (a', b') \iff (a \geq a') \land (b \leq b')\) (ordering of interval bounds that implies inclusion)
Examples: preorders

Preorders:

- \((\mathcal{P}(X), \subseteq)\), where \(a \subseteq b \iff |a| \leq |b|\)
 (ordered by cardinal)

- \((\mathbb{Z}^2, \subseteq)\), where
 \[(a, b) \subseteq (a', b') \iff \{ x \mid a \leq x \leq b \} \subseteq \{ x \mid a' \leq x \leq b' \}\]
 (inclusion of intervals represented by pairs of bounds)
 not antisymmetric: \([1, 0] \neq [2, 0]\) but \([1, 0] \subseteq [2, 0] \subseteq [1, 0]\)

Equivalence: \(\equiv\)

\(X \equiv Y \iff (X \subseteq Y) \land (Y \subseteq X)\)

We obtain a partial order by quotienting by \(\equiv\).
Given by a Hasse diagram, e.g.:

\[
\begin{align*}
&g \subseteq g \\
&f \subseteq f, g \\
&e \subseteq e, g \\
&d \subseteq d, f, g \\
&c \subseteq c, e, f, g \\
&b \subseteq b, c, d, e, f, g \\
&a \subseteq a, b, c, d, e, f, g
\end{align*}
\]
Infinite Hasse diagram for \((\mathbb{N} \cup \{\infty\}, \leq)\):

\[0 \sqsubseteq 1 \sqsubseteq 2 \sqsubseteq \ldots \sqsubseteq \infty\]

\[0 \sqsubseteq 0, 1, 2, \ldots, \infty\]

\[\infty \sqsubseteq \infty\]

\[\ldots\]
Use of posets (informally)

Posets are a very useful notion to discuss about:

- **logic**: formulas ordered by implication \Rightarrow

- **program verification**: program semantics \sqsubseteq specification
 (e.g.: behaviors of program \subseteq accepted behaviors)

- **approximation**: \sqsubseteq is an information order
 ("$a \sqsubseteq b$" means: "a caries more information than b")

- **iteration**: fixpoint computation
 (e.g., a computation is directed, with a limit: $X_1 \sqsubseteq X_2 \sqsubseteq \cdots \sqsubseteq X_n$)
(Least) Upper bounds

- c is an upper bound of a and b if: $a \sqsubseteq c$ and $b \sqsubseteq c$

- c is a least upper bound (lub or join) of a and b if
 - c is an upper bound of a and b
 - for every upper bound d of a and b, $c \sqsubseteq d$
If it exists, the lub of a and b is **unique**, and denoted as $a \sqcup b$.

(proof: assume that c and d are both lubs of a and b; by definition of lubs, $c \sqsubseteq d$ and $d \sqsubseteq c$; by antisymmetry of \sqsubseteq, $c = d$)

Generalized to upper bounds of arbitrary (even infinite) sets $\sqcup Y$, $Y \subseteq X$ (well-defined, as \sqcup is commutative and associative).

Similarly, we define **greatest lower bounds** (\sqcap, meet) $a \sqcap b$, $\sqcap Y$.

$(a \sqcap b \sqsubseteq a) \land (a \sqcap b \sqsubseteq b)$ and $\forall c, (c \sqsubseteq a) \land (c \sqsubseteq b) \implies (c \sqsubseteq a \sqcap b)$

Note: not all posets have lubs, glbs

(e.g.: $a \sqcup b$ not defined on ($\{a, b\}$, =))
Chains

C ⊆ X is a chain in (X, ⊑) if it is totally ordered by ⊑:
∀x, y ∈ C, (x ⊑ y) ∨ (y ⊑ x).

\[a \sqsubseteq c \sqsubseteq f \sqsubseteq g \]
Complete partial orders (CPO)

A poset \((X, \sqsubseteq)\) is a complete partial order (CPO) if every chain \(C\) (including \(\emptyset\)) has a least upper bound \(\sqcup C\).

A CPO has a least element \(\sqcup \emptyset\), denoted \(\bot\).

Examples, Counter-examples:

- \((\mathbb{N}, \leq)\) is not complete, but \((\mathbb{N} \cup \{\infty\}, \leq)\) is complete.
- \((\{x \in \mathbb{Q} \mid 0 \leq x \leq 1\}, \leq)\) is not complete, but \((\{x \in \mathbb{R} \mid 0 \leq x \leq 1\}, \leq)\) is complete.
- \((\mathcal{P}(Y), \subseteq)\) is complete for any \(Y\).
- \((X, \sqsubseteq)\) is complete if \(X\) is finite.
Complete partial order examples

\[(\mathbb{N}, \leq)\]
non-complete

\[(\mathbb{N} \cup \{\infty\}, \leq)\]
complete
Lattices
A lattice \((X, \sqsubseteq, \sqcup, \sqcap)\) is a poset with

1. a lub \(a \sqcup b\) for every pair of elements \(a\) and \(b\);
2. a glb \(a \sqcap b\) for every pair of elements \(a\) and \(b\).

Examples:

- integers \((\mathbb{Z}, \leq, \text{max}, \text{min})\)
- integer intervals (next slide)
- divisibility (in two slides)

If we drop one condition, we have a (join or meet) semilattice.

Reference on lattices: Birkhoff \([\text{Birk76}]\).
Example: the interval lattice

Integer intervals: \(\{ [a, b] \mid a, b \in \mathbb{Z}, a \leq b \} \cup \{ \emptyset \} , \subseteq, \cup, \cap \)

where \([a, b] \cup [a', b'] \overset{\text{def}}{=} [\min(a, a'), \max(b, b')] \).
Example: the divisibility lattice

Divisibility \((\mathbb{N}^*, |, \text{lcm}, \gcd)\) where \(x|y \iff \exists k \in \mathbb{N}, \, kx = y\)
Let \(P \overset{\text{def}}{=} \{ p_1, p_2, \ldots \} \) be the (infinite) set of prime numbers.

We have a correspondence \(\iota \) between \(\mathbb{N}^* \) and \(P \to \mathbb{N} \):

1. \(\alpha = \iota(x) \) is the (unique) decomposition of \(x \) into prime factors
2. \(\iota^{-1}(\alpha) \overset{\text{def}}{=} \prod_{a \in P} a^{\alpha(a)} = x \)
3. \(\iota \) is one-to-one on functions \(P \to \mathbb{N} \) with finite support

 \((\alpha(a) = 0 \text{ except for finitely many factors } a)\)

We have a correspondence between \((\mathbb{N}^*, |, \lcm, \gcd) \) and \((\mathbb{N}, \leq, \max, \min) \).

Assume that \(\alpha = \iota(x) \) and \(\beta = \iota(y) \) are the decompositions of \(x \) and \(y \), then:

1. \(\prod_{a \in P} a^{\max(\alpha(a), \beta(a))} = \lcm(\prod_{a \in P} a^{\alpha(a)}, \prod_{a \in P} a^{\beta(a)}) = \lcm(x, y) \)
2. \(\prod_{a \in P} a^{\min(\alpha(a), \beta(a))} = \gcd(\prod_{a \in P} a^{\alpha(a)}, \prod_{a \in P} a^{\beta(a)}) = \gcd(x, y) \)
3. \((\forall a: \alpha(a) \leq \beta(a)) \iff (\prod_{a \in P} a^{\alpha(a)}) \mid (\prod_{a \in P} a^{\beta(a)}) \iff x \mid y \)
A complete lattice \((X, \sqsubseteq, \sqcup, \sqcap, \bot, \top)\) is a poset with

1. a \(\text{lub} \ \sqcup S\) for every set \(S \subseteq X\)
2. a \(\text{glb} \ \sqcap S\) for every set \(S \subseteq X\)
3. a least element \(\bot\)
4. a greatest element \(\top\)

Notes:

- 1 implies 2 as \(\sqcap S = \sqcup \{y \mid \forall x \in S, y \sqsubseteq x\}\) (and 2 implies 1 as well),
- 1 and 2 imply 3 and 4: \(\bot = \sqcup \emptyset = \sqcap X\), \(\top = \sqcap \emptyset = \sqcup X\),
- a complete lattice is also a CPO.
Complete lattice examples

- **real segment** $[0, 1]$: $(\{ x \in \mathbb{R} \mid 0 \leq x \leq 1 \}, \leq, \max, \min, 0, 1)$

- **powersets** $(\mathcal{P}(S), \subseteq, \cup, \cap, \emptyset, S)$
 (next slide)

- **any finite lattice**
 ($\cup Y$ and $\cap Y$ for finite $Y \subseteq X$ are always defined)

- **integer intervals** with finite and **infinite** bounds:
 $(\{ [a, b] \mid a \in \mathbb{Z} \cup \{-\infty\}, b \in \mathbb{Z} \cup \{+\infty\}, a \leq b \} \cup \{\emptyset\},$
 $\subseteq, \cup, \cap, \emptyset, [-\infty, +\infty])$

 with $\bigcup_{i \in I} [a_i, b_i] \overset{\text{def}}{=} [\min_{i \in I} a_i, \max_{i \in I} b_i]$.
 (in two slides)
Example: the powerset complete lattice

Example: \((\mathcal{P}(\mathbb{Z}), \subseteq, \cup, \cap, \emptyset, \mathbb{Z})\)
Example: the intervals complete lattice

The integer intervals with finite and infinite bounds:
\[
\{ [a, b] \mid a \in \mathbb{Z} \cup \{-\infty\}, \ b \in \mathbb{Z} \cup \{+\infty\}, \ a \leq b \} \cup \{\emptyset\},
\subseteq, \sqcup, \cap, \emptyset, [-\infty, +\infty]\]
Derivation

Given a (complete) lattice or partial order \((X, \sqsubseteq, \sqcup, \sqcap, \bot, \top)\) we can derive new (complete) lattices or partial orders by:

- **duality**
 \((X, \sqsupseteq, \sqcap, \sqcup, \top, \bot)\)
 - \(\sqsubseteq\) is reversed
 - \(\sqcup\) and \(\sqcap\) are switched
 - \(\bot\) and \(\top\) are switched

- **lifting** (adding a smallest element)
 \((X \cup \{\bot'\}, \sqsubseteq', \sqcup', \sqcap', \bot', \top)\)
 - \(a \sqsubseteq' b \iff a = \bot' \lor a \sqsubseteq b\)
 - \(\bot' \sqcup' a = a \sqcup' \bot' = a\), and \(a \sqcup' b = a \sqcup b\) if \(a, b \neq \bot'\)
 - \(\bot' \sqcap' a = a \sqcap' \bot' = \bot'\), and \(a \sqcap' b = a \sqcap b\) if \(a, b \neq \bot'\)
 - \(\bot'\) replaces \(\bot\)
 - \(\top\) is unchanged
Derivation (cont.)

Given (complete) lattices or partial orders:
\((X_1, \sqsubseteq_1, \sqcup_1, \sqcap_1, \bot_1, \top_1)\) and \((X_2, \sqsubseteq_2, \sqcup_2, \sqcap_2, \bot_2, \top_2)\)

We can combine them by:

- **product**
 \((X_1 \times X_2, \sqsubseteq, \sqcup, \sqcap, \bot, \top)\) where

 - \((x, y) \sqsubseteq (x', y') \iff x \sqsubseteq_1 x' \land y \sqsubseteq_2 y'\)
 - \((x, y) \sqcup (x', y') \defeq (x \sqcup_1 x', y \sqcup_2 y')\)
 - \((x, y) \sqcap (x', y') \defeq (x \sqcap_1 x', y \sqcap_2 y')\)
 - \(\bot \defeq (\bot_1, \bot_2)\)
 - \(\top \defeq (\top_1, \top_2)\)

- **smashed product** (coalescent product, merging \(\bot_1\) and \(\bot_2\))
 \(((X_1 \setminus \{\bot_1\}) \times (X_2 \setminus \{\bot_2\})) \cup \{\bot\}, \sqsubseteq, \sqcup, \sqcap, \bot, \top)\)

 (as \(X_1 \times X_2\), but all elements of the form \((\bot_1, y)\) and \((x, \bot_2)\) are identified to a unique \(\bot\) element)
Given a (complete) lattice or partial order \((X, \sqsubseteq, \sqcup, \sqcap, \bot, \top)\) and a set \(S\):

- **point-wise lifting** (functions from \(S\) to \(X\))
 \((S \to X, \sqsubseteq', \sqcup', \sqcap', \bot', \top')\) where
 - \(x \sqsubseteq' y \iff \forall s \in S: x(s) \sqsubseteq y(s)\)
 - \(\forall s \in S: (x \sqcup' y)(s) \overset{\text{def}}{=} x(s) \sqcup y(s)\)
 - \(\forall s \in S: (x \sqcap' y)(s) \overset{\text{def}}{=} x(s) \sqcap y(s)\)
 - \(\forall s \in S: \bot'(s) = \bot\)
 - \(\forall s \in S: \top'(s) = \top\)

- **smashed point-wise lifting**
 \(((S \to (X \setminus \{\bot\})) \cup \{\bot'\}, \sqsubseteq', \sqcup', \sqcap', \bot', \top')\)

as \(S \to X\), but identify to \(\bot'\) any map \(x\) where \(\exists s \in S: x(s) = \bot\)

(e.g. map each program variable in \(S\) to an interval in \(X\))
A lattice \((X, \subseteq, \sqcup, \sqcap)\) is **distributive** if:

- \(a \sqcup (b \sqcap c) = (a \sqcup b) \sqcap (a \sqcup c)\) and
- \(a \sqcap (b \sqcup c) = (a \sqcap b) \sqcup (a \sqcap c)\)

Examples, Counter-examples:

- \((\mathcal{P}(X), \subseteq, \cup, \cap)\) is distributive
- Intervals are **not** distributive

 \([(0, 0] \cup [2, 2]) \cap [1, 1] = [0, 2] \cap [1, 1] = [1, 1]\)
 but
 \([(0, 0] \cap [1, 1]) \cup ([2, 2] \cap [1, 1]) = \emptyset \cup \emptyset = \emptyset\)

common cause of precision loss in static analyses:
merging abstract information early, at control-flow joins
vs. merging executions paths late, at the end of the program
Given a lattice \((X, \subseteq, \sqcup, \sqcap)\) and \(X' \subseteq X\),
\((X', \subseteq, \sqcup, \sqcap)\) is a \textit{sublattice} of \(X\) if \(X'\) is closed under \(\sqcup\) and \(\sqcap\).

Example, Counter-examples:

- if \(Y \subseteq X\), \((\mathcal{P}(Y), \subseteq, \cup, \cap, \emptyset, Y)\) is a sublattice of \((\mathcal{P}(X), \subseteq, \cup, \cap, \emptyset, X)\)

- integer intervals are \textbf{not} a sublattice of \((\mathcal{P}(\mathbb{Z}), \subseteq, \cup, \cap, \emptyset, \mathbb{Z})\)

 \[\min(a, a'), \max(b, b') \neq [a, b] \cup [a', b']\]

another common cause of precision loss in static analyses:
\(\sqcup\) cannot represent the exact union, and loses precision.
Functions and Fixpoints
A function $f : (X_1, \sqsubseteq_1, \sqcup_1, \bot_1) \to (X_2, \sqsubseteq_2, \sqcup_2, \bot_2)$ is

- **monotonic** if
 \[\forall x, x', x \sqsubseteq_1 x' \implies f(x) \sqsubseteq_2 f(x') \]
 (aka: increasing, isotone, order-preserving, morphism)

- **strict** if $f(\bot_1) = \bot_2$

- **continuous** between CPO if
 \[\forall C \text{ chain } \subseteq X_1, \{ f(c) \mid c \in C \} \text{ is a chain in } X_2 \]
 and $f(\sqcup_1 C) = \sqcup_2 \{ f(c) \mid c \in C \}$

- a (complete) \(\sqcup\)-morphism between (complete) lattices
 if $\forall S \subseteq X_1, f(\sqcup_1 S) = \sqcup_2 \{ f(s) \mid s \in S \}$

- **extensive** if $X_1 = X_2$ and $\forall x, x \sqsubseteq_1 f(x)$

- **reductive** if $X_1 = X_2$ and $\forall x, f(x) \sqsubseteq_1 x$
Fixpoints

Given \(f : (X, \sqsubseteq) \rightarrow (X, \sqsubseteq) \)

- \(x \) is a **fixpoint** of \(f \) if \(f(x) = x \)
- \(x \) is a **pre-fixpoint** of \(f \) if \(x \sqsubseteq f(x) \)
- \(x \) is a **post-fixpoint** of \(f \) if \(f(x) \sqsubseteq x \)

We may have several fixpoints (or none)

- \(\text{fp}(f) \overset{\text{def}}{=} \{ x \in X \mid f(x) = x \} \)
- \(\text{lfp}_x f \overset{\text{def}}{=} \min_{\sqsubseteq} \{ y \in \text{fp}(f) \mid x \sqsubseteq y \} \) if it exists

 (least fixpoint greater than \(x \))
- \(\text{lfp} f \overset{\text{def}}{=} \text{lfp}_\bot f \)

 (least fixpoint)
- **dually:** \(\text{gfp}_x f \overset{\text{def}}{=} \max_{\sqsubseteq} \{ y \in \text{fp}(f) \mid y \sqsubseteq x \} \), \(\text{gfp} f \overset{\text{def}}{=} \text{gfp}_\top f \)

 (greatest fixpoints)
Fixpoints: illustration

\begin{itemize}
\item \textit{lfp}
\item \textit{fp}
\item \textit{gfp}
\end{itemize}
Monotonic function with two distinct fixpoints
Fixpoints: example

Monotonic function with a unique fixpoint
Fixpoints: example

Non-monotonic function with no fixpoint
Express solutions of mutually recursive equation systems

Example:

The solutions of
\[
\begin{align*}
x_1 &= f(x_1, x_2) \\
x_2 &= g(x_1, x_2)
\end{align*}
\]
with \(x_1, x_2\) in lattice \(X\)

are exactly the fixpoint of \(\vec{F}\) in lattice \(X \times X\), where

\[
\vec{F}\left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} f(x_1, x_2) \\ g(x_1, x_2) \end{array}\right)
\]

The least solution of the system is \(\text{lfp } \vec{F}\).
Uses of fixpoints: examples

- Close (complete) sets to satisfy a given property

Example:

\[r \subseteq X \times X \text{ is transitive if: } \]
\[(a, b) \in r \land (b, c) \in r \implies (a, c) \in r \]

The transitive closure of \(r \) is the smallest transitive relation containing \(r \).

Let \(f(s) = r \cup \{(a, c) \mid (a, b) \in s \land (b, c) \in s\} \), then lfp \(f \):

- lfp \(f \) contains \(r \)
- lfp \(f \) is transitive
- lfp \(f \) is minimal

\[\implies \text{lfp } f \text{ is the transitive closure of } r. \]
Tarski’s fixpoint theorem

Tarski’s theorem

If \(f : X \to X \) is monotonic in a complete lattice \(X \) then \(\text{fp}(f) \) is a complete lattice.

Proved by Knaster and Tarski [Tars55].
Tarski’s fixpoint theorem

Tarski’s theorem

If $f : X \to X$ is monotonic in a complete lattice X then $\text{fp}(f)$ is a complete lattice.

Proof:

We prove $\text{lfp} f = \b nan \{ x \mid f(x) \sqsubseteq x \}$ (meet of post-fixpoints).
Tarski’s fixpoint theorem

Tarski’s theorem

If \(f : X \rightarrow X \) is monotonic in a complete lattice \(X \)
then \(\text{fp}(f) \) is a complete lattice.

Proof:
We prove \(\text{lfp } f = \sqcap \{ x \mid f(x) \sqsubseteq x \} \) (meet of post-fixpoints).

Let

\[
 f^* = \{ x \mid f(x) \sqsubseteq x \} \quad \text{and} \quad a = \sqcap f^*.
\]

\(\forall x \in f^* \), \(a \sqsubseteq x \) (by definition of \(\sqcap \))

so \(f(a) \sqsubseteq f(x) \) (as \(f \) is monotonic)

so \(f(a) \sqsubseteq x \) (as \(x \) is a post-fixpoint).

We deduce that \(f(a) \sqsubseteq \sqcap f^* \), i.e. \(f(a) \sqsubseteq a \).
Tarski’s fixpoint theorem

Tarski’s theorem

If \(f : X \to X \) is monotonic in a complete lattice \(X \) then \(\text{fp}(f) \) is a complete lattice.

Proof:

We prove \(\text{lfp} f = \bigcap \{ x \mid f(x) \sqsubseteq x \} \) (meet of post-fixpoints).

\[
f(a) \sqsubseteq a
\]

so \(f(f(a)) \sqsubseteq f(a) \) (as \(f \) is monotonic)

so \(f(a) \in f^* \) (by definition of \(f^* \))

so \(a \sqsubseteq f(a) \).

We deduce that \(f(a) = a \), so \(a \in \text{fp}(f) \).

Note that \(y \in \text{fp}(f) \) implies \(y \in f^* \).
As \(a = \bigcap f^* \), \(a \sqsubseteq y \), and we deduce \(a = \text{lfp} f \).
Tarski’s fixpoint theorem

Tarski’s theorem

If \(f : X \to X \) is monotonic in a complete lattice \(X \) then \(\text{fp}(f) \) is a complete lattice.

Proof:

Given \(S \subseteq \text{fp}(f) \), we prove that \(\text{lfp}_\sqcup S f \) exists.

Consider \(X' = \{ x \in X \mid \sqcup S \subseteq x \} \).

- \(X' \) is a complete lattice.
- Moreover \(\forall x' \in X', f(x') \in X' \).
- \(f \) can be restricted to a monotonic function \(f' \) on \(X' \).
- We apply the preceding result, so that \(\text{lfp} f' = \text{lfp}_\sqcup S f \) exists.

By definition, \(\text{lfp}_\sqcup S f \in \text{fp}(f) \) and is smaller than any fixpoint larger than all \(s \in S \).
Tarski’s fixpoint theorem

If \(f : X \to X \) is monotonic in a complete lattice \(X \) then \(\text{fp}(f) \) is a complete lattice.

Proof:
By duality, we construct \(\text{gfp}\ f \) and \(\text{gfp}\ \sqcap_S f \).

The complete lattice of fixpoints is:
\((\text{fp}(f), \sqsubseteq, \lambda S.\text{lfp}_{\sqcup_S} f, \lambda S.\text{gfp}_{\sqcap_S} f, \text{lfp}\ f, \text{gfp}\ f) \).

Not necessarily a sublattice of \((X, \sqsubseteq, \sqcup, \sqcap, \bot, \top) \)!
Tarski’s fixpoint theorem: example

Lattice: (\{ lfp, fp1, fp2, pre, gfp \}, \sqcup, \sqcap, lfp, gfp)

Fixpoint lattice: (\{ lfp, fp1, fp2, gfp \}, \sqcup', \sqcap', lfp, gfp)

(not a sublattice as fp1 \sqcup' fp2 = gfp while fp1 \sqcup fp2 = pre,
but gfp is the smallest fixpoint greater than pre)
“Kleene” fixpoint theorem

If $f : X \to X$ is continuous in a CPO X and $a \sqsubseteq f(a)$ then $\text{lfp}_a f$ exists.

Inspired by Kleene [Klee52].
"Kleene" fixpoint theorem

If \(f : X \to X \) is continuous in a CPO \(X \) and \(a \sqsubseteq f(a) \) then \(\operatorname{lfp}_a f \) exists.

We prove that \(\{ f^n(a) \mid n \in \mathbb{N} \} \) is a chain and
\[
\operatorname{lfp}_a f = \bigsqcup \{ f^n(a) \mid n \in \mathbb{N} \}.
\]
“Kleene” fixpoint theorem

If \(f : X \to X \) is continuous in a CPO \(X \) and \(a \sqsubseteq f(a) \) then \(\text{lfp}_a f \) exists.

We prove that \(\{ f^n(a) \mid n \in \mathbb{N} \} \) is a chain and
\[
\text{lfp}_a f = \sqcup \{ f^n(a) \mid n \in \mathbb{N} \}.
\]

\(a \sqsubseteq f(a) \) by hypothesis.

\(f(a) \sqsubseteq f(f(a)) \) by monotony of \(f \).

(Note that any continuous function is monotonic.
Indeed, \(x \sqsubseteq y \implies x \sqcup y = y \implies f(x \sqcup y) = f(y) \);
by continuity \(f(x) \sqcup f(y) = f(x \sqcup y) = f(y) \), which implies \(f(x) \sqsubseteq f(y) \).)

By recurrence \(\forall n, f^n(a) \sqsubseteq f^{n+1}(a) \).
Thus, \(\{ f^n(a) \mid n \in \mathbb{N} \} \) is a chain and \(\sqcup \{ f^n(a) \mid n \in \mathbb{N} \} \) exists.
“Kleene” fixpoint theorem

If $f : X \rightarrow X$ is continuous in a CPO X and $a \sqsubseteq f(a)$ then $\text{lfp}_a f$ exists.

\[
\begin{align*}
 f(\bigsqcup \{ f^n(a) \mid n \in \mathbb{N} \}) \\
 = \bigsqcup \{ f^{n+1}(a) \mid n \in \mathbb{N} \} & \quad \text{(by continuity)} \\
 = a \sqcup (\bigsqcup \{ f^{n+1}(a) \mid n \in \mathbb{N} \}) & \quad \text{(as all $f^{n+1}(a)$ are greater than a)} \\
 = \bigsqcup \{ f^n(a) \mid n \in \mathbb{N} \}. \\
\end{align*}
\]

So, $\bigsqcup \{ f^n(a) \mid n \in \mathbb{N} \} \in \text{fp}(f)$

Moreover, any fixpoint greater than a must also be greater than all $f^n(a), n \in \mathbb{N}$.
So, $\bigsqcup \{ f^n(a) \mid n \in \mathbb{N} \} = \text{lfp}_a f$.
Well-ordered sets

\((S, \sqsubseteq)\) is a **well-ordered set** if:
- \(\sqsubseteq\) is a **total order** on \(S\)
- every \(X \subseteq S\) such that \(X \neq \emptyset\) has a **least element** \(\sqcap X \in X\)

Consequences:
- any element \(x \in S\) has a **successor** \(x + 1 \overset{\text{def}}{=} \sqcap \{ y \mid x \sqsubset y \}\) (except the greatest element, if it exists)
- if \(\not\exists y, x = y + 1\), \(x\) is a **limit** and \(x = \sqcup \{ y \mid y \sqsubset x \}\) (every bounded subset \(X \subseteq S\) has a lub \(\sqcup X = \sqcap \{ y \mid \forall x \in X, x \sqsubseteq y \}\))

Examples:
- \((\mathbb{N}, \leq)\) and \((\mathbb{N} \cup \{ \infty \}, \leq)\) are well-ordered
- \((\mathbb{Z}, \leq), (\mathbb{R}, \leq), (\mathbb{R}^+, \leq)\) are **not** well-ordered
- **ordinals** \(0, 1, 2, \ldots, \omega, \omega + 1, \ldots\) are well-ordered (\(\omega\) is a limit)
- well-ordered sets are **ordinals** up to order-isomorphism
 (i.e., bijective functions \(f\) such that \(f\) and \(f^{-1}\) are monotonic)
Constructive Tarski theorem by transfinite iterations

Given a function $f : X \rightarrow X$ and $a \in X$, the transfinite iterates of f from a are:

$$
\begin{cases}
 x_0 \overset{\text{def}}{=} a \\
 x_n \overset{\text{def}}{=} f(x_{n-1}) & \text{if } n \text{ is a successor ordinal} \\
 x_n \overset{\text{def}}{=} \bigsqcup \{ x_m \mid m < n \} & \text{if } n \text{ is a limit ordinal}
\end{cases}
$$

Constructive Tarski theorem

If $f : X \rightarrow X$ is monotonic in a CPO X and $a \sqsubseteq f(a)$, then $\text{lfp}_a f = x_\delta$ for some ordinal δ.

Generalisation of “Kleene” fixpoint theorem, from [Cous79].
Proof

f is monotonic in a CPO X,

\[
\begin{align*}
\{ x_0 & \;\text{def}\;=\; a \sqsubseteq f(a) \\
\{ x_n & \;\text{def}\;=\; f(x_{n-1}) \quad \text{if } n \text{ is a successor ordinal} \\
\{ x_n & \;\text{def}\;=\; \sqcup \{ x_m \mid m < n \} \quad \text{if } n \text{ is a limit ordinal}
\end{align*}
\]

Proof:

We prove that $\exists \delta, x_\delta = x_{\delta+1}$.

We note that $m \leq n \implies x_m \sqsubseteq x_n$.

Assume by contradiction that $\forall \delta, x_\delta \neq x_{\delta+1}$.

If n is a successor ordinal, then $x_{n-1} \sqsubset x_n$.

If n is a limit ordinal, then $\forall m < n, x_m \sqsubset x_n$.

Thus, all the x_n are distinct.

By choosing $n > |X|$, we arrive at a contradiction.

Thus δ exists.
Proof

f is monotonic in a CPO X,

\[
\begin{aligned}
 x_0 & \overset{\text{def}}{=} a \sqsubseteq f(a) \\
 x_n & \overset{\text{def}}{=} f(x_{n-1}) & \text{if } n \text{ is a successor ordinal} \\
 x_n & \overset{\text{def}}{=} \bigsqcup \{ x_m \mid m < n \} & \text{if } n \text{ is a limit ordinal}
\end{aligned}
\]

Proof:
Given δ such that $x_{\delta+1} = x_\delta$, we prove that $x_\delta = \text{lfp}_a f$.

$f(x_\delta) = x_{\delta+1} = x_\delta$, so $x_\delta \in \text{fp}(f)$.

Given any $y \in \text{fp}(f)$, $y \sqsupseteq a$, we prove by transfinite induction that $\forall n, x_n \sqsubseteq y$.

By definition $x_0 = a \sqsubseteq y$.

If n is a successor ordinal, by monotony,

$x_{n-1} \sqsubseteq y \implies f(x_{n-1}) \sqsubseteq f(y)$, i.e., $x_n \sqsubseteq y$.

If n is a limit ordinal, $\forall m < n, x_m \sqsubseteq y$ implies

$x_n = \bigsqcup \{ x_m \mid m < n \} \sqsubseteq y$.

Hence, $x_\delta \sqsubseteq y$ and $x_\delta = \text{lfp}_a f$.
An ascending chain C in (X, \subseteq) is a sequence $c_i \in X$ such that $i \leq j \implies c_i \subseteq c_j$.

A poset (X, \subseteq) satisfies the ascending chain condition (ACC) iff for every ascending chain C, $\exists i \in \mathbb{N}$, $\forall j \geq i$, $c_i = c_j$.

Similarly, we can define the descending chain condition (DCC).

Examples:

- the powerset poset $(\mathcal{P}(X), \subseteq)$ is ACC when X is finite
- the pointed integer poset $(\mathbb{Z} \cup \{\bot\}, \subseteq)$ where $x \subseteq y \iff x = \bot \lor x = y$ is ACC and DCC
- the divisibility poset $(\mathbb{N}^*, |)$ is DCC but not ACC.
“Kleene” finite fixpoint theorem

If $f : X \to X$ is monotonic in an ACC poset X and $a \sqsubseteq f(a)$ then $\text{lfp}_a f$ exists.

Proof:

We prove $\exists n \in \mathbb{N}, \text{lfp}_a f = f^n(a)$.

By monotony of f, the sequence $x_n = f^n(a)$ is an increasing chain.

By definition of ACC, $\exists n \in \mathbb{N}, x_n = x_{n+1} = f(x_n)$.

Thus, $x_n \in \text{fp}(f)$.

Obviously, $a = x_0 \sqsubseteq f(x_n)$.

Moreover, if $y \in \text{fp}(f)$ and $y \sqsupseteq a$, then $\forall i, y \sqsupseteq f^i(a) = x_i$.

Hence, $y \sqsupseteq x_n$ and $x_n = \text{lfp}_a (f)$.

Course 1

Order Theory

Antoine Miné
Comparison of fixpoint theorems

<table>
<thead>
<tr>
<th>theorem</th>
<th>function</th>
<th>domain</th>
<th>fixpoint</th>
<th>method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tarski</td>
<td>monotonic</td>
<td>complete lattice</td>
<td>fp(f)</td>
<td>meet of post-fixpoints</td>
</tr>
<tr>
<td>Kleene</td>
<td>continuous</td>
<td>CPO</td>
<td>lfp$_a(f)$</td>
<td>countable iterations</td>
</tr>
<tr>
<td>constructive Tarski</td>
<td>monotonic</td>
<td>CPO</td>
<td>lfp$_a(f)$</td>
<td>transfinite iteration</td>
</tr>
<tr>
<td>ACC Kleene</td>
<td>monotonic</td>
<td>poset</td>
<td>lfp$_a(f)$</td>
<td>finite iteration</td>
</tr>
</tbody>
</table>
Galois connections
Given two posets \((C, \leq)\) and \((A, \sqsubseteq)\), the pair \((\alpha : C \to A, \gamma : A \to C)\) is a **Galois connection** iff:

\[
\forall a \in A, \ c \in C, \ \alpha(c) \sqsubseteq a \iff c \leq \gamma(a)
\]

which is noted \((C, \leq) \xrightarrow{\gamma} \alpha \xleftarrow{\alpha} (A, \sqsubseteq)\).

- \(\alpha\) is the **upper adjoint** or abstraction; \(A\) is the abstract domain.
- \(\gamma\) is the **lower adjoint** or concretization; \(C\) is the concrete domain.
Galois connections

Galois connection example

Abstract domain of intervals of integers \(\mathbb{Z} \) represented as pairs of bounds \((a, b)\).

We have: \((\mathcal{P}(\mathbb{Z}), \subseteq) \xleftrightarrow{\gamma} (I, \subseteq)\)

- \(I \overset{\text{def}}{=} (\mathbb{Z} \cup \{-\infty\}) \times (\mathbb{Z} \cup \{+\infty\}) \)
- \((a, b) \subseteq (a', b') \iff (a \geq a') \land (b \leq b')\)
- \(\gamma(a, b) \overset{\text{def}}{=} \{x \in \mathbb{Z} \mid a \leq x \leq b\}\)
- \(\alpha(X) \overset{\text{def}}{=} (\min X, \max X)\)

proof:
Galois connection example

Abstract domain of intervals of integers \mathbb{Z} represented as pairs of bounds (a, b).

We have: $(\mathcal{P}(\mathbb{Z}), \subseteq) \overset{\gamma}{\leftrightarrow} (I, \sqsubseteq)$

- $I \overset{\text{def}}{=} (\mathbb{Z} \cup \{-\infty\}) \times (\mathbb{Z} \cup \{+\infty\})$
- $(a, b) \sqsubseteq (a', b') \iff (a \geq a') \land (b \leq b')$
- $\gamma(a, b) \overset{\text{def}}{=} \{ x \in \mathbb{Z} \mid a \leq x \leq b \}$
- $\alpha(X) \overset{\text{def}}{=} (\min X, \max X)$

proof:

$\alpha(X) \sqsubseteq (a, b)$

$\iff \min X \geq a \land \max X \leq b$

$\iff \forall x \in X: a \leq x \leq b$

$\iff \forall x \in X: x \in \{ y \mid a \leq y \leq b \}$

$\iff \forall x \in X: x \in \gamma(a, b)$

$\iff X \subseteq \gamma(a, b)$
Properties of Galois connections

Assuming $\forall a, c, \alpha(c) \sqsubseteq a \iff c \leq \gamma(a)$, we have:

1. $\gamma \circ \alpha$ is extensive: $\forall c, \ c \leq \gamma(\alpha(c))$

 Proof: $\alpha(c) \sqsubseteq \alpha(c) \implies c \leq \gamma(\alpha(c))$

2. $\alpha \circ \gamma$ is reductive: $\forall a, \alpha(\gamma(a)) \sqsubseteq a$

3. α is monotonic

 Proof: $c \leq c' \implies c \leq \gamma(\alpha(c')) \implies \alpha(c) \sqsubseteq \alpha(c')$

4. γ is monotonic

5. $\gamma \circ \alpha \circ \gamma = \gamma$

 Proof: $\alpha(\gamma(a)) \sqsubseteq \alpha(\gamma(a)) \implies \gamma(a) \leq \gamma(\alpha(\gamma(a)))$ and $a \sqsupseteq \alpha(\gamma(a)) \implies \gamma(a) \geq \gamma(\alpha(\gamma(a)))$

6. $\alpha \circ \gamma \circ \alpha = \alpha$

7. $\alpha \circ \gamma$ is idempotent: $\alpha \circ \gamma \circ \alpha \circ \gamma = \alpha \circ \gamma$

8. $\gamma \circ \alpha$ is idempotent
Alternate characterization

If the pair \((\alpha : C \to A, \gamma : A \to C)\) satisfies:

1. \(\gamma\) is monotonic
2. \(\alpha\) is monotonic
3. \(\gamma \circ \alpha\) is extensive
4. \(\alpha \circ \gamma\) is reductive

then \((\alpha, \gamma)\) is a Galois connection.

(proof left as exercise)
Uniqueness of the adjoint

Given \((C, \leq) \leftrightarrow^\gamma_\alpha (A, \sqsubseteq)\), each adjoint can be uniquely defined in term of the other:

1. \(\alpha(c) = \sqcap \{ a \mid c \leq \gamma(a) \}\)
2. \(\gamma(a) = \sqcup \{ c \mid \alpha(c) \sqsubseteq a \}\)

Proof: of 1

\(\forall a, c \leq \gamma(a) \implies \alpha(c) \sqsubseteq a\).
Hence, \(\alpha(c)\) is a lower bound of \(\{ a \mid c \leq \gamma(a) \}\).

Assume that \(a'\) is another lower bound.
Then, \(\forall a, c \leq \gamma(a) \implies a' \sqsubseteq a\).
By Galois connection, we have then \(\forall a, \alpha(c) \sqsubseteq a \implies a' \sqsubseteq a\).
This implies \(a' \sqsubseteq \alpha(c)\).
Hence, the greatest lower bound of \(\{ a \mid c \leq \gamma(a) \}\) exists, and equals \(\alpha(c)\).

The proof of 2 is similar (by duality).
If \((\alpha : C \to A, \gamma : A \to C)\), then:

1. \(\forall X \subseteq C, \text{ if } \bigvee X \text{ exists, then } \alpha(\bigvee X) = \bigsqcup \{ \alpha(x) \mid x \in X \}\)

2. \(\forall X \subseteq A, \text{ if } \bigwedge X \text{ exists, then } \gamma(\bigwedge X) = \bigwedge \{ \gamma(x) \mid x \in X \}\)

Proof: of 1

By definition of lubs, \(\forall x \in X, x \leq \bigvee X\).
By monotony, \(\forall x \in X, \alpha(x) \sqsubseteq \alpha(\bigvee X)\).
Hence, \(\alpha(\bigvee x)\) is an upper bound of \(\{ \alpha(x) \mid x \in X \}\).

Assume that \(y\) is another upper bound of \(\{ \alpha(x) \mid x \in X \}\).
Then, \(\forall x \in X, \alpha(x) \sqsubseteq y\).
By Galois connection \(\forall x \in X, x \leq \gamma(y)\).
By definition of lubs, \(\bigvee X \leq \gamma(y)\).
By Galois connection, \(\alpha(\bigvee X) \sqsubseteq y\).
Hence, \(\{ \alpha(x) \mid x \in X \}\) has a lub, which equals \(\alpha(\bigvee X)\).

The proof of 2 is similar (by duality).
Deriving Galois connections

Given \((C, \leq) \leftrightarrow (A, \sqsubseteq)\), we have:

- **duality**: \((A, \sqsubseteq) \leftrightarrow (C, \geq)\)

 \[(\alpha(c) \sqsubseteq a \iff c \leq \gamma(a) \iff a \sqsubseteq \alpha(c))\]

- **point-wise lifting** by some set \(S\): \((S \to C, \leq) \leftrightarrow (S \to A, \sqsubseteq)\) where

 \[f \leq f' \iff \forall s, f(s) \leq f'(s), \ (\hat{\gamma}(f))(s) = \gamma(f(s)), \]
 \[f \sqsubseteq f' \iff \forall s, f(s) \sqsubseteq f'(s), \ (\hat{\alpha}(f))(s) = \alpha(f(s)).\]

Given \((X_1, \sqsubseteq_1) \leftrightarrow (X_2, \sqsubseteq_2) \leftrightarrow (X_3, \sqsubseteq_3)\):

- **composition**: \((X_1, \sqsubseteq_1) \leftrightarrow (X_3, \sqsubseteq_3)\)

 \[((\alpha_2 \circ \alpha_1)(c) \sqsubseteq_3 a \iff \alpha_1(c) \sqsubseteq_2 \gamma_2(a) \iff c \sqsubseteq_1 (\gamma_1 \circ \gamma_2)(a))\]
Galois embeddings

If \((C, \leq) \xrightarrow{\alpha} (A, \subseteq)\), the following properties are equivalent:

1. \(\alpha\) is surjective
 \[\forall a \in A, \exists c \in C, \alpha(c) = a\]

2. \(\gamma\) is injective
 \[\forall a, a' \in A, \gamma(a) = \gamma(a') \implies a = a'\]

3. \(\alpha \circ \gamma = \text{id}\)
 \[\forall a \in A, \text{id}(a) = a\]

Such \((\alpha, \gamma)\) is called a **Galois embedding**, which is noted
\((C, \leq) \xleftarrow{\alpha} (A, \subseteq)\)

Proof:
Galois embeddings

If \((C, \leq) \xrightarrow{\gamma} (A, \sqsubseteq)\), the following properties are equivalent:

1. \(\alpha\) is surjective \((\forall a \in A, \exists c \in C, \alpha(c) = a)\)
2. \(\gamma\) is injective \((\forall a, a' \in A, \gamma(a) = \gamma(a') \implies a = a')\)
3. \(\alpha \circ \gamma = id\) \((\forall a \in A, id(a) = a)\)

Such \((\alpha, \gamma)\) is called a Galois embedding, which is noted \((C, \leq) \xrightarrow{\gamma} (A, \sqsubseteq)\)

Proof: 1 \implies 2
Assume that \(\gamma(a) = \gamma(a')\).
By surjectivity, take \(c, c'\) such that \(a = \alpha(c), a' = \alpha(c')\).
Then \(\gamma(\alpha(c)) = \gamma(\alpha(c'))\).
And \(\alpha(\gamma(\alpha(c))) = \alpha(\gamma(\alpha(c')))\).
As \(\alpha \circ \gamma \circ \alpha = \alpha, \alpha(c) = \alpha(c')\).
Hence \(a = a'\).
Galois embeddings

If \((C, \leq) \xrightleftharpoons{\gamma \atop \alpha} (A, \sqsubseteq)\), the following properties are equivalent:

1. \(\alpha\) is surjective
 \((\forall a \in A, \exists c \in C, \alpha(c) = a)\)

2. \(\gamma\) is injective
 \((\forall a, a' \in A, \gamma(a) = \gamma(a') \implies a = a')\)

3. \(\alpha \circ \gamma = id\)
 \((\forall a \in A, id(a) = a)\)

Such \((\alpha, \gamma)\) is called a **Galois embedding**, which is noted

\((C, \leq) \xrightleftharpoons{\gamma \atop \alpha} (A, \sqsubseteq)\)

Proof: \(2 \implies 3\)

Given \(a \in A\), we know that \(\gamma(\alpha(\gamma(a))) = \gamma(a)\).
By injectivity of \(\gamma\), \(\alpha(\gamma(a)) = a\).
Galois embeddings

If \((C, \leq) \xleftarrow{\alpha} \xrightarrow{\gamma} (A, \sqsubseteq)\), the following properties are equivalent:

1. \(\alpha\) is surjective
 \[\forall a \in A, \exists c \in C, \alpha(c) = a\]
2. \(\gamma\) is injective
 \[\forall a, a' \in A, \gamma(a) = \gamma(a') \implies a = a'\]
3. \(\alpha \circ \gamma = id\)
 \[\forall a \in A, id(a) = a\]

Such \((\alpha, \gamma)\) is called a **Galois embedding**, which is noted \((C, \leq) \xleftarrow{\gamma} \xrightarrow{\alpha} (A, \sqsubseteq)\)

Proof: \(3 \implies 1\)

Given \(a \in A\), we have \(\alpha(\gamma(a)) = a\).
Hence, \(\exists c \in C, \alpha(c) = a\), using \(c = \gamma(a)\).
A Galois connection can be made into an embedding by quotienting A by the equivalence relation $a \equiv a' \iff \gamma(a) = \gamma(a')$.
Abstract domain of intervals of integers \mathbb{Z} represented as pairs of ordered bounds (a, b) or \perp.

We have: $\left(\mathcal{P}(\mathbb{Z}), \subseteq \right) \xrightarrow{\alpha} \left(I, \sqsubseteq \right)$

- $I \overset{\text{def}}{=} \{(a, b) \mid a \in \mathbb{Z} \cup \{-\infty\}, b \in \mathbb{Z} \cup \{+\infty\}, a \leq b \} \cup \{\perp\}$
- $(a, b) \sqsubseteq (a', b') \iff (a \geq a') \land (b \leq b'), \quad \forall x: \perp \sqsubseteq x$
- $\gamma(a, b) \overset{\text{def}}{=} \{x \in \mathbb{Z} \mid a \leq x \leq b\}$, $\gamma(\perp) = \emptyset$
- $\alpha(X) \overset{\text{def}}{=} (\min X, \max X)$, or \perp if $X = \emptyset$

proof:
Abstract domain of intervals of integers \mathbb{Z} represented as pairs of ordered bounds (a, b) or \perp.

We have: $(\mathcal{P}(\mathbb{Z}), \subseteq) \xrightarrow{\alpha} (I, \sqsubseteq)$

- $I \overset{\text{def}}{=} \{(a, b) \mid a \in \mathbb{Z} \cup \{-\infty\}, b \in \mathbb{Z} \cup \{+\infty\}, a \leq b \} \cup \{\perp\}$
- $(a, b) \sqsubseteq (a', b') \iff (a \geq a') \land (b \leq b'), \forall x: \perp \sqsubseteq x$
- $\gamma(a, b) \overset{\text{def}}{=} \{x \in \mathbb{Z} \mid a \leq x \leq b\}$, $\gamma(\perp) = \emptyset$
- $\alpha(X) \overset{\text{def}}{=} (\min X, \max X)$, or \perp if $X = \emptyset$

proof:

Quotient of the “pair of bounds” domain $(\mathbb{Z} \cup \{-\infty\}) \times (\mathbb{Z} \cup \{+\infty\})$ by the relation $(a, b) \equiv (a', b') \iff \gamma(a, b) = \gamma(a', b')$

i.e., $(a \leq b \land a = a' \land b = b') \lor (a > b \land a' > b')$.

Upper closures

$\rho : X \rightarrow X$ is an upper closure in the poset (X, \sqsubseteq) if it is:

1. **monotonic**: $x \sqsubseteq x' \implies \rho(x) \sqsubseteq \rho(x')$,
2. **extensive**: $x \sqsubseteq \rho(x)$, and
3. **idempotent**: $\rho \circ \rho = \rho$.

![Diagram of upper closure](image-url)
Upper closures and Galois connections

Given \((C, \leq) \xrightarrow{\alpha} (A, \succeq)\), \(\gamma \circ \alpha\) is an upper closure on \((C, \leq)\).

Given an upper closure \(\rho\) on \((X, \sqsubseteq)\), we have a Galois embedding:
\[(X, \sqsubseteq) \xrightarrow{id} (\rho(X), \sqsubseteq)\]

\[\Rightarrow\] we can rephrase abstract interpretation using upper closures instead of Galois connections, but we lose:

- the notion of **abstract representation**
 (a data-structure \(A\) representing elements in \(\rho(X)\))

- the ability to have **several distinct** abstract representations for a single concrete object
 (non-necessarily injective \(\gamma\) versus \(id\))
Operator approximations
Abstractions in the concretization framework

Given a concrete \((C, \leq)\) and an abstract \((A, \sqsubseteq)\) poset and a monotonic concretization \(\gamma : A \rightarrow C\) \((\gamma(a)\) is the “meaning” of \(a\) in \(C\); we use intervals in our examples)

- \(a \in A\) is a **sound abstraction** of \(c \in C\) if \(c \leq \gamma(a)\).

 (e.g.: \([0, 10]\) is a sound abstraction of \(\{0, 1, 2, 5\}\) in the integer interval domain)

- \(g : A \rightarrow A\) is a **sound abstraction** of \(f : C \rightarrow C\) if \(\forall a \in A: (f \circ \gamma)(a) \leq (\gamma \circ g)(a)\).

 (e.g.: \(\lambda([a, b].[\neg \infty, +\infty]\) is a sound abstraction of \(\lambda X.\{x + 1 | x \in X\}\) in the interval domain)

- \(g : A \rightarrow A\) is an **exact abstraction** of \(f : C \rightarrow C\) if \(f \circ \gamma = \gamma \circ g\).

 (e.g.: \(\lambda([a, b].[a + 1, b + 1]\) is an exact abstraction of \(\lambda X.\{x + 1 | x \in X\}\) in the interval domain)
Assume now that \((C, \leq) \leftrightarrow (A, \sqsubseteq)\).

- **sound abstractions**
 - \(c \leq \gamma(a)\) is equivalent to \(\alpha(c) \subseteq a\).
 - \((f \circ \gamma)(a) \leq (\gamma \circ g)(a)\) is equivalent to \((\alpha \circ f \circ \gamma)(a) \subseteq g(a)\).

- **Given** \(c \in C\), its **best abstraction** is \(\alpha(c)\).
 (proof: recall that \(\alpha(c) = \cap \{ a \mid c \leq \gamma(a) \}\), so, \(\alpha(c)\) is the smallest sound abstraction of \(c\))
 (e.g.: \(\alpha(\{0, 1, 2, 5\}) = [0, 5]\) in the interval domain)

- **Given** \(f : C \rightarrow C\), its **best abstraction** is \(\alpha \circ f \circ \gamma\)
 (proof: \(g\) sound \(\iff \forall a, (\alpha \circ f \circ \gamma)(a) \subseteq g(a)\), so \(\alpha \circ f \circ \gamma\) is the smallest sound abstraction of \(f\))
 (e.g.: \(g([a, b]) = [2a, 2b]\) is the best abstraction in the interval domain of \(f(X) = \{ 2x \mid x \in X \}\); it is not an exact abstraction as \(\gamma(g([0, 1])) = \{0, 1, 2\} \supset \{0, 2\} = f(\gamma([0, 1]))\)
Composition of sound, best, and exact abstractions

If \(g \) and \(g' \) soundly abstract respectively \(f \) and \(f' \) then:

- if \(f \) is monotonic, then \(g \circ g' \) is a sound abstraction of \(f \circ f' \),

 (proof: \(\forall a, (f \circ f' \circ \gamma)(a) \leq (f \circ \gamma \circ g')(a) \leq (\gamma \circ g \circ g')(a) \))

- if \(g, g' \) are exact abstractions of \(f \) and \(f' \), then \(g \circ g' \) is an exact abstraction,

 (proof: \(f \circ f' \circ \gamma = f \circ \gamma \circ g' = \gamma \circ g \circ g' \))

- if \(g \) and \(g' \) are the best abstractions of \(f \) and \(f' \), then \(g \circ g' \) is not always the best abstraction!

 (e.g.: \(g([a, b]) = [a, \min(b, 1)] \) and \(g'([a, b]) = [2a, 2b] \) are the best abstractions of \(f(X) = \{ x \in X \mid x \leq 1 \} \) and \(f'(X) = \{ 2x \mid x \in X \} \) in the interval domain, but \(g \circ g' \) is not the best abstraction of \(f \circ f' \) as \((g \circ g')([0, 1]) = [0, 1] \) while \((\alpha \circ f \circ f' \circ \gamma)([0, 1]) = [0, 0] \))
If we have:

- a Galois connection \((C, \leq) \xleftrightarrow{\gamma, \alpha} (A, \sqsubseteq)\) between CPOs
- monotonic concrete and abstract functions \(f : C \to C, \ f^\#: A \to A\)
- a commutation condition \(\alpha \circ f = f^\# \circ \alpha\)
- an element \(a\) and its abstraction \(a^\# = \alpha(a)\)

then \(\alpha(lfp_a f) = lfp_{a^\#} f^\#.\)

(proof on next slide)
Proof:

By the constructive Tarski theorem, $\text{lfp}_a f$ is the limit of transfinite iterations: $a_0 \overset{\text{def}}{=} a$, $a_{n+1} \overset{\text{def}}{=} f(a_n)$, and $a_n \overset{\text{def}}{=} \bigvee \{ a_m | m < n \}$ for limit ordinals n.

Likewise, $\text{lfp}_{a^\#} f^\#$ is the limit of a transfinite iteration $a_n^\#$.

We prove by transfinite induction that $a_n^\# = \alpha(a_n)$ for all ordinals n:

- $a_0^\# = \alpha(a_0)$, by definition;
- $a_{n+1}^\# = f^\#(a_n^\#) = f^\#(\alpha(a_n)) = \alpha(f(a_n)) = \alpha(a_{n+1})$ for successor ordinals, by commutation;
- $a_n^\# = \bigsqcup \{ a_m^\# | m < n \} = \bigsqcup \{ \alpha(a_m) | m < n \} = \alpha(\bigvee \{ a_m | m < n \}) = \alpha(a_n)$ for limit ordinals, because α is always continuous in Galois connections.

Hence, $\text{lfp}_{a^\#} f^\# = \alpha(\text{lfp}_a f)$.
If we have:

- a complete lattice \((C, \leq, \lor, \land, \bot, \top)\)
- a monotonic concrete function \(f\)
- a sound abstraction \(f^\#: A \to A\) of \(f\)
 \((\forall x^\#: (f \circ \gamma)(x^\#) \leq (\gamma \circ f^\#)(x^\#))\)
- a post-fixpoint \(a^\#\) of \(f^\#\) \((f^\#(a^\#) \sqsubseteq a^\#)\)

then \(a^\#\) is a sound abstraction of \(\text{lfp } f\): \(\text{lfp } f \leq \gamma(a^\#)\).

Proof:

By definition, \(f^\#(a^\#) \sqsubseteq a^\#\).

By monotony, \(\gamma(f^\#(a^\#)) \leq \gamma(a^\#)\).

By soundness, \(f(\gamma(a^\#)) \leq \gamma(a^\#)\).

By Tarski’s theorem \(\text{lfp } f = \land \{x | f(x) \leq x\}\).

Hence, \(\text{lfp } f \leq \gamma(a^\#)\).

Other fixpoint transfer / approximation theorems can be constructed...

