Order Theory
MPRI 2–6: Abstract Interpretation,
application to verification and static analysis

Antoine Miné

Year 2020–2021

Course 01
18 September 2020
Plan

- Partially ordered structures
 - (complete) partial orders
 - (complete) lattices

- Fixpoints

- Abstractions
 - Galois connections, upper closure operators
 (first-class citizens)
 - Concretization-only framework
 - Operator abstraction
 - Fixpoint abstraction
Partial orders
Given a set X, a relation $\sqsubseteq \in X \times X$ is a partial order if it is:

1. reflexive: $\forall x \in X, x \sqsubseteq x$
2. antisymmetric: $\forall x, y \in X, (x \sqsubseteq y) \land (y \sqsubseteq x) \Rightarrow x = y$
3. transitive: $\forall x, y, z \in X, (x \sqsubseteq y) \land (y \sqsubseteq z) \Rightarrow x \sqsubseteq z$

(X, \sqsubseteq) is a poset (partially ordered set).

If we drop antisymmetry, we have a preorder instead.
Examples: partial orders

Partial orders:

- \((\mathbb{Z}, \leq)\)
 (completely ordered)

- \((\mathcal{P}(X), \subseteq)\)
 (not completely ordered: \(\{1\} \not\subseteq \{2\}, \{2\} \not\subseteq \{1\}\))

- \((S, =)\) is a poset for any \(S\)

- \((\mathbb{Z}^2, \sqsubseteq)\), where \((a, b) \sqsubseteq (a', b') \iff (a \geq a') \land (b \leq b')\)
 (ordering of interval bounds that implies inclusion)
Examples: preorders

Preorders:

- \((\mathcal{P}(X), \subseteq)\), where \(a \subseteq b \iff |a| \leq |b|\)

 (ordered by cardinal)

- \((\mathbb{Z}^2, \subseteq)\), where

 \[(a, b) \subseteq (a', b') \iff \{ x \mid a \leq x \leq b \} \subseteq \{ x \mid a' \leq x \leq b' \}\]

 (inclusion of intervals represented by pairs of bounds)

 not antisymmetric: \([1, 0] \neq [2, 0]\) but \([1, 0] \subseteq [2, 0] \subseteq [1, 0]\)

Equivalence: \(\equiv\)

\[X \equiv Y \iff (X \sqsubseteq Y) \land (Y \sqsubseteq X)\]

We obtain a partial order by quotienting by \(\equiv\).
Given by a Hasse diagram, e.g.:
Infinite Hasse diagram for \((\mathbb{N} \cup \{\infty\}, \leq)\):

\[
\begin{array}{c}
\infty \\
\vdots \\
3 \\
2 \\
1 \\
0
\end{array}
\]

\[
\begin{align*}
\infty \sqsubseteq & \infty \\
\ldots & \\
1 \sqsubseteq & 1, 2, \ldots, \infty \\
0 \sqsubseteq & 0, 1, 2, \ldots, \infty
\end{align*}
\]
Use of posets (informally)

Posets are a very useful notion to discuss about:

- **logic**: formulas ordered by implication \Rightarrow
- **approximation**: \sqsubseteq is an information order

 (“$a \sqsubseteq b$” means: “a caries more information than b”)
- **program verification**: program semantics \sqsubseteq specification

 (e.g.: behaviors of program \subseteq accepted behaviors)
- **iteration**: fixpoint computation

 (e.g., a computation is directed, with a limit: $X_1 \sqsubseteq X_2 \sqsubseteq \cdots \sqsubseteq X_n$)
c is an upper bound of a and b if: \(a \sqsubseteq c \) and \(b \sqsubseteq c \)

\(c \) is a least upper bound (lub or join) of a and b if

- \(c \) is an upper bound of a and b
- for every upper bound \(d \) of a and b, \(c \sqsubseteq d \)
If it exists, the lub of \(a\) and \(b\) is **unique**, and denoted as \(a \sqcup b\).

(proof: assume that \(c\) and \(d\) are both lubs of \(a\) and \(b\); by definition of lubs, \(c \sqsubseteq d\) and \(d \sqsubseteq c\); by antisymmetry of \(\sqsubseteq\), \(c = d\))

Generalized to upper bounds of arbitrary (even infinite) sets \(\sqcup Y, Y \subseteq X\)

(well-defined, as \(\sqcup\) is commutative and associative).

Similarly, we define **greatest lower bounds** (glb, meet) \(a \sqcap b, \sqcap Y\).

\((a \sqcap b \sqsubseteq a) \land (a \sqcap b \sqsubseteq b)\) and \(\forall c, (c \sqsubseteq a) \land (c \sqsubseteq b) \Rightarrow (c \sqsubseteq a \sqcap b)\)

Note: not all posets have lubs, glbs

(e.g.: \(a \sqcup b\) not defined on \((\{a, b\}, =)\))
$C \subseteq X$ is a chain in (X, \sqsubseteq) if it is totally ordered by \sqsubseteq:
$\forall x, y \in C, (x \sqsubseteq y) \lor (y \sqsubseteq x)$.

```
a \sqsubseteq c \sqsubseteq f \sqsubseteq g
```
A poset \((X, \sqsubseteq)\) is a **complete** partial order (CPO) if every chain \(C\) (including \(\emptyset\)) has a least upper bound \(\sqcup C\).

A CPO has a **least element** \(\sqcup \emptyset\), denoted \(\bot\).

Examples, Counter-examples:

- \((\mathbb{N}, \leq)\) is not complete, but \((\mathbb{N} \cup \{\infty\}, \leq)\) is complete.
- \((\{x \in \mathbb{Q} \mid 0 \leq x \leq 1\}, \leq)\) is not complete, but \((\{x \in \mathbb{R} \mid 0 \leq x \leq 1\}, \leq)\) is complete.
- \((\mathcal{P}(Y), \subseteq)\) is complete for any \(Y\).
- \((X, \sqsubseteq)\) is complete if \(X\) is finite.
Partial orders

Complete partial order examples

\[(\mathbb{N}, \leq)\]
non-complete

\[(\mathbb{N} \cup \{\infty\}, \leq)\]
complete
A lattice \((X, \sqsubseteq, \sqcup, \sqcap)\) is a poset with
1. a \text{lub} \(a \sqcup b\) for every pair of elements \(a\) and \(b\);
2. a \text{glb} \(a \sqcap b\) for every pair of elements \(a\) and \(b\).

Examples:

- integers \((\mathbb{Z}, \leq, \text{max}, \text{min})\)
- integer intervals \((\text{next slide})\)
- divisibility \((\text{in two slides})\)

If we drop one condition, we have a (join or meet) \textit{semilattice}.

Reference on lattices: Birkhoff \cite{Birk76}.
Example: the interval lattice

Integer intervals: \(\{ [a, b] \mid a, b \in \mathbb{Z}, a \leq b \} \cup \{ \emptyset \}, \subseteq, \cup, \cap \) where \([a, b] \sqcup [a', b'] \overset{\text{def}}{=} [\min(a, a'), \max(b, b')]\).
Example: the divisibility lattice

\[
\begin{array}{c}
\begin{array}{c}
8 \\
12 \\
18 \\
27
\end{array} \\
\begin{array}{c}
4 \\
6 \\
9 \\
2
\end{array} \\
\begin{array}{c}
2 \\
3 \\
5
\end{array}
\end{array}
\]

\[
\begin{align*}
\text{Divisibility } & (\mathbb{N}^*, |, \text{lcm}, \text{gcd}) \text{ where } x | y \iff \exists k \in \mathbb{N}, kx = y
\end{align*}
\]
Let $P \overset{\text{def}}{=} \{ p_1, p_2, \ldots \}$ be the (infinite) set of prime numbers.

We have a correspondence ι between \mathbb{N}^* and $P \rightarrow \mathbb{N}$:

- $\alpha = \iota(x)$ is the (unique) decomposition of x into prime factors
- $\iota^{-1}(\alpha) \overset{\text{def}}{=} \prod_{a \in P} a^{\alpha(a)} = x$
- ι is one-to-one on functions $P \rightarrow \mathbb{N}$ with finite support ($\alpha(a) = 0$ except for finitely many factors a)

We have a correspondence between $(\mathbb{N}^*, |, \text{lcm}, \text{gcd})$ and $(\mathbb{N}, \leq, \text{max}, \text{min})$.

Assume that $\alpha = \iota(x)$ and $\beta = \iota(y)$ are the decompositions of x and y, then:

- $\prod_{a \in P} a^{\text{max}(\alpha(a), \beta(a))} = \text{lcm}(\prod_{a \in P} a^{\alpha(a)}, \prod_{a \in P} a^{\beta(a)}) = \text{lcm}(x, y)$
- $\prod_{a \in P} a^{\text{min}(\alpha(a), \beta(a))} = \text{gcd}(\prod_{a \in P} a^{\alpha(a)}, \prod_{a \in P} a^{\beta(a)}) = \text{gcd}(x, y)$
- $(\forall a: \alpha(a) \leq \beta(a)) \iff (\prod_{a \in P} a^{\alpha(a)}) | (\prod_{a \in P} a^{\beta(a)}) \iff x \mid y$
A complete lattice \((X, \sqsubseteq, \sqcup, \sqcap, \bot, \top)\) is a poset with

1. a lub \(\sqcup S\) for every set \(S \subseteq X\)
2. a glb \(\sqcap S\) for every set \(S \subseteq X\)
3. a least element \(\bot\)
4. a greatest element \(\top\)

Notes:

- 1 implies 2 as \(\sqcap S = \sqcup \{ y \mid \forall x \in S, y \sqsubseteq x \}\) (and 2 implies 1 as well),
- 1 and 2 imply 3 and 4: \(\bot = \sqcup \emptyset = \sqcap X\), \(\top = \sqcap \emptyset = \sqcup X\),
- a complete lattice is also a CPO.
Complete lattice examples

- **real segment** $[0, 1]$: $(\{ x \in \mathbb{R} | 0 \leq x \leq 1 \}, \leq, \text{max}, \text{min}, 0, 1)$

- **powersets** $(\mathcal{P}(S), \subseteq, \cup, \cap, \emptyset, S)$
 (next slide)

- any **finite lattice**
 ($\sqcup Y$ and $\sqcap Y$ for finite $Y \subseteq X$ are always defined)

- **integer intervals** with finite and **infinite** bounds:
 $((\{ [a, b] | a \in \mathbb{Z} \cup \{-\infty\}, b \in \mathbb{Z} \cup \{+\infty\}, a \leq b \} \cup \{\emptyset\},$
 $\subseteq, \sqcup, \sqcap, \emptyset, [-\infty, +\infty])$

 with $\sqcup_{i \in I} [a_i, b_i] \overset{\text{def}}{=} [\min_{i \in I} a_i, \max_{i \in I} b_i]$.
 (in two slides)
Example: the powerset complete lattice

Example: \((\mathcal{P}(\mathbb{Z}), \subseteq, \cup, \cap, \emptyset, \mathbb{Z})\)
The integer intervals with finite and infinite bounds:

\[\left\{ [a, b] \mid a \in \mathbb{Z} \cup \{-\infty\}, b \in \mathbb{Z} \cup \{+\infty\}, a \leq b \right\} \cup \{\emptyset\}, \subseteq, \cup, \cap, \emptyset, [-\infty, +\infty] \]
Derivation

Given a (complete) lattice or partial order \((X, \sqsubseteq, \sqcup, \sqcap, \bot, \top)\) we can derive new (complete) lattices or partial orders by:

- **duality**
 \((X, \sqsubseteq', \sqcap', \sqcup', \bot', \top')\)
 - \(\sqsubseteq\) is reversed
 - \(\sqcup\) and \(\sqcap\) are switched
 - \(\bot\) and \(\top\) are switched

- **lifting** (adding a smallest element)
 \((X \cup \{\bot'\}, \sqsubseteq', \sqcap', \sqcup', \bot', \top')\)
 - \(a \sqsubseteq' b \iff a = \bot' \lor a \sqsubseteq b\)
 - \(\bot' \sqcup' a = a \sqcup' \bot' = a\), and \(a \sqcup' b = a \sqcup b\) if \(a, b \neq \bot'\)
 - \(\bot' \sqcap' a = a \sqcap' \bot' = \bot'\), and \(a \sqcap' b = a \sqcap b\) if \(a, b \neq \bot'\)
 - \(\bot'\) replaces \(\bot\)
 - \(\top\) is unchanged
Derivation (cont.)

Given (complete) lattices or partial orders:
\((X_1, \sqsubseteq_1, \sqcup_1, \sqcap_1, \bot_1, \top_1)\) and \((X_2, \sqsubseteq_2, \sqcup_2, \sqcap_2, \bot_2, \top_2)\)

We can combine them by:

- **product**
 \((X_1 \times X_2, \sqsubseteq, \sqcup, \sqcap, \bot, \top)\) where
 \[
 (x, y) \sqsubseteq (x', y') \iff x \sqsubseteq_1 x' \land y \sqsubseteq_2 y'
 \]
 \[
 (x, y) \sqcup (x', y') \overset{\text{def}}{=} (x \sqcup_1 x', y \sqcup_2 y')
 \]
 \[
 (x, y) \sqcap (x', y') \overset{\text{def}}{=} (x \sqcap_1 x', y \sqcap_2 y')
 \]
 \[
 \bot \overset{\text{def}}{=} (\bot_1, \bot_2)
 \]
 \[
 \top \overset{\text{def}}{=} (\top_1, \top_2)
 \]

- **smashed product** (coalescent product, merging \(\bot_1\) and \(\bot_2\))
 \[
 (((X_1 \setminus \{\bot_1\}) \times (X_2 \setminus \{\bot_2\})) \cup \{\bot\}, \sqsubseteq, \sqcup, \sqcap, \bot, \top)
 \]
 (as \(X_1 \times X_2\), but all elements of the form \((\bot_1, y)\) and \((x, \bot_2)\) are identified to a unique \(\bot\) element)
Given a (complete) lattice or partial order \((X, \sqsubseteq, \sqcup, \sqcap, \bot, \top)\) and a set \(S\):

- **point-wise lifting** (functions from \(S\) to \(X\))
 \[(S \to X, \sqsubseteq', \sqcup', \sqcap', \bot', \top') \]
 where
 - \(x \sqsubseteq' y \iff \forall s \in S: x(s) \sqsubseteq y(s)\)
 - \(\forall s \in S: (x \sqcup' y)(s) \overset{\text{def}}{=} x(s) \sqcup y(s)\)
 - \(\forall s \in S: (x \sqcap' y)(s) \overset{\text{def}}{=} x(s) \sqcap y(s)\)
 - \(\forall s \in S: \bot'(s) = \bot\)
 - \(\forall s \in S: \top'(s) = \top\)

- **smashed point-wise lifting**
 \[\left((S \to (X \setminus \{\bot\})) \cup \{\bot'\}\right), \sqsubseteq', \sqcup', \sqcap', \bot', \top') \]
 as \(S \to X\), but identify to \(\bot'\) any map \(x\) where
 \(\exists s \in S: x(s) = \bot\)

 (e.g. map each program variable in \(S\) to an interval in \(X\))
Distributivity

A lattice \((X, \subseteq, \sqcup, \sqcap)\) is **distributive** if:

- \(a \sqcup (b \sqcap c) = (a \sqcup b) \sqcap (a \sqcup c)\) and
- \(a \sqcap (b \sqcup c) = (a \sqcap b) \sqcup (a \sqcap c)\)

Examples, Counter-examples:

- \((\mathcal{P}(X), \subseteq, \cup, \cap)\) is distributive

- **Intervals are not distributive**
 \[(\[0, 0\] \sqcup [2, 2]) \cap [1, 1] = [0, 2] \cap [1, 1] = [1, 1] \text{ but}\]
 \[(\[0, 0\] \cap [1, 1]) \cup ([2, 2] \cap [1, 1]) = \emptyset \cup \emptyset = \emptyset\]

 common cause of precision loss in static analyses:
 merging abstract information early, at control-flow joins
 vs. merging executions paths late, at the end of the program
Sublattice

Given a lattice \((X, \subseteq, \cup, \cap)\) and \(X' \subseteq X\)
\((X', \subseteq, \cup, \cap)\) is a sublattice of \(X\) if \(X'\) is closed under \(\cup\) and \(\cap\)

Example, Counter-examples:

- if \(Y \subseteq X\), \((\mathcal{P}(Y), \subseteq, \cup, \cap, \emptyset, Y)\) is a sublattice of \((\mathcal{P}(X), \subseteq, \cup, \cap, \emptyset, X)\)

- integer intervals are not a sublattice of \((\mathcal{P}(\mathbb{Z}), \subseteq, \cup, \cap, \emptyset, \mathbb{Z})\)
 \([\min(a, a'), \max(b, b')] \neq [a, b] \cup [a', b']\)

another common cause of precision loss in static analyses:
\(\cup\) cannot represent the exact union, and loses precision
Functions and Fixpoints
Functions

A function \(f : (X_1, \sqsubseteq_1, \sqcup_1, \bot_1) \to (X_2, \sqsubseteq_2, \sqcup_2, \bot_2) \) is

- **monotonic** if
 \[
 \forall x, x', \ x \sqsubseteq_1 x' \implies f(x) \sqsubseteq_2 f(x')
 \]
 (aka: increasing, isotone, order-preserving, morphism)

- **strict** if \(f(\bot_1) = \bot_2 \)

- **continuous** between CPO if
 \[
 \forall C \text{ chain } \subseteq X_1, \ \{ f(c) \mid c \in C \} \text{ is a chain in } X_2
 \]
 \[
 \text{and } f(\sqcup_1 C) = \sqcup_2 \{ f(c) \mid c \in C \}
 \]

- a (complete) \(\sqcup \)-morphism between (complete) lattices
 if \(\forall S \subseteq X_1, f(\sqcup_1 S) = \sqcup_2 \{ f(s) \mid s \in S \} \)

- **extensive** if \(X_1 = X_2 \) and \(\forall x, x \sqsubseteq_1 f(x) \)

- **reductive** if \(X_1 = X_2 \) and \(\forall x, f(x) \sqsubseteq_1 x \)
Fixpoints

Given \(f : (X, \subseteq) \to (X, \subseteq) \)

- \(x \) is a **fixpoint** of \(f \) if \(f(x) = x \)
- \(x \) is a **pre-fixpoint** of \(f \) if \(x \subseteq f(x) \)
- \(x \) is a **post-fixpoint** of \(f \) if \(f(x) \subseteq x \)

We may have several fixpoints (or none)

- \(\text{fp}(f) \overset{\text{def}}{=} \{ x \in X \mid f(x) = x \} \)
- \(\text{lfp}_x f \overset{\text{def}}{=} \min_{\subseteq} \{ y \in \text{fp}(f) \mid x \subseteq y \} \) if it exists
 (least fixpoint greater than \(x \))
- \(\text{lfp} f \overset{\text{def}}{=} \text{lfp}_\perp f \)
 (least fixpoint)
- **dually:** \(\text{gfp}_x f \overset{\text{def}}{=} \max_{\subseteq} \{ y \in \text{fp}(f) \mid y \subseteq x \} \), \(\text{gfp} f \overset{\text{def}}{=} \text{gfp}_\top f \)
 (greatest fixpoints)
Fixpoints: illustration

- **lfp**
- **fp**
- **gfp**

The diagram illustrates the concepts of least fixpoint (lfp), fixed point (fp), and greatest fixpoint (gfp) in the context of order theory. The graph shows the pre and post states, indicating the progression and stability points within the order space.
Monotonic function with two distinct fixpoints
Monotonic function with a unique fixpoint
Functions and fixpoints

Fixpoints: example

Non-monotonic function with no fixpoint
Express solutions of mutually **recursive equation systems**

Example:

The solutions of \(\begin{cases} x_1 = f(x_1, x_2) \\ x_2 = g(x_1, x_2) \end{cases} \) with \(x_1, x_2 \) in lattice \(X \)

are exactly the fixpoint of \(\vec{F} \) in lattice \(X \times X \), where

\[
\vec{F} \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) = \left(\begin{array}{c} f(x_1, x_2) \\ g(x_1, x_2) \end{array} \right)
\]

The least solution of the system is lfp \(\vec{F} \).
Uses of fixpoints: examples

- Close (complete) sets to satisfy a given property

Example:

\[r \subseteq X \times X \text{ is transitive if:} \]
\[(a, b) \in r \land (b, c) \in r \implies (a, c) \in r \]

The transitive closure of \(r \) is the smallest transitive relation containing \(r \).

Let \(f(s) = r \cup \{(a, c) | (a, b) \in s \land (b, c) \in s\} \), then lfp \(f \):

- \(\text{lfp } f \text{ contains } r \)
- \(\text{lfp } f \text{ is transitive} \)
- \(\text{lfp } f \text{ is minimal} \)

\[\implies \text{lfp } f \text{ is the transitive closure of } r. \]
Tarski’s fixpoint theorem

Tarksi’s theorem
If \(f : X \rightarrow X \) is monotonic in a complete lattice \(X \) then \(\text{fp}(f) \) is a complete lattice.

Proved by Knaster and Tarski [Tars55].
Tarski’s fixpoint theorem

Tarski’s theorem

If \(f : X \rightarrow X \) is monotonic in a complete lattice \(X \) then \(\text{fp}(f) \) is a complete lattice.

Proof:

We prove \(\text{lfp} f = \bigcap \{ x \mid f(x) \subseteq x \} \) (meet of post-fixpoints).
Tarski’s fixpoint theorem

If $f : X \to X$ is monotonic in a complete lattice X then $\text{fp}(f)$ is a complete lattice.

Proof:

We prove $\text{lfp } f = \bigcap \{ x \mid f(x) \sqsubseteq x \}$ (meet of post-fixpoints).

Let $f^* = \{ x \mid f(x) \sqsubseteq x \}$ and $a = \bigcap f^*$.

\[\forall x \in f^*, a \sqsubseteq x \quad \text{(by definition of } \bigcap) \]

so $f(a) \sqsubseteq f(x)$ (as f is monotonic)

so $f(a) \sqsubseteq x$ (as x is a post-fixpoint).

We deduce that $f(a) \sqsubseteq \bigcap f^*$, i.e. $f(a) \sqsubseteq a$.
Tarski’s fixpoint theorem

Tarski’s theorem

If $f : X \to X$ is monotonic in a complete lattice X then $\text{fp}(f)$ is a complete lattice.

Proof:
We prove $\text{lfp } f = \bigcap \{ x \mid f(x) \sqsubseteq x \}$ (meet of post-fixpoints).

$f(a) \sqsubseteq a$
so $f(f(a)) \sqsubseteq f(a)$ (as f is monotonic)
so $f(a) \in f^*$ (by definition of f^*)
so $a \sqsubseteq f(a)$.

We deduce that $f(a) = a$, so $a \in \text{fp}(f)$.

Note that $y \in \text{fp}(f)$ implies $y \in f^*$.
As $a = \bigcap f^*$, $a \sqsubseteq y$, and we deduce $a = \text{lfp } f$.
Tarski’s fixpoint theorem

Tarski’s theorem

If \(f : X \rightarrow X \) is monotonic in a complete lattice \(X \) then \(\text{fp}(f) \) is a complete lattice.

Proof:
Given \(S \subseteq \text{fp}(f) \), we prove that \(\text{lfp}_{\sqcup S} f \) exists.

Consider \(X' = \{ x \in X \mid \sqcup S \subseteq x \} \).
\(X' \) is a complete lattice.
Moreover \(\forall x' \in X', \ f(x') \in X' \).
\(f \) can be restricted to a monotonic function \(f' \) on \(X' \).
We apply the preceding result, so that \(\text{lfp} f' = \text{lfp}_{\sqcup S} f \) exists.

By definition, \(\text{lfp}_{\sqcup S} f \in \text{fp}(f) \) and is smaller than any fixpoint larger than all \(s \in S \).
Tarski’s fixpoint theorem

Tarski’s theorem

If \(f : X \to X \) is monotonic in a complete lattice \(X \) then \(\text{fp}(f) \) is a complete lattice.

Proof:

By duality, we construct \(\text{gfp} f \) and \(\text{gfp}_{\sqcap} S f \).

The complete lattice of fixpoints is:

\[
(\text{fp}(f), \sqsubseteq, \lambda S.\text{lfp}_{\sqcup} S f, \lambda S.\text{gfp}_{\sqcap} S f, \text{lfp} f, \text{gfp} f).
\]

Not necessarily a sublattice of \((X, \sqsubseteq, \sqcup, \sqcap, \bot, \top)\)!
Lattice: (\{ lfp, fp1, fp2, pre, gfp \}, \sqcup, \sqcap, lfp, gfp)

Fixpoint lattice: (\{ lfp, fp1, fp2, gfp \}, \sqcup', \sqcap', lfp, gfp)

(not a sublattice as fp1 \sqcup' fp2 = gfp while fp1 \sqcup fp2 = pre, but \textcolor{red}{gfp} is the smallest fixpoint greater than \textcolor{red}{pre})
“Kleene” fixpoint theorem

If $f : X \rightarrow X$ is continuous in a CPO X and $a \sqsubseteq f(a)$ then $\text{lfp}_a f$ exists.

Inspired by Kleene [Klee52].
“Kleene” fixpoint theorem

If $f : X \rightarrow X$ is continuous in a CPO X and $a \sqsubseteq f(a)$ then $\text{lfp}_a f$ exists.

We prove that $\{ f^n(a) \mid n \in \mathbb{N} \}$ is a chain and $\text{lfp}_a f = \sqcup \{ f^n(a) \mid n \in \mathbb{N} \}$.
“Kleene” fixpoint theorem

If $f : X \rightarrow X$ is continuous in a CPO X and $a \sqsubseteq f(a)$ then $\text{lfp}_a f$ exists.

We prove that $\{ f^n(a) \mid n \in \mathbb{N} \}$ is a chain and $\text{lfp}_a f = \sqcup \{ f^n(a) \mid n \in \mathbb{N} \}$.

$a \sqsubseteq f(a)$ by hypothesis.

$f(a) \sqsubseteq f(f(a))$ by monotony of f.

(Note that any continuous function is monotonic. Indeed, $x \sqsubseteq y \implies x \sqcup y = y \implies f(x \sqcup y) = f(y)$; by continuity $f(x) \sqcup f(y) = f(x \sqcup y) = f(y)$, which implies $f(x) \sqsubseteq f(y)$.)

By recurrence $\forall n, f^n(a) \sqsubseteq f^{n+1}(a)$.

Thus, $\{ f^n(a) \mid n \in \mathbb{N} \}$ is a chain and $\sqcup \{ f^n(a) \mid n \in \mathbb{N} \}$ exists.
“Kleene” fixpoint theorem

If \(f : X \to X \) is continuous in a CPO \(X \) and \(a \sqsubseteq f(a) \) then \(\text{lfp}_a f \) exists.

\[
\begin{align*}
 f(\bigsqcup \{ f^n(a) \mid n \in \mathbb{N} \}) \\
 = \bigsqcup \{ f^{n+1}(a) \mid n \in \mathbb{N} \} \quad \text{(by continuity)} \\
 = a \bigsqcup \left(\bigsqcup \{ f^{n+1}(a) \mid n \in \mathbb{N} \} \right) \quad \text{(as all } f^{n+1}(a) \text{ are greater than } a) \\
 = \bigsqcup \{ f^n(a) \mid n \in \mathbb{N} \}. \\
\end{align*}
\]

So, \(\bigsqcup \{ f^n(a) \mid n \in \mathbb{N} \} \in \text{fp}(f) \)

Moreover, any fixpoint greater than \(a \) must also be greater than all \(f^n(a), n \in \mathbb{N} \).

So, \(\bigsqcup \{ f^n(a) \mid n \in \mathbb{N} \} = \text{lfp}_a f \).
Well-ordered sets

\((S, \sqsubseteq)\) is a well-ordered set if:

- \(\sqsubseteq\) is a total order on \(S\)
- every \(X \subseteq S\) such that \(X \neq \emptyset\) has a least element \(\sqcap X \in X\)

Consequences:

- any element \(x \in S\) has a successor \(x + 1 \overset{\text{def}}{=} \sqcap \{y \mid x \sqsubseteq y\}\)
 (except the greatest element, if it exists)
- if \(\forall y, x = y + 1, x\) is a limit and \(x = \sqcup \{y \mid y \sqsubseteq x\}\)
 (every bounded subset \(X \subseteq S\) has a lub \(\sqcup X = \sqcap \{y \mid \forall x \in X, x \subseteq y\}\))

Examples:

- \((\mathbb{N}, \leq)\) and \((\mathbb{N} \cup \{\infty\}, \leq)\) are well-ordered
- \((\mathbb{Z}, \leq), (\mathbb{R}, \leq), (\mathbb{R}^+, \leq)\) are not well-ordered
- ordinals \(0, 1, 2, \ldots, \omega, \omega + 1, \ldots\) are well-ordered (\(\omega\) is a limit)

well-ordered sets are ordinals up to order-isomorphism
(i.e., bijective functions \(f\) such that \(f\) and \(f^{-1}\) are monotonic)
Given a function $f : X \to X$ and $a \in X$, the **transfinite iterates** of f from a are:

\[
\begin{align*}
x_0 &\overset{\text{def}}{=} a \\
x_n &\overset{\text{def}}{=} f(x_{n-1}) \quad \text{if } n \text{ is a successor ordinal} \\
x_n &\overset{\text{def}}{=} \sqcup \{ x_m \mid m < n \} \quad \text{if } n \text{ is a limit ordinal}
\end{align*}
\]

Constructive Tarski theorem

If $f : X \to X$ is monotonic in a CPO X and $a \sqsubseteq f(a)$, then $\text{lfp}_a f = x_\delta$ for some ordinal δ.

Generalisation of “Kleene” fixpoint theorem, from [Cous79].
Proof

Let f be monotonic in a CPO X,

\[
\begin{align*}
 x_0 & \overset{\text{def}}{=} a \sqsubseteq f(a) \\
 x_n & \overset{\text{def}}{=} f(x_{n-1}) \quad \text{if } n \text{ is a successor ordinal} \\
 x_n & \overset{\text{def}}{=} \bigsqcup \{ x_m \mid m < n \} \quad \text{if } n \text{ is a limit ordinal}
\end{align*}
\]

Proof:

We prove that $\exists \delta, x_\delta = x_{\delta+1}$.

We note that $m \leq n \implies x_m \sqsubseteq x_n$.

Assume by contradiction that $\forall \delta, x_\delta = x_{\delta+1}$.

If n is a successor ordinal, then $x_{n-1} \sqsubseteq x_n$.

If n is a limit ordinal, then $\forall m < n, x_m \sqsubseteq x_n$.

Thus, all the x_n are distinct.

By choosing $n > |X|$, we arrive at a contradiction.

Thus δ exists.
Proof

Given δ such that $x_{\delta+1} = x_\delta$, we prove that $x_\delta = \text{lfp}_a f$.

Given any $y \in \text{fp}(f)$, $y \sqsubseteq a$, we prove by transfinite induction that $\forall n, x_n \sqsubseteq y$.

By definition $x_0 = a \sqsubseteq y$.

If n is a successor ordinal, by monotony,

$x_{n-1} \sqsubseteq y \implies f(x_{n-1}) \sqsubseteq f(y)$, i.e., $x_n \sqsubseteq y$.

If n is a limit ordinal, $\forall m < n, x_m \sqsubseteq y$ implies

$x_n = \sqcup \{ x_m \mid m < n \} \sqsubseteq y$.

Hence, $x_\delta \sqsubseteq y$ and $x_\delta = \text{lfp}_a f$.

Proof

f is monotonic in a CPO X,

\[
\begin{align*}
x_0 & \overset{\text{def}}{=} a \sqsubseteq f(a) \\
x_n & \overset{\text{def}}{=} f(x_{n-1}) & \text{if } n \text{ is a successor ordinal} \\
x_n & \overset{\text{def}}{=} \sqcup \{ x_m \mid m < n \} & \text{if } n \text{ is a limit ordinal}
\end{align*}
\]
An *ascending chain* C in (X, \sqsubseteq) is a sequence $c_i \in X$ such that $i \leq j \implies c_i \sqsubseteq c_j$.

A poset (X, \sqsubseteq) satisfies the *ascending chain condition (ACC)* iff for every ascending chain C, $\exists i \in \mathbb{N}$, $\forall j \geq i$, $c_i = c_j$.

Similarly, we can define the *descending chain condition (DCC)*.

Examples:

- the *powerset poset* $(\mathcal{P}(X), \subseteq)$ is ACC when X is finite
- the *pointed integer poset* $(\mathbb{Z} \cup \{\bot\}, \sqsubseteq)$ where $x \sqsubseteq y \iff x = \bot \lor x = y$ is ACC and DCC
- the *divisibility poset* $(\mathbb{N}^*, |)$ is DCC but not ACC.
“Kleene” finite fixpoint theorem

If $f : X \to X$ is monotonic in an ACC poset X and $a \sqsubseteq f(a)$ then $\text{lfp}_a f$ exists.

Proof:
We prove $\exists n \in \mathbb{N}, \text{lfp}_a f = f^n(a)$.

By monotony of f, the sequence $x_n = f^n(a)$ is an increasing chain.

By definition of ACC, $\exists n \in \mathbb{N}, x_n = x_{n+1} = f(x_n)$.

Thus, $x_n \in \text{fp}(f)$.

Obviously, $a = x_0 \sqsubseteq f(x_n)$.

Moreover, if $y \in \text{fp}(f)$ and $y \sqsupseteq a$, then $\forall i, y \sqsupseteq f^i(a) = x_i$.

Hence, $y \sqsupseteq x_n$ and $x_n = \text{lfp}_a (f)$.
Comparison of fixpoint theorems

<table>
<thead>
<tr>
<th>theorem</th>
<th>function</th>
<th>domain</th>
<th>fixpoint</th>
<th>method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tarski</td>
<td>monotonic</td>
<td>complete lattice</td>
<td>$\text{fp}(f)$</td>
<td>meet of post-fixpoints</td>
</tr>
<tr>
<td>Kleene</td>
<td>continuous</td>
<td>CPO</td>
<td>$\text{lfp}_a(f)$</td>
<td>countable iterations</td>
</tr>
<tr>
<td>constructive</td>
<td>monotonic</td>
<td>CPO</td>
<td>$\text{lfp}_a(f)$</td>
<td>transfinite iteration</td>
</tr>
<tr>
<td>ACC Kleene</td>
<td>monotonic</td>
<td>poset</td>
<td>$\text{lfp}_a(f)$</td>
<td>finite iteration</td>
</tr>
</tbody>
</table>

Course 01

Order Theory

Antoine Miné

p. 46 / 69
Galois connections
Galois connections

Given two posets \((C, \leq)\) and \((A, \sqsubseteq)\), the pair \((\alpha : C \to A, \gamma : A \to C)\) is a Galois connection iff:

\[
\forall a \in A, \ c \in C, \ \alpha(c) \sqsubseteq a \iff c \leq \gamma(a)
\]

which is noted \((C, \leq) \xrightleftharpoons[\alpha]{\gamma} (A, \sqsubseteq)\).

\(\alpha\) is the upper adjoint or abstraction; \(A\) is the abstract domain.
\(\gamma\) is the lower adjoint or concretization; \(C\) is the concrete domain.
Galois connections

Galois connection example

Abstract domain of intervals of integers \(\mathbb{Z} \) represented as pairs of bounds \((a, b)\).

We have: \((\mathcal{P}(\mathbb{Z}), \subseteq) \xleftarrow{\gamma} (I, \sqsubseteq)\)

- \(I \overset{\text{def}}{=} (\mathbb{Z} \cup \{-\infty\}) \times (\mathbb{Z} \cup \{+\infty\})\)
- \((a, b) \sqsubseteq (a', b') \iff (a \geq a') \land (b \leq b')\)
- \(\gamma(a, b) \overset{\text{def}}{=} \{x \in \mathbb{Z} \mid a \leq x \leq b\}\)
- \(\alpha(X) \overset{\text{def}}{=} (\min X, \max X)\)

proof:
Galois connection example

Abstract domain of intervals of integers \mathbb{Z} represented as pairs of bounds (a, b).

We have: $(\mathcal{P}(\mathbb{Z}), \subseteq) \xrightarrow{\gamma} (I, \sqsubseteq) \xleftarrow{\alpha} (\mathcal{P}(\mathbb{Z}), \subseteq)$

- $I \overset{\text{def}}{=} (\mathbb{Z} \cup \{-\infty\}) \times (\mathbb{Z} \cup \{+\infty\})$
- $(a, b) \sqsubseteq (a', b') \iff (a \geq a') \land (b \leq b')$
- $\gamma(a, b) \overset{\text{def}}{=} \{ x \in \mathbb{Z} | a \leq x \leq b \}$
- $\alpha(X) \overset{\text{def}}{=} (\min X, \max X)$

proof:

$\alpha(X) \sqsubseteq (a, b)$

$\iff \min X \geq a \land \max X \leq b$

$\iff \forall x \in X: a \leq x \leq b$

$\iff \forall x \in X: x \in \{ y | a \leq y \leq b \}$

$\iff \forall x \in X: x \in \gamma(a, b)$

$\iff X \subseteq \gamma(a, b)$
Galois connections

Properties of Galois connections

Assuming $\forall a, c, \alpha(c) \sqsubseteq a \iff c \leq \gamma(a)$, we have:

1. $\gamma \circ \alpha$ is extensive: $\forall c, c \leq \gamma(\alpha(c))$

 proof: $\alpha(c) \sqsubseteq \alpha(c) \implies c \leq \gamma(\alpha(c))$

2. $\alpha \circ \gamma$ is reductive: $\forall a, \alpha(\gamma(a)) \sqsubseteq a$

3. α is monotonic

 proof: $c \leq c' \implies c \leq \gamma(\alpha(c')) \implies \alpha(c) \sqsubseteq \alpha(c')$

4. γ is monotonic

5. $\gamma \circ \alpha \circ \gamma = \gamma$

 proof: $\alpha(\gamma(a)) \sqsubseteq \alpha(\gamma(a)) \implies \gamma(a) \leq \gamma(\alpha(\gamma(a)))$ and

 $a \sqsubseteq \alpha(\gamma(a)) \implies \gamma(a) \geq \gamma(\alpha(\gamma(a)))$

6. $\alpha \circ \gamma \circ \alpha = \alpha$

7. $\alpha \circ \gamma$ is idempotent: $\alpha \circ \gamma \circ \alpha \circ \gamma = \alpha \circ \gamma$

8. $\gamma \circ \alpha$ is idempotent
Alternate characterization

If the pair \((\alpha : C \to A, \gamma : A \to C)\) satisfies:

1. \(\gamma\) is monotonic,
2. \(\alpha\) is monotonic,
3. \(\gamma \circ \alpha\) is extensive
4. \(\alpha \circ \gamma\) is reductive

then \((\alpha, \gamma)\) is a Galois connection.

(proof left as exercise)
Galois connections

Uniqueness of the adjoint

Given $(C, \leq) \xleftrightarrow{\gamma, \alpha} (A, \sqsubseteq)$, each adjoint can be uniquely defined in term of the other:

1. $\alpha(c) = \bigcap \{ a \mid c \leq \gamma(a) \}$
2. $\gamma(a) = \bigvee \{ c \mid \alpha(c) \sqsubseteq a \}$

Proof: of 1

$\forall a, c \leq \gamma(a) \implies \alpha(c) \sqsubseteq a$.
Hence, $\alpha(c)$ is a lower bound of $\{ a \mid c \leq \gamma(a) \}$.

Assume that a' is another lower bound.
Then, $\forall a, c \leq \gamma(a) \implies a' \sqsubseteq a$.
By Galois connection, we have then $\forall a, \alpha(c) \sqsubseteq a \implies a' \sqsubseteq a$.
This implies $a' \sqsubseteq \alpha(c)$.
Hence, the greatest lower bound of $\{ a \mid c \leq \gamma(a) \}$ exists, and equals $\alpha(c)$.

The proof of 2 is similar (by duality).
If \((\alpha : C \to A, \gamma : A \to C)\), then:

1. \(\forall X \subseteq C, \text{ if } \lor X \text{ exists, then } \alpha(\lor X) = \bigsqcup \{ \alpha(x) \mid x \in X \}\).

2. \(\forall X \subseteq A, \text{ if } \land X \text{ exists, then } \gamma(\land X) = \bigwedge \{ \gamma(x) \mid x \in X \}\).

Proof: of 1

By definition of lubs, \(\forall x \in X, x \leq \lor X\).

By monotony, \(\forall x \in X, \alpha(x) \subseteq \alpha(\lor X)\).

Hence, \(\alpha(\lor X)\) is an upper bound of \(\{ \alpha(x) \mid x \in X \}\).

Assume that \(y\) is another upper bound of \(\{ \alpha(x) \mid x \in X \}\).

Then, \(\forall x \in X, \alpha(x) \subseteq y\).

By Galois connection \(\forall x \in X, x \leq \gamma(y)\).

By definition of lubs, \(\lor X \leq \gamma(y)\).

By Galois connection, \(\alpha(\lor X) \subseteq y\).

Hence, \(\{ \alpha(x) \mid x \in X \}\) has a lub, which equals \(\alpha(\lor X)\).

The proof of 2 is similar (by duality).
Deriving Galois connections

Given $(C, \leq) \xleftarrow{\gamma} (A, \sqsubseteq)$, we have:

- **duality**: $(A, \sqsubseteq) \xleftarrow{\alpha} (C, \geq)$
 $(\alpha(c) \sqsubseteq a \iff c \leq \gamma(a) \text{ is exactly } \gamma(a) \geq c \iff a \sqsupseteq \alpha(c))$

- **point-wise lifting** by some set S:
 $(S \rightarrow C, \leq) \xleftarrow{\gamma} (S \rightarrow A, \sqsubseteq)$ where
 \[
 f \leq f' \iff \forall s, \, f(s) \leq f'(s), \quad (\hat{\gamma}(f))(s) = \gamma(f(s)),
 f \sqsubseteq f' \iff \forall s, \, f(s) \sqsubseteq f'(s), \quad (\hat{\alpha}(f))(s) = \alpha(f(s)).
 \]

Given $(X_1, \sqsubseteq_1) \xleftarrow{\alpha_1} (X_2, \sqsubseteq_2) \xleftarrow{\alpha_2} (X_3, \sqsubseteq_3)$:

- **composition**: $(X_1, \sqsubseteq_1) \xleftarrow{\alpha_2 \circ \alpha_1} (X_3, \sqsubseteq_3)$
 $((\alpha_2 \circ \alpha_1)(c) \sqsubseteq_3 a \iff \alpha_1(c) \sqsubseteq_2 \gamma_2(a) \iff c \sqsubseteq_1 (\gamma_1 \circ \gamma_2)(a))$
Galois embeddings

If \((C, \leq) \xrightarrow{\alpha} (A, \sqsubseteq)\), the following properties are equivalent:

1. \(\alpha\) is surjective
 \((\forall a \in A, \exists c \in C, \alpha(c) = a)\)

2. \(\gamma\) is injective
 \((\forall a, a' \in A, \gamma(a) = \gamma(a') \implies a = a')\)

3. \(\alpha \circ \gamma = id\)
 \((\forall a \in A, id(a) = a)\)

Such \((\alpha, \gamma)\) is called a Galois embedding, which is noted
\((C, \leq) \xrightarrow{\gamma} \xleftarrow{\alpha} (A, \sqsubseteq)\)

Proof:
Galois embeddings

If \((C, \leq) \xrightarrow{\gamma} (A, \sqsubseteq)\), the following properties are equivalent:

1. \(\alpha\) is surjective \((\forall a \in A, \exists c \in C, \alpha(c) = a)\)
2. \(\gamma\) is injective \((\forall a, a' \in A, \gamma(a) = \gamma(a') \implies a = a')\)
3. \(\alpha \circ \gamma = id\) \((\forall a \in A, id(a) = a)\)

Such \((\alpha, \gamma)\) is called a **Galois embedding**, which is noted \((C, \leq) \xrightarrow{\gamma} (A, \sqsubseteq)\)

Proof: 1 \(\implies\) 2

Assume that \(\gamma(a) = \gamma(a')\).
By surjectivity, take \(c, c'\) such that \(a = \alpha(c), a' = \alpha(c')\).
Then \(\gamma(\alpha(c)) = \gamma(\alpha(c'))\).
And \(\alpha(\gamma(\alpha(c))) = \alpha(\gamma(\alpha(c')))\).
As \(\alpha \circ \gamma \circ \alpha = \alpha\), \(\alpha(c) = \alpha(c')\).
Hence \(a = a'\).
Galois embeddings

If \((C, \leq) \overset{\gamma}{\leftarrow} \overset{\alpha}{\rightarrow} (A, \sqsubseteq)\), the following properties are equivalent:

1. \(\alpha\) is surjective \((\forall a \in A, \exists c \in C, \alpha(c) = a)\)
2. \(\gamma\) is injective \((\forall a, a' \in A, \gamma(a) = \gamma(a') \implies a = a')\)
3. \(\alpha \circ \gamma = id\) \((\forall a \in A, id(a) = a)\)

Such \((\alpha, \gamma)\) is called a Galois embedding, which is noted \((C, \leq) \overset{\gamma}{\leftarrow} \overset{\alpha}{\rightarrow} (A, \sqsubseteq)\)

Proof: 2 \implies 3
Given \(a \in A\), we know that \(\gamma(\alpha(\gamma(a))) = \gamma(a)\).
By injectivity of \(\gamma\), \(\alpha(\gamma(a)) = a\).
Galois connections

Galois embeddings

If \((C, \leq) \xleftrightarrow{\gamma}{\alpha} (A, \sqsubseteq)\), the following properties are equivalent:

1. \(\alpha\) is surjective

 \(\forall a \in A, \exists c \in C, \alpha(c) = a\)

2. \(\gamma\) is injective

 \(\forall a, a' \in A, \gamma(a) = \gamma(a') \implies a = a'\)

3. \(\alpha \circ \gamma = id\)

 \(\forall a \in A, id(a) = a\)

Such \((\alpha, \gamma)\) is called a **Galois embedding**, which is noted

\((C, \leq) \xleftrightarrow{\gamma}{\alpha} (A, \sqsubseteq)\)

Proof: 3 \(\implies\) 1

Given \(a \in A\), we have \(\alpha(\gamma(a)) = a\).

Hence, \(\exists c \in C, \alpha(c) = a\), using \(c = \gamma(a)\).
A Galois connection can be made into an embedding by quotienting A by the equivalence relation $a \equiv a' \iff \gamma(a) = \gamma(a')$.

$$\left((C, \leq) \overset{\gamma}{\leftrightarrow} (A, \sqsubseteq) \right)$$
Abstract domain of intervals of integers \(\mathbb{Z} \) represented as pairs of ordered bounds \((a, b)\) or \(\bot\).

We have: \((\mathcal{P}(\mathbb{Z}), \subseteq) \leftrightarrow_{\alpha} (I, \sqsubseteq)\)

- \(I \overset{\text{def}}{=} \{(a, b) \mid a \in \mathbb{Z} \cup \{-\infty\}, b \in \mathbb{Z} \cup \{+\infty\}, a \leq b\} \cup \{\bot\}\)
- \((a, b) \sqsubseteq (a', b') \iff (a \geq a') \land (b \leq b'), \quad \forall x: \bot \sqsubseteq x\)
- \(\gamma(a, b) \overset{\text{def}}{=} \{x \in \mathbb{Z} \mid a \leq x \leq b\}, \quad \gamma(\bot) = \emptyset\)
- \(\alpha(X) \overset{\text{def}}{=} (\min X, \max X), \text{ or } \bot \text{ if } X = \emptyset\)

proof:
Galois connections

Galois embedding example

Abstract domain of \textit{intervals of integers} \mathbb{Z} represented as \textit{pairs of ordered bounds} (a, b) or \bot.

We have: $(\mathcal{P}(\mathbb{Z}), \subseteq) \xrightarrow{\gamma} (I, \sqsubseteq)$

- $I \overset{\text{def}}{=} \{(a, b) \mid a \in \mathbb{Z} \cup \{-\infty\}, b \in \mathbb{Z} \cup \{+\infty\}, a \leq b\} \cup \{\bot\}$
- $(a, b) \subseteq (a', b') \iff (a \geq a') \land (b \leq b')$, $\forall x: \bot \subseteq x$
- $\gamma(a, b) \overset{\text{def}}{=} \{x \in \mathbb{Z} \mid a \leq x \leq b\}$, $\gamma(\bot) = \emptyset$
- $\alpha(X) \overset{\text{def}}{=} (\min X, \max X)$, or \bot if $X = \emptyset$

\textbf{proof:}

Quotient of the “pair of bounds” domain $(\mathbb{Z} \cup \{-\infty\}) \times (\mathbb{Z} \cup \{+\infty\})$ by the relation $(a, b) \equiv (a', b') \iff \gamma(a, b) = \gamma(a', b')$

i.e., $(a \leq b \land a = a' \land b = b') \lor (a > b \land a' > b')$.
Upper closures

$\rho : X \rightarrow X$ is an upper closure in the poset (X, \sqsubseteq) if it is:

1. **monotonic:** $x \sqsubseteq x' \implies \rho(x) \sqsubseteq \rho(x')$,
2. **extensive:** $x \sqsubseteq \rho(x)$, and
3. **idempotent:** $\rho \circ \rho = \rho$.

Galois connections

[Diagram of a Galois connection with a poset X and a closure operator ρ.]
Upper closures and Galois connections

Given \((C, \leq) \xleftarrow{\alpha} (A, \sqsubseteq)\),
\(\gamma \circ \alpha\) is an upper closure on \((C, \leq)\).

Given an upper closure \(\rho\) on \((X, \sqsubseteq)\), we have a Galois embedding:
\[(X, \sqsubseteq) \xleftarrow{id} (\rho(X), \sqsubseteq)\]

We can rephrase abstract interpretation using upper closures
instead of Galois connections, but we lose:

- the notion of **abstract representation**
 (a data-structure \(A\) representing elements in \(\rho(X)\))

- the ability to have **several distinct** abstract representations
 for a single concrete object
 (non-necessarily injective \(\gamma\) versus \(id\))
Operator approximations
Abstractions in the concretization framework

Given a concrete \((C, \leq)\) and an abstract \((A, \sqsubseteq)\) poset and a monotonic concretization \(\gamma : A \to C\)

\((\gamma(a)\) is the “meaning” of \(a\) in \(C\); we use intervals in our examples\)

- \(a \in A\) is a sound abstraction of \(c \in C\) if \(c \leq \gamma(a)\).
 (e.g.: \([0,10]\) is a sound abstraction of \(\{0,1,2,5\}\) in the integer interval domain)

- \(g : A \to A\) is a sound abstraction of \(f : C \to C\) if \(\forall a \in A: (f \circ \gamma)(a) \leq (\gamma \circ g)(a)\).
 (e.g.: \(\lambda([a,b].[−\infty, +\infty]\) is a sound abstraction of \(\lambda X.\{x + 1 | x \in X\}\) in the interval domain)

- \(g : A \to A\) is an exact abstraction of \(f : C \to C\) if
 \(f \circ \gamma = \gamma \circ g\).
 (e.g.: \(\lambda([a, b].[a + 1, b + 1]\) is an exact abstraction of \(\lambda X.\{x + 1 | x \in X\}\) in the interval domain)
Assume now that \((C, \leq) \xrightarrow{\alpha} \xleftarrow{\gamma} (A, \sqsubseteq)\).

- **sound abstractions**
 - \(c \leq \gamma(a)\) is equivalent to \(\alpha(c) \sqsubseteq a\).
 - \((f \circ \gamma)(a) \leq (\gamma \circ g)(a)\) is equivalent to \((\alpha \circ f \circ \gamma)(a) \sqsubseteq g(a)\).

- **Given** \(c \in C\), its **best abstraction** is \(\alpha(c)\).

 (proof: recall that \(\alpha(c) = \sqcap \{a \mid c \leq \gamma(a)\}\), so, \(\alpha(c)\) is the smallest sound abstraction of \(c\))

 (e.g.: \(\alpha(\{0, 1, 2, 5\}) = [0, 5]\) in the interval domain)

- **Given** \(f : C \to C\), its **best abstraction** is \(\alpha \circ f \circ \gamma\)

 (proof: \(g\) sound \(\iff\) \(\forall a\), \((\alpha \circ f \circ \gamma)(a) \sqsubseteq g(a)\), so \(\alpha \circ f \circ \gamma\) is the smallest sound abstraction of \(f\))

 (e.g.: \(g([a, b]) = [2a, 2b]\) is the best abstraction in the interval domain of \(f(X) = \{2x \mid x \in X\}\); it is not an exact abstraction as \(\gamma(g([0, 1])) = \{0, 1, 2\} \supseteq \{0, 2\} = f(\gamma([0, 1]))\)
If g and g' soundly abstract respectively f and f' then:

- if f is monotonic,
 then $g \circ g'$ is a sound abstraction of $f \circ f'$,

 (proof: $\forall a, (f \circ f' \circ \gamma)(a) \leq (f \circ \gamma \circ g')(a) \leq (\gamma \circ g \circ g')(a)$)

- if g, g' are exact abstractions of f and f',
 then $g \circ g'$ is an exact abstraction,

 (proof: $f \circ f' \circ \gamma = f \circ \gamma \circ g' = \gamma \circ g \circ g'$)

- if g and g' are the best abstractions of f and f',
 then $g \circ g'$ is not always the best abstraction!

 (e.g.: $g([a, b]) = [a, \min(b, 1)]$ and $g'([a, b]) = [2a, 2b]$ are the best abstractions of $f(X) = \{ x \in X \mid x \leq 1 \}$ and $f'(X) = \{ 2x \mid x \in X \}$ in the interval domain, but $g \circ g'$ is not the best abstraction of $f \circ f'$ as $g \circ g'([0, 1]) = [0, 1]$ while $(\alpha \circ f \circ f' \circ \gamma)([0, 1]) = [0, 0]$)
Fixpoint approximations
Fixpoint transfer

If we have:

- a Galois connection \((C, \leq) \leftarrow \gamma \rightarrow (A, \sqsubseteq)\) between CPOs
- monotonic concrete and abstract functions \(f : C \rightarrow C, f^\# : A \rightarrow A\)
- a commutation condition \(\alpha \circ f = f^\# \circ \alpha\)
- an element \(a\) and its abstraction \(a^\# = \alpha(a)\)

then \(\alpha(\text{lfp}_a f) = \text{lfp}_{a^\#} f^\#\).

(proof on next slide)
Proof:

By the constructive Tarski theorem, \(\text{lfp}_a f \) is the limit of transfinite iterations:
\[
a_0 \overset{\text{def}}{=} a, \quad a_{n+1} \overset{\text{def}}{=} f(a_n), \quad \text{and} \quad a_n \overset{\text{def}}{=} \bigvee \{ a_m \mid m < n \}
\]
for limit ordinals \(n \).

Likewise, \(\text{lfp}_{a^\#} f^\# \) is the limit of a transfinite iteration \(a_n^\# \).

We prove by transfinite induction that \(a_n^\# = \alpha(a_n) \) for all ordinals \(n \):

- \(a_0^\# = \alpha(a_0) \), by definition;
- \(a_{n+1}^\# = f^\#(a_n^\#) = f^\#(\alpha(a_n)) = \alpha(f(a_n)) = \alpha(a_{n+1}) \) for successor ordinals, by commutation;
- \(a_n^\# = \bigsqcup \{ a_m^\# \mid m < n \} = \bigsqcup \{ \alpha(a_m) \mid m < n \} = \alpha(\bigvee \{ a_m \mid m < n \}) = \alpha(a_n) \)
for limit ordinals, because \(\alpha \) is always continuous in Galois connections.

Hence, \(\text{lfp}_{a^\#} f^\# = \alpha(\text{lfp}_a f) \).
Fixpoint approximations

Fixpoint approximation

If we have:

- a complete lattice \((C, \leq, \lor, \land, \bot, \top)\)
- a monotonic concrete function \(f\)
- a sound abstraction \(f^\#: A \rightarrow A\) of \(f\)

\[(\forall x^\#: (f \circ \gamma)(x^\#) \leq (\gamma \circ f^\#)(x^\#))\]

- a post-fixpoint \(a^\#\) of \(f^\#\) \((f^\#(a^\#) \sqsubseteq a^\#)\)

then \(a^\#\) is a sound abstraction of \(\text{lfp} f\): \(\text{lfp} f \leq \gamma(a^\#)\).

Proof:

By definition, \(f^\#(a^\#) \sqsubseteq a^\#\).
By monotony, \(\gamma(f^\#(a^\#)) \leq \gamma(a^\#)\).
By soundness, \(f(\gamma(a^\#)) \leq \gamma(a^\#)\).
By Tarski’s theorem \(\text{lfp} f = \land \{ x | f(x) \leq x \}\).

Hence, \(\text{lfp} f \leq \gamma(a^\#)\).

Other fixpoint transfer / approximation theorems can be constructed...
Bibliography

