Order Theory

MPRI 2–6: Abstract Interpretation, application to verification and static analysis

Antoine Miné

Year 2020–2021

Course 01
18 September 2020
Plan

- Partially ordered structures
 - (complete) partial orders
 - (complete) lattices

- Fixpoints

- Abstractions
 - Galois connections, upper closure operators (first-class citizens)
 - Concretization-only framework
 - Operator abstraction
 - Fixpoint abstraction
Partial orders
Given a set X, a relation $\sqsubseteq \in X \times X$ is a partial order if it is:

1. **reflexive:** $\forall x \in X, \ x \sqsubseteq x$
2. **antisymmetric:** $\forall x, y \in X, (x \sqsubseteq y) \land (y \sqsubseteq x) \implies x = y$
3. **transitive:** $\forall x, y, z \in X, (x \sqsubseteq y) \land (y \sqsubseteq z) \implies x \sqsubseteq z$

(X, \sqsubseteq) is a poset (partially ordered set).

If we drop antisymmetry, we have a preorder instead.
Partial orders:

- \((\mathbb{Z}, \leq)\)
 (completely ordered)

- \((\mathcal{P}(X), \subseteq)\)
 (not completely ordered: \(\{1\} \nsubseteq \{2\}, \{2\} \nsubseteq \{1\}\))

- \((S, =)\) is a poset for any \(S\)

- \((\mathbb{Z}^2, \sqsubseteq)\), where \((a, b) \sqsubseteq (a', b') \iff (a \geq a') \land (b \leq b')\)
 (ordering of interval bounds that implies inclusion)
Partial orders

Examples: preorders

Preorders:

- $(\mathcal{P}(X), \sqsubseteq)$, where $a \sqsubseteq b \iff |a| \leq |b|$

 (ordered by cardinal)

- $(\mathbb{Z}^2, \sqsubseteq)$, where

 $$(a, b) \sqsubseteq (a', b') \iff \{ x \mid a \leq x \leq b \} \subseteq \{ x \mid a' \leq x \leq b' \}$$

 (inclusion of intervals represented by pairs of bounds)

 not antisymmetric: $[1, 0] \neq [2, 0]$ but $[1, 0] \sqsubseteq [2, 0] \sqsubseteq [1, 0]$

Equivalence: \equiv

$X \equiv Y \iff (X \sqsubseteq Y) \land (Y \sqsubseteq X)$

We obtain a partial order by quotienting by \equiv.
Examples of posets (cont.)

- Given by a Hasse diagram, e.g.:

\[
\begin{array}{c}
g \\
| \downarrow \\
e \\
| \downarrow \\
c \\
| \downarrow \\
b \\
| \downarrow \\
a
\end{array}
\]

- Relations:
 - \(g \sqsubseteq g \)
 - \(f \sqsubseteq f, g \)
 - \(e \sqsubseteq e, g \)
 - \(d \sqsubseteq d, f, g \)
 - \(c \sqsubseteq c, e, f, g \)
 - \(b \sqsubseteq b, c, d, e, f, g \)
 - \(a \sqsubseteq a, b, c, d, e, f, g \)
Infinite Hasse diagram for \((\mathbb{N} \cup \{\infty\}, \leq)\):
Partial orders

Use of posets (informally)

Posets are a very useful notion to discuss about:

- **logic**: formulas ordered by implication \implies

- **program verification**: program semantics \sqsubseteq specification
 (e.g.: behaviors of program \subseteq accepted behaviors)

- **approximation**: \sqsubseteq is an information order
 ("$a \sqsubseteq b$" means: "a caries more information than b")

- **iteration**: fixpoint computation
 (e.g., a computation is directed, with a limit: $X_1 \sqsubseteq X_2 \sqsubseteq \cdots \sqsubseteq X_n$)
(Least) Upper bounds

- c is an upper bound of a and b if: $a \sqsubseteq c$ and $b \sqsubseteq c$

- c is a least upper bound (lub or join) of a and b if
 - c is an upper bound of a and b
 - for every upper bound d of a and b, $c \sqsubseteq d$
(Least) Upper bounds

If it exists, the lub of a and b is unique, and denoted as $a \sqcup b$.
(proof: assume that c and d are both lubs of a and b; by definition of lubs, $c \sqsubseteq d$ and $d \sqsubseteq c$; by antisymmetry of \sqsubseteq, $c = d$)

Generalized to upper bounds of arbitrary (even infinite) sets $\sqcup Y$, $Y \subseteq X$
(well-defined, as \sqcup is commutative and associative).

Similarly, we define greatest lower bounds (glb, meet) $a \sqcap b$, $\sqcap Y$.
$(a \sqcap b \sqsubseteq a) \land (a \sqcap b \sqsubseteq b)$ and $\forall c$, $(c \sqsubseteq a) \land (c \sqsubseteq b) \implies (c \sqsubseteq a \sqcap b)$

Note: not all posets have lubs, glbs
(e.g.: $a \sqcup b$ not defined on $\{a, b\}, =)$
Partial orders

Chains

$C \subseteq X$ is a chain in (X, \sqsubseteq) if it is totally ordered by \sqsubseteq:

$\forall x, y \in C, (x \sqsubseteq y) \lor (y \sqsubseteq x)$.

\[a \sqsubseteq c \sqsubseteq f \sqsubseteq g \]
Complete partial orders (CPO)

A poset \((X, \sqsubseteq)\) is a complete partial order (CPO) if every chain \(C\) (including \(\emptyset\)) has a least upper bound \(\sqcup C\).

A CPO has a least element \(\sqcup \emptyset\), denoted \(\bot\).

Examples, Counter-examples:

- \((\mathbb{N}, \leq)\) is not complete, but \((\mathbb{N} \cup \{ \infty \}, \leq)\) is complete.
- \((\{ x \in \mathbb{Q} \mid 0 \leq x \leq 1 \}, \leq)\) is not complete, but \((\{ x \in \mathbb{R} \mid 0 \leq x \leq 1 \}, \leq)\) is complete.
- \((\mathcal{P}(Y), \subseteq)\) is complete for any \(Y\).
- \((X, \sqsubseteq)\) is complete if \(X\) is finite.
Complete partial order examples

\[(\mathbb{N}, \leq) \] non-complete

\[(\mathbb{N} \cup \{\infty\}, \leq) \] complete
Lattices
A lattice \((X, \sqsubseteq, \sqcup, \sqcap)\) is a poset with

1. a lub \(a \sqcup b\) for every pair of elements \(a\) and \(b\);
2. a glb \(a \sqcap b\) for every pair of elements \(a\) and \(b\).

Examples:

- integers \((\mathbb{Z}, \leq, \text{max}, \text{min})\)
- integer intervals (next slide)
- divisibility (in two slides)

If we drop one condition, we have a (join or meet) semilattice.

Reference on lattices: Birkhoff [Birk76].
Example: the interval lattice

Integer intervals: \(\{ [a, b] \mid a, b \in \mathbb{Z}, a \leq b \} \cup \{ \emptyset \}, \subseteq, \cup, \cap \)

where \([a, b] \sqcup [a', b'] \overset{\text{def}}{=} [\min(a, a'), \max(b, b')]\).
Example: the divisibility lattice

Divisibility $(\mathbb{N}^*, |, \text{lcm}, \text{gcd})$ where $x | y \iff \exists k \in \mathbb{N}, \ kx = y$
Example: the divisibility lattice (cont.)

Let \(P \overset{\text{def}}{=} \{ p_1, p_2, \ldots \} \) be the (infinite) set of prime numbers.

We have a correspondence \(\iota \) between \(\mathbb{N}^* \) and \(P \rightarrow \mathbb{N} \):

- \(\alpha = \iota(x) \) is the (unique) decomposition of \(x \) into prime factors
- \(\iota^{-1}(\alpha) \overset{\text{def}}{=} \prod_{a \in P} a^{\alpha(a)} = x \)
- \(\iota \) is one-to-one on functions \(P \rightarrow \mathbb{N} \) with finite support
 \((\alpha(a) = 0 \text{ except for finitely many factors } a) \)

We have a correspondence between \((\mathbb{N}^*, |, \text{lcm}, \text{gcd}) \)
and \((\mathbb{N}, \leq, \max, \min) \).

Assume that \(\alpha = \iota(x) \) and \(\beta = \iota(y) \) are the decompositions of \(x \) and \(y \), then:

- \(\prod_{a \in P} a^{\max(\alpha(a), \beta(a))} = \text{lcm}(\prod_{a \in P} a^{\alpha(a)}, \prod_{a \in P} a^{\beta(a)}) = \text{lcm}(x, y) \)
- \(\prod_{a \in P} a^{\min(\alpha(a), \beta(a))} = \text{gcd}(\prod_{a \in P} a^{\alpha(a)}, \prod_{a \in P} a^{\beta(a)}) = \text{gcd}(x, y) \)
- \((\forall a: \alpha(a) \leq \beta(a)) \iff (\prod_{a \in P} a^{\alpha(a)}) \mid (\prod_{a \in P} a^{\beta(a)}) \iff x \mid y \)
Complete lattices

A complete lattice \((X, \sqsubseteq, \sqcup, \sqcap, \bot, \top)\) is a poset with

1. a lub \(\sqcup S\) for every set \(S \subseteq X\)
2. a glb \(\sqcap S\) for every set \(S \subseteq X\)
3. a least element \(\bot\)
4. a greatest element \(\top\)

Notes:

1. implies 2 as \(\sqcap S = \sqcup \{ y \mid \forall x \in S, y \sqsubseteq x \}\) (and 2 implies 1 as well),
2. 1 and 2 imply 3 and 4: \(\bot = \sqcup \emptyset = \sqcap X\), \(\top = \sqcap \emptyset = \sqcup X\),
3. a complete lattice is also a CPO.
Complete lattice examples

- **real segment** $[0, 1]$: $(\{ x \in \mathbb{R} | 0 \leq x \leq 1 \}, \leq, \max, \min, 0, 1)$

- **powersets** $(\mathcal{P}(S), \subseteq, \cup, \cap, \emptyset, S)$
 (next slide)

- **any finite lattice**
 $(\sqcup Y$ and $\sqcap Y$ for finite $Y \subseteq X$ are always defined)

- **integer intervals** with finite and **infinite** bounds:
 $$(\{ [a, b] | a \in \mathbb{Z} \cup \{-\infty\}, b \in \mathbb{Z} \cup \{+\infty\}, a \leq b \} \cup \{\emptyset\}, \subseteq, \sqcup, \sqcap, \emptyset, [-\infty, +\infty])$$
 with $\sqcup_{i \in I} [a_i, b_i] \overset{\text{def}}{=} [\min_{i \in I} a_i, \max_{i \in I} b_i]$.
 (in two slides)
Example: the powerset complete lattice

Example: \((\mathcal{P}(\mathbb{Z}), \subseteq, \cup, \cap, \emptyset, \mathbb{Z})\)
Example: the intervals complete lattice

The integer intervals with finite and infinite bounds:

\[
\{ [a, b] \mid a \in \mathbb{Z} \cup \{-\infty\}, \ b \in \mathbb{Z} \cup \{+\infty\}, \ a \leq b \} \cup \{\emptyset\}, \ \subseteq, \ \cup, \ \cap, \ \emptyset, \ [-\infty, +\infty]\}
\]
Given a (complete) lattice or partial order \((X, \sqsubseteq, \sqcup, \sqcap, \bot, \top)\) we can derive new (complete) lattices or partial orders by:

- **duality**
 \((X, \sqsubseteq', \sqcap', \sqcup', \top', \bot)\)
 - \(\sqsubseteq\) is reversed
 - \(\sqcup\) and \(\sqcap\) are switched
 - \(\bot\) and \(\top\) are switched

- **lifting** (adding a smallest element)
 \((X \cup \{\bot'\}, \sqsubseteq', \sqcup', \sqcap', \top', \bot')\)
 - \(a \sqsubseteq' b \iff a = \bot' \lor a \sqsubseteq b\)
 - \(\bot' \sqcup' a = a \sqcup' \bot' = a\), and \(a \sqcup' b = a \sqcup b\) if \(a, b \neq \bot'\)
 - \(\bot' \sqcap' a = a \sqcap' \bot' = \bot'\), and \(a \sqcap' b = a \sqcap b\) if \(a, b \neq \bot'\)
 - \(\bot'\) replaces \(\bot\)
 - \(\top\) is unchanged
Given (complete) lattices or partial orders:
\((X_1, \sqsubseteq_1, \sqcup_1, \sqcap_1, \bot_1, \top_1)\) and \((X_2, \sqsubseteq_2, \sqcup_2, \sqcap_2, \bot_2, \top_2)\)

We can combine them by:

- **product**
 \((X_1 \times X_2, \sqsubseteq, \sqcup, \sqcap, \bot, \top)\) where
 \[
 (x, y) \sqsubseteq (x', y') \iff x \sqsubseteq_1 x' \land y \sqsubseteq_2 y'
 \]
 \[
 (x, y) \sqcup (x', y') \overset{\text{def}}{=} (x \sqcup_1 x', y \sqcup_2 y')
 \]
 \[
 (x, y) \sqcap (x', y') \overset{\text{def}}{=} (x \sqcap_1 x', y \sqcap_2 y')
 \]
 \[
 \bot \overset{\text{def}}{=} (\bot_1, \bot_2)
 \]
 \[
 \top \overset{\text{def}}{=} (\top_1, \top_2)
 \]

- **smashed product** (coalescent product, merging \(\bot_1\) and \(\bot_2\))
 \(((X_1 \setminus \{\bot_1\}) \times (X_2 \setminus \{\bot_2\})) \cup \{\bot\}, \sqsubseteq, \sqcup, \sqcap, \bot, \top)\)
 (as \(X_1 \times X_2\), but all elements of the form \((\bot_1, y)\) and \((x, \bot_2)\) are identified to a unique \(\bot\) element)
Given a (complete) lattice or partial order \((X, \sqsubseteq, \sqcup, \sqcap, \bot, \top)\) and a set \(S\):

- **point-wise lifting** (functions from \(S\) to \(X\))
 \((S \to X, \sqsubseteq', \sqcup', \sqcap', \bot', \top')\) where
 - \(x \sqsubseteq' y \iff \forall s \in S : x(s) \sqsubseteq y(s)\)
 - \(\forall s \in S : (x \sqcup' y)(s) \overset{\text{def}}{=} x(s) \sqcup y(s)\)
 - \(\forall s \in S : (x \sqcap' y)(s) \overset{\text{def}}{=} x(s) \sqcap y(s)\)
 - \(\forall s \in S : \bot'(s) = \bot\)
 - \(\forall s \in S : \top'(s) = \top\)

- **smashed point-wise lifting**
 \(((S \to (X \setminus \{\bot\})) \cup \{\bot'\}, \sqsubseteq', \sqcup', \sqcap', \bot', \top')\)

as \(S \to X\), but identify to \(\bot'\) any map \(x\) where
\(\exists s \in S : x(s) = \bot\)

(e.g. map each program variable in \(S\) to an interval in \(X\))
A lattice \((X, \sqsubseteq, \sqcup, \sqcap)\) is **distributive** if:

- \(a \sqcup (b \sqcap c) = (a \sqcup b) \sqcap (a \sqcup c)\) and
- \(a \sqcap (b \sqcup c) = (a \sqcap b) \sqcup (a \sqcap c)\)

Examples, Counter-examples:

- \((\mathcal{P}(X), \subseteq, \cup, \cap)\) is distributive

- intervals are **not** distributive
 \([0, 0] \cup [2, 2]) \cap [1, 1] = [0, 2] \cap [1, 1] = [1, 1] \text{ but }\]
 \([0, 0] \cap [1, 1]) \cup ([2, 2] \cap [1, 1]) = \emptyset \cup \emptyset = \emptyset

common cause of precision loss in static analyses:
merging abstract information early, at control-flow joins
vs. merging executions paths late, at the end of the program
Sublattice

Given a lattice \((X, \sqsubseteq, \cup, \sqcap)\) and \(X' \subseteq X\)
\((X', \sqsubseteq, \cup, \sqcap)\) is a sublattice of \(X\) if \(X'\) is closed under \(\cup\) and \(\sqcap\)

Example, Counter-examples:

- if \(Y \subseteq X\), \((\mathcal{P}(Y), \subseteq, \cup, \cap, \emptyset, Y)\) is a sublattice of \((\mathcal{P}(X), \subseteq, \cup, \cap, \emptyset, X)\)

- integer intervals are not a sublattice of \((\mathcal{P}(\mathbb{Z}), \subseteq, \cup, \cap, \emptyset, \mathbb{Z})\)
\([\min(a, a'), \max(b, b')] \neq [a, b] \cup [a', b']\)

another common cause of precision loss in static analyses:
\(\cup\) cannot represent the exact union, and loses precision
Functions and Fixpoints
A function $f : (X_1, \sqsubseteq_1, \sqcup_1, \bot_1) \to (X_2, \sqsubseteq_2, \sqcup_2, \bot_2)$ is

- **monotonic** if
 $$\forall x, x', x \sqsubseteq_1 x' \implies f(x) \sqsubseteq_2 f(x')$$
 (aka: increasing, isotone, order-preserving, morphism)

- **strict** if $f(\bot_1) = \bot_2$

- **continuous** between CPO if
 $$\forall C \text{ chain } \subseteq X_1, \{ f(c) \mid c \in C \} \text{ is a chain in } X_2$$
 and $f(\sqcup_1 C) = \sqcup_2 \{ f(c) \mid c \in C \}$

- a (complete) \sqcup–morphism between (complete) lattices
 if $\forall S \subseteq X_1, f(\sqcup_1 S) = \sqcup_2 \{ f(s) \mid s \in S \}$

- **extensive** if $X_1 = X_2$ and $\forall x, x \sqsubseteq_1 f(x)$

- **reductive** if $X_1 = X_2$ and $\forall x, f(x) \sqsubseteq_1 x$
Functions and fixpoints

Fixpoints

Given $f : (X, \sqsubseteq) \to (X, \sqsubseteq)$

- x is a fixpoint of f if $f(x) = x$
- x is a pre-fixpoint of f if $x \sqsubseteq f(x)$
- x is a post-fixpoint of f if $f(x) \sqsubseteq x$

We may have several fixpoints (or none)

- $\text{fp}(f) \overset{\text{def}}{=} \{ x \in X \mid f(x) = x \}$
- $\text{lfp}_x f \overset{\text{def}}{=} \min_{\sqsubseteq} \{ y \in \text{fp}(f) \mid x \sqsubseteq y \}$ if it exists
 (least fixpoint greater than x)
- $\text{lfp} f \overset{\text{def}}{=} \text{lfp}_\bot f$
 (least fixpoint)
- dually: $\text{gfp}_x f \overset{\text{def}}{=} \max_{\sqsubseteq} \{ y \in \text{fp}(f) \mid y \sqsubseteq x \}$, $\text{gfp} f \overset{\text{def}}{=} \text{gfp}_\top f$
 (greatest fixpoints)
Fixpoints: illustration
Monotonic function with two distinct fixpoints
Monotonic function with a unique fixpoint
Non-monotonic function with no fixpoint
Express solutions of mutually recursive equation systems

Example:

The solutions of \(\begin{cases} x_1 = f(x_1, x_2) \\ x_2 = g(x_1, x_2) \end{cases} \) with \(x_1, x_2 \) in lattice \(X \)

are exactly the fixpoint of \(\vec{F} \) in lattice \(X \times X \), where

\[
\vec{F} \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) = \left(\begin{array}{c} f(x_1, x_2) \\ g(x_1, x_2) \end{array} \right)
\]

The least solution of the system is \(\text{lfp} \vec{F} \).
Uses of fixpoints: examples

- Close (complete) sets to satisfy a given property

Example:

$r \subseteq X \times X$ is transitive if:

$\forall (a, b) \in r \land (b, c) \in r \Rightarrow (a, c) \in r$

The transitive closure of r is the smallest transitive relation containing r.

Let $f(s) = r \cup \{(a, c) | (a, b) \in s \land (b, c) \in s\}$, then lfp f:

- lfp f contains r
- lfp f is transitive
- lfp f is minimal

\Rightarrow lfp f is the transitive closure of r.
Tarski’s fixpoint theorem

Tarski’s theorem

If $f : X \to X$ is monotonic in a complete lattice X then $\text{fp}(f)$ is a complete lattice.

Proved by Knaster and Tarski [Tars55].
Tarski’s fixpoint theorem

Tarski’s theorem

If $f : X \rightarrow X$ is monotonic in a complete lattice X then $\text{fp}(f)$ is a complete lattice.

Proof:

We prove $\text{lfp} f = \cap \{x \mid f(x) \sqsubseteq x\}$ (meet of post-fixpoints).
Tarski’s fixpoint theorem

If \(f : X \rightarrow X \) is monotonic in a complete lattice \(X \) then \(\text{fp}(f) \) is a complete lattice.

Proof:
We prove \(\text{lfp } f = \sqcap \{ x \mid f(x) \sqsubseteq x \} \) (meet of post-fixpoints).
Let \(f^* = \{ x \mid f(x) \sqsubseteq x \} \) and \(a = \sqcap f^* \).

\[
\forall x \in f^*, \ a \sqsubseteq x \quad \text{(by definition of } \sqcap) \\
\text{so } f(a) \sqsubseteq f(x) \quad \text{(as } f \text{ is monotonic)} \\
\text{so } f(a) \sqsubseteq x \quad \text{(as } x \text{ is a post-fixpoint).}
\]

We deduce that \(f(a) \sqsubseteq \sqcap f^* \), i.e. \(f(a) \sqsubseteq a \).
Tarski’s fixpoint theorem

Tarski’s theorem

If \(f : X \to X \) is monotonic in a complete lattice \(X \) then \(\text{fp}(f) \) is a complete lattice.

Proof:
We prove \(\text{lfp } f = \sqcap \{ x \mid f(x) \sqsubseteq x \} \) (meet of post-fixpoints).

\[
\begin{align*}
 f(a) \sqsubseteq a \\
 \text{so } f(f(a)) \sqsubseteq f(a) \quad \text{(as } f \text{ is monotonic)} \\
 \text{so } f(a) \in f^* \quad \text{(by definition of } f^* \text{)} \\
 \text{so } a \sqsubseteq f(a).
\end{align*}
\]

We deduce that \(f(a) = a \), so \(a \in \text{fp}(f) \).

Note that \(y \in \text{fp}(f) \) implies \(y \in f^* \).

As \(a = \sqcap f^* \), \(a \sqsubseteq y \), and we deduce \(a = \text{lfp } f \).
Tarski’s fixpoint theorem

Tarski’s theorem
If \(f : X \rightarrow X \) is monotonic in a complete lattice \(X \) then \(\text{fp}(f) \) is a complete lattice.

Proof:
Given \(S \subseteq \text{fp}(f) \), we prove that \(\text{lfp}_{\sqcup S} f \) exists.

Consider \(X' = \{ x \in X \mid \sqcup S \subseteq x \} \).
\(X' \) is a complete lattice.
Moreover \(\forall x' \in X', f(x') \in X' \).
\(f \) can be restricted to a monotonic function \(f' \) on \(X' \).
We apply the preceding result, so that \(\text{lfp} f' = \text{lfp}_{\sqcup S} f \) exists.
By definition, \(\text{lfp}_{\sqcup S} f \in \text{fp}(f) \) and is smaller than any fixpoint larger than all \(s \in S \).
Tarski’s fixpoint theorem

Tarski’s theorem

If \(f : X \rightarrow X \) is monotonic in a complete lattice \(X \) then \(\text{fp}(f) \) is a complete lattice.

Proof:
By duality, we construct \(\text{gfp} \ f \) and \(\text{gfp}_{\sqcap S} f \).

The complete lattice of fixpoints is:
\[(\text{fp}(f), \sqsubseteq, \lambda S.\text{lfp}_{\sqcup S} f, \lambda S.\text{gfp}_{\sqcap S} f, \text{lfp} f, \text{gfp} f).\]

Not necessarily a sublattice of \((X, \sqsubseteq, \sqcup, \sqcap, \bot, \top)\)!
Tarski’s fixpoint theorem: example

Lattice: \(\{ \text{lfp, fp1, fp2, pre, gfp} \}, \sqcup, \sqcap, \text{lfp, gfp} \)

Fixpoint lattice: \(\{ \text{lfp, fp1, fp2, gfp} \}, \sqcup', \sqcap', \text{lfp, gfp} \)

(not a sublattice as \(\text{fp1} \sqcup' \text{fp2} = \text{gfp} \) while \(\text{fp1} \sqcup \text{fp2} = \text{pre} \), but \(\text{gfp} \) is the smallest fixpoint greater than \(\text{pre} \))
“Kleene” fixpoint theorem

If $f : X \to X$ is continuous in a CPO X and $a \sqsubseteq f(a)$ then $\text{lfp}_a f$ exists.

Inspired by Kleene [Klee52].
“Kleene” fixpoint theorem

If $f : X \to X$ is continuous in a CPO X and $a \sqsubseteq f(a)$ then $\text{lfp}_a f$ exists.

We prove that $\{ f^n(a) \mid n \in \mathbb{N} \}$ is a chain and $\text{lfp}_a f = \sqcup \{ f^n(a) \mid n \in \mathbb{N} \}$.

\begin{align*}
\text{lfp} & \quad f^3(\perp) \\
& \quad f^2(\perp) \\
& \quad f(\perp) \\
\perp & \quad \text{lfp}
\end{align*}
"Kleene" fixpoint theorem

If $f : X \to X$ is continuous in a CPO X and $a \sqsubseteq f(a)$ then $\text{lfp}_a f$ exists.

We prove that $\{ f^n(a) \mid n \in \mathbb{N} \}$ is a chain and $\text{lfp}_a f = \sqcup \{ f^n(a) \mid n \in \mathbb{N} \}$.

$a \sqsubseteq f(a)$ by hypothesis.

$f(a) \sqsubseteq f(f(a))$ by monotony of f.

(Note that any continuous function is monotonic. Indeed, $x \sqsubseteq y \implies x \sqcup y = y \implies f(x \sqcup y) = f(y)$; by continuity $f(x) \sqcup f(y) = f(x \sqcup y) = f(y)$, which implies $f(x) \sqsubseteq f(y)$.)

By recurrence $\forall n, f^n(a) \sqsubseteq f^{n+1}(a)$.

Thus, $\{ f^n(a) \mid n \in \mathbb{N} \}$ is a chain and $\sqcup \{ f^n(a) \mid n \in \mathbb{N} \}$ exists.
“Kleene” fixpoint theorem

If $f : X \rightarrow X$ is continuous in a CPO X and $a \sqsubseteq f(a)$ then $\text{lfp}_a f$ exists.

\[
f(\bigsqcup \{ f^n(a) \mid n \in \mathbb{N} \})
= \bigsqcup \{ f^{n+1}(a) \mid n \in \mathbb{N} \} \quad \text{(by continuity)}
= a \sqcup (\bigsqcup \{ f^{n+1}(a) \mid n \in \mathbb{N} \}) \quad \text{(as all $f^{n+1}(a)$ are greater than a)}
= \bigsqcup \{ f^n(a) \mid n \in \mathbb{N} \}.
\]
So, $\bigsqcup \{ f^n(a) \mid n \in \mathbb{N} \} \in \text{fp}(f)$

Moreover, any fixpoint greater than a must also be greater than all $f^n(a)$, $n \in \mathbb{N}$.
So, $\bigsqcup \{ f^n(a) \mid n \in \mathbb{N} \} = \text{lfp}_a f$.
Well-ordered sets

\((S, \sqsubseteq)\) is a **well-ordered set** if:

- \(\sqsubseteq\) is a **total order** on \(S\)
- every \(X \subseteq S\) such that \(X \neq \emptyset\) has a **least element** \(\sqcap X \in X\)

Consequences:

- any element \(x \in S\) has a **successor** \(x + 1 \overset{\text{def}}{=} \sqcap \{ y \mid x \sqsubseteq y \}\)
 (except the greatest element, if it exists)
- if \(\forall y, x = y + 1\), \(x\) is a **limit** and \(x = \sqcup \{ y \mid y \sqsubseteq x \}\)
 (every bounded subset \(X \subseteq S\) has a lub \(\sqcup X = \sqcap \{ y \mid \forall x \in X, x \sqsubseteq y \}\))

Examples:

- \((\mathbb{N}, \leq)\) and \((\mathbb{N} \cup \{ \infty \}, \leq)\) are well-ordered
- \((\mathbb{Z}, \leq), (\mathbb{R}, \leq), (\mathbb{R}^+, \leq)\) are **not** well-ordered
- **ordinals** \(0, 1, 2, \ldots, \omega, \omega + 1, \ldots\) are well-ordered (\(\omega\) is a limit)
 well-ordered sets are ordinals up to order-isomorphism
 (i.e., bijective functions \(f\) such that \(f\) and \(f^{-1}\) are monotonic)
Constructive Tarski theorem by transfinite iterations

Given a function $f : X \rightarrow X$ and $a \in X$, the **transfinite iterates** of f from a are:

$$
\begin{align*}
 x_0 & \overset{\text{def}}{=} a \\
 x_n & \overset{\text{def}}{=} f(x_{n-1}) & \text{if } n \text{ is a successor ordinal} \\
 x_n & \overset{\text{def}}{=} \bigsqcup \{ x_m \mid m < n \} & \text{if } n \text{ is a limit ordinal}
\end{align*}
$$

Constructive Tarski theorem

If $f : X \rightarrow X$ is **monotonic** in a CPO X and $a \sqsubseteq f(a)$, then $\text{lfp}_a f = x_\delta$ for some ordinal δ.

Generalisation of “Kleene” fixpoint theorem, from [Cous79].
Proof

f is monotonic in a CPO X,

\[
\begin{cases}
x_0 \overset{\text{def}}{=} a \sqsubseteq f(a) \\
x_n \overset{\text{def}}{=} f(x_{n-1}) & \text{if } n \text{ is a successor ordinal} \\
x_n \overset{\text{def}}{=} \sqcup \{ x_m \mid m < n \} & \text{if } n \text{ is a limit ordinal}
\end{cases}
\]

Proof:
We prove that $\exists \delta, x_\delta = x_{\delta+1}$.

We note that $m \leq n \implies x_m \sqsubseteq x_n$.

Assume by contradiction that $\forall \delta, x_\delta = x_{\delta+1}$.

If n is a successor ordinal, then $x_{n-1} \sqsubseteq x_n$.

If n is a limit ordinal, then $\forall m < n, x_m \sqsubseteq x_n$.

Thus, all the x_n are distinct.

By choosing $n > |X|$, we arrive at a contradiction.

Thus δ exists.
Proof

Given δ such that $x_{\delta+1} = x_\delta$, we prove that $x_\delta = \text{lfp}_a f$.

$f(x_\delta) = x_{\delta+1} = x_\delta$, so $x_\delta \in \text{fp}(f)$.

Given any $y \in \text{fp}(f)$, $y \sqsubseteq a$, we prove by transfinite induction that $\forall n$, $x_n \sqsubseteq y$.

By definition $x_0 = a \sqsubseteq y$.

If n is a successor ordinal, by monotony,

$x_{n-1} \sqsubseteq y \implies f(x_{n-1}) \sqsubseteq f(y)$, i.e., $x_n \sqsubseteq y$.

If n is a limit ordinal, $\forall m < n$, $x_m \sqsubseteq y$ implies

$x_n = \sqcup \{ x_m \mid m < n \} \sqsubseteq y$.

Hence, $x_\delta \sqsubseteq y$ and $x_\delta = \text{lfp}_a f$.

Proof

f is monotonic in a CPO X,

$$
\begin{cases}
 x_0 \overset{\text{def}}{=} a \sqsubseteq f(a) \\
x_n \overset{\text{def}}{=} f(x_{n-1}) & \text{if } n \text{ is a successor ordinal} \\
x_n \overset{\text{def}}{=} \sqcup \{ x_m \mid m < n \} & \text{if } n \text{ is a limit ordinal}
\end{cases}
$$
Ascending chain condition (ACC)

An ascending chain \(C \) in \((X, \sqsubseteq) \) is a sequence \(c_i \in X \) such that \(i \leq j \implies c_i \sqsubseteq c_j \).

A poset \((X, \sqsubseteq) \) satisfies the ascending chain condition (ACC) iff for every ascending chain \(C \), \(\exists i \in \mathbb{N}, \forall j \geq i, c_i = c_j \).

Similarly, we can define the descending chain condition (DCC).

Examples:

- the powerset poset \((\mathcal{P}(X), \subseteq) \) is ACC when \(X \) is finite
- the pointed integer poset \((\mathbb{Z} \cup \{ \bot \}, \sqsubseteq) \) where \(x \sqsubseteq y \iff x = \bot \lor x = y \) is ACC and DCC
- the divisibility poset \((\mathbb{N}^*, \mid) \) is DCC but not ACC.
“Kleene” finite fixpoint theorem

If $f : X \to X$ is monotonic in an ACC poset X and $a \sqsubseteq f(a)$ then $\text{lfp}_a f$ exists.

Proof:

We prove $\exists n \in \mathbb{N}, \text{lfp}_a f = f^n(a)$.

By monotony of f, the sequence $x_n = f^n(a)$ is an increasing chain.

By definition of ACC, $\exists n \in \mathbb{N}, x_n = x_{n+1} = f(x_n)$.

Thus, $x_n \in \text{fp}(f)$.

Obviously, $a = x_0 \sqsubseteq f(x_n)$.

Moreover, if $y \in \text{fp}(f)$ and $y \sqsupseteq a$, then $\forall i, y \sqsupseteq f^i(a) = x_i$.

Hence, $y \sqsupseteq x_n$ and $x_n = \text{lfp}_a (f)$.
Comparison of fixpoint theorems

<table>
<thead>
<tr>
<th>theorem</th>
<th>function</th>
<th>domain</th>
<th>fixpoint</th>
<th>method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tarski</td>
<td>monotonic</td>
<td>complete lattice</td>
<td>$\text{fp}(f)$</td>
<td>meet of post-fixpoints</td>
</tr>
<tr>
<td>Kleene</td>
<td>continuous</td>
<td>CPO</td>
<td>$\text{lfp}_a(f)$</td>
<td>countable iterations</td>
</tr>
<tr>
<td>constructive</td>
<td>monotonic</td>
<td>CPO</td>
<td>$\text{lfp}_a(f)$</td>
<td>transfinite iteration</td>
</tr>
<tr>
<td>Tarski ACC</td>
<td>monotonic</td>
<td>poset</td>
<td>$\text{lfp}_a(f)$</td>
<td>finite iteration</td>
</tr>
<tr>
<td>ACC Kleene</td>
<td>monotonic</td>
<td>poset</td>
<td>$\text{lfp}_a(f)$</td>
<td>finite iteration</td>
</tr>
</tbody>
</table>
Galois connections
Galois connections

Given two posets \((C, \leq)\) and \((A, \sqsubseteq)\), the pair
\((\alpha : C \to A, \gamma : A \to C)\) is a Galois connection iff:

\[\forall a \in A, c \in C, \quad \alpha(c) \sqsubseteq a \iff c \leq \gamma(a) \]

which is noted \((C, \leq) \rightleftharpoons (A, \sqsubseteq)\).

\[C \quad \text{\large \leq} \quad \alpha(c) \quad \gamma(a) \quad \text{\large \sqsubseteq} \quad A \]

- \(\alpha\) is the upper adjoint or abstraction; \(A\) is the abstract domain.
- \(\gamma\) is the lower adjoint or concretization; \(C\) is the concrete domain.
Galois connections

Galois connection example

Abstract domain of **intervals of integers** \mathbb{Z} represented as **pairs of bounds** (a, b).

We have: $(\mathcal{P}(\mathbb{Z}), \subseteq) \leftrightarrow (I, \sqsubseteq)$

- $I \overset{\text{def}}{=} (\mathbb{Z} \cup \{-\infty\}) \times (\mathbb{Z} \cup \{+\infty\})$
- $(a, b) \sqsubseteq (a', b') \iff (a \geq a') \land (b \leq b')$
- $\gamma(a, b) \overset{\text{def}}{=} \{x \in \mathbb{Z} \mid a \leq x \leq b\}$
- $\alpha(X) \overset{\text{def}}{=} (\min X, \max X)$

proof:
Galois connections

Galois connection example

Abstract domain of intervals of integers \mathbb{Z} represented as pairs of bounds (a, b).

We have: $(\mathcal{P}(\mathbb{Z}), \subseteq) \xrightarrow{\gamma} (I, \sqsubseteq)$

- $I \overset{\text{def}}{=} (\mathbb{Z} \cup \{-\infty\}) \times (\mathbb{Z} \cup \{+\infty\})$
- $(a, b) \sqsubseteq (a', b') \iff (a \geq a') \land (b \leq b')$
- $\gamma(a, b) \overset{\text{def}}{=} \{ x \in \mathbb{Z} \mid a \leq x \leq b \}$
- $\alpha(X) \overset{\text{def}}{=} (\min X, \max X)$

Proof:

$\alpha(X) \sqsubseteq (a, b) \\
\iff \min X \geq a \land \max X \leq b \\
\iff \forall x \in X: a \leq x \leq b \\
\iff \forall x \in X: x \in \{ y \mid a \leq y \leq b \} \\
\iff \forall x \in X: x \in \gamma(a, b) \\
\iff X \subseteq \gamma(a, b)$
Properties of Galois connections

Assuming $\forall a, c, \alpha(c) \subseteq a \iff c \leq \gamma(a)$, we have:

1. **$\gamma \circ \alpha$ is extensive**: $\forall c, c \leq \gamma(\alpha(c))$

 proof: $\alpha(c) \subseteq \alpha(c) \implies c \leq \gamma(\alpha(c))$

2. **$\alpha \circ \gamma$ is reductive**: $\forall a, \alpha(\gamma(a)) \subseteq a$

3. **α is monotonic**

 proof: $c \leq c' \implies c \leq \gamma(\alpha(c')) \implies \alpha(c) \subseteq \alpha(c')$

4. **γ is monotonic**

5. **$\gamma \circ \alpha \circ \gamma = \gamma$**

 proof: $\alpha(\gamma(a)) \subseteq \alpha(\gamma(a)) \implies \gamma(a) \leq \gamma(\alpha(\gamma(a)))$ and

 $a \supseteq \alpha(\gamma(a)) \implies \gamma(a) \geq \gamma(\alpha(\gamma(a)))$

6. **$\alpha \circ \gamma \circ \alpha = \alpha$**

7. **$\alpha \circ \gamma$ is idempotent**: $\alpha \circ \gamma \circ \alpha \circ \gamma = \alpha \circ \gamma$

8. **$\gamma \circ \alpha$ is idempotent**
If the pair \((\alpha : C \to A, \gamma : A \to C)\) satisfies:

1. \(\gamma\) is monotonic,
2. \(\alpha\) is monotonic,
3. \(\gamma \circ \alpha\) is extensive
4. \(\alpha \circ \gamma\) is reductive

then \((\alpha, \gamma)\) is a Galois connection.

(proof left as exercise)
Uniqueness of the adjoint

Given \((C, \leq) \xrightarrow{\gamma} (A, \sqsubseteq)\), each adjoint can be uniquely defined in term of the other:

1. \(\alpha(c) = \sqcap \{ a \mid c \leq \gamma(a) \}\)

2. \(\gamma(a) = \sqcup \{ c \mid \alpha(c) \sqsubseteq a \}\)

Proof: of 1

\(\forall a, c \leq \gamma(a) \implies \alpha(c) \sqsubseteq a.\)

Hence, \(\alpha(c)\) is a lower bound of \(\{ a \mid c \leq \gamma(a) \}\).

Assume that \(a'\) is another lower bound.

Then, \(\forall a, c \leq \gamma(a) \implies a' \sqsubseteq a.\)

By Galois connection, we have then \(\forall a, \alpha(c) \sqsubseteq a \implies a' \sqsubseteq a.\)

This implies \(a' \sqsubseteq \alpha(c).\)

Hence, the greatest lower bound of \(\{ a \mid c \leq \gamma(a) \}\) exists, and equals \(\alpha(c)\).

The proof of 2 is similar (by duality).
Properties of Galois connections (cont.)

If \((\alpha : C \to A, \gamma : A \to C)\), then:

1. \(\forall X \subseteq C, \text{ if } \bigvee X \text{ exists, then } \alpha(\bigvee X) = \bigsqcup \{ \alpha(x) | x \in X \} \).

2. \(\forall X \subseteq A, \text{ if } \bigwedge X \text{ exists, then } \gamma(\bigwedge X) = \bigwedge \{ \gamma(x) | x \in X \} \).

Proof: of 1

By definition of lubs, \(\forall x \in X, x \leq \bigvee X\).
By monotony, \(\forall x \in X, \alpha(x) \sqsubseteq \alpha(\bigvee X)\).
Hence, \(\alpha(\bigvee X)\) is an upper bound of \(\{ \alpha(x) | x \in X \}\).
Assume that \(y\) is another upper bound of \(\{ \alpha(x) | x \in X \}\).
Then, \(\forall x \in X, \alpha(x) \sqsubseteq y\).
By Galois connection \(\forall x \in X, x \leq \gamma(y)\).
By definition of lubs, \(\bigvee X \leq \gamma(y)\).
By Galois connection, \(\alpha(\bigvee X) \sqsubseteq y\).
Hence, \(\{ \alpha(x) | x \in X \}\) has a lub, which equals \(\alpha(\bigvee X)\).

The proof of 2 is similar (by duality).
Deriving Galois connections

Given \((C, \leq) \xleftrightarrow{\gamma}{\alpha} (A, \sqsubseteq)\), we have:

- **duality**: \((A, \sqsupseteq) \xleftrightarrow{\alpha}{\gamma} (C, \geq)\)

 \((\alpha(c) \sqsubseteq a \iff c \leq \gamma(a) \text{ is exactly } \gamma(a) \geq c \iff a \sqsupseteq \alpha(c))\)

- **point-wise lifting** by some set \(S\):

 \((S \rightarrow C, \leq) \xleftrightarrow{\hat{\gamma}}{\hat{\alpha}} (S \rightarrow A, \sqsubseteq)\) where

 \(f \hat{\leq} f' \iff \forall s, f(s) \leq f'(s), \quad (\hat{\gamma}(f))(s) = \gamma(f(s)),\)

 \(f \hat{\sqsubseteq} f' \iff \forall s, f(s) \sqsubseteq f'(s), \quad (\hat{\alpha}(f))(s) = \alpha(f(s)).\)

Given \((X_1, \sqsubseteq_1) \xleftrightarrow{\gamma_1}{\alpha_1} (X_2, \sqsubseteq_2) \xleftrightarrow{\gamma_2}{\alpha_2} (X_3, \sqsubseteq_3)\):

- **composition**: \((X_1, \sqsubseteq_1) \xleftrightarrow{\gamma_1 \circ \gamma_2}{\alpha_2 \circ \alpha_1} (X_3, \sqsubseteq_3)\)

 \(((\alpha_2 \circ \alpha_1)(c) \sqsubseteq_3 a \iff \alpha_1(c) \sqsubseteq_2 \gamma_2(a) \iff c \sqsubseteq_1 (\gamma_1 \circ \gamma_2)(a))\)
Galois embeddings

If \((C, \leq) \xrightarrow{\gamma} (A, \sqsubseteq)\), the following properties are equivalent:

1. \(\alpha\) is surjective \((\forall a \in A, \exists c \in C, \alpha(c) = a)\)
2. \(\gamma\) is injective \((\forall a, a' \in A, \gamma(a) = \gamma(a') \implies a = a')\)
3. \(\alpha \circ \gamma = id\) \((\forall a \in A, id(a) = a)\)

Such \((\alpha, \gamma)\) is called a **Galois embedding**, which is noted \((C, \leq) \xrightarrow{\gamma} (A, \sqsubseteq)\)

Proof:
Galois embeddings

If \((C, \leq) \xrightarrow{\gamma} (A, \sqsubseteq)\), the following properties are equivalent:

1. \(\alpha\) is surjective \((\forall a \in A, \exists c \in C, \alpha(c) = a)\)
2. \(\gamma\) is injective \((\forall a, a' \in A, \gamma(a) = \gamma(a') \implies a = a')\)
3. \(\alpha \circ \gamma = id\) \((\forall a \in A, id(a) = a)\)

Such \((\alpha, \gamma)\) is called a Galois embedding, which is noted \((C, \leq) \xrightarrow{\gamma} (A, \sqsubseteq)\)

Proof: 1 \(\implies\) 2
Assume that \(\gamma(a) = \gamma(a')\).
By surjectivity, take \(c, c'\) such that \(a = \alpha(c), a' = \alpha(c')\).
Then \(\gamma(\alpha(c)) = \gamma(\alpha(c'))\).
And \(\alpha(\gamma(\alpha(c))) = \alpha(\gamma(\alpha(c')))\).
As \(\alpha \circ \gamma \circ \alpha = \alpha\), \(\alpha(c) = \alpha(c')\).
Hence \(a = a'\).
Galois embeddings

If \((C, \leq) \xleftrightarrow{\gamma}{\alpha} (A, \sqsubseteq)\), the following properties are equivalent:

1. \(\alpha\) is surjective \((\forall a \in A, \exists c \in C, \alpha(c) = a)\)
2. \(\gamma\) is injective \((\forall a, a' \in A, \gamma(a) = \gamma(a') \implies a = a')\)
3. \(\alpha \circ \gamma = id\) \((\forall a \in A, id(a) = a)\)

Such \((\alpha, \gamma)\) is called a Galois embedding, which is noted \((C, \leq) \xleftrightarrow{\gamma}{\alpha} (A, \sqsubseteq)\)

Proof: 2 \(\implies\) 3

Given \(a \in A\), we know that \(\gamma(\alpha(\gamma(a))) = \gamma(a)\).
By injectivity of \(\gamma\), \(\alpha(\gamma(a)) = a\).
Galois connections

Galois embeddings

If $(C, \leq) \xrightarrow{\gamma} (A, \sqsubseteq)$, the following properties are equivalent:

1. α is surjective \[(\forall a \in A, \exists c \in C, \alpha(c) = a) \]
2. γ is injective \[(\forall a, a' \in A, \gamma(a) = \gamma(a') \implies a = a') \]
3. $\alpha \circ \gamma = id$ \[(\forall a \in A, id(a) = a) \]

Such (α, γ) is called a Galois embedding, which is noted $(C, \leq) \xrightarrow{\gamma} (A, \sqsubseteq) \xleftarrow{\alpha}$

Proof: $3 \implies 1$
Given $a \in A$, we have $\alpha(\gamma(a)) = a$.
Hence, $\exists c \in C, \alpha(c) = a$, using $c = \gamma(a)$.

A Galois connection can be made into an embedding by quotienting A by the equivalence relation $a \equiv a' \iff \gamma(a) = \gamma(a')$.
Galois connections

Galois embedding example

Abstract domain of intervals of integers \mathbb{Z} represented as pairs of ordered bounds (a, b) or \perp.

We have: $(\mathcal{P}(\mathbb{Z}), \subseteq) \xrightarrow{\gamma} (I, \sqsubseteq)$

- $I \overset{\text{def}}{=} \{(a, b) \mid a \in \mathbb{Z} \cup \{-\infty\}, b \in \mathbb{Z} \cup \{+\infty\}, a \leq b \} \cup \{\perp\}$
- $(a, b) \sqsubseteq (a', b') \iff (a \geq a') \land (b \leq b'), \quad \forall x: \perp \sqsubseteq x$
- $\gamma(a, b) \overset{\text{def}}{=} \{x \in \mathbb{Z} \mid a \leq x \leq b\}, \quad \gamma(\perp) = \emptyset$
- $\alpha(X) \overset{\text{def}}{=} (\min X, \max X), \text{ or } \perp \text{ if } X = \emptyset$

proof:
Galois connections

Galois embedding example

Abstract domain of intervals of integers \(\mathbb{Z} \) represented as pairs of ordered bounds \((a, b)\) or \(\perp\).

We have: \((\mathcal{P}(\mathbb{Z}), \subseteq) \xrightarrow{\gamma} (I, \sqsubseteq) \)

- \(I \overset{\text{def}}{=} \{ (a, b) \mid a \in \mathbb{Z} \cup \{-\infty\}, b \in \mathbb{Z} \cup \{+\infty\}, a \leq b \} \cup \{\perp\} \)
- \((a, b) \sqsubseteq (a', b') \iff (a \geq a') \land (b \leq b'), \ \forall x: \perp \sqsubseteq x \)
- \(\gamma(a, b) \overset{\text{def}}{=} \{ x \in \mathbb{Z} \mid a \leq x \leq b \}, \quad \gamma(\perp) = \emptyset \)
- \(\alpha(X) \overset{\text{def}}{=} (\min X, \max X), \ \text{or} \ \perp \ \text{if} \ X = \emptyset \)

proof:
Quotient of the “pair of bounds” domain \((\mathbb{Z} \cup \{-\infty\}) \times (\mathbb{Z} \cup \{+\infty\})\) by the relation
\((a, b) \equiv (a', b') \iff \gamma(a, b) = \gamma(a', b') \)
i.e., \((a \leq b \land a = a' \land b = b') \lor (a > b \land a' > b')\).
\(\rho : X \to X \) is an upper closure in the poset \((X, \sqsubseteq)\) if it is:

1. **monotonic:** \(x \sqsubseteq x' \implies \rho(x) \sqsubseteq \rho(x') \),
2. **extensive:** \(x \sqsubseteq \rho(x) \), and
3. **idempotent:** \(\rho \circ \rho = \rho \).
Given \((C, \leq) \xleftarrow{\gamma} (A, \sqsubseteq)\),
\(\gamma \circ \alpha\) is an upper closure on \((C, \leq)\).

Given an upper closure \(\rho\) on \((X, \sqsubseteq)\), we have a Galois embedding:
\((X, \sqsubseteq) \xleftarrow{id} (\rho(X), \sqsubseteq)\)

\(\implies\) we can rephrase abstract interpretation using upper closures instead of Galois connections, but we lose:

- the notion of abstract representation
 (a data-structure \(A\) representing elements in \(\rho(X)\))
- the ability to have several distinct abstract representations for a single concrete object
 (non-necessarily injective \(\gamma\) versus \(id\))
Operator approximations
Abstractions in the concretization framework

Given a concrete \((C, \leq)\) and an abstract \((A, \sqsubseteq)\) poset
and a monotonic concretization \(\gamma : A \rightarrow C\)

\((\gamma(a)\) is the “meaning” of \(a\) in \(C\); we use intervals in our examples\)

- \(a \in A\) is a sound abstraction of \(c \in C\) if \(c \leq \gamma(a)\).
 (e.g.: \([0, 10]\) is a sound abstraction of \(\{0, 1, 2, 5\}\) in the integer interval domain)

- \(g : A \rightarrow A\) is a sound abstraction of \(f : C \rightarrow C\)
 if \(\forall a \in A : (f \circ \gamma)(a) \leq (\gamma \circ g)(a)\).
 (e.g.: \(\lambda([a, b].[−\infty, +\infty]\) is a sound abstraction of \(\lambda X.\{x + 1 | x \in X\}\) in the interval domain)

- \(g : A \rightarrow A\) is an exact abstraction of \(f : C \rightarrow C\) if
 \(f \circ \gamma = \gamma \circ g\).
 (e.g.: \(\lambda([a, b].[a + 1, b + 1]\) is an exact abstraction of \(\lambda X.\{x + 1 | x \in X\}\) in the interval domain)
Abstractions in the Galois connection framework

Assume now that \((C, \leq) \xrightarrow{\gamma} (A, \sqsubseteq)\).

- **sound abstractions**
 - \(c \leq \gamma(a)\) is equivalent to \(\alpha(c) \sqsubseteq a\).
 - \((f \circ \gamma)(a) \leq (\gamma \circ g)(a)\) is equivalent to \((\alpha \circ f \circ \gamma)(a) \sqsubseteq g(a)\).

- **Given** \(c \in C\), its best abstraction is \(\alpha(c)\).

 (proof: recall that \(\alpha(c) = \sqcap \{ a \mid c \leq \gamma(a) \}\), so, \(\alpha(c)\) is the smallest sound abstraction of \(c\))

 (e.g.: \(\alpha(\{0,1,2,5\}) = [0,5]\) in the interval domain)

- **Given** \(f : C \rightarrow C\), its best abstraction is \(\alpha \circ f \circ \gamma\)

 (proof: \(g\) sound \(\iff\) \(\forall a, (\alpha \circ f \circ \gamma)(a) \sqsubseteq g(a)\), so \(\alpha \circ f \circ \gamma\) is the smallest sound abstraction of \(f\))

 (e.g.: \(g([a, b]) = [2a, 2b]\) is the best abstraction in the interval domain of \(f(X) = \{ 2x \mid x \in X \}\); it is not an exact abstraction as \(\gamma(g([0,1])) = \{0,1,2\} \supseteq \{0,2\} = f(\gamma([0,1]))\)
If g and g' soundly abstract respectively f and f' then:

- if f is monotonic, then $g \circ g'$ is a sound abstraction of $f \circ f'$,
 \[\forall a, (f \circ f' \circ \gamma)(a) \leq (f \circ \gamma \circ g')(a) \leq (\gamma \circ g \circ g')(a)\]

- if g, g' are exact abstractions of f and f', then $g \circ g'$ is an exact abstraction,
 \[
 f \circ f' \circ \gamma = f \circ \gamma \circ g' = \gamma \circ g \circ g'
 \]

- if g and g' are the best abstractions of f and f', then $g \circ g'$ is not always the best abstraction!

 (e.g.: $g([a, b]) = [a, \min(b, 1)]$ and $g'([a, b]) = [2a, 2b]$ are the best abstractions of $f(X) = \{x \in X \mid x \leq 1\}$ and $f'(X) = \{2x \mid x \in X\}$ in the interval domain, but $g \circ g'$ is not the best abstraction of $f \circ f'$ as $(g \circ g'([0, 1])) = [0, 1]$ while $(\alpha \circ f \circ f' \circ \gamma)([0, 1]) = [0, 0]$)
Fixpoint approximations
Fixpoint approximations

Fixpoint transfer

If we have:

- a Galois connection \((C, \leq) \xleftrightarrow{\gamma} (A, \sqsubseteq)\) between CPOs
- monotonic concrete and abstract functions \(f : C \to C, f^\#: A \to A\)
- a commutation condition \(\alpha \circ f = f^\# \circ \alpha\)
- an element \(a\) and its abstraction \(a^\# = \alpha(a)\)

then \(\alpha(\text{lfp}_a f) = \text{lfp}_{a^\#} f^\#\).

(proof on next slide)
Proof:

By the constructive Tarski theorem, $\text{lfp}_a f$ is the limit of transfinite iterations:

\[a_0 \overset{\text{def}}{=} a, \quad a_{n+1} \overset{\text{def}}{=} f(a_n), \quad \text{and} \quad a_n \overset{\text{def}}{=} \bigvee \{ a_m \mid m < n \} \] for limit ordinals n.

Likewise, $\text{lfp}_{a^\#} f^\#$ is the limit of a transfinite iteration $a_n^\#$.

We prove by transfinite induction that $a_n^\# = \alpha(a_n)$ for all ordinals n:

- $a_0^\# = \alpha(a_0)$, by definition;

- $a_{n+1}^\# = f^\#(a_n^\#) = f^\#(\alpha(a_n)) = \alpha(f(a_n)) = \alpha(a_{n+1})$ for successor ordinals, by commutation;

- $a_n^\# = \bigsqcup \{ a_m^\# \mid m < n \} = \bigsqcup \{ \alpha(a_m) \mid m < n \} = \alpha(\bigvee \{ a_m \mid m < n \}) = \alpha(a_n)$ for limit ordinals, because α is always continuous in Galois connections.

Hence, $\text{lfp}_{a^\#} f^\# = \alpha(\text{lfp}_a f)$.
If we have:

- a complete lattice \((C, \leq, \lor, \land, \bot, \top)\)
- a monotonic concrete function \(f\)
- a sound abstraction \(f^\#: A \rightarrow A\) of \(f\)
 \[(\forall x^\#: (f \circ \gamma)(x^\#) \leq (\gamma \circ f^\#)(x^\#))\]
- a post-fixpoint \(a^\#\) of \(f^\#\) \((f^\#(a^\#) \sqsubseteq a^\#)\)

then \(a^\#\) is a sound abstraction of \(\text{lfp } f\): \(\text{lfp } f \leq \gamma(a^\#)\).

Proof:
By definition, \(f^\#(a^\#) \sqsubseteq a^\#\).
By monotony, \(\gamma(f^\#(a^\#)) \leq \gamma(a^\#)\).
By soundness, \(f(\gamma(a^\#)) \leq \gamma(a^\#)\).
By Tarski’s theorem \(\text{lfp } f = \land \{x \mid f(x) \leq x\}\).

Hence, \(\text{lfp } f \leq \gamma(a^\#)\).

Other fixpoint transfer/approximation theorems can be constructed...

