
Thread-Modular Analysis of Concurrent Programs
MPRI 2–6: Abstract Interpretation,

application to verification and static analysis

Antoine Miné

Year 2024–2025

Course 5a
21 October 2024

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 1 / 76

Introduction

Concurrent programming

Principle: decompose a program into a set of (loosely) interacting processes.

exploit parallelism in current computers
(multi-processors, multi-cores, hyper-threading)

“Free lunch is over” (change in Moore’s law, ×2 transistors every 2 years)

exploit several computers (distributed computing)

ease of programming (GUI, network code, reactive programs)

But concurrent programs are hard to program and hard to verify:
combinatorial exposition of execution paths (interleavings)

errors lurking in hard-to-find corner cases (race conditions)

unintuitive execution models (weak memory consistency)

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 2 / 76

Introduction

Scope

In this course: static thread model
implicit communications through shared memory
explicit communications through synchronisation primitives
fixed number of threads (no dynamic creation of threads)

numeric programs (real-valued variables)

Goal: static analysis
infer numeric program invariants
parameterized by a choice of numeric abstract domains
discover run-time errors (e.g., divisions by 0)

discover data-races (unprotected accesses by concurrent threads)

discover deadlocks (some threads block each other indefinitely)

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 3 / 76

Introduction

Outline

Simple concurrent language

Non-modular concurrent semantics

Simple interference thread-modular concurrent semantics

Weakly consistent memories

Locks and synchronization

Abstract rely-guarantee thread-modular concurrent semantics

Relational interference abstractions

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 4 / 76

Language and semantics

Language and semantics

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 5 / 76

Language and semantics Syntax

Structured numeric language

finite set of (toplevel) threads: stmt1 to stmtn

finite set of numeric program variables V ∈ V

finite set of statement locations ℓ ∈ L
locations with possible run-time errors ω ∈ Ω (divisions by zero)

Structured language syntax
prog ::= ℓstmt1

ℓ || . . . || ℓstmtn
ℓ (parallel composition)

ℓstmtℓ ::= ℓV ← expℓ (assignment)
| ℓif exp ▷◁ 0 then ℓstmtℓ fiℓ (conditional)
| ℓwhile ℓexp ▷◁ 0 do ℓstmtℓ doneℓ (loop)
| ℓstmt; ℓstmtℓ (sequence)

exp ::= V | [c1, c2] | − exp | exp ⋄ exp

c1, c2 ∈ R ∪ {+∞,−∞}, ⋄ ∈ {+,−,×, /ω }, ▷◁∈ {=, <, . . . }

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 6 / 76

Language and semantics Trace-based semantic model

Multi-thread execution model

t1 t2

ℓ1 while random do ℓ4 while random do
ℓ2 if x < y then ℓ5 if y < 100 then

ℓ3 x ← x + 1 ℓ6 y ← y + [1,3]

Execution model:
finite number of threads
the memory is shared (x ,y)

each thread has its own program counter
execution interleaves steps from threads t1 and t2
assignments and tests are assumed to be atomic

=⇒ we have the global invariant 0 ≤ x ≤ y ≤ 102

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 7 / 76

Language and semantics Trace-based semantic model

Semantic model: labelled transition systems

simple extension of transition systems

Labelled transition system: (Σ,A, τ, I)

Σ: set of program states
A: set of actions
τ ⊆ Σ×A× Σ: transition relation we note (σ, a, σ′) ∈ τ as σ

a→τ σ′

I ⊆ Σ: initial states

Labelled traces: sequences of states interspersed with actions

denoted as σ0
a0→ σ1

a1→ · · ·σn
an→ σn+1

τ is omitted on → for traces for simplicity

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 8 / 76

Language and semantics Trace-based semantic model

From concurrent programs to labelled transition systems

given: prog ::= ℓi
1stmt1

ℓx
1 || · · · || ℓi

n stmtn
ℓx

n

threads are numbered: T
def= { 1, . . . , n }

Program states: Σ def= (T→ L)× E

a control state L(t) ∈ L for each thread t ∈ T and
a single shared memory state ρ ∈ E def= V→ Z

Initial states:
threads start at their first control point ℓi

t , variables are set to 0:
I def= { ⟨λt.ℓi

t , λV .0 ⟩ }

Actions: actions are thread identifiers: A def= T

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 9 / 76

Language and semantics Trace-based semantic model

From concurrent programs to labelled transition systems

Transition relation: τ ⊆ Σ×A× Σ

⟨ L, ρ ⟩ t→τ ⟨ L′, ρ′ ⟩ def⇐⇒ ⟨ L(t), ρ ⟩→τ [stmtt]⟨ L′(t), ρ′ ⟩ ∧
∀u ̸= t: L(u) = L′(u)

based on the transition relation of individual threads seen as sequential
processes stmtt : τ [stmtt] ⊆ (L × E)× (L × E)

choose a thread t to run
update ρ and L(t)
leave L(u) intact for u ̸= t

see course 2 for the full definition of τ [stmt]

each transition σ →τ [stmtt] σ′ leads to many transitions →τ !

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 10 / 76

Language and semantics Trace-based semantic model

Interleaved trace semantics

Maximal and finite prefix trace semantics are as before:

Blocking states: B def= {σ | ∀σ′:∀t: σ
t
̸→τ σ′ }

Maximal traces: M∞ (finite or infinite)

M∞
def= {σ0

t0→ · · ·
tn−1→ σn | n ≥ 0 ∧ σ0 ∈ I ∧ σn ∈ B ∧ ∀i < n: σi

ti→τ σi+1 } ∪
{σ0

t0→ σ1 . . . | n ≥ 0 ∧ σ0 ∈ I ∧ ∀i < ω: σi
ti→τ σi+1 }

Finite prefix traces: Tp

Tp
def= {σ0

t0→ · · · tn−1→ σn | n ≥ 0 ∧ σ0 ∈ I ∧ ∀i < n: σi
ti→τ σi+1 }

Tp = lfp Fp where Fp(X) = I ∪ {σ0
t0→ · · ·

tn→ σn+1 | n ≥ 0 ∧ σ0
t0→ · · ·

tn−1→ σn ∈ X ∧ σn
tn→τ σn+1 }

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 11 / 76

Language and semantics Trace-based semantic model

Fairness

Fairness conditions: avoid threads being denied to run forever

Given enabled(σ, t) def⇐⇒ ∃σ′ ∈ Σ: σ
t→τ σ′

an infinite trace σ0
t0→ · · ·σn

tn→ · · · is:
weakly fair if ∀t ∈ T:
∃i : ∀j ≥ i : enabled(σj , t) =⇒ ∀i : ∃j ≥ i : aj = t
no thread can be continuously enabled without running

strongly fair if ∀t ∈ T:
∀i : ∃j ≥ i : enabled(σj , t) =⇒ ∀i : ∃j ≥ i : aj = t
no thread can be infinitely often enabled without running

Proofs under fairness conditions given:
the maximal traces M∞ of a program
a property X to prove (as a set of traces)

the set F of all (weakly or strongly) fair and of finite traces
=⇒ prove M∞ ∩ F ⊆ X instead of M∞ ⊆ X

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 12 / 76

Language and semantics Trace-based semantic model

Fairness (cont.)

Example: while x ≥ 0 do x ← x + 1 done || x ← −2
may not terminate without fairness
always terminates under weak and strong fairness

Finite prefix trace abstraction

M∞ ∩ F ⊆ X is abstracted into testing α∗⪯(M∞ ∩ F) ⊆ α∗⪯(X)

for all fairness conditions F , α∗⪯(M∞ ∩ F) = α∗⪯(M∞) = Tp

recall that α∗⪯(T) def= { t ∈ Σ∗ | ∃u ∈ T : t ⪯ u } is the finite prefix abstraction
and T = α∗⪯(M∞)

=⇒ fairness-dependent properties cannot be proved with finite prefixes only

In the rest of the course, we ignore fairness conditions

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 13 / 76

Language and semantics Trace-based semantic model

Reachability semantics for concurrent programs

Reminder : Reachable state semantics: R ∈ P(Σ)

Reachable states in any execution:

R def= {σ | ∃n ≥ 0, σ0, . . . , σn:
σ0 ∈ I, ∀i < n:∃t ∈ T : σi

t→τ σi+1 ∧ σ = σn }

R = lfp FR where FR(X) = I ∪ {σ | ∃σ′ ∈ X , t ∈ T: σ′ t→τ σ }

Can prove (non-)reachability, but not ordering, termination, liveness
and cannot exploit fairness.

Abstraction of the finite trace semantics.

R = αp(Tp) where αp(X) def= {σ | ∃n ≥ 0, σ0
t0→ · · ·σn ∈ X : σ = σn }

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 14 / 76

Language and semantics Reminders: sequential semantics

Reminders: sequential semantics

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 15 / 76

Language and semantics Reminders: sequential semantics

Equational state semantics of sequential program

see lfp f as the least solution of an equation x = f (x)
partition states by control: P(L × E) ≃ L → P(E)
Xℓ ∈ P(E): invariant at ℓ ∈ L

∀ℓ ∈ L:Xℓ
def= {m ∈ E | ⟨ ℓ, m ⟩ ∈ R}

=⇒ set of recursive equations on Xℓ

Example:

ℓ1
i ← 2;

ℓ2
n← [−∞, +∞];

ℓ3
while ℓ4

i < n do
ℓ5

if [0, 1] = 0 then
ℓ6

i ← i + 1
fi

ℓ7
done

ℓ8

X1 = I
X2 = CJ i ← 2 KX1
X3 = CJ n← [−∞, +∞] KX2
X4 = X3 ∪ X7
X5 = CJ i < n KX4
X6 = X5
X7 = X5 ∪ CJ i ← i + 1 KX6
X8 = CJ i ≥ n KX4

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 16 / 76

Language and semantics Reminders: sequential semantics

Denotational state semantics

Alternate view as an input-output state function CJ stmt K

CJ stmt K : P(E)→ P(E)

CJ X ← e K R def= { ρ[X 7→ v] | ρ ∈ R, v ∈ EJ e K ρ }

CJ e ▷◁ 0 K R def= { ρ ∈ R | ∃v ∈ EJ e K ρ: v ▷◁ 0 }

CJ if e ▷◁ 0 then s fi K R def= (CJ s K ◦ CJ e ▷◁ 0 K)R ⊔ CJ e ̸▷◁ 0 K R

CJ s1; s2 K def= CJ s2 K ◦ CJ s1 K

CJ while e ▷◁ 0 do s done K R def= CJ e ̸▷◁ 0 K (lfpλY .R ⊔ (CJ s K ◦ CJ e ▷◁ 0 K)Y)

mutate memory states in E
structured: nested loops yield nested fixpoints
big-step: forget information on intermediate locations ℓ

mimics an actual interpreter

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 17 / 76

Language and semantics Reminders: sequential semantics

Equational vs. denotational form

Equational:

{ X1 = ⊤
X2 = F2(X1)
X3 = F3(X1)
X4 = F4(X3,X4)

Denotational:

i = 0;
while (i < nb)
{
 a[i] =12;
 i++;
}

CJ while c do b done K X def=
CJ¬c K (lfp λY .X ∪ CJ b K (CJ c K Y))

CJ if c then t fi K X def=
CJ t K (CJ c K X) ∪ CJ¬c K X

. . .

linear memory in program length
flexible solving strategy
flexible context sensitivity
easy to adapt to concurrency,
using a product of CFG

linear memory in program depth
fixed iteration strategy
fixed context sensitivity
(follows the program structure)

no inductive definition of the product
=⇒ thread-modular analysis

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 18 / 76

Language and semantics Non-modular concurrent semantics

Non-modular concurrent semantics

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 19 / 76

Language and semantics Non-modular concurrent semantics

Equational concurrent state semantics

Equational form:

for each L ∈ T→ L, a variable XL with value in E

equations are derived from thread equations eq(stmtt) as:
XL1 =

⋃
t∈T
{ F (XL2 , . . . , XLN) |

∃(Xℓ1 = F (Xℓ2 , . . . ,XℓN)) ∈ eq(stmtt):

∀i ≤ N: Li (t) = ℓi , ∀u ̸= t: Li (u) = L1(u) }

Join with ∪ equations from eq(stmtt) updating a single thread t ∈ T.

(see course 2 for the full definition of eq(stmt))

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 20 / 76

Language and semantics Non-modular concurrent semantics

Equational state semantics (illustration)

× =

Product of control-flow graphs:
control state = tuple of program points
=⇒ combinatorial explosion of abstract states
transfer functions are duplicated

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 21 / 76

Language and semantics Non-modular concurrent semantics

Equational state semantics (example)

Example: inferring 0 ≤ x ≤ y ≤ 102
t1 t2

ℓ1 while random do ℓ4 while random do
ℓ2 if x < y then ℓ5 if y < 100 then

ℓ3 x ← x + 1 ℓ6 y ← y + [1,3]

Equation system:
X1,4 = I
X2,4 = X1,4 ∪ CJ x ≥ y KX2,4 ∪ CJ x ← x + 1 KX3,4
X3,4 = CJ x < y KX2,4
X1,5 = X1,4 ∪ CJ y ≥ 100 KX1,5 ∪ CJ y ← y + [1, 3] KX1,6
X2,5 = X1,5 ∪ CJ x ≥ y KX2,5 ∪ CJ x ← x + 1 KX3,5 ∪

X2,4 ∪ CJ y ≥ 100 KX2,5 ∪ CJ y ← y + [1, 3] KX2,6
X3,5 = CJ x < y KX2,5 ∪ X3,4 ∪ CJ y ≥ 100 KX3,5 ∪ CJ y ← y + [1, 3] KX3,6
X1,6 = CJ y < 100 KX1,5
X2,6 = X1,6 ∪ CJ x ≥ y KX2,6 ∪ CJ x ← x + 1 KX3,6 ∪ CJ y < 100 KX2,5
X3,6 = CJ x < y KX2,6 ∪ CJ y < 100 KX3,5

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 22 / 76

Language and semantics Non-modular concurrent semantics

Equational state semantics (example)

Example: inferring 0 ≤ x ≤ y ≤ 102
t1 t2

ℓ1 while random do ℓ4 while random do
ℓ2 if x < y then ℓ5 if y < 100 then

ℓ3 x ← x + 1 ℓ6 y ← y + [1,3]

Pros:
easy to construct
easy to further abstract in an abstract domain E♯

Cons:
explosion of the number of variables and equations
explosion of the size of equations
=⇒ efficiency issues
the equation system does not reflect the program structure
(not defined by induction on the concurrent program)

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 22 / 76

Language and semantics Non-modular concurrent semantics

Wish-list

We would like to:
keep information attached to syntactic program locations
(control points in L, not control point tuples in T→ L)

be able to abstract away control information
(precision/cost trade-off control)

avoid duplicating thread instructions

have a computation structure based on the program syntax
(denotational style)

Ideally: thread-modular denotational-style semantics
analyze each thread independently by induction on its syntax
but remain sound with respect to all interleavings !

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 23 / 76

Simple interference semantics

Simple interference semantics

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 24 / 76

Simple interference semantics Intuition

Thread-modular analysis with simple interferences

i = 0;
while (i < nb)
{
 a[i] --;
 i++;
}

i = 0;
while (i < nb)
{
 a[i] ++;
 i++;
}

Principle:
analyze each thread in isolation

gather the values written into each variable by each thread
=⇒ so-called interferences
suitably abstracted in an abstract domain, such as intervals

reanalyze threads, injecting these values at each read
iterate until stabilization while widening interferences
=⇒ one more level of fixpoint iteration

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 25 / 76

Simple interference semantics Intuition

Thread-modular analysis with simple interferences

i = 0;
while (i < nb)
{
 a[i] --;
 i++;
}

i = 0;
while (i < nb)
{
 a[i] ++;
 i++;
}

Principle:
analyze each thread in isolation
gather the values written into each variable by each thread
=⇒ so-called interferences
suitably abstracted in an abstract domain, such as intervals

reanalyze threads, injecting these values at each read
iterate until stabilization while widening interferences
=⇒ one more level of fixpoint iteration

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 25 / 76

Simple interference semantics Intuition

Thread-modular analysis with simple interferences

i = 0;
while (i < nb)
{
 a[i] --;
 i++;
}

i = 0;
while (i < nb)
{
 a[i] ++;
 i++;
}

Principle:
analyze each thread in isolation
gather the values written into each variable by each thread
=⇒ so-called interferences
suitably abstracted in an abstract domain, such as intervals

reanalyze threads, injecting these values at each read

iterate until stabilization while widening interferences
=⇒ one more level of fixpoint iteration

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 25 / 76

Simple interference semantics Intuition

Thread-modular analysis with simple interferences

i = 0;
while (i < nb)
{
 a[i] --;
 i++;
}

i = 0;
while (i < nb)
{
 a[i] ++;
 i++;
}

... ...

▽ ▽

Principle:
analyze each thread in isolation
gather the values written into each variable by each thread
=⇒ so-called interferences
suitably abstracted in an abstract domain, such as intervals

reanalyze threads, injecting these values at each read
iterate until stabilization while widening interferences
=⇒ one more level of fixpoint iteration

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 25 / 76

Simple interference semantics Intuition

Example

t1
ℓ1 while random do

ℓ2 if x < y then
ℓ3 x ← x + 1

t2
ℓ4 while random do

ℓ5 if y < 100 then
ℓ6 y ← y + [1, 3]

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 26 / 76

Simple interference semantics Intuition

Example

t1
ℓ1 while random do

ℓ2 if x < y then
ℓ3 x ← x + 1

t2
ℓ4 while random do

ℓ5 if y < 100 then
ℓ6 y ← y + [1, 3]

Analysis of t1 in isolation

(1): x = y = 0
(2): x = y = 0
(3):⊥

X1 = I
X2 = X1 ∪ CJ x ← x + 1 KX3 ∪ CJ x ≥ y KX2
X3 = CJ x < y KX2

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 26 / 76

Simple interference semantics Intuition

Example

t1
ℓ1 while random do

ℓ2 if x < y then
ℓ3 x ← x + 1

t2
ℓ4 while random do

ℓ5 if y < 100 then
ℓ6 y ← y + [1, 3]

Analysis of t2 in isolation

(4): x = y = 0
(5): x = 0, y ∈ [0, 102]
(6): x = 0, y ∈ [0, 99]

X4 = I
X5 = X4 ∪ CJ y ← y + [1, 3] KX6 ∪ CJ y ≥ 100 KX5
X6 = CJ y < 100 KX5

output interferences: y ← [1, 102]

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 26 / 76

Simple interference semantics Intuition

Example

t1
ℓ1 while random do

ℓ2 if x < y then
ℓ3 x ← x + 1

t2
ℓ4 while random do

ℓ5 if y < 100 then
ℓ6 y ← y + [1, 3]

Re-analysis of t1 with interferences from t2

input interferences: y ← [1, 102]
(1): x = y = 0
(2): x ∈ [0, 102], y = 0
(3): x ∈ [0, 102], y = 0

X1 = I
X2 = X1a ∪ CJ x ← x + 1 KX3 ∪ CJ x ≥ (y | [1, 102]) KX2
X3 = CJ x < (y | [1, 102]) KX2

output interferences: x ← [1, 102]

subsequent re-analyses are identical (fixpoint reached)

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 26 / 76

Simple interference semantics Intuition

Example

t1
ℓ1 while random do

ℓ2 if x < y then
ℓ3 x ← x + 1

t2
ℓ4 while random do

ℓ5 if y < 100 then
ℓ6 y ← y + [1, 3]

Derived abstract analysis:
similar to a sequential program analysis, but iterated
can be parameterized by arbitrary abstract domains

efficient few reanalyses are required in practice

interferences are non-relational and flow-insensitive
limit inherited from the concrete semantics

Limitation:
we get x , y ∈ [0, 102]; we don’t get that x ≤ y
simplistic view of thread interferences (volatile variables)
based on an incomplete concrete semantics (we’ll fix that later)

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 26 / 76

Simple interference semantics Formalizing the simple interference semantics

Formalizing the simple interference semantics

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 27 / 76

Simple interference semantics Formalizing the simple interference semantics

Denotational semantics with interferences

Interferences in I
def= T× V× R

⟨ t, X , v ⟩ means that t can store the value v into the variable X

We define the analysis of a thread t
with respect to a set of interferences I ⊆ I.

Expressions : EtJ exp K : E × P(I)→ P(R)× P(Ω) for thread t
add interference I ∈ I, as input
add error information ω ∈ Ω as output
locations of / operators that can cause a division by 0

Example:
Apply interferences to read variables:
EtJ X K ⟨ ρ, I ⟩ def= ⟨ { ρ(X) } ∪ { v | ∃u ̸= t: ⟨ u, X , v ⟩ ∈ I }, ∅ ⟩

Pass recursively I down to sub-expressions:
EtJ−e K ⟨ ρ, I ⟩ def= let ⟨V , O ⟩ = EtJ e K ⟨ ρ, I ⟩ in ⟨ {−v | v ∈ V }, O ⟩

etc.

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 28 / 76

Simple interference semantics Formalizing the simple interference semantics

Denotational semantics with interferences (cont.)

Statements with interference: for thread t

CtJ stmt K : P(E)× P(Ω)× P(I)→ P(E)× P(Ω)× P(I)

pass interferences to expressions
collect new interferences due to assignments
accumulate interferences from inner statements
collect and accumulate errors from expressions

CtJ X ← e K ⟨R, O, I ⟩ def=
⟨ ∅, O, I ⟩ ⊔

⊔
ρ∈R
⟨ { ρ[X 7→ v] | v ∈ Vρ }, Oρ, { ⟨ t, X , v ⟩ | v ∈ Vρ } ⟩

CtJ s1; s2 K
def= CtJ s2 K ◦ CtJ s1 K

· · ·

noting ⟨Vρ, Oρ ⟩
def= EtJ e K ⟨ ρ, I ⟩

⊔ is now the element-wise ∪ in P(E)× P(Ω)× P(I)

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 29 / 76

Simple interference semantics Formalizing the simple interference semantics

Denotational semantics with interferences (cont.)

Program semantics: PJ prog K ⊆ Ω

Given prog ::= stmt1 || · · · || stmtn, we compute:

PJ prog K def=
[
lfp λ⟨O, I ⟩.

⊔
t∈T [CtJ stmtt K ⟨ E0, ∅, I ⟩]Ω,I

]
Ω

each thread analysis starts in an initial environment set E0
def= {λV .0 }

[X]Ω,I projects X ∈ P(E)× P(Ω)× P(I) on P(Ω)× P(I)
and interferences and errors from all threads are joined
the output environments from a thread analysis are not easily exploitable

PJ prog K only outputs the set of possible run-time errors

We will need to prove the soundness of PJ prog K
with respect to the interleaving semantics. . .

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 30 / 76

Simple interference semantics Formalizing the simple interference semantics

Interference abstraction

Abstract interferences I♯

P(I) def= P(T× V× R) is abstracted as I♯ def= (T× V)→ R♯

where R♯ abstracts P(R) (e.g. intervals)

Abstract semantics with interferences C♯
tJ s K

derived from C♯J s K in a generic way:

Example: C♯
t J X ← e K ⟨R♯, Ω, I♯ ⟩

for each Y in e, get its interference Y ♯
R =

⊔♯

R
{ I♯⟨ u, Y ⟩ | u ̸= t }

if Y ♯
R ̸= ⊥

♯
R, replace Y in e with get⟨Y , R♯ ⟩ ⊔♯

R Y ♯
R

get(Y , R♯) extracts the abstract values variable Y from R♯ ∈ E♯

compute ⟨R♯′, O′ ⟩ = C♯J e K ⟨R♯, O ⟩

enrich I♯⟨ t, X ⟩ with get(X , R♯′)

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 31 / 76

Simple interference semantics Formalizing the simple interference semantics

Static analysis with interferences

Abstract analysis

P♯J prog K def=
[

lim λ⟨O, I♯ ⟩.⟨O, I♯ ⟩▽
⊔♯

t∈T

[
C♯

t J stmtt K ⟨ E♯
0 , ∅, I♯ ⟩

]
Ω,I♯

]
Ω

effective analysis by structural induction
P♯J prog K is sound with respect to PJ prog K
termination ensured by a widening
parameterized by a choice of abstract domains R♯, E♯

interferences are flow-insensitive and non-relational in R♯

thread analysis remains flow-sensitive and relational in E♯

reminder: [X]Ω, [Y]Ω,I♯ keep only X ’s component in Ω, Y ’s components in Ω and I♯

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 32 / 76

Simple interference semantics Path-based soundness proof

Path-based soundness proof

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 33 / 76

Simple interference semantics Path-based soundness proof

Control paths of a sequential program

atomic ::= X ← exp | exp ▷◁ 0

Control paths
π : stmt→ P(atomic∗)

π(X ← e) def= {X ← e }
π(if e ▷◁ 0 then s fi) def= ({ e ▷◁ 0 } · π(s)) ∪ { e ̸▷◁ 0 }

π(while e ▷◁ 0 do s done) def=
(⋃

i≥0({ e ▷◁ 0 } · π(s))i
)
· { e ̸▷◁ 0 }

π(s1; s2) def= π(s1) · π(s2)

π(stmt) is a (generally infinite) set of finite control paths

e.g. π(i ← 0; while i < 10 do i ← i + 1 done; x ← i) = i ← 0 · (i < 10 · i ← i + 1)∗ · x ← i

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 34 / 76

Simple interference semantics Path-based soundness proof

Path-based concrete semantics of sequential programs

Join-over-all-path semantics
ΠJ P K : (P(E)× P(Ω))→ (P(E)× P(Ω)) P ⊆ atomic∗

ΠJ P K⟨R, O ⟩ def=
⊔

s1·...·sn∈P
(CJ sn K ◦ · · · ◦ CJ s1 K)⟨R, O ⟩

Semantic equivalence
CJ stmt K = ΠJ π(stmt) K

no longer true in the abstract

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 35 / 76

Simple interference semantics Path-based soundness proof

Path-based concrete semantics of concurrent programs

Concurrent control paths
π∗

def= { interleavings of π(stmtt), t ∈ T }
= { p ∈ atomic∗ | ∀t ∈ T, proj t(p) ∈ π(stmtt) }

Interleaving program semantics
P∗J prog K def= [ΠJ π∗ K⟨ E0, ∅ ⟩]Ω

(proj t (p) keeps only the atomic statement in p coming from thread t)

(≃ sequentially consistent executions [Lamport 79])

Issues:
too many paths to consider exhaustively
no induction structure to iterate on
=⇒ abstract as a denotational semantics

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 36 / 76

Simple interference semantics Path-based soundness proof

Soundness of the interference semantics

Soundness theorem
P∗J prog K ⊆ PJ prog K

Proof sketch:

define ΠtJ P K X def=
⊔
{CtJ s1; . . . ; sn K X | s1 · . . . · sn ∈ P },

then ΠtJ π(s) K = CtJ s K ;

given the interference fixpoint I ⊆ I from PJ prog K ,
prove by recurrence on the length of p ∈ π∗ that:

∀ρ ∈ [ΠJ p K⟨ E0, ∅ ⟩]E , ∀t ∈ T,
∃ρ′ ∈ [ΠtJ proj t(p) K⟨ E0, ∅, I ⟩]E such that
∀X ∈ V, ρ(X) = ρ′(X) or ⟨ u, X , ρ(X) ⟩ ∈ I for some u ̸= t.

[ΠJ p K⟨ E0, ∅ ⟩]Ω ⊆
⋃

t∈T [ΠtJ proj t(p) K⟨ E0, ∅, I ⟩]Ω

Notes:
sound but not complete
can be extended to soundness proof under weakly consistent memories

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 37 / 76

Weakly consistent memories

Weakly consistent memories

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 38 / 76

Weakly consistent memories

Issues with weak consistency

program written
F1 ← 1; F2 ← 1;
if F2 = 0 then if F1 = 0 then

S1 S2
fi fi

−→
program executed

if F2 = 0 then if F1 = 0 then
F1 ← 1; F2 ← 1;
S1 S2

fi fi

(simplified Dekker mutual exclusion algorithm)

S1 and S2 cannot execute simultaneously.

Not a sequentially consistent behavior!

Caused by:
write FIFOs, caches, distributed memory
hardware or compiler optimizations, transformations
. . .

behavior accepted by Java [Mans05]

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 39 / 76

Weakly consistent memories

Issues with weak consistency

program written
F1 ← 1; F2 ← 1;
if F2 = 0 then if F1 = 0 then

S1 S2
fi fi

−→
program executed

if F2 = 0 then if F1 = 0 then
F1 ← 1; F2 ← 1;
S1 S2

fi fi

(simplified Dekker mutual exclusion algorithm)

S1 and S2 can execute simultaneously.
Not a sequentially consistent behavior!

Caused by:
write FIFOs, caches, distributed memory
hardware or compiler optimizations, transformations
. . .

behavior accepted by Java [Mans05]

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 39 / 76

Weakly consistent memories

Hardware memory model example: TSO

buffer2

shared memory

x ← 1

y ← 12

x ← 5

x ← 10

x=0 y=99

x ← 1

y ← 12

x ← 5

x ← 10

buffer1

thread1 thread2

Total Store Ordering: model for intel x86

each thread writes to a FIFO queue
queues are flushed non-deterministically to the shared memory
a thread reads back from its queue if possible
and from shared memory otherwise

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 40 / 76

Weakly consistent memories

Out of thin air principle

original program
R1 ← X; R ← Y;
Y ← R1 X ← R2

−→
“optimized” program

Y ← 42;
R1 ← X; R2 ← Y;
Y ← R1 X ← R2

(example from causality test case #4 for Java by Pugh et al.)

We should not have R1 = 42.

Possible if we allow speculative writes!
=⇒ we disallow this kind of program transformations.

(also forbidden in Java)

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 41 / 76

Weakly consistent memories

Out of thin air principle

original program
R1 ← X; R ← Y;
Y ← R1 X ← R2

−→
“optimized” program

Y ← 42;
R1 ← X; R2 ← Y;
Y ← R1 X ← R2

(example from causality test case #4 for Java by Pugh et al.)

We should not have R1 = 42.

Possible if we allow speculative writes!
=⇒ we disallow this kind of program transformations.

(also forbidden in Java)

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 41 / 76

Weakly consistent memories

Atomicity and granularity

original program
X ← X + 1 X ← X + 1

−→ executed program
r1 ← X + 1 r2 ← X + 1
X ← r1 X ← r2

We assumed that assignments are atomic. . .

but that may not be the case

The second program admits more behaviors
e.g.: X = 1 at the end of the program
[Reyn04]

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 42 / 76

Weakly consistent memories

Atomicity and granularity

original program
X ← X + 1 X ← X + 1

−→ executed program
r1 ← X + 1 r2 ← X + 1
X ← r1 X ← r2

We assumed that assignments are atomic. . .
but that may not be the case

The second program admits more behaviors
e.g.: X = 1 at the end of the program
[Reyn04]

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 42 / 76

Weakly consistent memories

Path-based definition of weak consistency

Acceptable control path transformations: p ⇝ q
only reduce interferences and errors

Reordering: X1 ← e1 · X2 ← e2 ⇝ X2 ← e2 · X1 ← e1
(if X1 /∈ var(e2), X2 /∈ var(e1), and e1 does not stop the program)

Propagation: X ← e · s ⇝ X ← e · s[e/X]
(if X /∈ var(e), var(e) are thread-local, and e is deterministic)

Factorization: s1 · . . . · sn ⇝ X ← e · s1[X/e] · . . . · sn[X/e]
(if X is fresh, ∀i, var(e) ∩ lval(si) = ∅, and e has no error)

Decomposition: X ← e1 + e2 ⇝ T ← e1 · X ← T + e2
(change of granularity)

. . .

but NOT:
“out-of-thin-air” writes: X ← e ⇝ X ← 42 · X ← e

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 43 / 76

Weakly consistent memories

Soundness of the interference semantics

Interleaving semantics of transformed programs P′∗J prog K

π′(s) def= { p | ∃p′ ∈ π(s): p′ ⇝ ∗ p }
π′∗

def= { interleavings of π′(stmtt), t ∈ T }
P′∗J prog K def= [ΠJ π′∗ K⟨ E0, ∅ ⟩]Ω

Soundness theorem
P′∗J prog K ⊆ PJ prog K

=⇒ the interference semantics is sound
wrt. weakly consistent memories and changes of granularity

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 44 / 76

Locks and synchronization

Locks and synchronization

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 45 / 76

Locks and synchronization

Scheduling

Synchronization primitives
stmt ::= lock(m)

| unlock(m)
m ∈ M : finite set of non-recursive mutexes

Scheduling
mutexes ensure mutual exclusion
at each time, each mutex can be locked by a single thread

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 46 / 76

Locks and synchronization

Mutual exclusion

WW W

R RWR

lock(m) unlock(m)

p1

p2

lock(m) unlock(m)

We use a refinement of the simple interference semantics
by partitioning wrt. an abstract local view of the scheduler C

E ⇝ E × C, E♯ ⇝ C→ E♯

I
def= T× V× R ⇝ I

def= T× C× V× R,
I♯ def= (T× V)→ R♯ ⇝ I♯ def= (T× C× V)→ R♯

C
def= Crace ∪ Csync separates

data-race writes Crace

well-synchronized writes Csync

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 47 / 76

Locks and synchronization

Mutual exclusion

WW W

R RWR

lock(m) unlock(m)

lock(m) unlock(m)

p2

p1

Data-race effects Crace ≃ P(M)

Across read / write not protected by a mutex.
Partition wrt. mutexes M ⊆ M held by the current thread t.

CtJ X ← e K ⟨ ρ, M, I ⟩ adds { ⟨ t, M, X , v ⟩ | v ∈ EtJ X K ⟨ ρ, M, I ⟩ } to I
EtJ X K ⟨ ρ, M, I ⟩ = { ρ(X) } ∪ { v | ⟨ t′, M′, X , v ⟩ ∈ I, t ̸= t′, M ∩M′ = ∅ }

Bonus: we get a data-race analysis for free!

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 47 / 76

Locks and synchronization

Mutual exclusion

WW W

R RWR

lock(m) unlock(m)

p1

p2

lock(m) unlock(m)

Well-synchronized effects Csync ≃ M× P(M)

last write before unlock affects first read after lock
partition interferences wrt. a protecting mutex m (and M)

CtJ unlock(m) K ⟨ ρ, M, I ⟩ stores ρ(X) into I
CtJ lock(m) K ⟨ ρ, M, I ⟩ imports values form I into ρ

imprecision: non-relational, largely flow-insensitive
=⇒ C ≃ P(M)× ({data − race} ∪ M)

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 47 / 76

Locks and synchronization

Example analysis

abstract consumer/producer
consumer producer

while random do while random do
lock(m);ℓ1 lock(m);
if X>0 then ℓ2X←X-1 fi; X←X+1;
unlock(m); if X>100 then X←100 fi;
ℓ3Y←X unlock(m)

done done

no data-race interference (proof of absence of data-race)

well-synchronized interferences:
consumer : x ← [0, 99]
producer : x ← [1, 100]

=⇒ we can prove that y ∈ [0, 100]
without locks, we cannot get y ≤ 100

Can be generalized to several consumers and producers.

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 48 / 76

Locks and synchronization

Deadlock checking

t1 t2
lock(a) lock(a)

lock(c) lock(b)
unlock(c) unlock(a)
lock(b) lock(a)
unlock(b) unlock(a)

unlock(a) unlock(b)

t1

t1

a

t1

a,b

t2

t2

b

t2

b,a

a

ab

t2

 a a

b

t1

a,c c

During the analysis, gather:
all reachable mutex configurations: R ⊆ T× P(M)
lock instructions from these configurations R × M

Then, construct a blocking graph between lock instructions
((t, m), ℓ) blocks ((t ′, m′), ℓ′) if

t ̸= t ′ and m ∩m′ = ∅ (configurations not in mutual exclusion)
ℓ ∈ m′ (blocking lock)

A deadlock is a cycle in the blocking graph.
generalization to larger cycles, with more threads involved in a deadlock, is easy

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 49 / 76

Locks and synchronization

Deadlock checking

t1 t2
lock(a) lock(a)

lock(c) lock(b)
unlock(c) unlock(a)
lock(b) lock(a)
unlock(b) unlock(a)

unlock(a) unlock(b)

lock(b) blocks

lock(a) blocks

lock(a) blocks

t1

t1

a

t1

a,b

t2

t2

b

t2

b,a

a

ab

t2

 a a

b

t1

a,c c

During the analysis, gather:
all reachable mutex configurations: R ⊆ T× P(M)
lock instructions from these configurations R × M

Then, construct a blocking graph between lock instructions
((t, m), ℓ) blocks ((t ′, m′), ℓ′) if

t ̸= t ′ and m ∩m′ = ∅ (configurations not in mutual exclusion)
ℓ ∈ m′ (blocking lock)

A deadlock is a cycle in the blocking graph.
generalization to larger cycles, with more threads involved in a deadlock, is easy

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 49 / 76

Beyond non-relational interferences

Beyond non-relational interferences

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 50 / 76

Beyond non-relational interferences Inspiration from program logics

Inspiration from program logics

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 51 / 76

Beyond non-relational interferences Inspiration from program logics

Reminder: Floyd–Hoare logic

Logic to prove properties about sequential programs [Hoar69].

Hoare triples: {P} stmt {Q}
annotate programs with logic assertions {P} stmt {Q}
(if P holds before stmt, then Q holds after stmt)

check that {P}stmt{Q} is derivable with the following rules
(the assertions are program invariants)

{P[e/X]}X ← e {P}
{P ∧ e ▷◁ 0} s {Q} P ∧ e ̸▷◁ 0⇒ Q
{P} if e ▷◁ 0 then s fi {Q}

{P} s1 {Q} {Q} s2 {R}
{P} s1; s2 {R}

{P ∧ e ▷◁ 0} s {P}
{P} while e ▷◁ 0 do s done {P ∧ e ̸▷◁ 0}

{P′} s {Q′} P ⇒ P′ Q′ ⇒ Q
{P} s {Q}

Link with abstract interpretation:
the equations reachability semantics (Xℓ)ℓ∈L provides the most precise Hoare triples in fixpoint
constructive form

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 52 / 76

Beyond non-relational interferences Inspiration from program logics

Jones’ rely-guarantee proof method

Idea: explicit interferences with (more) annotations [Jone81].
Rely-guarantee “quintuples”: R, G ⊢ {P} stmt {Q}

if P is true before stmt is executed
and the effect of other threads is included in R (rely)

then Q is true after stmt

and the effect of stmt is included in G (guarantee)

where:
P and Q are assertions on states (in P(Σ))

R and G are assertions on transitions (in P(Σ×A× Σ))

The parallel composition rule is:

R ∨ G2, G1 ⊢ {P1} s1 {Q1} R ∨ G1, G2 ⊢ {P2} s2 {Q2}
R, G1 ∨ G2 ⊢ {P1 ∧ P2} s1 || s2 {Q1 ∧ Q2}

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 53 / 76

Beyond non-relational interferences Inspiration from program logics

Rely-guarantee example

checking t1
ℓ1 while random do

x unchanged

ℓ2 if x < y then

y incremented

ℓ3 x ← x+1

0 ≤ y ≤ 102

fi
done

ℓ1 : x = y = 0
ℓ2 : x , y ∈ [0, 102], x ≤ y
ℓ3 : x ∈ [0, 101], y ∈ [1, 102], x < y

checking t2

y unchanged

ℓ4 while random do

0 ≤ x ≤ y

ℓ5 if y < 100 then
ℓ6 y ← y + [1,3]

fi
done

at ℓ4 : x = y = 0
at ℓ5 : x , y ∈ [0, 102], x ≤ y
at ℓ6 : x ∈ [0, 99], y ∈ [0, 99], x ≤ y

In this example:
guarantee exactly what is relied on (R1 = G1 and R2 = G2)
rely and guarantee are global assertions

Benefits of rely-guarantee:

more precise: can prove x ≤ y
invariants are still local to threads
checking a thread does not require looking at other threads,
only at an abstraction of their semantics

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 54 / 76

Beyond non-relational interferences Inspiration from program logics

Rely-guarantee example

checking t1
ℓ1 while random do x unchanged

ℓ2 if x < y then y incremented
ℓ3 x ← x+1 0 ≤ y ≤ 102

fi
done

ℓ1 : x = y = 0
ℓ2 : x , y ∈ [0, 102], x ≤ y
ℓ3 : x ∈ [0, 101], y ∈ [1, 102], x < y

checking t2

y unchanged ℓ4 while random do
0 ≤ x ≤ y ℓ5 if y < 100 then

ℓ6 y ← y + [1,3]
fi

done

at ℓ4 : x = y = 0
at ℓ5 : x , y ∈ [0, 102], x ≤ y
at ℓ6 : x ∈ [0, 99], y ∈ [0, 99], x ≤ y

In this example:
guarantee exactly what is relied on (R1 = G1 and R2 = G2)
rely and guarantee are global assertions

Benefits of rely-guarantee:

more precise: can prove x ≤ y
invariants are still local to threads
checking a thread does not require looking at other threads,
only at an abstraction of their semantics

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 54 / 76

Beyond non-relational interferences Rely-guarantee as abstract interpretation

Rely-guarantee as abstract interpretation

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 55 / 76

Beyond non-relational interferences Rely-guarantee as abstract interpretation

Modularity: main idea

bThread

x = 0

while x<y

 x++;

/* bla bla */

a b b a

Main idea: separate execution steps
from the current thread a

found by analysis by induction on the syntax of a
from other threads b

given as parameter in the analysis of a
inferred during the analysis of b

=⇒ express the semantics from the point of view of a single thread

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 56 / 76

Beyond non-relational interferences Rely-guarantee as abstract interpretation

Trace decomposition

a

a

a

b

a

b

bb

Reachable states projected on thread t: Rl(t)

attached to thread control point in L, not control state in T→ L
remember other thread’s control point as “auxiliary variables”
(required for completeness)

Rl(t) def= πt(R) ⊆ L× (V ∪ { pc t′ | t ̸= t ′ ∈ T })→ R

where πt(R) def= { ⟨ L(t), ρ [∀t ′ ̸= t: pc t′ 7→ L(t ′)] ⟩ | ⟨ L, ρ ⟩ ∈ R }

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 57 / 76

Beyond non-relational interferences Rely-guarantee as abstract interpretation

Trace decomposition

a

a

a

b

a

b

bb

Interferences generated by t: A(t) (≃ guarantees on transitions)

Extract the transitions with action t observed in Tp

(subset of the transition system, containing only transitions actually used in reachability)

A(t) def= αI(Tp)(t)

where αI(X)(t) def= { ⟨σi , σi+1 ⟩ | ∃σ0
a0→ σ1 · · ·

an−1→ σn ∈ X : ai = t }

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 57 / 76

Beyond non-relational interferences Rely-guarantee as abstract interpretation

Thread-modular concrete semantics

bThread

x = 0

while x<y

 x++;

/* bla bla */

a b b a

We express Rl(t) and A(t) directly from the transition system, without computing Tp

States: Rl
Interleave:

transitions from the current thread t
transitions from interferences A by other threads

Rl(t) = lfp Rt (A), where

Rt (Y)(X) def= πt (I) ∪ {πt (σ′) | ∃πt (σ) ∈ X : σ
t→τ σ′ } ∪

{πt (σ′) | ∃πt (σ) ∈ X : ∃t′ ̸= t: ⟨σ, σ′ ⟩ ∈ Y (t′) }

=⇒ similar to reachability for a sequential program, up to A

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 58 / 76

Beyond non-relational interferences Rely-guarantee as abstract interpretation

Thread-modular concrete semantics

a

a b b a

x = 0

while x<y

 x++;

/* bla bla */

Thread

We express Rl(t) and A(t) directly from the transition system, without computing Tp

Interferences: A

Collect transitions from a thread t and reachable states R:
A(t) = B(Rl)(t), where
B(Z)(t) def= { ⟨σ, σ′ ⟩ |πt (σ) ∈ Z(t) ∧ σ

t→τ σ′ }

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 58 / 76

Beyond non-relational interferences Rely-guarantee as abstract interpretation

Thread-modular concrete semantics

a

a b b a

x = 0

while x<y

 x++;

/* bla bla */

Thread

We express Rl(t) and A(t) directly from the transition system, without computing Tp

Recursive definition:
Rl(t) = lfp Rt (A)
A(t) = B(Rl)(t)

=⇒ express the most precise solution as nested fixpoints:

Rl = lfp λZ .λt. lfp Rt (B(Z))

Completeness: ∀t:Rl(t) ≃ R (πt is bijective thanks to auxiliary variables)
any property provable with the interleaving semantics
can be proven with the thread-modular semantics!

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 58 / 76

Beyond non-relational interferences Rely-guarantee as abstract interpretation

Fixpoint form

Constructive fixpoint form:

Use Kleene’s iteration to construct fixpoints:

Rl = lfp H =
⊔

n∈N Hn(λt.∅)
in the pointwise powerset lattice

∏
t∈T
{t} → P(Σt)

H(Z)(t) = lfp Rt(B(Z)) =
⋃

n∈N(Rt(B(Z)))n(∅)
in the powerset lattice P(Σt)
(similar to the sequential semantics of thread t in isolation)

=⇒ nested iterations

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 59 / 76

Beyond non-relational interferences Rely-guarantee as abstract interpretation

Abstract rely-guarantee

Suggested algorithm: nested iterations with acceleration

once abstract domains for states and interferences are chosen

start from Rl♯
0

def= A♯
0

def= λt.⊥♯

while A♯
n is not stable

compute ∀t ∈ T:Rl♯
n+1(t) def= lfp R♯

t (A♯
n)

by iteration with widening ▽
(≃ separate analysis of each thread)

compute A♯
n+1

def= A♯
n ▽ B♯(Rl♯

n+1)

when A♯
n = A♯

n+1, return Rl♯
n

=⇒ thread-modular analysis
parameterized by abstract domains (only source of approximation)
able to easily reuse existing sequential analyses

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 60 / 76

Beyond non-relational interferences Retrieving thread-modular abstractions

Retrieving thread-modular abstractions

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 61 / 76

Beyond non-relational interferences Retrieving thread-modular abstractions

Flow-insensitive abstraction

Flow-insensitive abstraction:
reduce as much control information as possible
but keep flow-sensitivity on each thread’s control location

Local state abstraction: remove auxiliary variables

αnf
R (X) def= { ⟨ ℓ, ρ|V ⟩ | ⟨ ℓ, ρ ⟩ ∈ X } ∪ X

Interference abstraction: remove all control state

αnf
A (Y) def= { ⟨ ρ, ρ′ ⟩ | ∃L, L′ ∈ T→ L: ⟨ ⟨ L, ρ ⟩, ⟨ L′, ρ′ ⟩ ⟩ ∈ Y }

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 62 / 76

Beyond non-relational interferences Retrieving thread-modular abstractions

Flow-insensitive abstraction (cont.)
Flow-insensitive fixpoint semantics:

We apply αnf
R and αnf

A to the nested fixpoint semantics.

Rlnf def= lfp λZ .λt. lfp Rnf
t (Bnf (Z)), where

Bnf (Z)(t) def= { ⟨ ρ, ρ′ ⟩ | ∃ℓ, ℓ′ ∈ L: ⟨ ℓ, ρ ⟩ ∈ Z(t) ∧ ⟨ ℓ, ρ ⟩ →t ⟨ ℓ′, ρ′ ⟩ }
(extract interferences from reachable states)

Rnf
t (Y)(X) def= R loc

t (X) ∪ Anf
t (Y)(X)

(interleave steps)

R loc
t (X) def= {⟨ ℓi

t , λV .0 ⟩} ∪ { ⟨ ℓ′, ρ′ ⟩ | ∃⟨ ℓ, ρ ⟩ ∈ X : ⟨ ℓ, ρ ⟩ →t ⟨ ℓ′, ρ′ ⟩ }
(thread step)

Anf
t (Y)(X) def= { ⟨ ℓ, ρ′ ⟩ | ∃ρ, u ̸= t: ⟨ ℓ, ρ ⟩ ∈ X ∧ ⟨ ρ, ρ′ ⟩ ∈ Y (u) }

(interference step)

Cost/precision trade-off:
less variables
=⇒ subsequent numeric abstractions are more efficient
insufficient to analyze x ← x + 1 || x ← x + 1

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 63 / 76

Beyond non-relational interferences Retrieving thread-modular abstractions

Retrieving the simple interference-based analysis

Cartesian abstraction: on interferences
forget the relations between variables
forget the relations between values before and after transitions (input-output
relationship)

only remember which variables are modified, and their value:

αnr
A (Y) def= λV .{ x ∈ V | ∃⟨ ρ, ρ′ ⟩ ∈ Y : ρ(V) ̸= x ∧ ρ′(V) = x }

to apply interferences, we get, in the nested fixpoint form:
Anr

t (Y)(X) def= { ⟨ ℓ, ρ[V 7→ v] ⟩ | ⟨ ℓ, ρ ⟩ ∈ X , V ∈ V, ∃u ̸= t: v ∈ Y (u)(V) }

no modification on the state
(the analysis of each thread can still be relational)

=⇒ we get back our simple interference analysis!

Finally, use a numeric abstract domain α : P(V→ R)→ D♯

for interferences, V→ P(R) is abstracted as V→ D♯

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 64 / 76

Beyond non-relational interferences Retrieving thread-modular abstractions

A note on unbounded thread creation

Extension: relax the finiteness constraint on T

there is still a finite syntactic set of threads Ts

some threads T∞ ⊆ Ts can have several instances
(possibly an unbounded number)

Flow-insensitive analysis:
local state and interference domains have finite dimensions
(Et and (L × E)× (L × E), as opposed to E and E × E)

all instances of a thread t ∈ Ts are isomorphic
=⇒ iterate the analysis on the finite set Ts (instead of T)

we must handle self-interferences for threads in T∞:
Anf

t (Y)(X) def=
{ (ℓ, ρ′) | ∃ρ, u: (u ̸= t ∨ t ∈ T∞) ∧ (ℓ, ρ) ∈ X ∧ (ρ, ρ′) ∈ Y (u) }

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 65 / 76

Beyond non-relational interferences Retrieving thread-modular abstractions

From traces to thread-modular analyses

abstract states
(T × L) → E♯

abstract interferences
T → E♯

static analyzer

non-relational interferences

T → P(E)

αE
OO

local states

(T × L) → P(E)

αE

OO

flow-insensitive interferences

T → P(E × E)

αnr
A

OO

rely-guarantee
(without aux. variables)

local states

Rl :
∏

t∈T
{t} → P(Σt)

αnf
R

OO

interferences

A : T → P(Σ × Σ)

αnf
A

OO

rely-guarantee
(with aux. variables)

πt
OO

αitf
OO

interleaved execution trace prefixes concrete executions
Tp ∈ P(Σ∗)

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 66 / 76

Beyond non-relational interferences Relational thread-modular abstractions

Relational thread-modular abstractions

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 67 / 76

Beyond non-relational interferences Relational thread-modular abstractions

Fully relational interferences with numeric domains
Reachability : Rl(t) : L → P(Va → Z)
approximated as usual with one numeric abstract element per label
auxiliary variables pcb ∈ Va are kept (program labels as numbers)

Interferences : A(t) ∈ P(Σ× Σ)
a numeric relation can be expressed in a classic numeric domain
as P((Va → Z)× (Va → Z)) ≃ P((Va ∪ V′

a)→ Z)

X ∈ Va value of variable X or auxiliary variable in the pre-state
X ′ ∈ V′

a value of variable X or auxiliary variable in the post-state
e.g.: { (x , x + 1) | x ∈ [0, 10] } is represented as x ′ = x + 1 ∧ x ∈ [0, 10]
=⇒ use one global abstract element per thread

Benefits and drawbacks:
simple: reuse stock numeric abstractions and thread iterators
precise: the only source of imprecision is the numeric domain
costly: must apply a (possibly large) relation at each program step

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 68 / 76

Beyond non-relational interferences Relational thread-modular abstractions

Experiments with fully relational interferences

t1
while z < 10000

z ← z + 1
if y < c then y ← y + 1

done

t2
while z < 10000

z ← z + 1
if x < y then x ← x + 1

done

Experiments by R. Monat
Scalability in the number of threads (assuming fixed number of variables)

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 69 / 76

Beyond non-relational interferences Relational thread-modular abstractions

Partially relational interferences

Abstraction: keep relations maintained by interferences

remove control state in interferences (αnf
A)

keep mutex state M (set of mutexes held)

forget input-output relationships
keep relationships between variables

αinv
A (Y) def= { ⟨M, ρ ⟩ | ∃ρ′: ⟨ ⟨M, ρ ⟩, ⟨M, ρ′ ⟩ ⟩ ∈ Y ∨ ⟨ ⟨M, ρ′ ⟩, ⟨M, ρ ⟩ ⟩ ∈ Y }

⟨M, ρ ⟩ ∈ αinv
A (Y) =⇒ ⟨M, ρ ⟩ ∈ αinv

A (Y) after any sequence of interferences from Y

Lock invariant:

{ ρ | ∃t ∈ T , M: ⟨M, ρ ⟩ ∈ αinv
A (I(t)), m /∈ M }

property maintained outside code protected by m
possibly broken while m is locked
restored before unlocking m

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 70 / 76

Beyond non-relational interferences Relational thread-modular abstractions

Relational lock invariants

t1

t2

lock unlock

lock unlock

Improved interferences: mixing simple interferences and lock invariants

apply non-relational data-race interferences
unless threads hold a common lock (mutual exclusion)

apply non-relational well-synchronized interferences at lock points
then intersect with the lock invariant
gather lock invariants for lock / unlock pairs

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 71 / 76

Beyond non-relational interferences Relational thread-modular abstractions

Relational lock invariants

t1

t2

lock unlock

lock unlock

non−rel

Improved interferences: mixing simple interferences and lock invariants

apply non-relational data-race interferences
unless threads hold a common lock (mutual exclusion)

apply non-relational well-synchronized interferences at lock points
then intersect with the lock invariant
gather lock invariants for lock / unlock pairs

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 71 / 76

Beyond non-relational interferences Relational thread-modular abstractions

Relational lock invariants

t1

t2

rel

lock unlock

lock unlock

Improved interferences: mixing simple interferences and lock invariants

apply non-relational data-race interferences
unless threads hold a common lock (mutual exclusion)

apply non-relational well-synchronized interferences at lock points
then intersect with the lock invariant
gather lock invariants for lock / unlock pairs

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 71 / 76

Beyond non-relational interferences Relational thread-modular abstractions

Relational lock invariants

t1

t2

rel

lock unlock

lock unlock

non−rel

Improved interferences: mixing simple interferences and lock invariants

apply non-relational data-race interferences
unless threads hold a common lock (mutual exclusion)

apply non-relational well-synchronized interferences at lock points
then intersect with the lock invariant
gather lock invariants for lock / unlock pairs

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 71 / 76

Beyond non-relational interferences Relational thread-modular abstractions

Monotonicity abstraction

Abstraction:
map variables to 1 monotonic or ⊤ don’t know

αmono
A (Y) def= λV .if ∀⟨ ρ, ρ′ ⟩ ∈ Y : ρ(V) ≤ ρ′(V) then 1 else ⊤

keep some input-output relationships
forgets all relations between variables
flow-insensitive

Inference and use
gather:
Amono(t)(V) =1⇐⇒
all assignments to V in t have the form V ← V + e, with e ≥ 0
use: combined with non-relational interferences
if ∀t: Amono(t)(V) =1
then any test with non-relational interference CJ X ≤ (V | [a, b]) K can be
strengthened into CJ X ≤ V K

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 72 / 76

Beyond non-relational interferences Relational thread-modular abstractions

Weakly relational interference example

analyzing t1

t1 t2

while random do x unchanged

lock(m); y incremented
if x < y then 0 ≤ y ≤ 102

x ← x + 1;
unlock(m)

analyzing t2

t1 t2

y unchanged while random do

0 ≤ x, x ≤ y lock(m);
if y < 100 then

y ← y + [1,3];
unlock(m)

Using all three interference abstractions:
non-relational interferences (0 ≤ y ≤ 102, 0 ≤ x)

lock invariants, with the octagon domain (x ≤ y)

monotonic interferences (y monotonic)

we can prove automatically that x ≤ y holds

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 73 / 76

Bibliography

Bibliography

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 74 / 76

Bibliography

Bibliography

[Bour93] F. Bourdoncle. Efficient chaotic iteration strategies with widenings. In Proc.
FMPA’93, LNCS vol. 735, pp. 128–141, Springer, 1993.

[Carr09] J.-L. Carré & C. Hymans. From single-thread to multithreaded: An efficient
static analysis algorithm. In arXiv:0910.5833v1, EADS, 2009.

[Cous84] P. Cousot & R. Cousot. Invariance proof methods and analysis techniques
for parallel programs. In Automatic Program Construction Techniques, chap. 12,
pp. 243–271, Macmillan, 1984.

[Cous85] R. Cousot. Fondements des méthodes de preuve d’invariance et de fatalité
de programmes parallèles. In Thèse d’Etat es sc. math., INP Lorraine, Nancy, 1985.

[Hoar69] C. A. R. Hoare. An axiomatic basis for computer programming. In
Com. ACM, 12(10):576–580, 1969.

[Jone81] C. B. Jones. Development methods for computer programs including a
notion of interference. In PhD thesis, Oxford University, 1981.

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 75 / 76

Bibliography

Bibliography (cont.)

[Lamp77] L. Lamport. Proving the correctness of multiprocess programs. In IEEE
Trans. on Software Engineering, 3(2):125–143, 1977.

[Lamp78] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. In Comm. ACM, 21(7):558–565, 1978.

[Mans05] J. Manson, B. Pugh & S. V. Adve. The Java memory model. In Proc.
POPL’05, pp. 378–391, ACM, 2005.

[Miné12] A. Miné. Static analysis of run-time errors in embedded real-time parallel C
programs. In LMCS 8(1:26), 63 p., arXiv, 2012.

[Owic76] S. Owicki & D. Gries. An axiomatic proof technique for parallel programs I.
In Acta Informatica, 6(4):319–340, 1976.

[Reyn04] J. C. Reynolds. Toward a grainless semantics for shared-variable
concurrency. In Proc. FSTTCS’04, LNCS vol. 3328, pp. 35–48, Springer, 2004.

[Sara07] V. A. Saraswat, R. Jagadeesan, M. M. Michael & C. von Praun. A
theory of memory models. In Proc. PPoPP’07, pp. 161–172, ACM, 2007.

Course 5a Thread-Modular Analysis of Concurrent Programs Antoine Miné p. 76 / 76

	Introduction
	Language and semantics
	Syntax
	Trace-based semantic model
	Reminders: sequential semantics
	Non-modular concurrent semantics

	Simple interference semantics
	Intuition
	Formalizing the simple interference semantics
	Path-based soundness proof

	Weakly consistent memories
	Locks and synchronization
	Beyond non-relational interferences
	Inspiration from program logics
	Rely-guarantee as abstract interpretation
	Retrieving thread-modular abstractions
	Relational thread-modular abstractions

	Bibliography

