Thread-Modular Analysis of Concurrent Programs

MPRI 2–6: Abstract Interpretation, application to verification and static analysis

Antoine Miné

Year 2023–2024

Course 6
26 October 2023
Concurrent programming

Principle: decompose a program into a set of (loosely) interacting processes.

- exploit parallelism in current computers
 (multi-processors, multi-cores, hyper-threading)

 “Free lunch is over” (change in Moore’s law, \(\times 2 \) transistors every 2 years)

- exploit several computers (distributed computing)

- ease of programming (GUI, network code, reactive programs)

But concurrent programs are hard to program and hard to verify:

- combinatorial exposition of execution paths (interleavings)

- errors lurking in hard-to-find corner cases (race conditions)

- unintuitive execution models (weak memory consistency)
Introduction

Scope

In this course: static thread model

- implicit communications through shared memory
- explicit communications through synchronisation primitives
- fixed number of threads
- numeric programs

(no dynamic creation of threads)
(real-valued variables)

Goal: static analysis

- infer numeric program invariants
- parameterized by a choice of numeric abstract domains
- discover run-time errors (e.g., divisions by 0)
- discover data-races (unprotected accesses by concurrent threads)
- discover deadlocks (some threads block each other indefinitely)
- application to analyzing embedded C programs
Outline

- Simple concurrent language
- Non-modular concurrent semantics
- Simple interference thread-modular concurrent semantics
- Weakly consistent memories
- Locks and synchronization
- Abstract rely-guarantee thread-modular concurrent semantics
- Relational interference abstractions
- Application: the AstréeA analyzer
Language and semantics
Structured numeric language

- finite set of (toplevel) threads: \(\text{stmt}_1 \) to \(\text{stmt}_n \)
- finite set of numeric program variables \(V \in \mathbb{V} \)
- finite set of statement locations \(\ell \in \mathcal{L} \)
- locations with possible run-time errors \(\omega \in \Omega \) (divisions by zero)

Structured language syntax

\[
\begin{align*}
\text{prog} & ::= \ell \text{stmt}_1 \ell \ || \ ... \ || \ell \text{stmt}_n \ell \\
\ell \text{stmt} & ::= \ell V \leftarrow \text{exp} \ell \\
& | \ell \text{if exp} \not= 0 \ \text{then} \ \ell \text{stmt} \ell \ \text{fi} \ell \\
& | \ell \text{while} \ \ell \text{exp} \not= 0 \ \text{do} \ \ell \text{stmt} \ell \ \text{done} \ell \\
& | \ell \text{stmt} ; \ell \text{stmt} \\
\text{exp} & ::= V \ | [c_1, c_2] \ | \neg \text{exp} \ | \text{exp} \diamond \text{exp} \\
c_1, c_2 & \in \mathbb{R} \cup \{+\infty, -\infty\}, \diamond \in \{+, -, \times, /, \omega\}, \not= \in \{=, <, \ldots\}
\end{align*}
\]
Multi-thread execution model

<table>
<thead>
<tr>
<th>t_1</th>
<th>t_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ_1 while random do</td>
<td>ℓ_4 while random do</td>
</tr>
<tr>
<td>ℓ_2 if $x < y$ then</td>
<td>ℓ_5 if $y < 100$ then</td>
</tr>
<tr>
<td>ℓ_3 $x \leftarrow x + 1$</td>
<td>ℓ_6 $y \leftarrow y + [1,3]$</td>
</tr>
</tbody>
</table>

Execution model:

- finite number of threads
- the memory is shared (x,y)
- each thread has its own program counter
- execution interleaves steps from threads t_1 and t_2
 assignments and tests are assumed to be atomic

\Rightarrow we have the global invariant $0 \leq x \leq y \leq 102$
Semantic model: labelled transition systems

Simple extension of transition systems

Labelled transition system: $(\Sigma, \mathcal{A}, \tau, I)$

- Σ: set of program states
- \mathcal{A}: set of actions
- $\tau \subseteq \Sigma \times \mathcal{A} \times \Sigma$: transition relation we note $(\sigma, a, \sigma') \in \tau$ as $\sigma \xrightarrow{a} \tau \sigma'$
- $I \subseteq \Sigma$: initial states

Labelled traces: sequences of states interspersed with actions
denoted as $\sigma_0 \xrightarrow{a_0} \sigma_1 \xrightarrow{a_1} \cdots \sigma_n \xrightarrow{a_n} \sigma_{n+1}$

τ is omitted on \rightarrow for traces for simplicity
From concurrent programs to labelled transition systems

- given: \(\text{prog} ::= \ell_1^{i_1} \text{stmt}_1^{\ell_1} \| \cdots \| \ell_n^{i_n} \text{stmt}_n^{\ell_n} \)
- threads are numbered: \(T \overset{\text{def}}{=} \{1, \ldots, n\} \)

Program states: \(\Sigma \overset{\text{def}}{=} (T \rightarrow L) \times E \)
- a control state \(L(t) \in L \) for each thread \(t \in T \) and
- a single shared memory state \(\rho \in E \overset{\text{def}}{=} \forall \rightarrow \mathbb{Z} \)

Initial states:
threads start at their first control point \(\ell_t^i \), variables are set to 0:
\(I \overset{\text{def}}{=} \{(\lambda t. \ell_t^i, \lambda V.0)\} \)

Actions: actions are thread identifiers: \(A \overset{\text{def}}{=} T \)
From concurrent programs to labelled transition systems

Transition relation: \(\tau \subseteq \Sigma \times A \times \Sigma \)

\[
\langle L, \rho \rangle \stackrel{t}{\longrightarrow}_\tau \langle L', \rho' \rangle \iff \langle L(t), \rho \rangle \stackrel{\tau[\text{stmt}_t]}{\longrightarrow} \langle L'(t), \rho' \rangle \land \\
\forall u \neq t: L(u) = L'(u)
\]

- based on the transition relation of individual threads seen as sequential processes \(\text{stmt}_t \): \(\tau[\text{stmt}_t] \subseteq (L \times E) \times (L \times E) \)
 - choose a thread \(t \) to run
 - update \(\rho \) and \(L(t) \)
 - leave \(L(u) \) intact for \(u \neq t \)

see course 2 for the full definition of \(\tau[\text{stmt}] \)

- each transition \(\sigma \rightarrow_{\tau[\text{stmt}_t]} \sigma' \) leads to many transitions \(\rightarrow_\tau \)!
Interleaved trace semantics

Maximal and finite prefix trace semantics are as before:

Blocking states: \[\mathcal{B} \overset{\text{def}}{=} \{ \sigma \mid \forall \sigma' : \forall t : \sigma \xrightarrow{t} \tau \sigma' \} \]

Maximal traces: \[\mathcal{M}_\infty \text{ (finite or infinite)} \]
\[
\mathcal{M}_\infty \overset{\text{def}}{=} \{ \sigma_0 \xrightarrow{t_0} \cdots \xrightarrow{t_{n-1}} \sigma_n \mid n \geq 0 \land \sigma_0 \in \mathcal{I} \land \sigma_n \in \mathcal{B} \land \forall i < n : \sigma_i \xrightarrow{t_i} \tau \sigma_{i+1} \} \cup \\
\{ \sigma_0 \xrightarrow{t_0} \sigma_1 \cdots \mid n \geq 0 \land \sigma_0 \in \mathcal{I} \land \forall i < \omega : \sigma_i \xrightarrow{t_i} \tau \sigma_{i+1} \}
\]

Finite prefix traces: \[\mathcal{T}_p \]
\[
\mathcal{T}_p \overset{\text{def}}{=} \{ \sigma_0 \xrightarrow{t_0} \cdots \xrightarrow{t_{n-1}} \sigma_n \mid n \geq 0 \land \sigma_0 \in \mathcal{I} \land \forall i < n : \sigma_i \xrightarrow{t_i} \tau \sigma_{i+1} \}
\]
\[
\mathcal{T}_p = \text{lfp } F_p \text{ where } F_p(X) = \mathcal{I} \cup \{ \sigma_0 \xrightarrow{t_0} \cdots \xrightarrow{t_n} \sigma_{n+1} \mid n \geq 0 \land \sigma_0 \xrightarrow{t_0} \cdots \xrightarrow{t_{n-1}} \sigma_n \in X \land \sigma_n \xrightarrow{t_n} \tau \sigma_{n+1} \}
\]
Fairness conditions: avoid threads being denied to run forever

Given \(enabled(\sigma, t) \stackrel{\text{def}}{=} \exists \sigma' \in \Sigma: \sigma \xrightarrow{t} \tau \sigma' \)

an infinite trace \(\sigma_0 \xrightarrow{t_0} \cdots \sigma_n \xrightarrow{t_n} \cdots \) is:

- **weakly fair** if \(\forall t \in T: \exists i: \forall j \geq i: enabled(\sigma_j, t) \implies \forall i: \exists j \geq i: a_j = t \)

 no thread can be continuously enabled without running

- **strongly fair** if \(\forall t \in T: \exists j \geq i: enabled(\sigma_j, t) \implies \forall i: \exists j \geq i: a_j = t \)

 no thread can be infinitely often enabled without running

Proofs under fairness conditions given:

- the maximal traces \(M_\infty \) of a program
- a property \(X \) to prove (as a set of traces)
- the set \(F \) of all (weakly or strongly) fair and of finite traces

\(\implies \) prove \(M_\infty \cap F \subseteq X \) instead of \(M_\infty \subseteq X \)
Fairness (cont.)

Example: while $x \geq 0$ do $x \leftarrow x + 1$ done || $x \leftarrow -2$

- may not terminate without fairness
- always terminates under weak and strong fairness

Finite prefix trace abstraction

$M_\infty \cap F \subseteq X$ is abstracted into testing $\alpha_{\preceq}(M_\infty \cap F) \subseteq \alpha_{\preceq}(X)$

for all fairness conditions F, $\alpha_{\preceq}(M_\infty \cap F) = \alpha_{\preceq}(M_\infty) = T_p$

recall that $\alpha_{\preceq}(T) \overset{\text{def}}{=} \{ t \in \Sigma^* \mid \exists u \in T : t \preceq u \}$ is the finite prefix abstraction

and $T = \alpha_{\preceq}(M_\infty)$

\implies fairness-dependent properties cannot be proved with finite prefixes only

In the rest of the course, we ignore fairness conditions
Reachability semantics for concurrent programs

Reminder : Reachable state semantics: \(\mathcal{R} \in \mathcal{P}(\Sigma) \)

Reachable states in any execution:

\[
\mathcal{R} \overset{\text{def}}{=} \{ \sigma \mid \exists n \geq 0, \sigma_0, \ldots, \sigma_n: \\
\sigma_0 \in \mathcal{I}, \forall i < n: \exists t \in \mathcal{T}: \sigma_i \xrightarrow{t} \tau \sigma_{i+1} \land \sigma = \sigma_n \}
\]

\[
\mathcal{R} = \text{lfp } F_{\mathcal{R}} \text{ where } F_{\mathcal{R}}(X) = \mathcal{I} \cup \{ \sigma \mid \exists \sigma' \in X, t \in \mathcal{T}: \sigma' \xrightarrow{t} \tau \sigma \}
\]

Can prove (non-)reachability, but not ordering, termination, liveness and cannot exploit fairness.

Abstraction of the finite trace semantics.

\[
\mathcal{R} = \alpha_p(\mathcal{T}_p) \text{ where } \alpha_p(X) \overset{\text{def}}{=} \{ \sigma \mid \exists n \geq 0, \sigma_0 \xrightarrow{t_0} \cdots \sigma_n \in X: \sigma = \sigma_n \}
\]
Equational state semantics of sequential program

- see lfp \(f \) as the least solution of an equation \(x = f(x) \)
- partition states by control: \(P(\mathcal{L} \times \mathcal{E}) \cong \mathcal{L} \rightarrow P(\mathcal{E}) \)
 \(\mathcal{X}_\ell \in P(\mathcal{E}) \): invariant at \(\ell \in \mathcal{L} \)
 \(\forall \ell \in \mathcal{L}: \mathcal{X}_\ell \overset{\text{def}}{=} \{ m \in \mathcal{E} \mid \langle \ell, m \rangle \in \mathcal{R} \} \)

\(\Rightarrow \) set of recursive equations on \(\mathcal{X}_\ell \)

Example:

\[\begin{align*}
\ell^1 & \quad i \leftarrow 2; \\
\ell^2 & \quad n \leftarrow [-\infty, +\infty]; \\
\ell^3 & \quad \text{while } \ell^4 i < n \text{ do} \\
& \quad \ell^5 \quad \text{if } [0,1] = 0 \text{ then} \\
& \quad \quad \ell^6 \quad i \leftarrow i + 1 \\
& \quad \quad \text{fi} \\
\ell^7 & \quad \text{done} \\
\ell^8 & \quad \\
\end{align*} \]

\[\begin{align*}
\mathcal{X}_1 &= \mathcal{I} \\
\mathcal{X}_2 &= \mathcal{C}[i \leftarrow 2] \mathcal{X}_1 \\
\mathcal{X}_3 &= \mathcal{C}[n \leftarrow [-\infty, +\infty]] \mathcal{X}_2 \\
\mathcal{X}_4 &= \mathcal{X}_3 \cup \mathcal{X}_7 \\
\mathcal{X}_5 &= \mathcal{C}[i < n] \mathcal{X}_4 \\
\mathcal{X}_6 &= \mathcal{X}_5 \\
\mathcal{X}_7 &= \mathcal{X}_5 \cup \mathcal{C}[i \leftarrow i + 1] \mathcal{X}_6 \\
\mathcal{X}_8 &= \mathcal{C}[i \geq n] \mathcal{X}_4 \\
\end{align*} \]
Denotational state semantics

Alternate view as an input-output state function $C[\text{stmt}]$

$$C[\text{stmt}] : \mathcal{P}(\mathcal{E}) \rightarrow \mathcal{P}(\mathcal{E})$$

- $C[X \leftarrow e] R \overset{\text{def}}{=} \{ \rho[X \mapsto v] | \rho \in R, v \in E[e] \rho \}$
- $C[e \triangleright 0] R \overset{\text{def}}{=} \{ \rho \in R | \exists v \in E[e] \rho : v \triangleright 0 \}$
- $C[\text{if } e \triangleright 0 \text{ then } s \text{ fi }] R \overset{\text{def}}{=} (C[s] \circ C[e \triangleright 0]) R \sqcup C[e \triangleright 0] R$
- $C[s_1; s_2] \overset{\text{def}}{=} C[s_2] \circ C[s_1]$
- $C[\text{while } e \triangleright 0 \text{ do } s \text{ done }] R \overset{\text{def}}{=} C[e \triangleright 0] (\text{lfp} \lambda Y. R \sqcup (C[s] \circ C[e \triangleright 0]) Y)$

- Mutate memory states in \mathcal{E}
- Structured: nested loops yield nested fixpoints
- Big-step: forget information on intermediate locations ℓ
- Mimics an actual interpreter
Equational vs. denotational form

Equational:

\[
\begin{aligned}
X_1 &= \top \\
X_2 &= F_2(X_1) \\
X_3 &= F_3(X_1) \\
X_4 &= F_4(X_3, X_4)
\end{aligned}
\]

- linear memory in program **length**
- flexible solving strategy
- flexible context sensitivity
- easy to adapt to concurrency, using a product of CFG

Denotational:

\[
\begin{aligned}
i &= 0; \\
\textbf{while} (i < nb) \\
\{ \\
a[i] &= 12; \\
i &++; \\
\}
\end{aligned}
\]

\[
\begin{aligned}
C[\text{while } c \text{ do } b \text{ done}] X & \overset{\text{def}}{=} C[\neg c](\text{lfp } \lambda Y. X \cup C[b](C[c] Y)) \\
C[\text{if } c \text{ then } t \text{ fi}] X & \overset{\text{def}}{=} C[t](C[c] X) \cup C[\neg c] X \\
\end{aligned}
\]

- linear memory in program **depth**
- fixed iteration strategy
- fixed context sensitivity (follows the program structure)
- no inductive definition of the product \(\implies\) thread-modular analysis
Non-modular concurrent semantics
Equational concurrent state semantics

Equational form:

- for each $L \in \mathbb{T} \rightarrow \mathbb{L}$, a variable X_L with value in \mathcal{E}
- equations are derived from thread equations $eq(\text{stmt}_t)$ as:

$$X_{L_1} = \bigcup_{t \in \mathbb{T}} \{ F(X_{L_2}, \ldots, X_{L_N}) |$$
$$\exists (X_{\ell_1} = F(X_{\ell_2}, \ldots, X_{\ell_N}) \in eq(\text{stmt}_t):$$
$$\forall i \leq N: L_i(t) = \ell_i, \forall u \neq t: L_i(u) = L_1(u) \}$$

Join with \cup equations from $eq(\text{stmt}_t)$ updating a single thread $t \in \mathbb{T}$.

(see course 2 for the full definition of $eq(\text{stmt})$)
Equational state semantics (illustration)

Product of control-flow graphs:
- control state = tuple of program points
 \(\implies\) combinatorial explosion of abstract states
- transfer functions are duplicated
Equational state semantics (example)

<table>
<thead>
<tr>
<th>t₁</th>
<th>t₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ₁ while random do</td>
<td>ℓ₄ while random do</td>
</tr>
<tr>
<td>ℓ₂ if x < y then</td>
<td>ℓ₅ if y < 100 then</td>
</tr>
<tr>
<td>ℓ₃ x ← x + 1</td>
<td>ℓ₆ y ← y + [1,3]</td>
</tr>
</tbody>
</table>

Equation system:

\[
\begin{align*}
\mathcal{X}_{1,4} &= I \\
\mathcal{X}_{2,4} &= \mathcal{X}_{1,4} \cup C[x \geq y] \mathcal{X}_{2,4} \cup C[x \leftarrow x + 1] \mathcal{X}_{3,4} \\
\mathcal{X}_{3,4} &= C[x < y] \mathcal{X}_{2,4} \\
\mathcal{X}_{1,5} &= \mathcal{X}_{1,4} \cup C[y \geq 100] \mathcal{X}_{1,5} \cup C[y \leftarrow y + [1,3]] \mathcal{X}_{1,6} \\
\mathcal{X}_{2,5} &= \mathcal{X}_{1,5} \cup C[x \geq y] \mathcal{X}_{2,5} \cup C[x \leftarrow x + 1] \mathcal{X}_{3,5} \cup C[y \geq 100] \mathcal{X}_{2,5} \cup C[y \leftarrow y + [1,3]] \mathcal{X}_{2,6} \\
\mathcal{X}_{3,5} &= C[x < y] \mathcal{X}_{2,5} \cup \mathcal{X}_{3,4} \cup C[y \geq 100] \mathcal{X}_{3,5} \cup C[y \leftarrow y + [1,3]] \mathcal{X}_{3,6} \\
\mathcal{X}_{1,6} &= C[y < 100] \mathcal{X}_{1,5} \\
\mathcal{X}_{2,6} &= \mathcal{X}_{1,6} \cup C[x \geq y] \mathcal{X}_{2,6} \cup C[x \leftarrow x + 1] \mathcal{X}_{3,6} \cup C[y \leftarrow y + [1,3]] \mathcal{X}_{2,5} \\
\mathcal{X}_{3,6} &= C[x < y] \mathcal{X}_{2,6} \cup C[y < 100] \mathcal{X}_{3,5}
\end{align*}
\]
Equational state semantics (example)

Example: inferring $0 \leq x \leq y \leq 102$

<table>
<thead>
<tr>
<th></th>
<th>t_1</th>
<th></th>
<th>t_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ_1</td>
<td>while random do</td>
<td>ℓ_4</td>
<td>while random do</td>
</tr>
<tr>
<td>ℓ_2</td>
<td>if $x < y$ then</td>
<td>ℓ_5</td>
<td>if $y < 100$ then</td>
</tr>
<tr>
<td>ℓ_3</td>
<td>$x \leftarrow x + 1$</td>
<td>ℓ_6</td>
<td>$y \leftarrow y + [1,3]$</td>
</tr>
</tbody>
</table>

Pros:
- easy to construct
- easy to further abstract in an abstract domain \mathcal{E}^*

Cons:
- explosion of the number of variables and equations
- explosion of the size of equations
 \implies efficiency issues
- the equation system does *not* reflect the program structure
 (not defined by induction on the concurrent program)
Wish-list

We would like to:

- keep information attached to **syntactic** program locations
 (control points in \mathcal{L}, not control point tuples in $\mathbb{T} \rightarrow \mathcal{L}$)

- be able to **abstract away control information**
 (precision/cost trade-off control)

- avoid **duplicating** thread instructions

- have a computation structure based on the **program syntax**
 (denotational style)

Ideally: **thread-modular denotational-style semantics**
analyze each thread independently by induction on its syntax
but **remain sound** with respect to all interleavings!
Simple interference semantics
Thread-modular analysis with simple interferences

Principle:
- analyze each thread in *isolation*
Thread-modular analysis with simple interferences

Principle:
- analyze each thread in **isolation**
- gather the **values** written into each variable by each thread
 \implies so-called **interferences**

suitably abstracted in an abstract domain, such as intervals

```c
i = 0;
while (i < nb)
{
    a[i] --;
    i++;
}
```
Thread-modular analysis with simple interferences

Principle:

- analyze each thread in isolation
- gather the values written into each variable by each thread
 \(\implies\) so-called interferences
 suitably abstracted in an abstract domain, such as intervals
- reanalyze threads, injecting these values at each read
Thread-modular analysis with simple interferences

Principle:
- **analyze each thread in isolation**
- **gather** the values written into each variable by each thread
 ➔ so-called **interferences**
 suitably abstracted in an abstract domain, such as intervals
- **reanalyze** threads, **injecting** these values at each read
- **iterate until stabilization** while widening interferences
 ➔ one more level of fixpoint iteration
Example

<table>
<thead>
<tr>
<th>t_1</th>
<th>t_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ_1 while random do</td>
<td>ℓ_4 while random do</td>
</tr>
<tr>
<td>ℓ_2 if $x < y$ then</td>
<td>ℓ_5 if $y < 100$ then</td>
</tr>
<tr>
<td>ℓ_3 $x \leftarrow x + 1$</td>
<td>ℓ_6 $y \leftarrow y + [1, 3]$</td>
</tr>
</tbody>
</table>
Example

Analysis of t_1 in isolation

1. $x = y = 0 \quad \mathcal{X}_1 = I$
2. $x = y = 0 \quad \mathcal{X}_2 = \mathcal{X}_1 \cup C[x \leftarrow x + 1] \mathcal{X}_3 \cup C[x \geq y] \mathcal{X}_2$
3. $\bot \quad \mathcal{X}_3 = C[x < y] \mathcal{X}_2$

Example

t_1

\[\ell_1 \text{ while random do} \]
\[\ell_2 \text{ if } x < y \text{ then} \]
\[\ell_3 \quad x \leftarrow x + 1 \]

t_2

\[\ell_4 \text{ while random do} \]
\[\ell_5 \text{ if } y < 100 \text{ then} \]
\[\ell_6 \quad y \leftarrow y + [1, 3] \]
Example

Simple interference semantics

Intuition

Example

<table>
<thead>
<tr>
<th>t_1</th>
<th>t_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ_1 while random do</td>
<td>ℓ_4 while random do</td>
</tr>
<tr>
<td>ℓ_2 if $x < y$ then</td>
<td>ℓ_5 if $y < 100$ then</td>
</tr>
<tr>
<td>ℓ_3 $x \leftarrow x + 1$</td>
<td>ℓ_6 $y \leftarrow y + [1, 3]$</td>
</tr>
</tbody>
</table>

Analysis of t_2 in isolation

- $x = y = 0$
 \[x_4 = I \]
- $x = 0, \ y \in [0, 102]$
 \[x_5 = x_4 \cup C[y \leftarrow y + [1, 3]] \cup x_6 \cup C[y \geq 100] \cup x_5 \]
- $x = 0, \ y \in [0, 99]$
 \[x_6 = C[y < 100] \cup x_5 \]

Output interferences:
$y \leftarrow [1, 102]$
Example

Simple interference semantics

Intuition

Example

<table>
<thead>
<tr>
<th>t_1</th>
<th>t_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ell_1) while random do</td>
<td>(\ell_4) while random do</td>
</tr>
<tr>
<td>(\ell_2) if $x < y$ then</td>
<td>(\ell_5) if $y < 100$ then</td>
</tr>
<tr>
<td>(\ell_3) $x \leftarrow x + 1$</td>
<td>(\ell_6) $y \leftarrow y + [1, 3]$</td>
</tr>
</tbody>
</table>

Re-analysis of t_1 with interferences from t_2

input interferences: $y \leftarrow [1, 102]$

1. $x = y = 0$ \(\mathcal{X}_1 = I\)
2. $x \in [0, 102], y = 0$ \(\mathcal{X}_2 = \mathcal{X}_{1a} \cup C[\mathcal{X} \leftarrow x + 1] \mathcal{X}_3 \cup C[x \geq (y | [1, 102])] \mathcal{X}_2\)
3. $x \in [0, 102], y = 0$ \(\mathcal{X}_3 = C[x < (y | [1, 102])] \mathcal{X}_2\)

output interferences: $x \leftarrow [1, 102]$

subsequent re-analyses are identical *(fixpoint reached)*
Example

\begin{itemize}
 \item \textbf{Derived abstract analysis:}
 \begin{itemize}
 \item similar to a \textit{sequential} program analysis, but iterated
 can be parameterized by arbitrary abstract domains
 \item \textbf{efficient} few reanalyses are required in practice
 \item interferences are \textbf{non-relational} and \textbf{flow-insensitive}
 limit inherited from the concrete semantics
 \end{itemize}
 \end{itemize}

\textbf{Limitation:}
we get $x, y \in [0, 102]$; we don’t get that $x \leq y$
simplistic view of thread interferences (volatile variables)
based on an \textit{incomplete} concrete semantics (we’ll fix that later)
Formalizing the simple interference semantics
Denotational semantics with interferences

Interferences in $I \overset{\text{def}}{=} T \times V \times R$

$\langle t, X, v \rangle$ means that t can store the value v into the variable X

We define the analysis of a thread t
with respect to a set of interferences $I \subseteq I$.

Expressions : $E_t[\exp] : E \times \mathcal{P}(I) \rightarrow \mathcal{P}(R) \times \mathcal{P}(\Omega)$ for thread t

- add interference $I \in I$, as input
- add error information $\omega \in \Omega$ as output
 locations of / operators that can cause a division by 0

Example:
- Apply interferences to read variables:
 $E_t[X] \langle \rho, I \rangle \overset{\text{def}}{=} \langle \{ \rho(X) \} \cup \{ v \mid \exists u \neq t : \langle u, X, v \rangle \in I \}, \emptyset \rangle$
- Pass recursively I down to sub-expressions:
 $E_t[-e] \langle \rho, I \rangle \overset{\text{def}}{=} \text{let } \langle V, O \rangle = E_t[e] \langle \rho, I \rangle \text{ in } \langle \{ -v \mid v \in V \}, O \rangle$
- etc.
Denotational semantics with interferences (cont.)

Statements with interference: for thread t

$C_t[\text{stmt}]: \mathcal{P}(E) \times \mathcal{P}(\Omega) \times \mathcal{P}(\emptyset) \rightarrow \mathcal{P}(E) \times \mathcal{P}(\Omega) \times \mathcal{P}(\emptyset)$

- pass interferences to expressions
- collect new interferences due to assignments
- accumulate interferences from inner statements
- collect and accumulate errors from expressions

$C_t[\langle X \leftarrow e \rangle \langle R, O, I \rangle] \overset{\text{def}}{=} \langle \emptyset, O, I \rangle \sqcup \bigsqcup_{\rho \in R} \langle \{ \rho[X \mapsto v] \mid v \in V_\rho \}, O_\rho, \{ \langle t, X, v \rangle \mid v \in V_\rho \} \rangle$

$C_t[s_1; s_2] \overset{\text{def}}{=} C_t[s_2] \circ C_t[s_1]$

\ldots

noting $\langle V_\rho, O_\rho \rangle \overset{\text{def}}{=} E_t[\langle e \rangle \langle \rho, I \rangle]$

\sqcup is now the element-wise \cup in $\mathcal{P}(E) \times \mathcal{P}(\Omega) \times \mathcal{P}(\emptyset)$
Program semantics: \(P[\text{prog}] \subseteq \Omega \)

Given \(\text{prog} := \text{stmt}_1 \parallel \cdots \parallel \text{stmt}_n \), we compute:

\[
P[\text{prog}] \overset{\text{def}}{=} \lfloor \text{lfp } \lambda \langle O, I \rangle. \bigsqcup_{t \in T} [C_t[\text{stmt}_t](\langle E_0, \emptyset, I \rangle)]_{\Omega, t} \rceil \Omega
\]

- each thread analysis starts in an initial environment set \(E_0 \overset{\text{def}}{=} \{ \lambda V.0 \} \)
- \([X]_{\Omega, t} \) projects \(X \in \mathcal{P}(E) \times \mathcal{P}(\Omega) \times \mathcal{P}(\emptyset) \) on \(\mathcal{P}(\Omega) \times \mathcal{P}(\emptyset) \) and interferences and errors from all threads are joined
 the output environments from a thread analysis are not easily exploitable
- \(P[\text{prog}] \) only outputs the set of possible run-time errors

We will need to prove the soundness of \(P[\text{prog}] \)
with respect to the interleaving semantics...
Abstract interferences

\[\mathcal{P}(\emptyset) \overset{\text{def}}{=} \mathcal{P}(\mathbb{T} \times \mathbb{V} \times \mathbb{R}) \text{ is abstracted as } \mathcal{I}^\# \overset{\text{def}}{=} (\mathbb{T} \times \mathbb{V}) \rightarrow \mathcal{R}^\# \]

where \(\mathcal{R}^\# \) abstracts \(\mathcal{P}(\mathbb{R}) \) (e.g. intervals)

Abstract semantics with interferences \(\mathcal{C}_t^\#[s] \)

derived from \(\mathcal{C}^\#[s] \) in a generic way:

Example: \(\mathcal{C}_t^\#[X \leftarrow e] \langle R^\#, \Omega, I^\# \rangle \)

- for each \(Y \) in \(e \), get its interference \(Y^\#_R = \bigcup_{R} \{ I^\#(u, Y) \mid u \neq t \} \)

- if \(Y^\#_R \neq \bot^\#_R \), replace \(Y \) in \(e \) with \(\text{get}(Y, R^\#) \sqcup_{R} Y^\#_R \)

 \(\text{get}(Y, R^\#) \) extracts the abstract values variable \(Y \) from \(R^\# \in \mathcal{E}^\# \)

- compute \(\langle R^\#', O' \rangle = \mathcal{C}_t^\#[e] \langle R^\#, O \rangle \)

- enrich \(I^\#(t, X) \) with \(\text{get}(X, R^\#') \)
Static analysis with interferences

Abstract analysis

\[
P^\#[\text{prog}] \overset{\text{def}}{=} \left[\lim_{\lambda} \langle O, I^\# \rangle . \langle O, I^\# \rangle \nabla \bigcup_{t \in T} \left[C^\#_{t}[^{\text{stmt}_{t}}] \langle E^\#, \emptyset, I^\# \rangle \right] \right]_{\Omega, I^\#}
\]

- effective analysis by structural induction
- \(P^\#[\text{prog}]\) is sound with respect to \(P[\text{prog}]\)
- termination ensured by a widening
- parameterized by a choice of abstract domains \(R^\#, E^\#\)

- interferences are flow-insensitive and non-relational in \(R^\#\)
- thread analysis remains flow-sensitive and relational in \(E^\#\)

reminder: \([X]_{\Omega}, [Y]_{\Omega, I^\#}\) keep only \(X\)'s component in \(\Omega\), \(Y\)'s components in \(\Omega\) and \(I^\#\)
Path-based soundness proof
Control paths of a sequential program

atomic ::= X ← exp | exp ≺ 0

Control paths

\[
\pi : \text{stmt} \rightarrow \mathcal{P}(\text{atomic}^*)
\]

\[
\pi(X ← e) \overset{\text{def}}{=} \{ X ← e \}
\]

\[
\pi(\text{if } e ≺ 0 \text{ then } s \text{ fi}) \overset{\text{def}}{=} (\{ e ≺ 0 \} \cdot \pi(s)) \cup \{ e ≺ 0 \}
\]

\[
\pi(\text{while } e ≺ 0 \text{ do } s \text{ done}) \overset{\text{def}}{=} \left(\bigcup_{i \geq 0} (\{ e ≺ 0 \} \cdot \pi(s))^i \right) \cdot \{ e ≺ 0 \}
\]

\[
\pi(s_1; s_2) \overset{\text{def}}{=} \pi(s_1) \cdot \pi(s_2)
\]

\(\pi(\text{stmt})\) is a (generally infinite) set of finite control paths

e.g. \(\pi(i ← 0; \text{while } i < 10 \text{ do } i ← i + 1 \text{ done}; x ← i) = i ← 0 \cdot (i < 10 \cdot i ← i + 1)^* \cdot x ← i\)
Path-based concrete semantics of sequential programs

Join-over-all-path semantics

\[\Pi[P] : (\mathcal{P}(\mathcal{E}) \times \mathcal{P}(\Omega)) \rightarrow (\mathcal{P}(\mathcal{E}) \times \mathcal{P}(\Omega)) \text{ for } P \subseteq \text{atomic}^{*} \]

\[\Pi[P](R, O) \stackrel{\text{def}}{=} \bigcup_{s_1 \cdots s_n \in P} (C[s_n] \circ \cdots \circ C[s_1])(R, O) \]

Semantic equivalence

\[C[\text{stmt}] = \Pi[\pi(\text{stmt})] \]

no longer true in the abstract
Concurrent control paths

\[
\pi_* \overset{\text{def}}{=} \{ \text{interleavings of } \pi(\text{stmt}_t), \ t \in \mathbb{T} \} = \{ p \in \text{atomic}^* \mid \forall t \in \mathbb{T}, \ \text{proj}_t(p) \in \pi(\text{stmt}_t) \}
\]

Interleaving program semantics

\[
P_*[\text{prog}] \overset{\text{def}}{=} \left[\prod [\pi_*](\mathcal{E}_0, \emptyset) \right]_{\Omega}
\]

\((\text{proj}_t(p) \text{ keeps only the atomic statement in } p \text{ coming from thread } t)\)

\((\simeq \text{ sequentially consistent executions}[\text{Lamport 79}])\)

Issues:

- too many paths to consider exhaustively
- no induction structure to iterate on

\(\implies\) abstract as a denotational semantics
Soundness of the interference semantics

Soundness theorem

\[P_\ast[\text{prog}] \subseteq P[\text{prog}] \]

Proof sketch:

- define \(\prod_t[P] X \overset{\text{def}}{=} \bigsqcup \{ C_t[s_1; \ldots; s_n] X | s_1 \ldots s_n \in P \} \), then \(\prod_t[\pi(s)] = C_t[s] \);
- given the interference fixpoint \(I \subseteq \Omega \) from \(P[\text{prog}] \), prove by recurrence on the length of \(p \in \pi_\ast \) that:
 - \(\forall \rho \in [\prod[p] \langle \mathcal{E}_0, \emptyset \rangle]_\mathcal{E}, \forall t \in T, \exists \rho' \in [\prod_t[proj_t(p)] \langle \mathcal{E}_0, \emptyset, I \rangle]_\mathcal{E} \) such that
 \(\forall X \in \mathcal{V}, \rho(X) = \rho'(X) \) or \(\langle u, X, \rho(X) \rangle \in I \) for some \(u \neq t \).
 - \([\prod[p] \langle \mathcal{E}_0, \emptyset \rangle]_\Omega \subseteq \bigcup_{t \in T} [\prod_t[proj_t(p)] \langle \mathcal{E}_0, \emptyset, I \rangle]_\Omega \)

Notes:
- sound but not complete
- can be extended to soundness proof under weakly consistent memories
Weakly consistent memories
Issues with weak consistency

Program written

\[
\begin{align*}
F_1 &\leftarrow 1; \\
\text{if } F_2 = 0 &\text{ then } \\
S_1 &\text{ fi} \\
\text{fi} &
\end{align*}
\]

\[
\begin{align*}
F_2 &\leftarrow 1; \\
\text{if } F_1 = 0 &\text{ then } \\
S_2 &\text{ fi} \\
\text{fi} &
\end{align*}
\]

(simplied Dekker mutual exclusion algorithm)

\(S_1\) and \(S_2\) cannot execute simultaneously.
Weakly consistent memories

Issues with weak consistency

(simplified Dekker mutual exclusion algorithm)

<table>
<thead>
<tr>
<th>program written</th>
<th>program executed</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_1 \leftarrow 1;) if (F_2 = 0) then (S_1) fi</td>
<td>if (F_2 = 0) then (F_1 \leftarrow 1;) if (F_1 = 0) then (S_1) fi</td>
</tr>
<tr>
<td>(F_2 \leftarrow 1;) if (F_1 = 0) then (S_2) fi</td>
<td>(F_2 \leftarrow 1;) if (F_1 = 0) then (S_2) fi</td>
</tr>
</tbody>
</table>

\(S_1 \) and \(S_2 \) can execute simultaneously. Not a sequentially consistent behavior!

Caused by:
- write FIFOs, caches, distributed memory
- hardware or compiler optimizations, transformations
- ...

behavior accepted by Java \[\text{Mans05}\]
Total Store Ordering: model for intel x86

- each thread writes to a FIFO queue
- queues are flushed non-deterministically to the shared memory
- a thread reads back from its queue if possible and from shared memory otherwise
Out of thin air principle

original program

| R1 ← X; | R ← Y; |
| Y ← R1 | X ← R2 |

(example from causality test case #4 for Java by Pugh et al.)

We should not have $R_1 = 42$.
Out of thin air principle

original program

\[
\begin{align*}
R1 & \leftarrow X; \\
Y & \leftarrow R1; \\
R & \leftarrow Y; \\
X & \leftarrow R2;
\end{align*}
\]

“optimized” program

\[
\begin{align*}
Y & \leftarrow 42; \\
R1 & \leftarrow X; \\
R2 & \leftarrow Y; \\
Y & \leftarrow R1; \\
X & \leftarrow R2;
\end{align*}
\]

(example from causality test case #4 for Java by Pugh et al.)

We should not have \(R_1 = 42 \).

Possible if we allow speculative writes!

\[\Rightarrow\] we disallow this kind of program transformations.

(also forbidden in Java)
We assumed that assignments are atomic...
Atomicity and granularity

We assumed that assignments are atomic... but that may not be the case.

The second program admits more behaviors e.g.: $X = 1$ at the end of the program

[Reyn04]
Acceptable control path transformations: \(p \leadsto q \)

only reduce interferences and errors

- **Reordering:** \(X_1 \leftarrow e_1 \cdot X_2 \leftarrow e_2 \leadsto X_2 \leftarrow e_2 \cdot X_1 \leftarrow e_1 \)

 (if \(X_1 \notin \text{var}(e_2) \), \(X_2 \notin \text{var}(e_1) \), and \(e_1 \) does not stop the program)

- **Propagation:** \(X \leftarrow e \cdot s \leadsto X \leftarrow e \cdot s[e/X] \)

 (if \(X \notin \text{var}(e) \), \(\text{var}(e) \) are thread-local, and \(e \) is deterministic)

- **Factorization:** \(s_1 \cdot \ldots \cdot s_n \leadsto X \leftarrow e \cdot s_1[X/e] \cdot \ldots \cdot s_n[X/e] \)

 (if \(X \) is fresh, \(\forall i, \text{var}(e) \cap \text{lval}(s_i) = \emptyset \), and \(e \) has no error)

- **Decomposition:** \(X \leftarrow e_1 + e_2 \leadsto T \leftarrow e_1 \cdot X \leftarrow T + e_2 \)

 (change of granularity)

- \(\ldots \)

but **NOT:**

- “out-of-thin-air” writes: \(X \leftarrow e \leadsto X \leftarrow 42 \cdot X \leftarrow e \)
Soundness of the interference semantics

Interleaving semantics of transformed programs \(P'_*[\text{prog}] \)

- \(\pi'(s) \overset{\text{def}}{=} \{ p \mid \exists p' \in \pi(s) : p' \rightsquigarrow^* p \} \)
- \(\pi_* \overset{\text{def}}{=} \{ \text{interleavings of } \pi'(\text{stmt}_t), t \in T \} \)
- \(P'_*[\text{prog}] \overset{\text{def}}{=} [\prod[\pi'_*]\langle E_0, \emptyset \rangle]_\Omega \)

Soundness theorem

\(P'_*[\text{prog}] \subseteq P[\text{prog}] \)

\(\implies \) the interference semantics is sound
wrt. weakly consistent memories and changes of granularity
Locks and synchronization
Scheduling

Synchronization primitives

\[
\text{stmt} ::= \text{lock}(m) \\
| \quad \text{unlock}(m)
\]

\[m \in M: \text{finite set of non-recursive mutexes}\]

mutexes ensure mutual exclusion

at each time, each mutex can be locked by a single thread
Locks and synchronization

Mutual exclusion

We use a refinement of the simple interference semantics by partitioning wrt. an abstract local view of the scheduler \mathbb{C}

- $\mathcal{E} \rightsquigarrow \mathcal{E} \times \mathbb{C}$, $\mathcal{E}^\# \rightsquigarrow \mathbb{C} \rightarrow \mathcal{E}^\#$
- $\llbracket \llbracket \defeq T \times V \times R \rightsquigarrow \llbracket \llbracket \defeq T \times \mathbb{C} \times V \times R$, $\llbracket \llbracket \defeq (T \times V) \rightarrow \mathcal{R}^\#$ \rightsquigarrow \llbracket \llbracket \defeq (T \times \mathbb{C} \times V) \rightarrow \mathcal{R}^#$

$\mathbb{C} \defeq \mathbb{C}_{race} \cup \mathbb{C}_{sync}$ separates

- data-race writes \mathbb{C}_{race}
- well-synchronized writes \mathbb{C}_{sync}
Mutual exclusion

\begin{center}
\begin{tikzpicture}
 \node [left] at (0,0) {p1};
 \node [right] at (4,0) {p2};
 \node [above] at (2,0) {lock(m)};
 \node [below] at (2,0) {unlock(m)};
 \node [circle, fill=red, inner sep=2pt] at (0,0) {};
 \node [circle, fill=red, inner sep=2pt] at (2,0) {};
 \node [circle, fill=red, inner sep=2pt] at (4,0) {};
 \draw [red, thick, ->] (0,0) -- (2,0);
 \draw [red, thick, ->] (2,0) -- (4,0);
 \node [above] at (0,-1.5) {W};
 \node [below] at (0,-1.5) {W};
 \node [below] at (2,-1.5) {W};
 \node [above] at (2,-1.5) {R};
 \node [below] at (2,-1.5) {R};
 \node [above] at (4,-1.5) {W};
 \node [below] at (4,-1.5) {R};
 \draw [red, thick, ->] (0,-1.5) -- (2,-1.5);
 \draw [red, thick, ->] (2,-1.5) -- (4,-1.5);
\end{tikzpicture}
\end{center}

Data-race effects \(C_{race} \simeq \mathcal{P}(M) \)

Across read / write not protected by a mutex.
Partition wrt. mutexes \(M \subseteq \mathcal{M} \) held by the current thread \(t \).

- \(C_t[\{ X \leftarrow e \}] \langle \rho, M, I \rangle \) adds \(\{ \langle t, M, X, v \rangle \mid v \in E_t[\{ X \}] \langle \rho, M, I \rangle \} \) to \(I \)
- \(E_t[\{ X \}] \langle \rho, M, I \rangle = \{ \rho(X) \} \cup \{ v \mid \langle t', M', X, v \rangle \in I, t \neq t', M \cap M' = \emptyset \} \)

Bonus: we get a data-race analysis for free!
Mutual exclusion

Well-synchronized effects \(\mathbb{C}_{synchronize} \simeq \mathbb{M} \times \mathcal{P}(\mathbb{M}) \)

- last write before unlock affects first read after lock
- partition interferences wrt. a protecting mutex \(m \) (and \(\mathbb{M} \))
- \(C_t[\text{unlock}(m)] \langle \rho, \mathbb{M}, I \rangle \) stores \(\rho(X) \) into \(I \)
- \(C_t[\text{lock}(m)] \langle \rho, \mathbb{M}, I \rangle \) imports values from \(I \) into \(\rho \)
- imprecision: non-relational, largely flow-insensitive

\[\mathbb{C} \simeq \mathcal{P}(\mathbb{M}) \times (\{\text{data} - \text{race}\} \cup \mathbb{M}) \]
Locks and synchronization

Example analysis

abstract consumer/producer

<table>
<thead>
<tr>
<th>consumer</th>
<th>producer</th>
</tr>
</thead>
<tbody>
<tr>
<td>while random do</td>
<td>while random do</td>
</tr>
<tr>
<td>lock(m); ℓ₁</td>
<td>lock(m);</td>
</tr>
<tr>
<td>if X>0 then ℓ₂ X←X-1 fi; unlock(m); ℓ₃ Y←X</td>
<td>X←X+1;</td>
</tr>
<tr>
<td>done</td>
<td>if X>100 then X←100 fi; unlock(m)</td>
</tr>
</tbody>
</table>

- no data-race interference
- well-synchronized interferences:
 - **consumer**: \(x \leftarrow [0, 99] \)
 - **producer**: \(x \leftarrow [1, 100] \)

 \[\] we can prove that \(y \in [0, 100] \)

Without locks, we cannot get \(y \leq 100 \)

Can be generalized to several consumers and producers.
Deadlock checking

<table>
<thead>
<tr>
<th>t_1</th>
<th>t_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>lock(a)</td>
<td>lock(a)</td>
</tr>
<tr>
<td>lock(c)</td>
<td>lock(b)</td>
</tr>
<tr>
<td>unlock(c)</td>
<td>unlock(a)</td>
</tr>
<tr>
<td>lock(b)</td>
<td>lock(a)</td>
</tr>
<tr>
<td>unlock(b)</td>
<td>unlock(a)</td>
</tr>
<tr>
<td>unlock(a)</td>
<td>unlock(b)</td>
</tr>
</tbody>
</table>

During the analysis, gather:

- all reachable mutex configurations: $R \subseteq T \times \mathcal{P}(M)$
- lock instructions from these configurations $R \times M$
Deadlock checking

<table>
<thead>
<tr>
<th>t_1</th>
<th>t_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>lock(a)</td>
<td>lock(a)</td>
</tr>
<tr>
<td>lock(c)</td>
<td>lock(b)</td>
</tr>
<tr>
<td>unlock(c)</td>
<td>unlock(a)</td>
</tr>
<tr>
<td>lock(b)</td>
<td>lock(a)</td>
</tr>
<tr>
<td>unlock(b)</td>
<td>unlock(a)</td>
</tr>
<tr>
<td>unlock(a)</td>
<td>unlock(b)</td>
</tr>
</tbody>
</table>

During the analysis, gather:

- all reachable **mutex configurations**: $R \subseteq T \times \mathcal{P}(
\mathbb{M})$
- **lock instructions** from these configurations $R \times \mathbb{M}$

Then, construct a **blocking graph** between lock instructions

- $((t, m), \ell)$ blocks $((t', m'), \ell')$ if
 - $t \neq t'$ and $m \cap m' = \emptyset$ (configurations not in mutual exclusion)
 - $\ell \in m'$ (blocking lock)

A deadlock is a **cycle** in the blocking graph.

Generalization to larger cycles, with more threads involved in a deadlock, is easy.
Priority-based scheduling

Real-time scheduling:
- priorities are strict (but possibly dynamic)
- a process can only be preempted by a process of strictly higher priority
- a process can block for an indeterminate amount of time (yield, lock)

Analysis: refined transfer of interference based on priority
- partition interferences wrt. thread and priority
 - support for manual priority change, and for priority ceiling protocol
- higher priority processes inject state from yield into every point
- lower priority processes inject data-race interferences into yield
Beyond non-relational interferences
Inspiration from program logics
Reminder: Floyd–Hoare logic

Logic to prove properties about **sequential** programs [Hoar69].

Hoare triples: \(\{ P \} \text{stmt} \{ Q \} \)

- annotate programs with **logic assertions** \(\{ P \} \text{stmt} \{ Q \} \)

 (if \(P \) holds before \(\text{stmt} \), then \(Q \) holds after \(\text{stmt} \))

- check that \(\{ P \} \text{stmt} \{ Q \} \) is derivable with the following rules

 (the assertions are program invariants)

\[
\begin{align*}
\{ P[e/X] \} X & \leftarrow e \{ P \} \\
\{ P \} s_1 \{ Q \} & \quad \{ Q \} s_2 \{ R \} \\
\{ P \} & s_1; s_2 \{ R \} \\
\{ P \} & \text{if } e \nexists 0 \text{ then } s \text{ fi } \{ Q \} \\
\{ P \} & \text{while } e \nexists 0 \text{ do } s \text{ done } \{ P \land e \nexists 0 \} \\
\{ P' \} & s \{ Q' \} \quad P \Rightarrow P' \quad Q' \Rightarrow Q \\
\{ P \} & s \{ Q \}
\end{align*}
\]

Link with abstract interpretation:

- the equations reachability semantics \((\mathcal{X}_\ell)_{\ell \in \mathcal{L}} \) provides the **most precise Hoare triples** in fixpoint constructive form
Jones’ rely-guarantee proof method

Idea: explicit interferences with (more) annotations [Jone81].
Rely-guarantee “quintuples”: \(R, G \vdash \{ P \} \text{stmt} \{ Q \} \)

- if \(P \) is true before \(\text{stmt} \) is executed
- and the effect of other threads is included in \(R \) (rely)
- then \(Q \) is true after \(\text{stmt} \)
- and the effect of \(\text{stmt} \) is included in \(G \) (guarantee)

where:

- \(P \) and \(Q \) are assertions on states (in \(\mathcal{P}(\Sigma) \))
- \(R \) and \(G \) are assertions on transitions (in \(\mathcal{P}(\Sigma \times A \times \Sigma) \))

The parallel composition rule is:

\[
\begin{align*}
R \lor G_2, G_1 \vdash \{ P_1 \} s_1 \{ Q_1 \} & \quad R \lor G_1, G_2 \vdash \{ P_2 \} s_2 \{ Q_2 \} \\
R, G_1 \lor G_2 \vdash \{ P_1 \land P_2 \} s_1 \parallel s_2 \{ Q_1 \land Q_2 \}
\end{align*}
\]
Rely-guarantee example

checking \(t_1 \)

\[
\ell^1 \text{ while random do} \\
\ell^2 \text{ if } x < y \text{ then} \\
\ell^3 \text{ x } \leftarrow \text{ x+1} \\
\text{fi} \\
\text{done}
\]

\(\ell^1 : x = y = 0 \)
\(\ell^2 : x, y \in [0, 102], x \leq y \)
\(\ell^3 : x \in [0, 101], y \in [1, 102], x < y \)

checking \(t_2 \)

\[
\ell^4 \text{ while random do} \\
\ell^5 \text{ if } y < 100 \text{ then} \\
\ell^6 \text{ y } \leftarrow \text{ y + [1,3]} \\
\text{fi} \\
\text{done}
\]

at \(\ell^4 : x = y = 0 \)

at \(\ell^5 : x, y \in [0, 102], x \leq y \)

at \(\ell^6 : x \in [0, 99], y \in [0, 99], x \leq y \)
Rely-guarantee example

<table>
<thead>
<tr>
<th>checking t_1</th>
<th>checking t_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ_1 while random do</td>
<td>ℓ_4 while random do</td>
</tr>
<tr>
<td>ℓ_2 if $x < y$ then</td>
<td>ℓ_5 if $y < 100$ then</td>
</tr>
<tr>
<td>ℓ_3 $x \leftarrow x+1$</td>
<td>ℓ_6 $y \leftarrow y + [1,3]$</td>
</tr>
<tr>
<td>fi</td>
<td>fi</td>
</tr>
<tr>
<td>done</td>
<td>done</td>
</tr>
</tbody>
</table>

$\ell_1 : x = y = 0$
$\ell_2 : x, y \in [0, 102], x \leq y$
$\ell_3 : x \in [0, 101], y \in [1, 102], x < y$

$\ell_4 : y \text{ unchanged}$
$0 \leq x \leq y$

In this example:

- guarantee exactly what is relied on ($R_1 = G_1$ and $R_2 = G_2$)
- rely and guarantee are global assertions

Benefits of rely-guarantee:

- more precise: can prove $x \leq y$
- invariants are still local to threads
- checking a thread does not require looking at other threads, only at an abstraction of their semantics
Rely-guarantee as abstract interpretation
Main idea: **separate** execution steps

- from the **current thread** \(a\)
 - found by analysis by induction on the syntax of \(a\)
- from **other threads** \(b\)
 - given as parameter in the analysis of \(a\)
 - inferred during the analysis of \(b\)

\[\Rightarrow\] express the semantics from the point of view of a single thread
Trace decomposition

Reachable states projected on thread t: $\mathcal{Rl}(t)$

- attached to thread control point in \mathcal{L}, not control state in $\mathbb{T} \to \mathcal{L}$
- remember other thread’s control point as “auxiliary variables” (required for completeness)

$$\mathcal{Rl}(t) \overset{\text{def}}{=} \pi_t(\mathcal{R}) \subseteq \mathcal{L} \times (\forall \cup \{ pc_{t'} \mid t \neq t' \in \mathbb{T} \}) \to \mathbb{R}$$

where $\pi_t(R) \overset{\text{def}}{=} \{ \langle L(t), \rho[\forall t' \neq t : pc_{t'} \mapsto L(t')] \rangle \mid \langle L, \rho \rangle \in R \}$
Trace decomposition

Interferences generated by t: $A(t)$
\begin{align*}
A(t) \overset{\text{def}}{=} \alpha^\parallel(T_p)(t)
\end{align*}

Extract the transitions with action t observed in T_p
(subset of the transition system, containing only transitions actually used in reachability)

\begin{align*}
A(t) & \overset{\text{def}}{=} \alpha^\parallel(T_p)(t) \\
where \quad \alpha^\parallel(X)(t) & \overset{\text{def}}{=} \{ \langle \sigma_i, \sigma_{i+1} \rangle \mid \exists \sigma_0 \xrightarrow{a_0} \sigma_1 \cdots \xrightarrow{a_{n-1}} \sigma_n \in X: a_i = t \}
\end{align*}
We express $\mathcal{R}l(t)$ and $A(t)$ directly from the transition system, without computing T_p

States: $\mathcal{R}l$

Interleave:
- transitions from the current thread t
- transitions from interferences A by other threads

$$\mathcal{R}l(t) = \text{lfp } R_t(A),$$

where

$$R_t(Y)(X) \overset{\text{def}}{=} \pi_t(I) \cup \{ \pi_t(\sigma') | \exists \pi_t(\sigma) \in X: \sigma \xrightarrow{t} \sigma' \} \cup \{ \pi_t(\sigma') | \exists \pi_t(\sigma) \in X: \exists t' \neq t: \langle \sigma, \sigma' \rangle \in Y(t') \}$$

\implies similar to reachability for a sequential program, up to A
We express $R_l(t)$ and $A(t)$ directly from the transition system, without computing T_p

Interferences: A

Collect transitions from a thread t and reachable states R:

$A(t) = B(R_l(t))$, where

$$B(Z)(t) \overset{\text{def}}{=} \{ \langle \sigma, \sigma' \rangle \mid \pi_t(\sigma) \in Z(t) \land \sigma \xrightarrow{t} \sigma' \}$$
We express $\mathcal{RI}(t)$ and $A(t)$ directly from the transition system, without computing T_p.

Recursive definition:

- $\mathcal{RI}(t) = \text{lfp } R_t(A)$
- $A(t) = B(\mathcal{RI})(t)$

\implies express the most precise solution as nested fixpoints:

$$\mathcal{RI} = \text{lfp } \lambda Z. \lambda t. \text{lfp } R_t(B(Z))$$

Completeness: $\forall t: \mathcal{RI}(t) \simeq R$ (π_t is bijective thanks to auxiliary variables)

any property provable with the interleaving semantics can be proven with the thread-modular semantics!
Constructive fixpoint form:

Use Kleene's iteration to construct fixpoints:

\[Rl = \text{lfp } H = \bigcup_{n \in \mathbb{N}} H^n(\lambda t.\emptyset) \]

in the pointwise powerset lattice \(\prod_{t \in T} \{t\} \to \mathcal{P}(\Sigma_t) \)

\[H(Z)(t) = \text{lfp } R_t(B(Z)) = \bigcup_{n \in \mathbb{N}} (R_t(B(Z)))^n(\emptyset) \]

in the powerset lattice \(\mathcal{P}(\Sigma_t) \)

(similar to the sequential semantics of thread \(t \) in isolation)

\[\implies \text{nested iterations} \]
Suggested algorithm: nested iterations with acceleration

once abstract domains for states and interferences are chosen

- start from \(\mathcal{RL}_0 \) \(\overset{\text{def}}{=} A_0 \overset{\text{def}}{=} \lambda t. \bot \)
- while \(A_n \) is not stable
 - compute \(\forall t \in T : \mathcal{RL}_{n+1}(t) \overset{\text{def}}{=} \text{lfp } R_t(A_n) \)
 by iteration with widening \(\nabla \)
 (\(\simeq \) separate analysis of each thread)
 - compute \(A_{n+1} \) \(\overset{\text{def}}{=} A_n \nabla B(\mathcal{RL}_{n+1}) \)
- when \(A_n = A_{n+1} \), return \(\mathcal{RL}_n \)

\(\Rightarrow \) thread-modular analysis
parameterized by abstract domains (only source of approximation)
able to easily reuse existing sequential analyses
Retrieving thread-modular abstractions
Flow-insensitive abstraction:

- reduce as much control information as possible
- but keep flow-sensitivity on each thread’s control location

Local state abstraction: remove auxiliary variables

$$\alpha_{R}^{nf}(X) \overset{\text{def}}{=} \{ \langle \ell, \rho|_V \rangle | \langle \ell, \rho \rangle \in X \} \cup X$$

Interference abstraction: remove all control state

$$\alpha_{A}^{nf}(Y) \overset{\text{def}}{=} \{ \langle \rho, \rho' \rangle | \exists L, L' \in \mathbb{T} \rightarrow \mathcal{L}: \langle \langle L, \rho \rangle, \langle L', \rho' \rangle \rangle \in Y \}$$
Flow-insensitive abstraction (cont.)

Flow-insensitive fixpoint semantics:

We apply α_{R}^{nf} and α_{A}^{nf} to the nested fixpoint semantics.

$\mathcal{R}_{nf} \overset{\text{def}}{=} \text{lfp } \lambda Z. \lambda t. \text{lfp } R_{t}^{nf}(B_{nf}(Z))$, where

- $B_{nf}(Z)(t) \overset{\text{def}}{=} \{ \langle \rho, \rho' \rangle \mid \exists \ell, \ell' \in \mathcal{L} : \langle \ell, \rho \rangle \in Z(t) \land \langle \ell, \rho \rangle \rightarrow_{t} \langle \ell', \rho' \rangle \}$
 (extract interferences from reachable states)

- $R_{t}^{nf}(Y)(X) \overset{\text{def}}{=} R_{t}^{loc}(X) \cup A_{t}^{nf}(Y)(X)$
 (interleave steps)

- $R_{t}^{loc}(X) \overset{\text{def}}{=} \{ \langle \ell^{'i}, \lambda V.0 \rangle \} \cup \{ \langle \ell', \rho' \rangle \mid \exists \langle \ell, \rho \rangle \in X : \langle \ell, \rho \rangle \rightarrow_{t} \langle \ell', \rho' \rangle \}$
 (thread step)

- $A_{t}^{nf}(Y)(X) \overset{\text{def}}{=} \{ \langle \ell, \rho' \rangle \mid \exists \rho, u \neq t : \langle \ell, \rho \rangle \in X \land \langle \rho, \rho' \rangle \in Y(u) \}$
 (interference step)

Cost/precision trade-off:

- less variables
 \implies subsequent numeric abstractions are more efficient

- insufficient to analyze $x \leftarrow x + 1 || x \leftarrow x + 1$
Retrieving the simple interference-based analysis

Cartesian abstraction: on interferences

- forget the relations between variables
- forget the relations between values before and after transitions (input-output relationship)
- only remember which variables are modified, and their value:

 \[\alpha_{A}^{nr}(Y) \overset{\text{def}}{=} \lambda V. \{ x \in V \mid \exists \langle \rho, \rho' \rangle \in Y: \rho(V) \neq x \wedge \rho'(V) = x \} \]

- to apply interferences, we get, in the nested fixpoint form:

 \[A_{t}^{nr}(Y)(X) \overset{\text{def}}{=} \{ \langle \ell, \rho[V \mapsto v] \rangle \mid \langle \ell, \rho \rangle \in X, V \in V, \exists u \neq t: v \in Y(u)(V) \} \]

- no modification on the state
 (the analysis of each thread can still be relational)

\[\Rightarrow \text{we get back our simple interference analysis!} \]

Finally, use a numeric abstract domain \(\alpha : \mathcal{P}(V \rightarrow \mathbb{R}) \rightarrow D^{#} \)

for interferences, \(V \rightarrow \mathcal{P}(\mathbb{R}) \) is abstracted as \(V \rightarrow D^{#} \)
A note on unbounded thread creation

Extension: relax the finiteness constraint on \mathbb{T}

- there is still a **finite syntactic set** of threads \mathbb{T}_s
- some threads $\mathbb{T}_\infty \subseteq \mathbb{T}_s$ can have several instances
 (possibly an unbounded number)

Flow-insensitive analysis:

- local state and interference domains have finite dimensions
 $(\mathcal{E}_t$ and $(\mathcal{L} \times \mathcal{E}) \times (\mathcal{L} \times \mathcal{E})$, as opposed to \mathcal{E} and $\mathcal{E} \times \mathcal{E}$)
- all instances of a thread $t \in \mathbb{T}_s$ are isomorphic
 \implies iterate the analysis on the finite set \mathbb{T}_s (instead of \mathbb{T})
- we must handle **self-interferences** for threads in \mathbb{T}_∞:

\[
A^n_t(Y)(X) \overset{\text{def}}{=} \left\{ (\ell, \rho') \mid \exists \rho, \ u : (u \neq t \lor t \in \mathbb{T}_\infty) \land (\ell, \rho) \in X \land (\rho, \rho') \in Y(u) \right\}
\]
From traces to thread-modular analyses

Abstract states

\[(\mathcal{T} \times \mathcal{L}) \rightarrow \mathcal{E}^\#\]

\[\alpha_{\mathcal{E}}\]

Local states

\[(\mathcal{T} \times \mathcal{L}) \rightarrow \mathcal{P}(\mathcal{E})\]

\[\alpha^{nf}_{\mathcal{R}}\]

Interleaved execution trace prefixes

\[\mathcal{T}_p \in \mathcal{P}(\Sigma^*)\]

Abstract interferences

\[\mathcal{T} \rightarrow \mathcal{E}^\#\]

Non-relational interferences

\[\mathcal{T} \rightarrow \mathcal{P}(\mathcal{E})\]

\[\alpha^{nr}_{\mathcal{A}}\]

Flow-insensitive interferences

\[\mathcal{T} \rightarrow \mathcal{P}(\mathcal{E} \times \mathcal{E})\]

\[\alpha^{nf}_{\mathcal{A}}\]

Interferences

\[\mathcal{T} \rightarrow \mathcal{P}(\Sigma \times \Sigma)\]

\[\alpha^{itf}_{\mathcal{A}}\]

Static analyzer

Rely-guarantee

(without aux. variables)

Rely-guarantee

(with aux. variables)

Concrete executions

Course 6
Thread-Modular Analysis of Concurrent Programs
Antoine Miné
p. 67 / 84
Relational thread-modular abstractions
Fully relational interferences with numeric domains

Reachability: \(R(t) : L \rightarrow \mathcal{P}(\forall a \rightarrow \mathbb{Z}) \)

approximated as usual with one numeric abstract element per label

auxiliary variables \(pc_b \in \forall a \) are kept (program labels as numbers)

Interferences: \(A(t) \in \mathcal{P}(\Sigma \times \Sigma) \)

a numeric relation can be expressed in a classic numeric domain

as \(\mathcal{P}(\forall a \rightarrow \mathbb{Z}) \times (\forall a \rightarrow \mathbb{Z}) \) \(\cong \mathcal{P}((\forall a \cup \forall a') \rightarrow \mathbb{Z}) \)

- \(X \in \forall a \) value of variable \(X \) or auxiliary variable in the pre-state
- \(X' \in \forall a' \) value of variable \(X \) or auxiliary variable in the post-state

E.g.: \(\{ (x, x + 1) \mid x \in [0, 10] \} \) is represented as \(x' = x + 1 \land x \in [0, 10] \)

\(\implies \) use one global abstract element per thread

Benefits and drawbacks:

- **simple**: reuse stock numeric abstractions and thread iterators
- **precise**: the only source of imprecision is the numeric domain
- **costly**: must apply a (possibly large) relation at each program step
Experiments with fully relational interferences

Experiments by R. Monat

Scalability in the number of threads (assuming fixed number of variables)
Partially relational interferences

Abstraction: keep relations maintained by interferences

- remove control state in interferences
- keep mutex state M
- forget input-output relationships
- keep relationships between variables

\[
\alpha_{nf}^A = \{ \langle M, \rho \rangle | \exists \rho': \langle \langle M, \rho \rangle, \langle M, \rho' \rangle \rangle \in Y \lor \langle \langle M, \rho' \rangle, \langle M, \rho \rangle \rangle \in Y \}
\]

\[
\langle M, \rho \rangle \in \alpha_{nf}^A(Y) \implies \langle M, \rho \rangle \in \alpha_{nf}^A(Y) \text{ after any sequence of interferences from } Y
\]

Lock invariant:

\[
\{ \rho | \exists t \in T, M: \langle M, \rho \rangle \in \alpha_{nf}^A(\mathcal{I}(t)), m \not\in M \}
\]

- property maintained outside code protected by m
- possibly broken while m is locked
- restored before unlocking m
Relational lock invariants

Improved interferences: mixing simple interferences and lock invariants
Relational lock invariants

Improved interferences: mixing simple interferences and lock invariants

- apply non-relational data-race interferences
- unless threads hold a common lock (mutual exclusion)
Relational lock invariants

Improved interferences: mixing simple interferences and lock invariants

- apply **non-relational data-race interferences**
 unless threads hold a common lock (mutual exclusion)

- apply **non-relational well-synchronized** interferences at lock points
 then intersect with the lock invariant

- gather **lock invariants** for lock / unlock pairs
Improved interferences: mixing simple interferences and lock invariants

- apply non-relational data-race interferences unless threads hold a common lock (mutual exclusion)
- apply non-relational well-synchronized interferences at lock points then intersect with the lock invariant
- gather lock invariants for lock / unlock pairs
Monotonicity abstraction

Abstraction:
map variables to \uparrow monotonic or \top don’t know

$$\alpha^\text{mono}_A(Y) \overset{\text{def}}{=} \lambda V. \text{if } \forall \langle \rho, \rho' \rangle \in Y: \rho(V) \leq \rho'(V) \text{ then } \uparrow \text{ else } \top$$

- keep some input-output relationships
- forgets all relations between variables
- flow-insensitive

Inference and use

- **gather:**
 $$A^\text{mono}(t)(V) = \uparrow \iff$$
 all assignments to V in t have the form $V \leftarrow V + e$, with $e \geq 0$

- **use:** combined with non-relational interferences
 if $\forall t: A^\text{mono}(t)(V) = \uparrow$
 then any test with non-relational interference $C[X \leq (V | [a, b])]$ can be strengthened into $C[X \leq V]$
Weakly relational interference example

<table>
<thead>
<tr>
<th>analyzing (t_1)</th>
<th>(t_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>while random do</td>
<td>(x) unchanged</td>
</tr>
<tr>
<td>lock(m);</td>
<td>(y) incremented</td>
</tr>
<tr>
<td>if (x < y) then</td>
<td>(0 \leq y \leq 102)</td>
</tr>
<tr>
<td>(x \leftarrow x + 1;)</td>
<td></td>
</tr>
<tr>
<td>unlock(m)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>analyzing (t_2)</th>
<th>(t_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y) unchanged</td>
<td>while random do</td>
</tr>
<tr>
<td>(0 \leq x, x \leq y)</td>
<td>lock(m);</td>
</tr>
<tr>
<td></td>
<td>if (y < 100) then</td>
</tr>
<tr>
<td></td>
<td>(y \leftarrow y + [1,3];)</td>
</tr>
<tr>
<td></td>
<td>unlock(m)</td>
</tr>
</tbody>
</table>

Using all three interference abstractions:

- non-relational interferences \((0 \leq y \leq 102, 0 \leq x)\)
- lock invariants, with the octagon domain \((x \leq y)\)
- monotonic interferences \((y \text{ monotonic})\)

we can prove automatically that \(x \leq y \) holds
Application: The AstréeA analyzer
The Astrée analyzer

Astrée:
- started as an academic project by: P. Cousot, R. Cousot, J. Feret, A. Miné, X. Rival, B. Blanchet, D. Monniaux, L. Mauborgne
- checks for absence of run-time error in embedded synchronous C code
- applied to Airbus software with zero alarm (A340 in 2003, A380 in 2004)
- industrialized by AbsInt since 2009

Design by refinement:
- incompleteness: any static analyzer fails on infinitely many programs
- completeness: any program can be analyzed by some static analyzer
- in practice:
 - from target programs and properties of interest
 - start with a simple and fast analyzer (interval)
 - while there are false alarms, add new / tweak abstract domains
From Astrée to AstréeA:
- follow-up project: Astrée for concurrent embedded C code (2012–2016)
- interferences abstracted using stock non-relation domains
- memory domain instrumented to gather / inject interferences
- added an extra iterator \(\Rightarrow\) minimal code modifications
- additionally: 4 KB ARINC 653 OS model

Target application:
- ARINC 653 embedded avionic application
- 15 threads, 1.6 Mlines
- embedded reactive code + network code + string formatting
- many variables, arrays, loops
- shallow call graph, no dynamic allocation
From simple interferences to relational interferences

<table>
<thead>
<tr>
<th>monotonicity domain</th>
<th>relational lock invariants</th>
<th>analysis time</th>
<th>memory</th>
<th>iterations</th>
<th>alarms</th>
</tr>
</thead>
<tbody>
<tr>
<td>×</td>
<td>×</td>
<td>25h 26mn</td>
<td>22 GB</td>
<td>6</td>
<td>4616</td>
</tr>
<tr>
<td>✓</td>
<td>×</td>
<td>30h 30mn</td>
<td>24 GB</td>
<td>7</td>
<td>1100</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>110h 38mn</td>
<td>90 GB</td>
<td>7</td>
<td>1009</td>
</tr>
</tbody>
</table>
Conclusion
We presented static analysis methods that are:

- inspired from thread-modular proof methods
- abstractions of complete concrete semantics
 (for safety properties)
- sound for all interleavings
- aware of scheduling, priorities and synchronization
- parameterized by (possibly relational) abstract domains
 (independent domains for state abstraction and interference abstraction)
Bibliography

