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Introduction

Towards disjunctive abstractions

Extending the expressiveness of abstract domains
disjunctions are often needed...

... but potentially costly

In this lecture, we will discuss:

precision issues that motivate the use of abstract domains able to express
disjunctions

several techniques to express disjunctive properties using abstract
domain combination methods (construction of abstract domains from
other abstract domains):
I disjunctive completion
I cardinal power
I state partitioning
I trace partitioning
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Introduction

Domain combinators (or combiners)

General combination of abstract domains
takes one or more abstract domains as inputs

produces a new abstract domain

Input and output abstract domains are characterized by an “interface” :

concrete domain,

abstraction relation,

and abstract operations (post-conditions, widening...)

Advantages:
general definition, formalized and proved once
can be implemented in a separate way, e.g., in ML:
I abstract domain: module

module D = (struct ... end: I)
I abstract domain combinator: functor

module C = functor (D: I0) -> (struct ... end: I1)
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Introduction

Example: product abstraction

Set notations:

V: values

X: variables

M: stores
M = X! V

Assumptions:

concrete domain (P(M);�) with M = X! V

we assume an abstract domain D] that provides
I concretization function  : D] ! P(M)
I element ? with empty concretization (?) = ;

Product combinator (implemented as a functor)

Given abstract domains (D]
0; 0;?0) and (D]

1; 1;?1), the product abstraction is
(D]

�; �;?�) where:

D
]
� = D

]
0 � D

]
1

�(x
]
0; x

]
1) = 0(x

]
0) \ 1(x

]
1)

?� = (?0;?1)

This amounts to expressing conjunctions of elements of D]
0 and D]

1
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Introduction

Example: product abstraction, coalescent product

The product abstraction is not very precise and needs a reduction:

8x]
0 2 D

]
0; x

]
1 2 D

]
1; �(?0; x

]
1) = �(x

]
0;?1) = ; = �(?�)

Coalescent product

Given abstract domains (D]
0; 0;?0) and (D]

1; 1;?1), the coalescent product
abstraction is (D]

�; �;?�) where:

D
]
� = f?�g ] f(x

]
0; x

]
1) 2 D

]
0 � D

]
1 j x

]
0 6= ?0 ^ x]

1 6= ?1g

�(?�) = ;, �(x
]
0; x

]
1) = 0(x

]
0) \ 1(x

]
1)

In many cases, this is not enough to achieve reduction:

let D]
0 be the interval abstraction, D]

1 be the congruences abstraction

�(fx 2 [3; 4]g; fx � 0 mod 5g) = ;

how to define abstract domain combinators to add disjunctions ?
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Imprecisions in convex abstractions

Convex abstractions

Many numerical abstractions describe convex sets of points

interval domain

x

y

octagon domain

x

y

polyedra domain

x

y

Imprecisions inherent in the convexity, and when computing abstract join
(over-approximation of concrete union):

x

y

x]
0 x]

1x]
0 t

] x]
1

Imprecision

Such imprecisions may
make analyses fail

Similar issues also arise
in non-numerical static
analyses

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Oct, 28th. 2024 7 / 93



Imprecisions in convex abstractions

Non convex abstractions

We consider abstractions of D = P(Z)

Congruences:

D] = Z� N

(n; k) = fn + k � p j p 2 Zg

�1 2 (1; 2) and 1 2 (1; 2)
but 0 62 (1; 2)

Non relational product two variables

x

y

Signs:

0 62 ([ 6= 0]) so [6= 0] describes a
non convex set

other abstract elements describe
convex sets

?

[�] [0] [+]

[� 0] [6= 0] [� 0]

>
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Imprecisions in convex abstractions

Example 1: verification problem

bool b0; b1;

int x; y; (uninitialized)
b0 = x � 0;
b1 = x � 0;
if(b0 && b1)f

y = 0;
g else f

① y = 100=x;
g

if :b0, then x < 0

if :b1, then x > 0

if either b0 or b1 is false, then x 6= 0

thus, if point ① is reached the division is
safe

How to verify the division operation ?
Non relational abstraction (e.g., intervals), at point ①:�

b0 2 fFALSE; TRUEg ^ b1 2 fFALSE; TRUEg
x : >

Signs, congruences do not help:
in the concrete, x may take any value but 0
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Imprecisions in convex abstractions

Example 1: program annotated with local invariants

bool b0; b1;

int x; y; (uninitialized)
b0 = x � 0;

(b0 ^ x � 0) _ (:b0 ^ x < 0)
b1 = x � 0;

(b0 ^ b1 ^ x = 0) _ (b0 ^ :b1 ^ x > 0) _ (:b0 ^ b1 ^ x < 0)
if(b0 && b1)f

(b0 ^ b1 ^ x = 0)
y = 0;

(b0 ^ b1 ^ x = 0 ^ y = 0)
g else f

(b0 ^ :b1 ^ x > 0) _ (:b0 ^ b1 ^ x < 0)
y = 100=x;

(b0 ^ :b1 ^ x > 0) _ (:b0 ^ b1 ^ x < 0)
g

The obvious way to sucessfully analyzing this program consists in
adding symbolic disjunctions to our abstract domain
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Imprecisions in convex abstractions

Example 2: verification problem

int x 2 Z;
int s;
int y;
if(x � 0)f

s = 1;
g else f

s = �1;
g

① y = x=s;
② assert(y � 0);

s is either 1 or �1

thus, the division at ① should not fail

moreover s has the same sign as x

thus, the value stored in y should always
be positive at ②

How to verify the division operation ?

In the concrete, s is always non null:
convex abstractions cannot establish this; congruences can

Moreover, s has always the same sign as x
expressing this would require a non trivial numerical abstraction
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Imprecisions in convex abstractions

Example 2: program annotated with local invariants

int x 2 Z;
int s;
int y;
if(x � 0)f

(x � 0)
s = 1;

(x � 0 ^ s = 1)
g else f

(x < 0)
s = �1;

(x < 0 ^ s = �1)
g

(x � 0 ^ s = 1) _ (x < 0 ^ s = �1)
① y = x=s;

(x � 0 ^ s = 1 ^ y � 0) _ (x < 0 ^ s = �1 ^ y > 0)
② assert(y � 0);

Again, the obvious solution consists in
adding disjunctions to our abstract domain

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Oct, 28th. 2024 12 / 93



Disjunctive completion

Outline

1 Introduction

2 Imprecisions in convex abstractions

3 Disjunctive completion

4 Cardinal power and partitioning abstractions

5 State partitioning

6 Trace partitioning

7 Conclusion

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Oct, 28th. 2024 13 / 93



Disjunctive completion

Distributive abstract domain

Principle:
1 consider concrete domain (D;v), with least upper bound operator t
2 assume an abstract domain (D];v]) with concretization  : D] ! D

3 build a domain containing all the disjunctions of elements of D]

Definition: distributive abstract domain
Abstract domain (D];v]) with concretization function  : D] ! D is distributive
(or disjunctive, or complete for disjunction) if and only if:

8E � D]; 9x] 2 D]; (x]) =
G
y]2E

(y ])

Examples:
the lattice f?; < 0;= 0; > 0;� 0; 6= 0;� 0;>g is distributive
the lattice of intervals is not distributive:
there is no interval with concretization ([0; 10]) [ ([12; 20])
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Disjunctive completion

Definition

Definition: disjunctive completion
The disjunctive completion of abstract domain (D];v]) with concretization
function  : D] ! D is the smallest abstract domain (D]

disj;v
]
disj) with

concretization function disj : D
]
disj ! D such that:

D] � D]
disj

8x] 2 D]; disj(x
]) = (x])

(D]
disj;v

]
disj) with concretization disj is distributive

Building a disjunctive completion domain:
1 include in D]

disj all elements of D]

2 for all set E � D] such that there is no x] 2 D], such that
(x]) =

F
y]2E (y

]), add [tE ] to D]
disj, and extend disj by

disj([tE ]) =
F

y]2E (y
])

Theorem: this process constructs a disjunctive abstraction
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Disjunctive completion

Example 1: completion of signs

We consider concrete lattice D = P(Z), with v=�
and (D];v]) defined by:

?

[�] [0] [+]

>  : ? 7�! ;

[< 0] 7�! fk 2 Z j k < 0g
[= 0] 7�! fk 2 Z j k = 0g
[> 0] 7�! fk 2 Z j k > 0g
> 7�! Z

Then, the disjunctive completion is defined
by adding elements corresponding to:

tf[�]; [0]g

tf[�]; [+]g

tf[0]; [+]g

?

[�] [0] [+]

[� 0] [6= 0] [� 0]

>
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Disjunctive completion

Example 2: completion of constants

We consider concrete lattice D = P(Z), with v=�
and (D];v]) defined by:

?

: : : [�2] [�1] [0] [1] [2] : : :

>
 : ? 7�! ;

[k] 7�! fkg

> 7�! Z

Then, the disjunctive completion coincides with the power-set:

D
]
disj � P(Z)

this abstraction loses no information: disj is the identity function !

obviously, this lattice contains infinite sets which are not representable

Middle ground solution: k-bounded disjunctive completion

only add disjunctions of at most k elements

e.g., if k = 2, pairs are represented precisely, other sets abstracted to >
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Disjunctive completion

Example 3: completion of intervals

We consider concrete lattice D = P(Z), with v=�
and let (D];v]) the domain of intervals

D] = f?;>g ] f[a; b] j a � bg

([a; b]) = fx 2 Z j a � x � bg

Then, the disjunctive completion is the set of unions of intervals :

D
]
disj collects all the families of disjoint intervals

this lattice contains infinite sets which are not representable

as expressive as the completion of constants, but more efficient representation

The disjunctive completion of (D])n is not equivalent to (D]
disj)

n

which is more expressive ?

show it on an example !
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Disjunctive completion

Example 3: completion of intervals and verification

We use the disjunctive completion of (D])3.
The invariants below (code example 2) can be expressed in the disjunctive
completion:

int x 2 Z;
int s;
int y;
if(x � 0)f

(x � 0)
s = 1;

(x � 0 ^ s = 1)
g else f

(x < 0)
s = �1;

(x < 0 ^ s = �1)
g

(x � 0 ^ s = 1) _ (x < 0 ^ s = �1)
y = x=s;

(x � 0 ^ s = 1 ^ y � 0) _ (x < 0 ^ s = �1 ^ y > 0)
assert(y � 0);
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Disjunctive completion

Static analysis

To carry out the analysis of a basic imperative language, we will define:

Operations for the computation of post-conditions:
sound over-approximation for basic program steps
I concrete post : P(S) ! P(S) (where S is the set of states);
I the abstract post ] : D] ! D

] should be such that

post �  v  � post ]

I case where post is an assignment: post ] = assign
inputs a variable, an expression, an abstract pre-condition, outputs an abstract
post-condition

I case where post is a condition test: post ] = test inputs a boolean expression, an
abstract pre-condition, outputs an abstract post-condition

An operator join for over-approximation of concrete unions

A widening operator O for the analysis of loops

A conservative inclusion checking operator
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Disjunctive completion

Static analysis with disjunctive completion

Transfer functions for the computation of abstract post-conditions:

we assume a monotone concrete post-condition operation post : D! D, and
an abstract post ] : D] ! D] such that post �  v  � post ]

convention: if (y ]) =
F
f(z]) j z] 2 Eg, we note y ] = [tE ]

then, we can simply use, for the disjunctive completion domain:

post ]disj([tE ]) = [tfpost ](x]) j x] 2 Eg]

(note it may be an element of the initial domain)

the proof is left as exercise
this works for assignment, condition tests...

Abstract join:

disjunctive completion provides an exact join (exercise !)

Inclusion check: exercise !

Widening: no general definition/solution to the disjunct explosion problem
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Disjunctive completion

Limitations of disjunctive completion

Combinatorial explosion:

if D] is infinite, D]
disj may have elements that cannot be represented

e.g., completion of constants or intervals

even when D] is finite, D]
disj may be huge

in the worst case, if D] has n elements, D]
disj may have 2n elements

Many elements useless in practice:
disjunctive completion of intervals: may express any set of integers...

No general definition of a widening operator

most common approach to achieve that: k-limiting
bound the numbers of disjuncts
i.e., the size of the sets added to the base domain

remaining issue: the join operator should “select” which disjuncts to merge
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Cardinal power and partitioning abstractions
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Cardinal power and partitioning abstractions

Principle

Observation
Disjuncts that are required for static analysis

can usually be characterized by some semantic property

Examples: each disjunct is characterized by

the sign of a variable

the value of a boolean variable

the execution path, e.g., side of a condition that was visited

Solution: perform a kind of indexing of disjuncts
1 introduce a new abstraction to describe labels

e.g., the sign of a variable, the value of a boolean, or another trace property...
2 apply the store abstraction (or another abstraction) to the set of states

associated to each label
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Cardinal power and partitioning abstractions

Disjuncts indexing: example

int x 2 Z;
int s;
int y;
if(x � 0)f

(x � 0)
s = 1;

(x � 0 ^ s = 1)
g else f

(x < 0)
s = �1;

(x < 0 ^ s = �1)
g

(x � 0 ^ s = 1) _ (x < 0 ^ s = �1)
y = x=s;

(x � 0 ^ s = 1 ^ y � 0) _ (x < 0 ^ s = �1 ^ y > 0)
assert(y � 0);

natural “indexing”: sign of x

but we could also rely on the sign of s
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Cardinal power and partitioning abstractions

Cardinal power abstraction

We assume (D;v) = (P(E);�), and two abstractions (D]
0;v

]
0); (D

]
1;v

]
1) given by

their concretization functions:

0 : D]
0 �! D 1 : D]

1 �! D

Definition
We let the cardinal power abstract domain be defined by:

D]
cp = D

]
0

M
�! D

]
1 be the set of monotone functions from D

]
0 into D]

1

v]
cp be the pointwise extension of v]

1

cp is defined by:

cp : D]
cp �! D

X ] 7�! fy 2 E j 8z] 2 D]
0; y 2 0(z

]) =) y 2 1(X
](z]))g

We sometimes denote it by D]
0 � D

]
1, D]0�D]1 to make it more explicit.
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Cardinal power and partitioning abstractions

Use of cardinal power abstractions

Intuition: cardinal power expresses properties of the form8>>><
>>>:

p0 =) p00
^ p1 =) p01
...

...
...

...
^ pn =) p0n

Two independent choices:
1 D

]
0: set of partitions (the “labels”), represents p0; : : : ; pn

2 D
]
1: abstraction of sets of states, e.g., a numerical abstraction, represents

p00; : : : ; p
0
n

Application (x � 0 ^ s = 1 ^ y � 0) _ (x < 0 ^ s = �1 ^ y > 0)
D

]
0: sign of s

D
]
1: other constraints

we get: s > 0 =) (x � 0 ^ s = 1 ^ y � 0) ^ s � 0 =) (: : :)
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Cardinal power and partitioning abstractions

Another example, with a single variable
Assumptions:

concrete lattice D = P(Z), with
(v) = (�)

(D]
0;v

]
0) be the lattice of signs

(strict inequalities only)

(D]
1;v

]
1) be the lattice of intervals

?

[�] [0] [+]

>

Example abstract values:

[0; 8] is expressed by:

8>>>><
>>>>:

? 7�! ?1

[�] 7�! ?1

[0] 7�! [0; 0]
[+] 7�! [1; 8]
> 7�! [0; 8]

[�10;�3] ] [7; 10] is expressed by:

8>>>><
>>>>:

? 7�! ?1

[�] 7�! [�10;�3]
[0] 7�! ?1

[+] 7�! [7; 10]
> 7�! [�10; 10]
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Cardinal power and partitioning abstractions

Cardinal power: why monotone functions ?

We have seen the reduced cardinal power intuitively denotes a conjunction of
implications, thus, assuming that D]

0 has two comparable elements p0; p1 and:
�

p0 =) p00
^ p1 =) p01

Then:
p0; p1 are comparable, so let us fix p0 v

]
0 p1

logically, this means p0 =) p1

thus the abstract element represents states where p0 =) p1 =) p01
as a conclusion, if p00 is not as strong as p01, it is possible to reinforce it!
new abstract state: �

p0 =) p00 ^ p01
^ p1 =) p01

This is a reduction operation.

Non monotone functions can be reduced into monotone functions
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Cardinal power and partitioning abstractions

Example reduction (1): relation between the two domains

concrete lattice D = P(Z), with v=�

(D]
0;v

]
0) be the lattice of signs

(D]
1;v

]
1) be the lattice of intervals

?

[�] [0] [+]

>

We let:

X ] =

8>>>><
>>>>:

? 7�! ?1

[�] 7�! [1; 8]
[0] 7�! [1; 8]
[+] 7�! ?1

> 7�! [1; 8]

Y ] =

8>>>><
>>>>:

? 7�! ?1

[�] 7�! [2; 45]
[0] 7�! [�5;�2]
[+] 7�! [�5;�2]
> 7�! >1

Z ] =

8>>>><
>>>>:

? 7�! ?1

[�] 7�! ?1

[0] 7�! ?1

[+] 7�! ?1

> 7�! ?1

Then,

cp(X
]) = cp(Y

]) = cp(Z
]) = ;

Note: monotone functions may also benefit from reduction
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Cardinal power and partitioning abstractions

Example reduction (2): tightening relations

concrete lattice D = P(Z), with v=�

(D]
0;v

]
0) be the lattice of signs

(D]
1;v

]
1) be the lattice of intervals ?

[�] [0] [+]

>

We let: X ] =

8>>>><
>>>>:

? 7�! ?1

[�] 7�! [�5;�1]
[0] 7�! [0; 0]
[+] 7�! [1; 5]
> 7�! [�10; 10]

Y ] =

8>>>><
>>>>:

? 7�! ?1

[�] 7�! [�5;�1]
[0] 7�! [0; 0]
[+] 7�! [1; 5]
> 7�! [�5; 5]

Then, cp(X
]) = cp(Y

])

0([�]) [ 0([0]) [ ([+]) = (>)

but

0(X
]([�])) [ 0(X

]([0])) [ (X ]([+]))� (X ](>))

In fact, we can improve the image of > into [�5; 5]
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Cardinal power and partitioning abstractions

Reduction, and improving precision in the cardinal power

In general, the cardinal power construction requires reduction

Hence, reduced cardinal power = cardinal power + reduction

Strengthening using both sides of )

Tightening of y ]
0 7! y ]

1 when:

9z]
1 6= y ]

1; 1(y
]
1) \ 0(y

]
0) � (z]

1)

in the example, z]
1 = ?1...

Strengthening of one relation using other relations

Tightening of relation (tfz] j z] 2 Eg) 7! x]
1 when:S

f0(z
]) j z] 2 Eg = 0(tfz

] j z] 2 Eg)

9y ];
S
f1(X

](z])) j z] 2 Eg � 1(y
]) � 1(X

](tfz] j z] 2 Eg))

in the example, we use a set of elements that cover >...
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Cardinal power and partitioning abstractions

Composition with another abstraction

We assume three abstractions

(D]
0;v

]
0), with concretization 0 : D]

0 �! D

(D]
1;v

]
1), with concretization 1 : D]

1 �! D

(D]
2;v

]
2), with concretization 2 : D]

2 �! D
]
1

D = P(E)

D
]
0 D

]
1

D
]
2

0 1

2

Cardinal power abstract domains D]
0 � D

]
1 and D]

0 � D
]
2 can be bound by an

abstraction relation defined by concretization function :

 : (D]
0 � D

]
2) �! (D]

0 � D
]
1)

X ] 7�! �(z] 2 D]
0) � 2(X

](z]))

Applications:

start with D]
1; 1 defined as the identity abstraction

compose an abstraction for right hand side of relations

compose several cardinal power abstractions (or partitioning abstractions)
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Cardinal power and partitioning abstractions

Composition with another abstraction

concrete lattice D = P(Z), with v=�

(D]
0;v

]
0) be the lattice of signs

(D]
1;v

]
1) be the identity abstraction

D
]
1 = P(Z), 1 = Id

(D]
2;v

]
2) be the lattice of intervals

?

[�] [0] [+]

>

Then, [�10;�3] ] [7; 10] is abstracted in two steps:

in D]
0 � D

]
1,

8<
:

[�] 7�! f�10;�9;�8;�7;�6;�5;�4;�3g
[0] 7�! ;

[+] 7�! f7; 8; 9; 10g

(note that, at this stage, the right hand sides are simply sets of values)

in D]
0 � D

]
2,

8<
:

[�] 7�! [�10;�3]
[0] 7�! ?1

[+] 7�! [7; 10]
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Cardinal power and partitioning abstractions

Representation of the cardinal power

Basic ML representation:

using functions, i.e. type cp = d0 -> d1
) usually a bad choice, as it makes it hard to operate in the D]

0 side

using some kind of dictionnaries type cp = (d0,d1) map
) better, but not straightforward...

Even the latter is not a very efficient representation:

if D]
0 has N elements, then an abstract value in D]

cp requires N elements of
D

]
1

if D]
0 is infinite, and D]

1 is non trivial, then D]
cp has elements that cannot

be represented

the 2nd reduction shows it is unnecessary to represent bindings for all
elements of D]

0
example: this is the case of ?0
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Cardinal power and partitioning abstractions

More compact representation of the cardinal power

Principle:
use a dictionnary data-type (most likely functional arrays)
avoid representing information attached to redundant elements

A compact representation should be just sufficient to “represent” all elements of
D

]
0:

Compact representation

Reduced cardinal power of D]
0 and D]

1 can be represented by considering only a
subset C � D]

0 where

8x] 2 D]
0; 9E � C; 0(x

]) = [f0(y
]) j y ] 2 Eg

In particular:
if possible, C should be minimal
in any case, ?0 62 C

also, when >0 can be generated by a union of a set of elements, it can be
removed
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Cardinal power and partitioning abstractions

Example: compact cardinal power over signs

concrete lattice D = P(Z), with v=�

(D]
0;v

]
0) be the lattice of signs

(D]
1;v

]
1) be the lattice of intervals

?

[�] [0] [+]

>

Observations
? does not need be considered (obvious right hand side: ?1)

0([< 0]) [ 0([= 0]) [ ([> 0]) = (>) thus > does not need be considered

Thus, we let C = f[�]; [0]; [+]g

[0; 8] is expressed by:
8<
:

[�] 7�! ?1

[0] 7�! [0; 0]
[+] 7�! [1; 8]

[�10;�3] ] [7; 10] is expressed by:
8<
:

[�] 7�! [�10;�3]
[0] 7�! ?1

[+] 7�! [7; 10]
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Cardinal power and partitioning abstractions

Lattice operations

Infimum:

if ?1 is the infimum of D]
1, ?cp = �(z] 2 D]

0) � ?1 is the infimum of D]
cp

Ordering test (sound, not necessarily optimal):

we define v]
cp as the pointwise ordering:

X ]
0 v

]
cp X ]

1
def
::= 8z] 2 D]

0; X
]
0(z

]) v]
1 X ]

1(z
])

then, X ]
0 v

]
cp X ]

1 =) cp(X
]
0) � cp(X

]
1)

Join operation:

we assume that t1 is a sound upper bound operator in D]
1

then, tcp defined below is a sound upper bound operator in D]
cp:

X ]
0 tcp X

]
1

def
::= �(z] 2 D]

0) � (X
]
0(z

]) t1 X
]
1(z

]))

the same construction applies to widening, if D]
0 is finite
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Cardinal power and partitioning abstractions

Abstract post-conditions

The general definition is quite involved so we first assume D]
1 = D = P(E) and

consider f : D! P(D).

Definitions:
for x]; y ] 2 D]

0, we let fx];y] : (D
]
0 ! D

]
1)! D

]
1 be defined by

fx];y](X
]) = 0(y

]) \ f (X ](x]) \ 0(x
]))

for y ] 2 D]
0, we note P(y ]) the set of “predecessor coverings” of y ]:n

V � D]
0 j 8c 2 f �1(0(y

])); 9x] 2 V ; c 2 0(x
])
o

Then the definition below provides a sound over-approximation of f :

f ] : X ] 7�! �(y ] 2 D]
0) �

\
V2P(y])

0
@ [

x]2V

fx];y](X
])

1
A

this definition is not practical: using a direct abstraction of this formula will
result in a prohibitive runtime cost!
in the following, we set specific instances.
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State partitioning Definition and examples
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State partitioning Definition and examples

Definition

We consider concrete domain D = P(S) where

S = L�M where L denotes the set of control states

M = X �! V

State partitioning
A state partitioning abstraction is defined as the cardinal power of two
abstractions (D]

0;v
]
0; 0) and (D]

1;v
]
1; 1) of the domain of sets of states

(P(S);�):

(D]
0;v

]
0; 0) defines the partitions

(D]
1;v

]
1; 1) defines the abstraction of each element of partitions

Typical instances:

either D]
1 = P(S) = D

or an abstraction of sets of memory states: numerical abstraction
can be obtained by composing another abstraction on top of (P(S);�)
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State partitioning Definition and examples

Use of a partition: intuition

We fix a partition U of P(S):
1 8E ;E 0 2 U ; E 6= E 0 =) E \ E 0 = ;

2 S =
S
U

E0 E1 E2 E3

We can apply the cardinal power construction:

State partitioning abstraction

We let D]
0 = U [ f?;>g and 0 : (E 2 U) 7�! E . Thus, D]

cp = U ! D
]
1 and:

cp : D]
cp �! D

X ] 7�! fs 2 S j 8E 2 U ; s 2 E =) s 2 1(X
](E ))g

each E 2 U is attached to a piece of
information in D]

1

exercise: what happens if we use only a
covering, i.e., if we drop property 1 ?

we will often focus on U and drop ?;>

E0

x]
0

E1

x]
1

E2

x]
2

E3

x]
3
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State partitioning Definition and examples

Application 1: flow sensitive abstraction

Principle: abstract separately the states at distinct control states

This is what we have been often doing already, without formalizing it
for instance, using the the interval abstract domain:

l0 : // assume x � 0
l1 : if(x < 10)f
l2 : y = x� 2;
l3 : gelsef
l4 : y = 2� x;
l5 : g

l6 : : : :

l0 7! x : > ^ y : >

l1 7! x : [0;+1[ ^ y : >

l2 7! x : [0; 9] ^ y : >

l3 7! x : [0; 9] ^ y : [�2; 7]
l4 7! x : [10;+1[ ^ y : >

l5 7! x : [10;+1[ ^ y :]�1;�8]
l6 7! x : [0;+1[ ^ y :]�1; 7]

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Oct, 28th. 2024 43 / 93



State partitioning Definition and examples

Application 1: flow sensitive abstraction

Principle: abstract separately the states at distinct control states

Flow sensitive abstraction
We apply the cardinal power based partitioning abstraction with:

U = L

0 : l 7! fl g �M

It is induced by partition ffl g �M j l 2 Lg

Then, if X ] is an element of the reduced cardinal power,

cp(X
]) = fs 2 S j 8x 2 D]

0; s 2 0(x) =) s 2 1(X
](x))g

= f(l ;m) 2 S j m 2 1(X
](l))g

after this abstraction step, D]
1 only needs to represent sets of memory states

(numeric abstractions...)
this abstraction step is very common as part of the design of abstract
interpreters
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State partitioning Definition and examples

Application 1: flow insensitive abstraction

Flow sensitive abstraction is sometimes too costly:

e.g., ultra fast pointer analyses (a few seconds for 1 MLOC) for
compilation and program transformation

context insensitive abstraction simply collapses all control states

Flow insensitive abstraction
We apply the cardinal power based partitioning abstraction with:

D
]
0 = f�g

0 : � 7! S

D
]
1 = P(M)

1 : M 7! f(l ;m) j l 2 L;m 2 Mg

It is induced by a trivial partition of P(S)
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State partitioning Definition and examples

Application 1: flow insensitive abstraction

We compare with flow sensitive abstraction:

l0 : // assume x � 0
l1 : if(x < 10)f
l2 : y = x� 2;
l3 : gelsef
l4 : y = 2� x;
l5 : g

l6 : : : :

l0 7! x : > ^ y : >

l1 7! x : [0;+1[ ^ y : >

l2 7! x : [0; 9] ^ y : >

l3 7! x : [0; 9] ^ y : [�2; 7]
l4 7! x : [10;+1[ ^ y : >

l5 7! x : [10;+1[ ^ y :]�1;�8]
l6 7! x : [0;+1[ ^ y :]�1; 7]

the best global information is x : > ^ y : > (very imprecise)

even if we exclude the entry point before the assumption point, we get
x : [0;+1[^ y : > (still very imprecise)

For a few specific applications flow insensitive is ok
In most cases (e.g., numeric properties), flow sensitive is absolutely needed
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State partitioning Definition and examples

Application 2: context sensitive abstraction

We consider programs with procedures

Example:
void main()f: : : l0 : f(); : : : l1 : f(); : : : l2 : g() : : :g
void f()f: : :g
void g()fif(: : :)fl3 : g()gelsefl4 : f()gg

main

f g

l0

l1

l2

l3 l4

assumption: flow sensitive abstraction used inside each function

we need to also describe the call stack state

Call stack (or, “call string”)
Thus, S = K� L�M, where K is the set of call stacks (or, “call strings”)

� 2 K call stacks
� ::= � empty call stack

j (f ; l ) � � call to f from stack � at point l
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State partitioning Definition and examples

Application 2: context sensitive abstraction, 1-CFA

Fully context sensitive abstraction (1-CFA)

D
]
0 = K� L

0 : (�; l ) 7! f(�; l ;m) j m 2Mg

void main()f: : : l0 : f(); : : : l1 : f(); : : : l2 : g() : : :g
void f()f: : :g
void g()fif(: : :)fl3 : g()gelsefl4 : f()gg

main

f g

l0

l1

l2

l3 l4

Abstract contexts in function f:

(l0; f) � �; (l1; f) � �; (l4; f) � (l2; g) � �;
(l4; f) � (l3; g) � (l2; g) � �; (l4; f) � (l3; g) � (l3; g) � (l2; g) � �; : : :

one invariant per calling context, very precise

infinite in presence of recursion (i.e., not practical in this case)
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State partitioning Definition and examples

Application 2: context insensitive abstraction, 0-CFA

Context insensitive abstraction (0-CFA)

D
]
0 = L

0 : l 7! f(�; l ;m) j � 2 K;m 2Mg

void main()f: : : l0 : f(); : : : l1 : f(); : : : l2 : g() : : :g
void f()f: : :g
void g()fif(: : :)fl3 : g()gelsefl4 : f()gg

main

f g

l0

l1

l2

l3 l4

Abstract contexts in function f are of the form (?; f) � : : : ;

0-CFA merges all calling contexts to a same procedure, very coarse
abstraction

but is usually quite efficient to compute
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State partitioning Definition and examples

Application 2: context sensitive abstraction, k-CFA

Partially context sensitive abstraction (k-CFA)

D
]
0 = f� 2 K j length(�) � kg � L

0 : (�; l ) 7! f(� � �0; l ;m) j �0 2 K;m 2Mg

void main()f: : : l0 : f(); : : : l1 : f(); : : : l2 : g() : : :g
void f()f: : :g
void g()fif(: : :)fl3 : g()gelsefl4 : f()gg

main

f g

l0

l1

l2

l3 l4

Abstract contexts in function f, in 2-CFA:

(l0; f) � �; (l1; f) � �; (l4; f) � (l3; g) � (?; g) � : : : ; (l4; f) � (l2; g) � (?; main)

usually intermediate level of precision and efficiency

can be applied to programs with recursive procedures
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State partitioning Definition and examples

Application 3: partitioning by a boolean condition

so far, we only used abstractions of the control states to partition
we now consider abstractions of memory states properties

Function guided memory states partitioning
We let:

D
]
0 = A where A finite set is a finite set of values / properties

� :M! A maps each store to its property

0 is of the form (a 2 A) 7! f(l ;m) 2 S j �(m) = ag

Common choice for A: the set of boolean values B
(or another finite set of values —convenient for enum types!)

Many choices for function � are possible:
value of one or several variables (boolean or scalar)
sign of a variable
...
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State partitioning Definition and examples

Application 3: partitioning by a boolean condition

We assume:

X = Xbool ]Xint, where Xbool (resp., Xint) collects boolean (resp., integer)
variables

Xbool = fb0; : : : ; bk�1g

Xint = fx0; : : : ; xl�1g

Thus, M = X! V � (Xbool ! Vbool)� (Xint ! Vint) � V
k
bool � V

l
int

Boolean partitioning abstract domain
We apply the cardinal power abstraction, with a domain of partitions defined by a
function, with:

A = Bk

�(m) = (m(b0); : : : ;m(bk�1))

we let (D]
1;v

]
1; 1) be any numerical abstract domain for P(Vl

int)
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State partitioning Definition and examples

Application 3: example

With Xbool = fb0; b1g;Xint = fx; yg, we can express:

8>><
>>:

b0 ^ b1 =) x 2 [�3; 0] ^ y 2 [�2; 0]
b0 ^ :b1 =) x 2 [�3; 0] ^ y 2 [�2; 0]
:b0 ^ b1 =) x 2 [0; 3] ^ y 2 [0; 2]
:b0 ^ :b1 =) x 2 [0; 3] ^ y 2 [0; 2]

x

y

:b0

b0

this abstract value expresses a relation between b0 and x; y
(which induces a relation between x and y)

alternative: partition with respect to only some variables
e.g., here b0 only since b1 is irrelevant

typical representation of abstract values:
based on some kind of decision trees (variants of BDDs)
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State partitioning Definition and examples

Application 3: example

Left side abstraction shown in blue: boolean partitioning for b0; b1

Right side abstraction shown in green: interval abstraction

We omit the cases of the form P =) ?...

bool b0; b1;

int x; y; (uninitialized)
b0 = x � 0;

(b0 =) x � 0) ^ (:b0 =) x < 0)
b1 = x � 0;

(b0 ^ b1 =) x = 0) ^ (b0 ^ :b1 =) x > 0) ^ (:b0 ^ b1 =) x < 0)
if(b0 && b1)f

(b0 ^ b1 =) x = 0)
y = 0;

(b0 ^ b1 =) x = 0 ^ y = 0)
gelsef

(b0 ^ :b1 =) x > 0) ^ (:b0 ^ b1 =) x < 0)
y = 100=x;

(b0 ^ :b1 =) x > 0 ^ y � 0) ^ (:b0 ^ b1 =) x < 0 ^ y � 0)
g
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State partitioning Definition and examples

Application 3: partitioning by the sign of a variable

We now consider a semantic property: the sign of a variable

We assume:

X = Xint, i.e., all variables have integer type

Xint = fx0; : : : ; xl�1g

Thus, M = X! V � Vl
int

Sign partitioning abstract domain
We apply the cardinal power abstraction, with a domain of partitions defined by a
function, with:

A = f[< 0]; [= 0]; [> 0]g

�(m) =

8<
:

[< 0] if m(x0) < 0
[= 0] if m(x0) = 0
[> 0] if m(x0) > 0

(D]
1;v

]
1; 1) an abstraction of P(Vl�1

int ) (no need to abstract x0 twice)
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State partitioning Definition and examples

Application 3: example

Sign abstraction fixing partitions shown in blue

States abstraction shown in green: interval abstraction

We omit the cases of the form P =) ?...
int x 2 Z;
int s;
int y;
if(x � 0)f

(x < 0) ?) ^ (x = 0) >) ^ (x > 0) >)
s = 1;

(x < 0) ?) ^ (x = 0) s = 1) ^ (x > 0) s = 1)
g else f

(x < 0) >) ^ (x = 0) ?) ^ (x > 0) ?)
s = �1;

(x < 0) s = �1) ^ (x = 0) ?) ^ (x > 0) ?)
g

(x < 0) s = �1) ^ (x = 0) s = 1) ^ (x > 0) s = 1)
① y = x=s;

(x < 0) s = �1 ^ y > 0) ^ (x = 0) s = 1 ^ y = 0) ^ (x > 0) s = 1 ^ y > 0)
② assert(y � 0);
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State partitioning Abstract interpretation with boolean partitioning
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State partitioning Abstract interpretation with boolean partitioning

Computation of abstract semantics and partitioning

We present abstract operations in the context of an analysis that combines two
forms of partitioning:

by control states (as previously), using a chaotic iteration strategy

by the values of the boolean variables

Intuitively, the abstract values are of the form:

f ] : (L� Vk
bool) �! D

]
1

Yet, this is not a very good representation:

program transition from one control state to another are known before
the analysis:
they correspond to the program transitions

program transition from one boolean configuration to another are not
known before the analysis: we need to know information about the values
of the boolean variables, which the analysis is supposed to compute
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State partitioning Abstract interpretation with boolean partitioning

A combination of two cardinal powers

Sequence of abstractions:

1 concrete states: P(L�M) � P(L� (Vk
bool � V

l
int))

2 partitioning of states by the control state:

L �!P(M) � L �!P((Vk
bool � V

l
int))

3 partitioning by the boolean configuration:

L �! (Vk
bool �!P(V

l
int))

4 numerical abstraction of numerical stores:

L �! (Vk
bool �! D

]
1)

Computer representation:

type abs1 = ... (* abstract elements of D]
1 *)

type abs_state = ... (*
boolean trees with elements of type abs1 at the leaves *)

type abs_cp = (labels, abs_state) Map.t
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State partitioning Abstract interpretation with boolean partitioning

Abstract operations

Abstract post-conditions
concrete post : P(S)! P(S) (where S is the set of states);

the abstract post ] : D] ! D] should be such that

post �  v  � post ]

In the next part, we seek for abstract post-conditions for the following
operations, in the cardinal power domain, assuming similar functions are defined in
the underlying domain (numeric abstract domain, cf previous course):

assignment to scalar, e.g., x = 1� x;

assignment to boolean, e.g., b0 = x � 7

scalar test, e.g., if(x � 8) : : :

boolean test, e.g., if(:b1) : : :

Other lattice operations (inclusion check, join, widening) are left as exercise
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State partitioning Abstract interpretation with boolean partitioning

Transfer functions: assignment to scalar (1/2)

Computation of an abstract post-condition

xk = e;

Example:

statement x = 1� x;

abstract pre-condition:
�

b ) x � 0
^ :b ) x � 0

�

Intuition:

the values of the boolean variables do not change

the values of the numeric values can be updated separately for each partition
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State partitioning Abstract interpretation with boolean partitioning

Transfer functions: assignment to scalar (2/2)

Definition of the abstract post-condition

assigncp(x; e;X
]) = �(z] 2 Vk

bool) � assign1(x; e;X
](z]))

This post-condition is sound:

Soundness
If assign1 is sound, so is assigncp, in the sense that:

8X ] 2 D]
cp; 8m 2 cp(X

]); m[x JeK(m)] 2 cp(assigncp(x; e;X
]))

proof by case analysis over the value of the boolean variables

Example:

assigncp

�
x; 1� x;

�
b ) x � 0

^ :b ) x � 0

��
=

�
b ) x � 1

^ :b ) x � 1

�
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State partitioning Abstract interpretation with boolean partitioning

Transfer functions: scalar test (1/2)

Computation of an abstract post-condition

if(e)f: : :

where e only refers to numeric variables
(analysis of a condition test, of a loop test, of an assertion)

Example:
statement: if(x � 8)f: : :
abstract pre-condition: �

b ) x � 0
^ :b ) x � 0

�

Intuition:
the values of the variables do not change, no relations between boolean and
numeric variables can be inferred
new conditions on the numeric variables can be inferred, separately for each
partition (possibly leading to empty abstract states)
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State partitioning Abstract interpretation with boolean partitioning

Transfer functions: scalar test (2/2)

Definition of the abstract post-condition

test cp(c;X ]) = �(z] 2 Vk
bool) � test1(c;X ](z]))

This post-condition is sound:

Soundness
If test1 is sound, so is test cp, in the sense that:

8X ] 2 D]
cp; 8m 2 cp(X

]); JcK(m) = TRUE =) m 2 cp(test cp(x; e;X ]))

proof by case analysis over the value of the boolean variables

Example:

test cp

�
x � 8;

�
b ) x � 0

^ :b ) x � 0

��
=

�
b ) x � 8

^ :b ) ?

�
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State partitioning Abstract interpretation with boolean partitioning

Transfer functions: boolean condition test (1/3)

Computation of an abstract post-condition

if(e)f: : :

where e only refers to boolean variables
(analysis of a condition test, of a loop test, of an assertion)

Example:
statement: if(:b1) : : :

abstract pre-condition:

8>><
>>:

b0 ^ b1 ) 15 � x
^ b0 ^ :b1 ) 9 � x � 14
^ :b0 ^ b1 ) 6 � x � 8
^ :b0 ^ :b1 ) x � 5

9>>=
>>;

Intuition:
the values of the variables do not change, no new relations between boolean
and numeric variables can be inferred
certain boolean configurations get discarded or refined
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State partitioning Abstract interpretation with boolean partitioning

Transfer functions: boolean condition test (2/3)

Definition of the abstract post-condition

test cp(c;X ]) = �(z] 2 Vk
bool) �

�
X ](z]) if test0(c; z]) 6= ?0

?1 otherwise

This post-condition is sound:

Soundness
If test0 is sound, so is test cp, in the sense that:

8X ] 2 D]
cp; 8m 2 cp(X

]); JcK(m) = TRUE =) m 2 cp(test cp(x; e;X ]))

Proof:

case analysis over the boolean configurations

in each situation, two cases depending on whether or not the condition test
evaluates to TRUE or to FALSE
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State partitioning Abstract interpretation with boolean partitioning

Transfer functions: boolean condition test (3/3)

Example abstract post-condition:

test cp

0
BB@:b1;

8>><
>>:

b0 ^ b1 ) 15 � x
^ b0 ^ :b1 ) 9 � x � 14
^ :b0 ^ b1 ) 6 � x � 8
^ :b0 ^ :b1 ) x � 5

9>>=
>>;

1
CCA

=

8>><
>>:

b0 ^ b1 ) ?1

^ b0 ^ :b1 ) 9 � x � 14
^ :b0 ^ b1 ) ?1

^ :b0 ^ :b1 ) x � 5

9>>=
>>;
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State partitioning Abstract interpretation with boolean partitioning

Transfer functions: assignment to boolean (1/3)

Computation of an abstract post-condition

bj = e;

where e only refers to numeric variables

Example:
statement: b0 = x � 7

abstract pre-condition:

8>><
>>:

b0 ^ b1 ) 15 � x
^ b0 ^ :b1 ) 9 � x � 14
^ :b0 ^ b1 ) 6 � x � 8
^ :b0 ^ :b1 ) x � 5

9>>=
>>;

Intuition:
the value of the boolean variable in the left hand side changes, thus partitions
need to be recomputed
new relations between boolean variables and numeric variables emerge (old
relations get discarded)
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State partitioning Abstract interpretation with boolean partitioning

Transfer functions: assignment to boolean (2/3)

Definition of the abstract post-condition

assigncp(b; e;X
])(z][b TRUE]) =

�
test1(e;X ](z][b TRUE]))

t1 test1(e;X ](z][b FALSE]))

assigncp(b; e;X
])(z][b FALSE]) =

�
test1(:e;X ](z][b TRUE]))

t1 test1(:e;X ](z][b FALSE]))

Soundness

8X ] 2 D]
cp; 8m 2 cp(X

]); m[b JeK(m)] 2 cp(assigncp(b; e;X
]))

Proof: if z] 2 D]
0 and z](b) = TRUE, then, assigncp(b; e[x0; : : : ; xi ];X ])(z]) should

account for all states where b becomes true, whatever the previous value, other
boolean variables remaining unchanged; the case where z](b) = FALSE is
symmetric.

The partitions get modified (this is a costly step, involving join)
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State partitioning Abstract interpretation with boolean partitioning

Transfer functions: assignment to boolean (3/3)

Example abstract post-condition:

assigncp

0
BB@b0; x � 7;

8>><
>>:

b0 ^ b1 ) 15 � x
^ b0 ^ :b1 ) 9 � x � 14
^ :b0 ^ b1 ) 6 � x � 8
^ :b0 ^ :b1 ) x � 5

9>>=
>>;

1
CCA

=

8>><
>>:

b0 ^ b1 ) 6 � x � 7
^ b0 ^ :b1 ) x � 5
^ :b0 ^ b1 ) 8 � x
^ :b0 ^ :b1 ) 9 � x � 14

9>>=
>>;

The partitions get modified (this is a costly step, involving join)
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State partitioning Abstract interpretation with boolean partitioning

Choice of boolean partitions

Boolean partitioning allows to express relations between boolean and scalar
variables, but these relations are expensive to maintain:

1 partitioning with respect to N boolean variables translates into a 2N space
cost factor

2 after assignments, partitions need be recomputed (use of join)

Packing addresses the first issue
select groups of variables for which relations would be useful

can be based on syntactic or semantic criteria

Whatever the packs, the transfer functions will produce a sound result
(but possibly not the most precise one)

In the last part of this course, we present another form of partitioning that can
sometimes alleviate these issues
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Trace partitioning Principles and examples

Definition of trace partitioning

Principle
We start from a trace semantics and rely on an abstraction of execution
history for partitioning

concrete domain: D = P(S�)

left side abstraction 0 : D]
0 ! D: a trace abstraction

to be defined precisely later
right side abstraction, as a composition of two abstractions:
I the final state abstraction defined by (D]

1;v
]
1) = (P(S);�) and:

1 : M 7�! fhs0; : : : ; sk ; (l ; m)i j m 2 M; l 2 L; s0; : : : ; sk 2 Sg

I a store abstraction applied to the traces final memory state
2 : D]

2 ! D
]
1

Trace partitioning
Cardinal power abstraction defined by abstractions 0 and 1 � 2
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Trace partitioning Principles and examples

Application 1: partitioning by control states

Flow sensitive abstraction
We let D]

0 = L [ f>g

Concretization is defined by:

0 : D
]
0 �! P(S�)

l 7�! S� � (fl g �M)

This produces the same flow sensitive abstraction as with state partitioning; in the
following we always compose context sensitive abstraction with other
abstractions...

Trace partitioning is more general than state partitioning
Any state partitioning abstraction is also a trace partitioning abstraction:

context-sensitivity, partial context sensitivity

partitioning guided by a boolean condition...
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Trace partitioning Principles and examples

Application 2: partitioning guided by a condition

We consider a program with a conditional statement:

l0 : if(c)f
l1 : : : :

l2 : gelsef
l3 : : : :

l4 : g

l5 : : : :

Domain of partitions

The partitions are defined by D]
0 = f�if:t; �if:f ;>g and:

0 : �if:t 7�! fh(l0;m); (l1;m 0); : : :i j m 2M;m 0 2Mg
�if:f 7�! fh(l0;m); (l3;m 0); : : :i j m 2M;m 0 2Mg
> 7�! S�

Application:
discriminate the executions depending on the branch they visited
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Trace partitioning Principles and examples

Application 2: partitioning guided by a condition

This partitioning resolves the second example:

int x 2 Z;
int s;
int y;
if(x � 0)f

�if:t ) (0 � x) ^ �if:f ) ?

s = 1;
�if:t ) (0 � x ^ s = 1) ^ �if:f ) ?

g else f
�if:f ) (x < 0) ^ �if:t ) ?

s = �1;
�if:f ) (x < 0 ^ s = �1) ^ �if:t ) ?

g �
�if:t ) (0 � x ^ s = 1)

^ �if:f ) (x < 0 ^ s = �1)
y = x=s; �

�if:t ) (0 � x ^ s = 1 ^ 0 � y)
^ �if:f ) (x < 0 ^ s = �1 ^ 0 < y)
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Trace partitioning Principles and examples

Application 3: partitioning guided by a loop

We consider a program with a loop statement:

l0 : while(c)f
l1 : : : :

l2 : g

l3 : : : :

Domain of partitions
For a given k 2 N, the partitions are defined by
D

]
0 = f�loop:0; �loop:1; : : : ; �loop:k ;>g and:

0 : �loop:i 7�! traces that visit l1 i times
> 7�! S�

Application:
discriminate executions depending on the number of iterations in a loop
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Trace partitioning Principles and examples

Application 3: partitioning guided by a loop

An interpolation function:

y =

8>><
>>:

�1 if x � �1
� 1

2 + x
2 if x 2 [�1; 1]

�1 + x if x 2 [1; 3]
2 if 3 � x x

y

Typical implementation:
use tables of coefficients and loops to search for the range of x
here we assume the entrance is positive:

int i = 0;
while(i < 4 && x > tx [i+ 1])f

i++;

g 8>><
>>:

�loop:0 ) ? (case x � �1)
�loop:1 ) 0 � x � 1 ^ i = 1 (case � 1 � x � 1)
�loop:2 ) 1 � x � 3 ^ i = 2
�loop:3 ) 3 � x ^ i = 3

y = tc [i]� (x� tx [i]) + ty [i]
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Trace partitioning Principles and examples

Application 4: partitioning guided by the value of a variable

We consider a program with an integer variable x, and a program point l :

int x; : : : ; l : : : :

Domain of partitions: partitioning by the value of a variable
For a given E � Vint finite set of integer values, the partitions are defined by
D

]
0 = f�val:i j i 2 Eg ] f>g and:

0 : �val:k 7�! fh: : : ; (l ;m); : : :i j m(x) = kg

> 7�! S�

Domain of partitions: partitioning by the property of a variable
For a given abstraction  : (V ];v])! (P(Vint);�), the partitions are defined by
D

]
0 = f�var:v] j v

] 2 V ]g and:

0 : �val:v] 7�! fh: : : ; (l ;m); : : :i j m(x) 2 �var:v]g
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Trace partitioning Principles and examples

Application 4: partitioning guided by the value of a variable

Left side abstraction shown in blue: sign of x at entry
Right side abstraction shown in green:
non relational abstraction (we omit the information about x)
Same precision and similar results as boolean partitioning,
but very different abstraction, fewer partitions, no re-partitioning

bool b0; b1;

int x; y; (uninitialized)
① (x < 0@①) >) ^ (x = 0@①) >) ^ (x > 0@①) >)

b0 = x � 0;
(x < 0@①) :b0) ^ (x = 0@①) b0) ^ (x > 0@①) b0)

b1 = x � 0;
(x < 0@①) :b0 ^ b1) ^ (x = 0@①) b0 ^ b1) ^ (x > 0@①) b0 ^ :b1)

if(b0 && b1)f

(x < 0@①) ?) ^ (x = 0@①) b0 ^ b1) ^ (x > 0@①) ?)

y = 0;
(x < 0@①) ?) ^ (x = 0@①) b0 ^ b1 ^ y = 0) ^ (x > 0@①) ?)

g else f
(x < 0@①) :b0 ^ b1) ^ (x = 0@①) ?) ^ (x > 0@①) b0 ^ :b1)

y = 100=x;
(x < 0@①) :b0 ^ b1 ^ y � 0) ^ (x = 0@①) ?) ^ (x > 0@①) b0 ^ :b1 ^ y � 0)

g
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Trace partitioning Abstract interpretation with trace partitioning
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Trace partitioning Abstract interpretation with trace partitioning

Trace partitioning induced by a refined transition system

We consider possible partitions for a condition, and formalize the analysis:
P0: the analysis does merge them right after the condition, at l5
(this amounts to doing no partitioning at all)
P1: the analysis may merge them at a further point l6 (more precise, but
more expensive)
P2: the analysis may never merge traces from both branches
(very precise, but very expensive)

l0 if(x < 0)f
l1 s = �1;
l2 g else f
l3 s = 1;
l4 g

l5 y = x=s;
l6 : : :

P0

l0

l1

l2

l3

l4

l5

l6

P1

(l0;>)

(l1; �if:t)

(l2; �if:t)

(l3; �if:f)

(l4; �if:f)

(l5; �if:t) (l5; �if:f)

(l6;>)

P2

(l0;>)

(l1; �if:t)

(l2; �if:t)

(l3; �if:f)

(l4; �if:f)

(l5; �if:t) (l5; �if:f)

(l6; �if:t) (l6; �if:f)

Intuition: we can view this form of trace partitioning as the use of a refined
control flow graph
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Trace partitioning Abstract interpretation with trace partitioning

Trace partitioning induced by a refined transition system

We now formalize this intuition:

we augment control states with partitioning tokens: L0 = L� D]
0

and let S0 = L0 �M

let !0� S0 � S0 be an extended transition relation

Definition: partitioning transition system
We say that system S 0 = (S0;!0; S0I) is a partition of the transition system
S = (S;!; SI) if and only if:

(initial states) 8(l ;m) 2 SI ; 9� 2 D
]
0; ((l ; � );m) 2 S0I

(transitions) 8(l ;m); (l 0;m 0) 2 S; 8� 2 D]
0; if ((l ; � );m) 2 JSKR then,

(l ;m)! (l 0;m 0) =) 9� 0 2 D]
0; ((l ; � );m)! ((l 0; � 0);m 0)

In that case, we write:
S 0 � S

Meaning: system S 0 refines system S with additional execution history
information
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Trace partitioning Abstract interpretation with trace partitioning

Partitionned transition system and semantics

The partitioned transition system over-approximates the behaviors of the initial
system:

Partitioned system and semantic approximation
Let us assume that S 0 � S. We let JSKT �! (resp., JS 0KT �! ) denote the trace
semantics of S (resp., S 0). Then:

8h(l0;m0); : : : ; (ln;mn)i 2 JSKT �! ;

9�0; : : : ; �n 2 D
]
0; h((l0; �0);m0); : : : ; ((ln; �n);mn)i 2 JS 0KT �! ;

Proof: by induction over the length of executions (exercise).

Properties of S 0 � S

all traces of S have a counterpart in S 0 (up to token addition)

a trace in S 0 embeds more information than a trace in S

moreover, if we reason up to isomorphisms (e.g., either l � (l ; �) or
((l ; � ); � 0) � (l ; (�; � 0))), � extends into a pre-order
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Trace partitioning Abstract interpretation with trace partitioning

Trace partitioning induced by a refined transition system

Assumptions:

refined control system (S0;!0;S0I) � (S;!; SI)

erasure function: Ψ : (S0)
� ! S� removes the tokens

Definition of a trace partitioning
The abstraction defining partitions is defined by:

0 : D
]
0 �! P(S�)

� 7�! f� 2 S� j 9�0 = h: : : ; ((l ; � );m)i 2 (S0)�; Ψ(�0) = �g

Not all instances of trace partitionings can be expressed that way but many
interesting instances can:

control states and call stack partitioning

partitioning guided by conditions and loops

partitioning guided by the value of a variable
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Trace partitioning Abstract interpretation with trace partitioning

Trace partitioning induced by a refined transition system

Example of the partitioning guided by a condition:

l0 if(x < 0)f
l1 s = �1;
l2 g else f
l3 s = 1;
l4 g

l5 y = x=s;
l6 : : :

P0

l0

l1

l2

l3

l4

l5

l6

P1

(l0;>)

(l1; �if:t)

(l2; �if:t)

(l3; �if:f)

(l4; �if:f)

(l5; �if:t) (l5; �if:f)

(l6;>)

P2

(l0;>)

(l1; �if:t)

(l2; �if:t)

(l3; �if:f)

(l4; �if:f)

(l5; �if:t) (l5; �if:f)

(l6; �if:t) (l6; �if:f)

each system induces a partitioning, with different merging points:

P1 � P0 P2 � P1

these systems induce hierarchy of refining control structures

P2 � P1 � P0 thus, JP0KT �! � JP1KT �! � JP2KT �!

this approach also applies to:
I partitioning induced by a loop
I partitioning induced by the value of a variable at a given point...
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Trace partitioning Abstract interpretation with trace partitioning

Transfer functions: example

int x 2 Z;
int s;
int y;
if(x � 0)f

�if:t ) (0 � x) ^ �if:f ) ? partition creation: �if:t
s = 1;

�if:t ) (0 � x ^ s = 1) ^ �if:f ) ? no modification of partitions
g else f

�if:f ) (x < 0) ^ �if:t ) ? partition creation: �if:f
s = �1;

�if:f ) (x < 0 ^ s = �1) ^ �if:t ) ? no modification of partitions
g �

�if:t ) (0 � x ^ s = 1)
^ �if:f ) (x < 0 ^ s = �1)

no modification of partitions

y = x=s; �
�if:t ) (0 � x ^ s = 1 ^ 0 � y)

^ �if:f ) (x < 0 ^ s = �1 ^ 0 < y)
no modification of partitions

: : :

_) s 2 [�1; 1] ^ 0 � y fusion of partitions

Partitions are rarely modified, and only some (branching) points
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Trace partitioning Abstract interpretation with trace partitioning

Transfer functions: partition creation

Analysis of an if statement, with partitioning

l0 : if(c)f
l1 : : : :

l2 : gelsef
l3 : : : :

l4 : g

l5 : : : :

�
]
l0;l1(X

]) = [�if:t 7! test(c;tX ](� )); �if:f 7! ?]

�
]
l0;l3(X

]) = [�if:t 7! ?; �if:f 7! test(:c;tX ](� ))]

�
]
l2;l5(X

]) = X ]

�
]
l4;l5(X

]) = X ]

Observations:

in the body of the condition: either �if:t or �if:f
i.e., no partition modification there

effect at point l5: both �if:t and �if:f exist

partitions are modified only at the condition point, that is only by
�
]
l0;l1(X

]) and �
]
l0;l2(X

])
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Trace partitioning Abstract interpretation with trace partitioning

Transfer functions: partition fusion

When partitions are not useful anymore, they can be merged

�
]
l0;l1(X

]) = [_ 7! t�X
](l0)(� )]

Remarks:

at this point, all partitions are effectively collapsed into just one set

example: fusion of the partition of a condition when not useful
choice of fusion point:
I precision: merge point should not occur as long as partitions are useful
I efficiency: merge point should occur as early as partitions are not needed

anymore
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Trace partitioning Abstract interpretation with trace partitioning

Choice of partitions

How are the partitions chosen ?

Static partitioning [always the case in this lecture]

a fixed partitioning abstraction D]
0; 0 is fixed before the analysis

usually D]
0; 0 are chosen by a pre-analysis

static partitioning is rather easy to formalize and implement

but it might be limiting, when choosing partitions beforehand is hard

Dynamic partitioning

the partitioning abstraction D]
0; 0 is not fixed before the analysis

instead, it is computed as part of the analysis

i.e., the analysis uses on a lattice of partitioning abstractions D] and
computes (D]

0; 0) as an element of this lattice
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Conclusion

Adding disjunctions in static analyses

Disjunctive completion: brutally adds disjunctions
too expensive in practice

P0 _ : : : _ Pn

Cardinal power abstraction expresses collections of implications between
abstract facts in two abstract domains

(P0 =) Q0) ^ : : : ^ (Pn =) Qn)

Two major cases:

State partitioning is easier to use when the criteria for partitioning can be
easily expressed at the state level

Trace partitioning is more expressive in general
it can also allow the use of simpler partitioning criteria, with less
“re-partitioning”

Xavier Rival (INRIA, ENS, CNRS) Partitioning abstractions Oct, 28th. 2024 92 / 93



Conclusion

Assignment: proofs and paper reading

Proof 1 (simple):
prove the disjunctive completion algorithm (Slide 15)

Proof 2 (harder):
justify the general cardinal power post-condition (Slide 37)

Proof 3:
what happens in the case we use coverings instead of partitions (Slide 42)

Refining static analyses by trace-partitioning using control flow
Maria Handjieva and Stanislas Tzolovski,
Static Analysis Symposium, 1998,
http://link.springer.com/chapter/10.1007/3-540-49727-7_12
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