Partitioning abstractions

MPRI — Cours 2.6 "Interprétation abstraite : application à la vérification et à l'analyse statique"

Xavier Rival

INRIA. ENS. CNRS

Oct. 28th. 2024

Towards disjunctive abstractions

Extending the expressiveness of abstract domains

- disjunctions are often needed...
- ... but potentially costly

In this lecture, we will discuss:

- precision issues that motivate the use of abstract domains able to express disjunctions
- several techniques to express disjunctive properties using abstract domain combination methods (construction of abstract domains from other abstract domains):
 - disjunctive completion
 - cardinal power
 - state partitioning
 - trace partitioning

Domain combinators (or combiners)

General combination of abstract domains

- takes one or more abstract domains as inputs
- produces a new abstract domain

Input and output abstract domains are characterized by an "interface":

- concrete domain,
- abstraction relation,
- and abstract operations (post-conditions, widening...)

Advantages:

- general definition, formalized and proved once
- can be **implemented** in a separate way, e.g., in ML:
 - ► abstract domain: module

```
module D = (struct ... end: I)
```

abstract domain combinator: functor

```
module C = functor (D: IO) -> (struct ... end:
```

Example: product abstraction

Set notations:

- ▼: values
- X: variables
- M: stores $\mathbb{M} = \mathbb{X} \to \mathbb{V}$

Assumptions:

- concrete domain $(\mathcal{P}(\mathbb{M}),\subseteq)$ with $\mathbb{M}=\mathbb{X}\to\mathbb{V}$
- ullet we assume an abstract domain \mathbb{D}^{\sharp} that provides
 - ▶ concretization function $\gamma: \mathbb{D}^{\sharp} \to \mathcal{P}(\mathbb{M})$
 - ▶ element \bot with empty concretization $\gamma(\bot) = \emptyset$

Product combinator (implemented as a functor)

Given abstract domains $(\mathbb{D}_0^{\sharp}, \gamma_0, \perp_0)$ and $(\mathbb{D}_1^{\sharp}, \gamma_1, \perp_1)$, the **product abstraction** is $(\mathbb{D}_{\vee}^{\sharp}, \gamma_{\vee}, \perp_{\vee})$ where:

- $\mathbb{D}^{\sharp}_{\times} = \mathbb{D}^{\sharp}_{0} \times \mathbb{D}^{\sharp}_{1}$
- $ullet \gamma_ imes (x_0^\sharp, x_1^\sharp) = \gamma_0(x_0^\sharp) \cap \gamma_1(x_1^\sharp)$
- \bullet $\perp_{\times} = (\perp_0, \perp_1)$

This amounts to expressing conjunctions of elements of \mathbb{D}_0^{\sharp} and \mathbb{D}_1^{\sharp}

Example: product abstraction, coalescent product

The product abstraction is not very precise and needs a reduction:

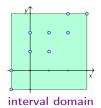
$$\forall x_0^{\sharp} \in \mathbb{D}_0^{\sharp}, x_1^{\sharp} \in \mathbb{D}_1^{\sharp}, \; \gamma_{\times}(\bot_0, x_1^{\sharp}) = \gamma_{\times}(x_0^{\sharp}, \bot_1) = \emptyset = \gamma_{\times}(\bot_{\times})$$

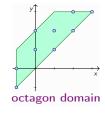
Coalescent product

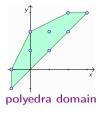
Given abstract domains $(\mathbb{D}_0^{\sharp}, \gamma_0, \perp_0)$ and $(\mathbb{D}_1^{\sharp}, \gamma_1, \perp_1)$, the **coalescent product** abstraction is $(\mathbb{D}_{\times}^{\sharp}, \gamma_{\times}, \perp_{\times})$ where:

- $\bullet \ \mathbb{D}_{\times}^{\sharp} = \{\bot_{\times}\} \uplus \{(x_0^{\sharp}, x_1^{\sharp}) \in \mathbb{D}_0^{\sharp} \times \mathbb{D}_1^{\sharp} \mid x_0^{\sharp} \neq \bot_0 \wedge x_1^{\sharp} \neq \bot_1\}$
- $\bullet \ \, \gamma_{\times}(\bot_{\times}) = \emptyset, \, \gamma_{\times}(x_0^{\sharp}, x_1^{\sharp}) = \gamma_0(x_0^{\sharp}) \cap \gamma_1(x_1^{\sharp})$

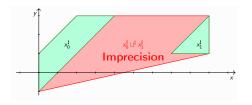
In many cases, this is not enough to achieve reduction:


- let \mathbb{D}_0^{\sharp} be the interval abstraction, \mathbb{D}_1^{\sharp} be the congruences abstraction
- $\gamma_{\times}(\{x \in [3,4]\}, \{x \equiv 0 \mod 5\}) = \emptyset$
- how to define abstract domain combinators to add disjunctions?


Outline


- Introduction
- 2 Imprecisions in convex abstractions
- 3 Disjunctive completion
- 4 Cardinal power and partitioning abstractions
- State partitioning
- Trace partitioning
- Conclusion

Convex abstractions


Many numerical abstractions describe convex sets of points

Imprecisions inherent in the **convexity**, and when computing **abstract join** (over-approximation of concrete union):

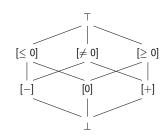
Such imprecisions may make analyses fail

Similar issues also arise in non-numerical static analyses

Non convex abstractions

We consider abstractions of $\mathbb{D} = \mathcal{P}(\mathbb{Z})$

Congruences:


- $\bullet \mathbb{D}^{\sharp} = \mathbb{Z} \times \mathbb{N}$
- $-1 \in \gamma(1,2)$ and $1 \in \gamma(1,2)$ but $0 \not\in \gamma(1,2)$

Signs:

- $0 \notin \gamma([\neq 0])$ so $[\neq 0]$ describes a non convex set
- other abstract elements describe convex sets

Non relational product two variables

Example 1: verification problem

```
\begin{array}{ll} \textbf{bool} \ b_0, \ b_1; \\ \textbf{int} \ x, \ y; & \text{(uninitialized)} \\ b_0 = x \geq 0; \\ b_1 = x \leq 0; \\ \textbf{if} (b_0 \&\& \ b_1) \{ \\ y = 0; \\ \} \ \textbf{else} \ \{ \\ \hline \textcircled{$y = 100/x;} \\ \} \end{array}
```

- if $\neg b_0$, then x < 0
- if $\neg b_1$, then x > 0
- if either b_0 or b_1 is false, then $x \neq 0$
- \bullet thus, if point $\ensuremath{\textcircled{1}}$ is reached the division is safe

How to verify the division operation ?

Non relational abstraction (e.g., intervals), at point ①:

```
\left\{ \begin{array}{l} b_0 \in \{\texttt{FALSE}, \texttt{TRUE}\} \land b_1 \in \{\texttt{FALSE}, \texttt{TRUE}\} \\ & x : \top \end{array} \right.
```

Signs, congruences do not help:
 in the concrete, x may take any value but 0

Example 1: program annotated with local invariants

```
bool b_0, b_1;
int x, y; (uninitialized)
b_0 = x > 0;
             (b_0 \land x > 0) \lor (\neg b_0 \land x < 0)
b_1 = x < 0:
             (b_0 \land b_1 \land x = 0) \lor (b_0 \land \neg b_1 \land x > 0) \lor (\neg b_0 \land b_1 \land x < 0)
if(b_0 \&\& b_1){
            (b_0 \wedge b_1 \wedge x = 0)
      v = 0:
             (b_0 \wedge b_1 \wedge x = 0 \wedge y = 0)
} else {
             (b_0 \land \neg b_1 \land x > 0) \lor (\neg b_0 \land b_1 \land x < 0)
      v = 100/x;
             (b_0 \land \neg b_1 \land x > 0) \lor (\neg b_0 \land b_1 \land x < 0)
```

The obvious way to sucessfully analyzing this program consists in adding symbolic disjunctions to our abstract domain

Example 2: verification problem

```
 \begin{aligned} & \text{int } x \in \mathbb{Z}; \\ & \text{int } s; \\ & \text{int } y; \\ & \text{if } (x \ge 0) \{ \\ & s = 1; \\ \} & \text{else } \{ \\ & s = -1; \\ \} \\ & \text{①} & y = x/s; \\ & \text{②} & \text{assert} (y > 0); \end{aligned}
```

- s is either 1 or -1
- thus, the division at ① should not fail
- \bullet moreover s has the same sign as x
- thus, the value stored in y should always be positive at ②
- How to verify the division operation ?
- In the concrete, s is always non null:
 convex abstractions cannot establish this; congruences can
- Moreover, s has always the same sign as x expressing this would require a non trivial numerical abstraction

Example 2: program annotated with local invariants

```
int x \in \mathbb{Z}:
    int s:
    int v:
    if(x > 0){
              (x > 0)
         s = 1:
            (x > 0 \land s = 1)
    } else {
           (x < 0)
         s = -1;
              (x < 0 \land s = -1)
              (x > 0 \land s = 1) \lor (x < 0 \land s = -1)
① v = x/s:
              (x > 0 \land s = 1 \land y > 0) \lor (x < 0 \land s = -1 \land y > 0)
② assert(y \ge 0);
```

Again, the obvious solution consists in adding disjunctions to our abstract domain

Outline

- Introduction
- 2 Imprecisions in convex abstractions
- 3 Disjunctive completion
- 4 Cardinal power and partitioning abstractions
- State partitioning
- 6 Trace partitioning
- Conclusion

Distributive abstract domain

Principle:

- **3** consider concrete domain $(\mathbb{D}, \sqsubseteq)$, with least upper bound operator \sqcup
- ② assume an abstract domain $(\mathbb{D}^{\sharp}, \sqsubseteq^{\sharp})$ with concretization $\gamma : \mathbb{D}^{\sharp} \to \mathbb{D}$
- build a domain containing all the disjunctions of elements of D[#]

Definition: distributive abstract domain

Abstract domain $(\mathbb{D}^{\sharp}, \sqsubseteq^{\sharp})$ with concretization function $\gamma: \mathbb{D}^{\sharp} \to \mathbb{D}$ is **distributive** (or **disjunctive**, or **complete for disjunction**) if and only if:

$$\forall \mathcal{E} \subseteq \mathbb{D}^{\sharp}, \ \exists x^{\sharp} \in \mathbb{D}^{\sharp}, \ \gamma(x^{\sharp}) = \bigsqcup_{y^{\sharp} \in \mathcal{E}} \gamma(y^{\sharp})$$

Examples:

- the lattice $\{\bot, <0, =0, >0, \le 0, \ne 0, \ge 0, \top\}$ is distributive
- the lattice of intervals is not distributive: there is no interval with concretization $\gamma([0, 10]) \cup \gamma([12, 20])$

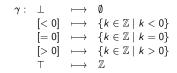
Definition

Definition: disjunctive completion

The disjunctive completion of abstract domain $(\mathbb{D}^{\sharp}, \sqsubseteq^{\sharp})$ with concretization function $\gamma: \mathbb{D}^{\sharp} \to \mathbb{D}$ is the smallest abstract domain $(\mathbb{D}^{\sharp}_{disj}, \sqsubseteq^{\sharp}_{disj})$ with concretization function $\gamma_{disj}: \mathbb{D}^{\sharp}_{disj} \to \mathbb{D}$ such that:

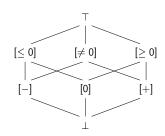
- ullet $\mathbb{D}^\sharp \subseteq \mathbb{D}^\sharp_{\mathsf{disj}}$
- $ullet \ orall x^\sharp \in \mathbb{D}^\sharp, \ \gamma_{\mathsf{disj}}(x^\sharp) = \gamma(x^\sharp)$
- $(\mathbb{D}_{\mathsf{disj}}^{\sharp}, \sqsubseteq_{\mathsf{disj}}^{\sharp})$ with concretization γ_{disj} is distributive

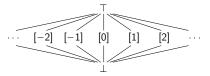
Building a disjunctive completion domain:


- include in $\mathbb{D}_{disi}^{\sharp}$ all elements of \mathbb{D}^{\sharp}
- **②** for all set $\mathcal{E} \subseteq \mathbb{D}^{\sharp}$ such that there is no $x^{\sharp} \in \mathbb{D}^{\sharp}$, such that $\gamma(x^{\sharp}) = \bigsqcup_{y^{\sharp} \in \mathcal{E}} \gamma(y^{\sharp})$, add $[\sqcup \mathcal{E}]$ to $\mathbb{D}^{\sharp}_{disj}$, and extend γ_{disj} by $\gamma_{disi}([\sqcup \mathcal{E}]) = \bigsqcup_{y^{\sharp} \in \mathcal{E}} \gamma(y^{\sharp})$

Theorem: this process constructs a disjunctive abstraction

Example 1: completion of signs


We consider **concrete lattice** $\mathbb{D} = \mathcal{P}(\mathbb{Z})$, with $\sqsubseteq = \subseteq$ and $(\mathbb{D}^{\sharp}, \sqsubseteq^{\sharp})$ defined by:


Then, the disjunctive completion is defined by adding elements corresponding to:

- ⊔{[-],[0]}
- ⊔{[-],[+]}
- ⊔{[0],[+]}

Example 2: completion of constants

We consider **concrete lattice** $\mathbb{D}=\mathcal{P}(\mathbb{Z})$, with $\sqsubseteq=\subseteq$ and $(\mathbb{D}^{\sharp},\sqsubseteq^{\sharp})$ defined by:

$$egin{array}{cccc} \gamma: & oldsymbol{oldsymbol{oldsymbol{eta}}} & \longmapsto & \emptyset \ & [k] & \longmapsto & \{k\} \ & oldsymbol{oldymbol{ol}oldsymbol{oldsymbol{ol}oldsymbol{ol{ol}}}}}}}}}}}}}$$

Then, the disjunctive completion coincides with the power-set:

- ullet $\mathbb{D}_{\mathsf{disj}}^\sharp \equiv \mathcal{P}(\mathbb{Z})$
- ullet this abstraction loses no information: $\gamma_{
 m disj}$ is the identity function !
- obviously, this lattice contains infinite sets which are not representable

Middle ground solution: k-bounded disjunctive completion

- only add disjunctions of at most k elements
- e.g., if k = 2, pairs are represented precisely, other sets abstracted to \top

Example 3: completion of intervals

We consider concrete lattice $\mathbb{D}=\mathcal{P}(\mathbb{Z})$, with $\sqsubseteq=\subseteq$ and let $(\mathbb{D}^{\sharp},\sqsubseteq^{\sharp})$ the domain of intervals

- $\bullet \ \mathbb{D}^{\sharp} = \{\bot, \top\} \uplus \{[a, b] \mid a \leq b\}$
- $\gamma([a, b]) = \{x \in \mathbb{Z} \mid a \le x \le b\}$

Then, the disjunctive completion is the set of unions of intervals:

- ullet $\mathbb{D}_{disi}^{\sharp}$ collects all the families of disjoint intervals
- this lattice contains infinite sets which are not representable
- as expressive as the completion of constants, but more efficient representation

The disjunctive completion of $(\mathbb{D}^{\sharp})^n$ is **not equivalent** to $(\mathbb{D}^{\sharp}_{disi})^n$

- which is more expressive ?
- show it on an example!

Example 3: completion of intervals and verification

We use the disjunctive completion of $(\mathbb{D}^{\sharp})^3$.

The invariants below (code example 2) can be expressed in the disjunctive completion:

```
int x \in \mathbb{Z}:
int s:
int y;
if(x \ge 0)
         (x > 0)
     s = 1:
          (x \ge 0 \land s = 1)
} else {
          (x < 0)
     s = -1:
          (x < 0 \land s = -1)
          (x > 0 \land s = 1) \lor (x < 0 \land s = -1)
v = x/s:
           (x \ge 0 \land s = 1 \land y \ge 0) \lor (x < 0 \land s = -1 \land v > 0)
assert(y > 0);
```

Static analysis

To carry out the analysis of a basic imperative language, we will define:

- Operations for the computation of post-conditions: sound over-approximation for basic program steps
 - ▶ concrete $post : \mathcal{P}(\mathbb{S}) \to \mathcal{P}(\mathbb{S})$ (where \mathbb{S} is the set of states);
 - the abstract $post^{\sharp}:\mathbb{D}^{\sharp}\to\mathbb{D}^{\sharp}$ should be such that

$$post \circ \gamma \sqsubseteq \gamma \circ post^{\sharp}$$

- case where post is an assignment: $post^{\sharp} = assign$ inputs a variable, an expression, an abstract pre-condition, outputs an abstract post-condition
- ▶ case where *post* is a condition test: $post^{\sharp} = test$ inputs a boolean expression, an abstract pre-condition, outputs an abstract post-condition
- An operator join for over-approximation of concrete unions
- A conservative inclusion checking operator

Static analysis with disjunctive completion

Transfer functions for the computation of abstract post-conditions:

- we assume a monotone concrete post-condition operation $post: \mathbb{D} \to \mathbb{D}$, and an abstract $post^{\sharp}: \mathbb{D}^{\sharp} \to \mathbb{D}^{\sharp}$ such that $post \circ \gamma \sqsubseteq \gamma \circ post^{\sharp}$
- convention: if $\gamma(y^{\sharp}) = \bigsqcup \{ \gamma(z^{\sharp}) \mid z^{\sharp} \in \mathcal{E} \}$, we note $y^{\sharp} = [\sqcup \mathcal{E}]$
- then, we can simply use, for the disjunctive completion domain:

$$post_{disj}^{\sharp}([\sqcup \mathcal{E}]) = [\sqcup \{post^{\sharp}(x^{\sharp}) \mid x^{\sharp} \in \mathcal{E}\}]$$

(note it may be an element of the initial domain)

- the proof is left as exercise
- this works for assignment, condition tests...

Abstract join:

• disjunctive completion provides an exact join (exercise !)

Inclusion check: exercise!

Widening: no general definition/solution to the disjunct explosion problem

Limitations of disjunctive completion

Combinatorial explosion:

- if \mathbb{D}^{\sharp} is infinite, $\mathbb{D}^{\sharp}_{\mathrm{disj}}$ may have elements that cannot be represented e.g., completion of constants or intervals
- even when \mathbb{D}^{\sharp} is finite, $\mathbb{D}^{\sharp}_{\text{disj}}$ may be **huge** in the worst case, if \mathbb{D}^{\sharp} has n elements, $\mathbb{D}^{\sharp}_{\text{disj}}$ may have 2^{n} elements

Many elements useless in practice:

disjunctive completion of intervals: may express any set of integers...

No general definition of a widening operator

- most common approach to achieve that: k-limiting bound the numbers of disjuncts
 i.e., the size of the sets added to the base domain
- remaining issue: the join operator should "select" which disjuncts to merge

Outline

- Introduction
- Imprecisions in convex abstractions
- 3 Disjunctive completion
- Cardinal power and partitioning abstractions
- 5 State partitioning
- 6 Trace partitioning
- Conclusion

Principle

Observation

Disjuncts that are required for static analysis can usually be characterized by some semantic property

Examples: each disjunct is characterized by

- the sign of a variable
- the value of a boolean variable
- the execution path, e.g., side of a condition that was visited

Solution: perform a kind of indexing of disjuncts

- introduce a new abstraction to **describe labels** e.g., the sign of a variable, the value of a boolean, or another trace property...
- apply the store abstraction (or another abstraction) to the set of states associated to each label

Disjuncts indexing: example

```
int x \in \mathbb{Z}:
int s:
int v:
if(x > 0)
         (x > 0)
     s=1:
        (x \ge 0 \land s = 1)
} else {
        (x < 0)
     s = -1:
          (x < 0 \land s = -1)
          (x > 0 \land s = 1) \lor (x < 0 \land s = -1)
v = x/s;
           (x > 0 \land s = 1 \land y > 0) \lor (x < 0 \land s = -1 \land v > 0)
assert(y \ge 0);
```

- natural "indexing": sign of x
- but we could also rely on the sign of s

Cardinal power abstraction

We assume $(\mathbb{D}, \sqsubseteq) = (\mathcal{P}(\mathcal{E}), \subseteq)$, and two abstractions $(\mathbb{D}_0^{\sharp}, \sqsubseteq_0^{\sharp}), (\mathbb{D}_1^{\sharp}, \sqsubseteq_1^{\sharp})$ given by their concretization functions:

$$\gamma_0:\mathbb{D}_0^\sharp\longrightarrow\mathbb{D}\qquad \gamma_1:\mathbb{D}_1^\sharp\longrightarrow\mathbb{D}$$

Definition

We let the cardinal power abstract domain be defined by:

- $\mathbb{D}_{\mathsf{cp}}^\sharp = \mathbb{D}_0^\sharp \xrightarrow{\mathcal{M}} \mathbb{D}_1^\sharp$ be the set of monotone functions from \mathbb{D}_0^\sharp into \mathbb{D}_1^\sharp
- $\sqsubseteq_{cp}^{\sharp}$ be the pointwise extension of \sqsubseteq_{1}^{\sharp}
- γ_{cp} is defined by:

$$\begin{array}{cccc} \gamma_{\mathsf{cp}} : & \mathbb{D}_{\mathsf{cp}}^{\sharp} & \longrightarrow & \mathbb{D} \\ & X^{\sharp} & \longmapsto & \{ y \in \mathcal{E} \mid \forall z^{\sharp} \in \mathbb{D}_{0}^{\sharp}, \ y \in \gamma_{0}(z^{\sharp}) \Longrightarrow y \in \gamma_{1}(X^{\sharp}(z^{\sharp})) \} \end{array}$$

We sometimes denote it by $\mathbb{D}_0^\sharp \rightrightarrows \mathbb{D}_1^\sharp$, $\gamma_{\mathbb{D}_A^\sharp \rightrightarrows \mathbb{D}_+^\sharp}$ to make it more explicit.

Use of cardinal power abstractions

Intuition: cardinal power expresses properties of the form

Two independent choices:

- **1** \mathbb{D}_0^{\sharp} : set of partitions (the "labels"), represents p_0, \ldots, p_n
- ② \mathbb{D}_1^{\sharp} : abstraction of sets of states, *e.g.*, a numerical abstraction, represents p'_0, \ldots, p'_n

Application $(x \ge 0 \land s = 1 \land y \ge 0) \lor (x < 0 \land s = -1 \land y > 0)$

- D₀[♯]: sign of s
- D₁[‡]: other constraints
- we get: $s > 0 \Longrightarrow (x \ge 0 \land s = 1 \land y \ge 0) \land s \le 0 \Longrightarrow (...)$

Another example, with a single variable

Assumptions:

- concrete lattice $\mathbb{D}=\mathcal{P}(\mathbb{Z})$, with $(\sqsubseteq)=(\subseteq)$
- (D₀[‡], ⊆₀[‡]) be the lattice of signs (strict inequalities only)
- $(\mathbb{D}_1^{\sharp}, \sqsubseteq_1^{\sharp})$ be the lattice of intervals

Example abstract values:

- $\bullet \ [-10,-3] \uplus [7,10] \text{ is expressed by: } \begin{cases} \begin{array}{ccc} \bot & \longmapsto & \bot_1 \\ [-] & \longmapsto & [-10,-3] \\ [0] & \longmapsto & \bot_1 \\ [+] & \longmapsto & [7,10] \\ \top & \longmapsto & [-10,10] \end{array} \end{cases}$

Cardinal power: why monotone functions?

We have seen the reduced cardinal power intuitively denotes a **conjunction of implications**, thus, assuming that \mathbb{D}_0^{\sharp} has two comparable elements p_0 , p_1 and:

$$\left\{\begin{array}{ccc} p_0 & \Longrightarrow & p'_0 \\ \wedge & p_1 & \Longrightarrow & p'_1 \end{array}\right.$$

Then:

- p_0, p_1 are comparable, so let us fix $p_0 \sqsubseteq_0^\sharp p_1$
- ullet logically, this means $p_0\Longrightarrow p_1$
- ullet thus the abstract element represents states where $p_0\Longrightarrow p_1\Longrightarrow p_1'$
- ullet as a conclusion, if ρ_0' is not as strong as ρ_1' , it is possible to reinforce it!
- new abstract state:

This is a reduction operation.

Non monotone functions can be reduced into monotone functions

Example reduction (1): relation between the two domains

- concrete lattice $\mathbb{D} = \mathcal{P}(\mathbb{Z})$, with $\sqsubseteq = \subseteq$
- $(\mathbb{D}_0^{\sharp}, \sqsubseteq_0^{\sharp})$ be the lattice of signs
- $(\mathbb{D}_1^{\sharp}, \sqsubseteq_1^{\sharp})$ be the lattice of intervals

We let:

$$X^{\sharp} = \left\{ \begin{array}{cccc} \bot & \longmapsto & \bot_1 \\ [-] & \longmapsto & [1,8] \\ [0] & \longmapsto & [1,8] \\ [+] & \longmapsto & \bot_1 \\ \top & \longmapsto & [1,8] \end{array} \right. \quad Y^{\sharp} = \left\{ \begin{array}{cccc} \bot & \longmapsto & \bot_1 \\ [-] & \longmapsto & [2,45] \\ [0] & \longmapsto & [-5,-2] \\ [+] & \longmapsto & [-5,-2] \\ \top & \longmapsto & \top_1 \end{array} \right. \quad Z^{\sharp} = \left\{ \begin{array}{cccc} \bot & \longmapsto & \bot_1 \\ [-] & \longmapsto & \bot_1 \\ [0] & \longmapsto & \bot_1 \\ [+] & \longmapsto & \bot_1 \\ \top & \longmapsto & \bot_1 \end{array} \right.$$

Then,

$$\gamma_{\mathsf{cp}}(X^\sharp) = \gamma_{\mathsf{cp}}(Y^\sharp) = \gamma_{\mathsf{cp}}(Z^\sharp) = \emptyset$$

Note: monotone functions may also benefit from reduction

Example reduction (2): tightening relations

- concrete lattice $\mathbb{D} = \mathcal{P}(\mathbb{Z})$, with $\sqsubseteq = \subseteq$
- $(\mathbb{D}_0^{\sharp}, \mathbb{Z}_0^{\sharp})$ be the lattice of signs
- $(\mathbb{D}_1^{\sharp}, \mathbb{L}_1^{\sharp})$ be the lattice of intervals

We let:
$$X^{\sharp} = \left\{ \begin{array}{cccc} \bot & \longmapsto & \bot_{1} \\ [-] & \longmapsto & [-5, -1] \\ [0] & \longmapsto & [0, 0] \\ [+] & \longmapsto & [1, 5] \\ \top & \longmapsto & [-10, 10] \end{array} \right. \quad Y^{\sharp} = \left\{ \begin{array}{cccc} \bot & \longmapsto & \bot_{1} \\ [-] & \longmapsto & [-5, -1] \\ [0] & \longmapsto & [0, 0] \\ [+] & \longmapsto & [1, 5] \\ \top & \longmapsto & [-5, 5] \end{array} \right.$$

$$Y^{\sharp} = \left\{ \begin{array}{ccc} \bot & \longmapsto & \bot_1 \\ [-] & \longmapsto & [-5, -1] \\ [0] & \longmapsto & [0, 0] \\ [+] & \longmapsto & [1, 5] \\ \top & \longmapsto & [-5, 5] \end{array} \right.$$

- Then, $\gamma_{\sf cp}(X^{\sharp}) = \gamma_{\sf cp}(Y^{\sharp})$
- $\gamma_0([-]) \cup \gamma_0([0]) \cup \gamma([+]) = \gamma(\top)$ but

$$\gamma_0(X^{\sharp}([-])) \cup \gamma_0(X^{\sharp}([0])) \cup \gamma(X^{\sharp}([+])) \subset \gamma(X^{\sharp}(\top))$$

In fact, we can improve the image of \top into [-5,5]

Reduction, and improving precision in the cardinal power

In general, the cardinal power construction requires reduction

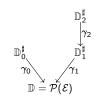
Hence, reduced cardinal power = cardinal power + reduction

Strengthening using both sides of \Rightarrow

Tightening of $y_0^{\sharp} \mapsto y_1^{\sharp}$ when:

- $\exists z_1^{\sharp} \neq y_1^{\sharp}, \ \gamma_1(y_1^{\sharp}) \cap \gamma_0(y_0^{\sharp}) \subseteq \gamma(z_1^{\sharp})$
- in the example, $z_1^{\sharp} = \bot_1...$

Strengthening of one relation using other relations


Tightening of relation $(\sqcup \{z^{\sharp} \mid z^{\sharp} \in \mathcal{E}\}) \mapsto x_1^{\sharp}$ when:

- $\bullet \ | \ | \{\gamma_0(z^{\sharp}) \mid z^{\sharp} \in \mathcal{E}\} = \gamma_0(\sqcup \{z^{\sharp} \mid z^{\sharp} \in \mathcal{E}\})$
- $\exists y^{\sharp}, \ \bigcup \{\gamma_1(X^{\sharp}(z^{\sharp})) \mid z^{\sharp} \in \mathcal{E}\} \subseteq \gamma_1(y^{\sharp}) \subset \gamma_1(X^{\sharp}(\sqcup \{z^{\sharp} \mid z^{\sharp} \in \mathcal{E}\}))$
- ullet in the example, we use a set of elements that cover \top ...

Composition with another abstraction

We assume three abstractions

- $(\mathbb{D}_0^\sharp,\sqsubseteq_0^\sharp)$, with concretization $\gamma_0:\mathbb{D}_0^\sharp\longrightarrow\mathbb{D}$
- ullet $(\mathbb{D}_1^\sharp,\sqsubseteq_1^\sharp),$ with concretization $\gamma_1:\mathbb{D}_1^\sharp\longrightarrow\mathbb{D}$
- ullet $(\mathbb{D}_2^\sharp,\sqsubseteq_2^\sharp),$ with concretization $\gamma_2:\mathbb{D}_2^\sharp\longrightarrow\mathbb{D}_1^\sharp$

Cardinal power abstract domains $\mathbb{D}_0^\sharp \rightrightarrows \mathbb{D}_1^\sharp$ and $\mathbb{D}_0^\sharp \rightrightarrows \mathbb{D}_2^\sharp$ can be bound by an **abstraction relation** defined by concretization function γ :

$$\begin{array}{cccc} \gamma: & (\mathbb{D}_0^{\sharp} \rightrightarrows \mathbb{D}_2^{\sharp}) & \longrightarrow & (\mathbb{D}_0^{\sharp} \rightrightarrows \mathbb{D}_1^{\sharp}) \\ & & X^{\sharp} & \longmapsto & \lambda(z^{\sharp} \in \mathbb{D}_0^{\sharp}) \cdot \gamma_2(X^{\sharp}(z^{\sharp})) \end{array}$$

Applications:

- ullet start with $\mathbb{D}_1^\sharp, \gamma_1$ defined as the **identity abstraction**
- compose an abstraction for right hand side of relations
- compose several cardinal power abstractions (or partitioning abstractions)

Composition with another abstraction

- concrete lattice $\mathbb{D} = \mathcal{P}(\mathbb{Z})$, with $\sqsubseteq = \subseteq$
- $(\mathbb{D}_0^{\sharp}, \sqsubseteq_0^{\sharp})$ be the lattice of signs
- $(\mathbb{D}_1^{\sharp}, \sqsubseteq_1^{\sharp})$ be the identity abstraction $\mathbb{D}_1^{\sharp} = \mathcal{P}(\mathbb{Z}), \ \gamma_1 = \operatorname{Id}$
- $(\mathbb{D}_2^{\sharp}, \sqsubseteq_2^{\sharp})$ be the lattice of intervals

Then, $[-10, -3] \uplus [7, 10]$ is abstracted in two steps:

- $\bullet \ \ \text{in} \ \ \mathbb{D}_0^{\sharp} \ \ \rightrightarrows \ \mathbb{D}_1^{\sharp}, \ \ \left\{ \begin{array}{ll} [-] & \longmapsto & \{-10,-9,-8,-7,-6,-5,-4,-3\} \\ [0] & \longmapsto & \emptyset \\ [+] & \longmapsto & \{7,8,9,10\} \end{array} \right.$
 - (note that, at this stage, the right hand sides are simply sets of values)
- in $\mathbb{D}_0^{\sharp} \rightrightarrows \mathbb{D}_2^{\sharp}$, $\left\{ \begin{array}{ll} [-] & \longmapsto & [-10, -3] \\ [0] & \longmapsto & \bot_1 \\ [+] & \longmapsto & [7, 10] \end{array} \right.$

Representation of the cardinal power

Basic ML representation:

- using functions, i.e. type cp = d0 -> d1
 ⇒ usually a bad choice, as it makes it hard to operate in the D₀[#] side
- using some kind of dictionnaries type cp = (d0,d1) map
 ⇒ better, but not straightforward...

Even the latter is not a very efficient representation:

- if \mathbb{D}_0^{\sharp} has N elements, then an abstract value in \mathbb{D}_{cp}^{\sharp} requires N elements of \mathbb{D}_1^{\sharp}
- if \mathbb{D}_0^\sharp is infinite, and \mathbb{D}_1^\sharp is non trivial, then \mathbb{D}_{cp}^\sharp has elements that cannot be represented
- the 2nd reduction shows it is unnecessary to represent bindings for all elements of \mathbb{D}_0^\sharp example: this is the case of \bot_0

More compact representation of the cardinal power

Principle:

- use a dictionnary data-type (most likely functional arrays)
- avoid representing information attached to redundant elements

A compact representation should be just sufficient to "represent" all elements of \mathbb{D}_0^{\sharp} :

Compact representation

Reduced cardinal power of \mathbb{D}_0^\sharp and \mathbb{D}_1^\sharp can be represented by considering only a subset $\mathcal{C} \subset \mathbb{D}_0^\sharp$ where

$$\forall x^{\sharp} \in \mathbb{D}_{0}^{\sharp}, \ \exists \mathcal{E} \subseteq \mathcal{C}, \ \gamma_{0}(x^{\sharp}) = \cup \{\gamma_{0}(y^{\sharp}) \mid y^{\sharp} \in \mathcal{E}\}$$

In particular:

- ullet if possible, ${\cal C}$ should be **minimal**
- in any case, $\perp_0 \not\in \mathcal{C}$
- ullet also, when op_0 can be generated by a union of a set of elements, it can be removed

Example: compact cardinal power over signs

- concrete lattice $\mathbb{D} = \mathcal{P}(\mathbb{Z})$, with $\sqsubseteq = \subseteq$
- $(\mathbb{D}_0^{\sharp}, \sqsubseteq_0^{\sharp})$ be the lattice of signs
- $(\mathbb{D}_1^{\sharp}, \sqsubseteq_1^{\sharp})$ be the lattice of intervals

Observations

- \perp does not need be considered (obvious right hand side: \perp_1)
- $\gamma_0([<0]) \cup \gamma_0([=0]) \cup \gamma([>0]) = \gamma(\top)$ thus \top does not need be considered

Thus, we let
$$C = \{[-], [0], [+]\}$$

- [0,8] is expressed by: $\begin{cases} [-] & \longmapsto & \bot_1 \\ [0] & \longmapsto & [0,0] \\ [+] & \longmapsto & [1,8] \end{cases}$
- $[-10, -3] \uplus [7, 10]$ is expressed by: $\begin{cases} [-] & \longmapsto & [-10, -3] \\ [0] & \longmapsto & \bot_1 \\ [+] & \longmapsto & [7, 10] \end{cases}$

Lattice operations

Infimum:

• if \bot_1 is the infimum of \mathbb{D}_1^\sharp , $\bot_{cp} = \lambda(z^\sharp \in \mathbb{D}_0^\sharp) \cdot \bot_1$ is the **infimum** of \mathbb{D}_{cp}^\sharp

Ordering test (sound, not necessarily optimal):

• we define $\sqsubseteq_{cp}^{\sharp}$ as the **pointwise ordering**:

$$X_0^{\sharp} \sqsubseteq_{\mathsf{cp}}^{\sharp} X_1^{\sharp} \quad \stackrel{def}{::=} \quad \forall z^{\sharp} \in \mathbb{D}_0^{\sharp}, X_0^{\sharp}(z^{\sharp}) \sqsubseteq_1^{\sharp} X_1^{\sharp}(z^{\sharp})$$

ullet then, $X_0^\sharp \sqsubseteq_{\operatorname{cp}}^\sharp X_1^\sharp \Longrightarrow \gamma_{\operatorname{cp}}(X_0^\sharp) \subseteq \gamma_{\operatorname{cp}}(X_1^\sharp)$

Join operation:

- we assume that \sqcup_1 is a sound upper bound operator in \mathbb{D}_1^{\sharp}
- \bullet then, \sqcup_{cp} defined below is a sound upper bound operator in $\mathbb{D}_{\mathsf{cp}}^{\sharp} \colon$

$$X_0^{\sharp} \sqcup_{\mathsf{cp}} X_1^{\sharp} \quad \stackrel{\mathit{def}}{::=} \quad \lambda(z^{\sharp} \in \mathbb{D}_0^{\sharp}) \cdot (X_0^{\sharp}(z^{\sharp}) \sqcup_1 X_1^{\sharp}(z^{\sharp}))$$

• the same construction applies to widening, if \mathbb{D}_0^{\sharp} is finite

Abstract post-conditions

The general definition is quite involved so we first assume $\mathbb{D}_1^{\sharp} = \mathbb{D} = \mathcal{P}(\mathcal{E})$ and consider $f : \mathbb{D} \to \mathcal{P}(\mathbb{D})$.

Definitions:

- for x^{\sharp} , $y^{\sharp} \in \mathbb{D}_{0}^{\sharp}$, we let $f_{x^{\sharp},y^{\sharp}} : (\mathbb{D}_{0}^{\sharp} \to \mathbb{D}_{1}^{\sharp}) \to \mathbb{D}_{1}^{\sharp}$ be defined by $f_{x^{\sharp},y^{\sharp}}(X^{\sharp}) = \gamma_{0}(y^{\sharp}) \cap f(X^{\sharp}(x^{\sharp}) \cap \gamma_{0}(x^{\sharp}))$
- for $y^{\sharp} \in \mathbb{D}_0^{\sharp}$, we note $P(y^{\sharp})$ the set of "predecessor coverings" of y^{\sharp} :

$$\left\{V\subseteq\mathbb{D}_0^\sharp\mid\forall c\in f^{-1}(\gamma_0(y^\sharp)),\ \exists x^\sharp\in V,c\in\gamma_0(x^\sharp)\right\}$$

Then the definition below provides a sound over-approximation of f:

$$f^{\sharp}: X^{\sharp} \longmapsto \lambda(y^{\sharp} \in \mathbb{D}_{0}^{\sharp}) \cdot \bigcap_{V \in P(y^{\sharp})} \left(\bigcup_{x^{\sharp} \in V} f_{x^{\sharp},y^{\sharp}}(X^{\sharp}) \right)$$

- this definition is **not practical**: using a direct abstraction of this formula will result in a prohibitive runtime cost!
- in the following, we set specific instances.

Outline

- Introduction
- 2 Imprecisions in convex abstractions
- Oisjunctive completion
- 4 Cardinal power and partitioning abstraction.
- State partitioning
 - Definition and examples
 - Abstract interpretation with boolean partitioning
- 6 Trace partitioning
- Conclusion

Definition

We consider **concrete domain** $\mathbb{D} = \mathcal{P}(\mathbb{S})$ where

- \bullet $\mathbb{S} = \mathbb{L} \times \mathbb{M}$ where \mathbb{L} denotes the set of control states
- \bullet $\mathbb{M} = \mathbb{X} \longrightarrow \mathbb{V}$

State partitioning

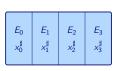
A state partitioning abstraction is defined as the cardinal power of two abstractions $(\mathbb{D}_0^{\sharp}, \subseteq_0^{\sharp}, \gamma_0)$ and $(\mathbb{D}_1^{\sharp}, \subseteq_1^{\sharp}, \gamma_1)$ of the domain of sets of states $(\mathcal{P}(\mathbb{S}), \subset)$:

- $(\mathbb{D}_0^{\sharp}, \mathbb{L}_0^{\sharp}, \gamma_0)$ defines the partitions
- $(\mathbb{D}_{1}^{\sharp}, \mathbb{L}_{1}^{\sharp}, \gamma_{1})$ defines the abstraction of each element of partitions

Typical instances:

- either $\mathbb{D}_1^{\sharp} = \mathcal{P}(\mathbb{S}) = \mathbb{D}$
- or an abstraction of sets of memory states: numerical abstraction can be obtained by composing another abstraction on top of $(\mathcal{P}(\mathbb{S}), \subseteq)$

Use of a partition: intuition


We fix a partition \mathcal{U} of $\mathcal{P}(\mathbb{S})$:

We can apply the cardinal power construction:

State partitioning abstraction

We let
$$\mathbb{D}_0^\sharp = \mathcal{U} \cup \{\bot, \top\}$$
 and $\gamma_0 : (E \in \mathcal{U}) \longmapsto E$. Thus, $\mathbb{D}_{\mathsf{cp}}^\sharp = \mathcal{U} \to \mathbb{D}_1^\sharp$ and: $\gamma_{\mathsf{cp}} : \mathbb{D}_{\mathsf{cp}}^\sharp \longmapsto \mathbb{D}$ $X^\sharp \longmapsto \{s \in \mathbb{S} \mid \forall E \in \mathcal{U}, \, s \in E \Longrightarrow s \in \gamma_1(X^\sharp(E))\}$

- each $E \in \mathcal{U}$ is attached to a piece of information in \mathbb{D}_1^{\sharp}
- exercise: what happens if we use only a **covering**, *i.e.*, if we drop property 1?
- we will often focus on \mathcal{U} and drop \bot , \top

Application 1: flow sensitive abstraction

Principle: abstract separately the states at distinct control states

This is **what we have been often doing already**, without formalizing it for instance, using the **the interval abstract domain**:

Application 1: flow sensitive abstraction

Principle: abstract separately the states at distinct control states

Flow sensitive abstraction

We apply the cardinal power based partitioning abstraction with:

- $\mathcal{U} = \mathbb{L}$
- $\gamma_0: \ell \mapsto \{\ell\} \times \mathbb{M}$

It is induced by partition $\{\{\ell\} \times \mathbb{M} \mid \ell \in \mathbb{L}\}$

Then, if X^{\sharp} is an element of the reduced cardinal power,

$$\begin{array}{lcl} \gamma_{\mathsf{cp}}(X^{\sharp}) & = & \{s \in \mathbb{S} \mid \forall x \in \mathbb{D}_{0}^{\sharp}, \ s \in \gamma_{0}(x) \Longrightarrow s \in \gamma_{1}(X^{\sharp}(x))\} \\ & = & \{(I, m) \in \mathbb{S} \mid m \in \gamma_{1}(X^{\sharp}(I))\} \end{array}$$

- after this abstraction step, \mathbb{D}_1^{\sharp} only needs to represent sets of memory states (numeric abstractions...)
- this abstraction step is *very common* as part of the design of abstract interpreters

Application 1: flow insensitive abstraction

Flow sensitive abstraction is **sometimes too costly**:

- e.g., ultra fast pointer analyses (a few seconds for 1 MLOC) for compilation and program transformation
- context insensitive abstraction simply collapses all control states

Flow insensitive abstraction

We apply the cardinal power based partitioning abstraction with:

- $\bullet \ \mathbb{D}_0^\sharp = \{\cdot\}$
- $\gamma_0 : \cdot \mapsto \mathbb{S}$
- ullet $\mathbb{D}_1^\sharp = \mathcal{P}(\mathbb{M})$
- $\bullet \ \gamma_1: M \mapsto \{(\ell, m) \mid \ell \in \mathbb{L}, m \in M\}$

It is induced by a trivial partition of $\mathcal{P}(\mathbb{S})$

Application 1: flow insensitive abstraction

We compare with **flow sensitive abstraction:**

- the best global information is $x : T \land y : T$ (very imprecise)
- even if we exclude the entry point before the assumption point, we get $x : [0, +\infty[\land y : \top \text{ (still very imprecise)}]$

For a few specific applications flow insensitive is ok In most cases (e.g., numeric properties), flow sensitive is absolutely needed

Application 2: context sensitive abstraction

We consider programs with procedures

Example:

```
void main(){...l_0 : f(); ... l_1 : f(); ... l_2 : g() ...}
void f(){...}
void g()\{if(...)\{i_3:g()\}else\{i_4:f()\}\}
```


- assumption: flow sensitive abstraction used inside each function
- we need to also describe the call stack state

Call stack (or, "call string")

Thus, $\mathbb{S} = \mathbb{K} \times \mathbb{L} \times \mathbb{M}$, where \mathbb{K} is the set of **call stacks** (or, "call strings")

Application 2: context sensitive abstraction, ∞ -CFA

Fully context sensitive abstraction (∞ -CFA)

- $\bullet \mathbb{D}_0^{\sharp} = \mathbb{K} \times \mathbb{L}$
- $\bullet \gamma_0 : (\kappa, \ell) \mapsto \{(\kappa, \ell, m) \mid m \in \mathbb{M}\}$

```
void main()\{\ldots l_0: f(); \ldots l_1: f(); \ldots l_2: g() \ldots \}
void f(){...}
void g()\{if(...)\{l_3:g()\}else\{l_4:f()\}\}
```


Abstract contexts in function f:

$$(\ell_0, \mathbf{f}) \cdot \epsilon, (\ell_1, \mathbf{f}) \cdot \epsilon, (\ell_4, \mathbf{f}) \cdot (\ell_2, \mathbf{g}) \cdot \epsilon,$$

 $(\ell_4, \mathbf{f}) \cdot (\ell_3, \mathbf{g}) \cdot (\ell_2, \mathbf{g}) \cdot \epsilon, (\ell_4, \mathbf{f}) \cdot (\ell_3, \mathbf{g}) \cdot (\ell_3, \mathbf{g}) \cdot (\ell_2, \mathbf{g}) \cdot \epsilon, \dots$

- one invariant per calling context, very precise
- infinite in presence of recursion (i.e., not practical in this case)

Application 2: context insensitive abstraction, 0-CFA

Context insensitive abstraction (0-CFA)

- $\bullet \mathbb{D}_0^{\sharp} = \mathbb{L}$
- $\gamma_0: \ell \mapsto \{(\kappa, \ell, m) \mid \kappa \in \mathbb{K}, m \in \mathbb{M}\}$

```
void main()\{\ldots l_0: f(); \ldots l_1: f(); \ldots l_2: g() \ldots \}
void f(){...}
void g()\{if(...)\{l_3:g()\}else\{l_4:f()\}\}
```


Abstract contexts in **function** f are of the form $(?, f) \cdot \dots$,

- 0-CFA merges all calling contexts to a same procedure, very coarse abstraction
- but is usually quite efficient to compute

Application 2: context sensitive abstraction, k-CFA

Partially context sensitive abstraction (k-CFA)

- $\mathbb{D}_0^{\sharp} = \{\kappa \in \mathbb{K} \mid \mathsf{length}(\kappa) \leq k\} \times \mathbb{L}$
- $\gamma_0: (\kappa, \ell) \mapsto \{(\kappa \cdot \kappa', \ell, m) \mid \kappa' \in \mathbb{K}, m \in \mathbb{M}\}$

$$\label{eq:poid_main} \begin{split} & \text{void } \text{main}()\{\ldots \textit{l}_0: \texttt{f}(); \ldots \textit{l}_1: \texttt{f}(); \ldots \textit{l}_2: \texttt{g}() \ldots \} \\ & \text{void } \texttt{f}()\{\ldots\} \\ & \text{void } \texttt{g}()\{\text{if}(\ldots)\{\textit{l}_3: \texttt{g}()\} \\ \text{else}\{\textit{l}_4: \texttt{f}()\}\} \end{split}$$

Abstract contexts in function f, in 2-CFA:

$$(\mathit{l}_{0},\mathtt{f})\cdot\varepsilon,\;(\mathit{l}_{1},\mathtt{f})\cdot\varepsilon,\;(\mathit{l}_{4},\mathtt{f})\cdot(\mathit{l}_{3},\mathtt{g})\cdot(?,\mathtt{g})\cdot\ldots,(\mathit{l}_{4},\mathtt{f})\cdot(\mathit{l}_{2},\mathtt{g})\cdot(?,\mathtt{main})$$

- usually intermediate level of precision and efficiency
- can be applied to programs with recursive procedures

Application 3: partitioning by a boolean condition

- so far, we only used abstractions of the control states to partition
- we now consider abstractions of memory states properties

Function guided memory states partitioning

We let:

- $\mathbb{D}_0^{\sharp} = A$ where A finite set is a finite set of values / properties
- ullet $\phi: \mathbb{M}
 ightarrow A$ maps each store to its property
- γ_0 is of the form $(a \in A) \mapsto \{(\ell, m) \in \mathbb{S} \mid \phi(m) = a\}$

Common choice for A: the set of boolean values \mathbb{B}

(or another finite set of values —convenient for enum types!)

Many choices for function ϕ are possible:

- value of one or several variables (boolean or scalar)
- sign of a variable
- ...

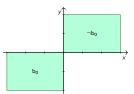
Application 3: partitioning by a boolean condition

We assume:

- $\mathbb{X} = \mathbb{X}_{bool} \uplus \mathbb{X}_{int}$, where \mathbb{X}_{bool} (resp., \mathbb{X}_{int}) collects boolean (resp., integer) variables
- $X_{bool} = \{b_0, \dots, b_{k-1}\}$
- $X_{int} = \{x_0, \dots, x_{l-1}\}$

Thus,
$$\mathbb{M} = \mathbb{X} \to \mathbb{V} \equiv (\mathbb{X}_{bool} \to \mathbb{V}_{bool}) \times (\mathbb{X}_{int} \to \mathbb{V}_{int}) \equiv \mathbb{V}_{bool}^k \times \mathbb{V}_{int}^l$$

Boolean partitioning abstract domain


We apply the cardinal power abstraction, with a domain of partitions defined by a function, with:

- $A = \mathbb{R}^k$
- $\phi(m) = (m(b_0), \dots, m(b_{k-1}))$
- we let $(\mathbb{D}_1^{\sharp}, \sqsubseteq_1^{\sharp}, \gamma_1)$ be any numerical abstract domain for $\mathcal{P}(\mathbb{V}_{\mathrm{int}}^I)$

Application 3: example

With $\mathbb{X}_{bool} = \{b_0, b_1\}, \mathbb{X}_{int} = \{x, y\}$, we can express:

$$\left\{ \begin{array}{ll} b_0 \wedge b_1 & \Longrightarrow & x \in [-3,0] \wedge y \in [-2,0] \\ b_0 \wedge \neg b_1 & \Longrightarrow & x \in [-3,0] \wedge y \in [-2,0] \\ \neg b_0 \wedge b_1 & \Longrightarrow & x \in [0,3] \wedge y \in [0,2] \\ \neg b_0 \wedge \neg b_1 & \Longrightarrow & x \in [0,3] \wedge y \in [0,2] \end{array} \right.$$

- this abstract value expresses a relation between b₀ and x, y
 (which induces a relation between x and y)
- alternative: partition with respect to only some variables
 e.g., here b₀ only since b₁ is irrelevant
- typical representation of abstract values:
 based on some kind of decision trees (variants of BDDs)

Application 3: example

- Left side abstraction shown in blue: boolean partitioning for b₀, b₁
- Right side abstraction shown in green: interval abstraction
- We omit the cases of the form $P \Longrightarrow \bot ...$

```
bool b_0, b_1;
int x, y; (uninitialized)
b_0 = x > 0;
               (b_0 \Longrightarrow x > 0) \land (\neg b_0 \Longrightarrow x < 0)
b_1 = x < 0:
               (b_0 \land b_1 \Longrightarrow x = 0) \land (b_0 \land \neg b_1 \Longrightarrow x > 0) \land (\neg b_0 \land b_1 \Longrightarrow x < 0)
if(b_0 \&\& b_1){
               (b_0 \wedge b_1 \Longrightarrow x = 0)
       v = 0:
               (b_0 \wedge b_1 \Longrightarrow x = 0 \wedge v = 0)
}else{
               (b_0 \land \neg b_1 \Longrightarrow x > 0) \land (\neg b_0 \land b_1 \Longrightarrow x < 0)
       v = 100/x;
               (b_0 \land \neg b_1 \Longrightarrow x > 0 \land y > 0) \land (\neg b_0 \land b_1 \Longrightarrow x < 0 \land y < 0)
}
```

Application 3: partitioning by the sign of a variable

We now consider a semantic property: the sign of a variable

We assume:

- $X = X_{int}$, i.e., all variables have integer type
- $\bullet \ \mathbb{X}_{int} = \{x_0, \dots, x_{l-1}\}$

Thus, $\mathbb{M}=\mathbb{X} \to \mathbb{V} \equiv \mathbb{V}_{\mathrm{int}}'$

Sign partitioning abstract domain

We apply the cardinal power abstraction, with a domain of partitions defined by a function, with:

- $A = \{[< 0], [= 0], [> 0]\}$ • $\phi(m) = \begin{cases} [< 0] & \text{if } m(x_0) < 0 \\ [= 0] & \text{if } m(x_0) = 0 \\ [> 0] & \text{if } m(x_0) > 0 \end{cases}$
- $(\mathbb{D}_1^{\sharp}, \sqsubseteq_1^{\sharp}, \gamma_1)$ an abstraction of $\mathcal{P}(\mathbb{V}_{\mathrm{int}}^{l-1})$ (no need to abstract x_0 twice)

Application 3: example

- Sign abstraction fixing partitions shown in blue
- States abstraction shown in green: interval abstraction
- We omit the cases of the form $P \Longrightarrow \bot ...$

```
int x \in \mathbb{Z};
      int s:
      int v:
      if(x > 0){
                     (x < 0 \Rightarrow \bot) \land (x = 0 \Rightarrow \top) \land (x > 0 \Rightarrow \top)
              s = 1
                     (x < 0 \Rightarrow \bot) \land (x = 0 \Rightarrow s = 1) \land (x > 0 \Rightarrow s = 1)
      } else {
                     (x < 0 \Rightarrow \top) \land (x = 0 \Rightarrow \bot) \land (x > 0 \Rightarrow \bot)
              s = -1
                     (x < 0 \Rightarrow s = -1) \land (x = 0 \Rightarrow \bot) \land (x > 0 \Rightarrow \bot)
                     (x < 0 \Rightarrow s = -1) \land (x = 0 \Rightarrow s = 1) \land (x > 0 \Rightarrow s = 1)
① y = x/s;
                     (x < 0 \Rightarrow s = -1 \land y > 0) \land (x = 0 \Rightarrow s = 1 \land y = 0) \land (x > 0 \Rightarrow s = 1 \land y > 0)
      assert(y > 0);
```

Outline

- Introduction
- 2 Imprecisions in convex abstractions
- Disjunctive completion
- 4 Cardinal power and partitioning abstractions
- State partitioning
 - Definition and examples
 - Abstract interpretation with boolean partitioning
- Trace partitioning
- Conclusion

Computation of abstract semantics and partitioning

We present abstract operations in the context of an analysis that **combines two forms of partitioning**:

- by control states (as previously), using a chaotic iteration strategy
- by the values of the boolean variables

Intuitively, the abstract values are of the form:

$$f^{\sharp}: (\mathbb{L} \times \mathbb{V}_{\mathrm{bool}}^{k}) \longrightarrow \mathbb{D}_{1}^{\sharp}$$

Yet, this is not a very good representation:

- program transition from one control state to another are known before the analysis:
 - they correspond to the program transitions
- program transition from one boolean configuration to another are not known before the analysis: we need to know information about the values of the boolean variables, which the analysis is supposed to compute

A combination of two cardinal powers

Sequence of abstractions:

- **①** concrete states: $\mathcal{P}(\mathbb{L} \times \mathbb{M}) \equiv \mathcal{P}(\mathbb{L} \times (\mathbb{V}_{\text{bool}}^k \times \mathbb{V}_{\text{int}}^l))$
- partitioning of states by the control state:

$$\mathbb{L} \longrightarrow \mathcal{P}(\mathbb{M}) \equiv \mathbb{L} \longrightarrow \mathcal{P}((\mathbb{V}_{\mathsf{bool}}^k \times \mathbb{V}_{\mathsf{int}}^l))$$

partitioning by the boolean configuration:

$$\mathbb{L} \longrightarrow (\mathbb{V}_{\text{bool}}^{k} \longrightarrow \mathcal{P}(\mathbb{V}_{\text{int}}^{l}))$$

numerical abstraction of numerical stores:

$$\mathbb{L} \longrightarrow (\mathbb{V}_{\mathrm{bool}}^k \longrightarrow \mathbb{D}_1^{\sharp})$$

Computer representation:

Xavier Rival (INRIA, ENS. CNRS)

type abs1 = ... (* abstract elements of
$$\mathbb{D}_1^{\sharp}$$
) type abs_state = ... (

boolean trees with elements of type abs1 at the leaves *)
type abs_cp = (labels, abs_state) Map.t

Abstract operations

Abstract post-conditions

- concrete $post : \mathcal{P}(\mathbb{S}) \to \mathcal{P}(\mathbb{S})$ (where \mathbb{S} is the set of states);
- the abstract $post^{\sharp}: \mathbb{D}^{\sharp} \to \mathbb{D}^{\sharp}$ should be such that

$$post \circ \gamma \sqsubseteq \gamma \circ post^{\sharp}$$

In the next part, we seek for abstract post-conditions for the following operations, in the cardinal power domain, assuming similar functions are defined in the underlying domain (numeric abstract domain, cf previous course):

- assignment to scalar, e.g., x = 1 x;
- assignment to boolean, e.g., $b_0 = x < 7$
- scalar test, e.g., if (x > 8)...
- boolean test, e.g., if $(\neg b_1)$...

Other lattice operations (inclusion check, join, widening) are left as exercise

Transfer functions: assignment to scalar (1/2)

Computation of an abstract post-condition

$$x_k = e$$
;

Example:

- statement x = 1 x;
- abstract pre-condition:

$$\left\{\begin{array}{ccc} b & \Rightarrow & x \ge 0 \\ \land & \neg b & \Rightarrow & x \le 0 \end{array}\right\}$$

Intuition:

- the values of the boolean variables do not change
- the values of the numeric values can be updated separately for each partition

Transfer functions: assignment to scalar (2/2)

Definition of the abstract post-condition

$$\mathit{assign}_{\mathsf{cp}}(\mathtt{x},\mathtt{e},X^\sharp) = \lambda(z^\sharp \in \mathbb{V}^k_{\mathsf{bool}}) \cdot \mathit{assign}_1(\mathtt{x},\mathtt{e},X^\sharp(z^\sharp))$$

This post-condition is sound:

Soundness

If $assign_1$ is sound, so is $assign_{cp}$, in the sense that:

$$\forall X^{\sharp} \in \mathbb{D}_{\mathsf{cp}}^{\sharp}, \ \forall m \in \gamma_{\mathsf{cp}}(X^{\sharp}), \ m[\mathtt{x} \leftarrow [\![\mathtt{e}]\!](m)] \in \gamma_{\mathsf{cp}}(\mathit{assign}_{\mathsf{cp}}(\mathtt{x},\mathtt{e},X^{\sharp}))$$

• proof by case analysis over the value of the boolean variables

Example:

$$\textit{assign}_{\mathsf{cp}}\left(\mathtt{x},1-\mathtt{x},\left\{\begin{array}{ccc} \mathtt{b} & \Rightarrow & \mathtt{x} \geq \mathtt{0} \\ \land & \lnot\mathtt{b} & \Rightarrow & \mathtt{x} < \mathtt{0} \end{array}\right\}\right) = \left\{\begin{array}{ccc} \mathtt{b} & \Rightarrow & \mathtt{x} \leq \mathtt{1} \\ \land & \lnot\mathtt{b} & \Rightarrow & \mathtt{x} > \mathtt{1} \end{array}\right\}$$

Transfer functions: scalar test (1/2)

Computation of an abstract post-condition

where e only refers to numeric variables (analysis of a condition test, of a loop test, of an assertion)

Example:

- statement: if($x \ge 8$){...
- abstract pre-condition:

$$\left\{\begin{array}{ccc} b & \Rightarrow & x \geq 0 \\ \wedge & \neg b & \Rightarrow & x \leq 0 \end{array}\right\}$$

Intuition:

- the values of the variables do not change, no relations between boolean and numeric variables can be inferred
- new conditions on the numeric variables can be inferred, separately for each partition (possibly leading to empty abstract states)

Transfer functions: scalar test (2/2)

Definition of the abstract post-condition

$$\textit{test}_{\mathsf{cp}}(\mathsf{c}, X^\sharp) = \lambda(z^\sharp \in \mathbb{V}^k_{\mathsf{bool}}) \cdot \textit{test}_1(\mathsf{c}, X^\sharp(z^\sharp))$$

This post-condition is sound:

Soundness

If $test_1$ is sound, so is $test_{cp}$, in the sense that:

$$\forall X^{\sharp} \in \mathbb{D}_{\mathsf{cp}}^{\sharp}, \ \forall m \in \gamma_{\mathsf{cp}}(X^{\sharp}), \ \llbracket \mathsf{c} \rrbracket(m) = \mathsf{TRUE} \Longrightarrow m \in \gamma_{\mathsf{cp}}(\mathit{test}_{\mathsf{cp}}(\mathtt{x}, \mathsf{e}, X^{\sharp}))$$

• proof by case analysis over the value of the boolean variables

Example:

$$test_{cp}\left(x \ge 8, \left\{\begin{array}{ccc} b & \Rightarrow & x \ge 0 \\ \wedge & \neg b & \Rightarrow & x < 0 \end{array}\right\}\right) = \left\{\begin{array}{ccc} b & \Rightarrow & x \ge 8 \\ \wedge & \neg b & \Rightarrow & \bot \end{array}\right\}$$

Xavier Rival (INRIA, ENS. CNRS)

Transfer functions: boolean condition test (1/3)

Computation of an abstract post-condition

$$if(e){\dots}$$

where e only refers to boolean variables (analysis of a condition test, of a loop test, of an assertion)

Example:

• statement: if($\neg b_1$)...

Intuition:

- the values of the variables do not change, no new relations between boolean and numeric variables can be inferred
- certain boolean configurations get discarded or refined

Transfer functions: boolean condition test (2/3)

Definition of the abstract post-condition

$$\textit{test}_{\mathsf{cp}}(\mathsf{c}, X^\sharp) = \lambda(z^\sharp \in \mathbb{V}^k_{\mathsf{bool}}) \cdot \left\{ \begin{array}{l} X^\sharp(z^\sharp) & \text{if } \textit{test}_0(\mathsf{c}, z^\sharp) \neq \bot_0 \\ \bot_1 & \text{otherwise} \end{array} \right.$$

This post-condition is sound:

Soundness

If $test_0$ is sound, so is $test_{CD}$, in the sense that:

$$\forall X^{\sharp} \in \mathbb{D}_{\mathsf{cp}}^{\sharp}, \ \forall m \in \gamma_{\mathsf{cp}}(X^{\sharp}), \ \llbracket \mathsf{c} \rrbracket(m) = \mathsf{TRUE} \Longrightarrow m \in \gamma_{\mathsf{cp}}(\mathit{test}_{\mathsf{cp}}(\mathtt{x}, \mathsf{e}, X^{\sharp}))$$

Proof:

- case analysis over the boolean configurations
- in each situation, two cases depending on whether or not the condition test evaluates to TRUE or to FALSE.

Transfer functions: boolean condition test (3/3)

Example abstract post-condition:

$$test_{cp} \begin{pmatrix} b_0 \wedge b_1 & \Rightarrow & 15 \leq x \\ \wedge & b_0 \wedge \neg b_1 & \Rightarrow & 9 \leq x \leq 14 \\ \wedge & \neg b_0 \wedge b_1 & \Rightarrow & 6 \leq x \leq 8 \\ \wedge & \neg b_0 \wedge \neg b_1 & \Rightarrow & x \leq 5 \end{pmatrix}$$

$$= \begin{pmatrix} b_0 \wedge b_1 & \Rightarrow & \bot_1 \\ \wedge & b_0 \wedge \neg b_1 & \Rightarrow & \bot_1 \\ \wedge & \neg b_0 \wedge b_1 & \Rightarrow & \bot_1 \\ \wedge & \neg b_0 \wedge b_1 & \Rightarrow & \bot_1 \\ \wedge & \neg b_0 \wedge \neg b_1 & \Rightarrow & x \leq 5 \end{pmatrix}$$

Transfer functions: assignment to boolean (1/3)

Computation of an abstract post-condition

$$b_j = e$$
;

where e only refers to numeric variables

Example:

• statement: $b_0 = x < 7$

• abstract pre-condition:
$$\begin{cases} &b_0 \wedge b_1 \quad \Rightarrow \quad 15 \leq x \\ & \wedge \quad b_0 \wedge \neg b_1 \quad \Rightarrow \quad 9 \leq x \leq 14 \\ & \wedge \quad \neg b_0 \wedge b_1 \quad \Rightarrow \quad 6 \leq x \leq 8 \\ & \wedge \quad \neg b_0 \wedge \neg b_1 \quad \Rightarrow \quad x \leq 5 \end{cases}$$

Intuition:

- the value of the boolean variable in the left hand side changes, thus partitions need to be recomputed
- new relations between boolean variables and numeric variables emerge (old relations get discarded)

Transfer functions: assignment to boolean (2/3)

Definition of the abstract post-condition

$$\begin{array}{ll} \mathit{assign}_{\mathsf{cp}}(\mathsf{b},\mathsf{e},X^{\sharp})(z^{\sharp}[\mathsf{b}\leftarrow\mathsf{TRUE}]) &=& \left\{ \begin{array}{cc} \mathit{test}_1(\mathsf{e},X^{\sharp}(z^{\sharp}[\mathsf{b}\leftarrow\mathsf{TRUE}])) \\ \sqcup_1 & \mathit{test}_1(\mathsf{e},X^{\sharp}(z^{\sharp}[\mathsf{b}\leftarrow\mathsf{FALSE}])) \end{array} \right. \\ \mathit{assign}_{\mathsf{cp}}(\mathsf{b},\mathsf{e},X^{\sharp})(z^{\sharp}[\mathsf{b}\leftarrow\mathsf{FALSE}]) &=& \left\{ \begin{array}{cc} \mathit{test}_1(\neg\mathsf{e},X^{\sharp}(z^{\sharp}[\mathsf{b}\leftarrow\mathsf{TRUE}])) \\ \sqcup_1 & \mathit{test}_1(\neg\mathsf{e},X^{\sharp}(z^{\sharp}[\mathsf{b}\leftarrow\mathsf{FALSE}])) \end{array} \right. \\ \end{array}$$

Soundness

$$\forall X^{\sharp} \in \mathbb{D}_{\mathsf{cp}}^{\sharp}, \ \forall m \in \gamma_{\mathsf{cp}}(X^{\sharp}), \ m[\mathtt{b} \leftarrow \llbracket \mathtt{e} \rrbracket(m)] \in \gamma_{\mathsf{cp}}(\mathit{assign}_{\mathsf{cp}}(\mathtt{b}, \mathtt{e}, X^{\sharp}))$$

Proof: if $z^{\sharp} \in \mathbb{D}_{0}^{\sharp}$ and $z^{\sharp}(b) = \text{TRUE}$, then, $assign_{cp}(b, e[x_{0}, \ldots, x_{i}], X^{\sharp})(z^{\sharp})$ should account for all states where b becomes true, whatever the previous value, other boolean variables remaining unchanged; the case where $z^{\sharp}(b) = \text{FALSE}$ is symmetric.

The partitions get modified (this is a costly step, involving join)

Transfer functions: assignment to boolean (3/3)

Example abstract post-condition:

$$assign_{cp} \left(b_0, x \leq 7, \left\{ \begin{array}{cccc} b_0 \wedge b_1 & \Rightarrow & 15 \leq x \\ \wedge & b_0 \wedge \neg b_1 & \Rightarrow & 9 \leq x \leq 14 \\ \wedge & \neg b_0 \wedge b_1 & \Rightarrow & 6 \leq x \leq 8 \\ \wedge & \neg b_0 \wedge \neg b_1 & \Rightarrow & x \leq 5 \end{array} \right) \right) \\ = \left\{ \begin{array}{cccc} b_0 \wedge b_1 & \Rightarrow & 6 \leq x \leq 7 \\ \wedge & b_0 \wedge \neg b_1 & \Rightarrow & x \leq 5 \\ \wedge & \neg b_0 \wedge \neg b_1 & \Rightarrow & x \leq 5 \\ \wedge & \neg b_0 \wedge b_1 & \Rightarrow & 8 \leq x \\ \wedge & \neg b_0 \wedge \neg b_1 & \Rightarrow & 9 \leq x \leq 14 \end{array} \right\}$$

The partitions get modified (this is a costly step, involving join)

Choice of boolean partitions

Boolean partitioning allows to express relations between boolean and scalar variables, but these relations are expensive to maintain:

- partitioning with respect to N boolean variables translates into a 2^N space cost factor
- after assignments, partitions need be recomputed (use of join)

Packing addresses the first issue

- select groups of variables for which relations would be useful
- can be based on syntactic or semantic criteria

Whatever the packs, the transfer functions will produce a sound result (but possibly not the most precise one)

In the last part of this course, we present another form of partitioning that can sometimes alleviate these issues

Outline

- Introduction
- 2 Imprecisions in convex abstractions
- 3 Disjunctive completion
- 4 Cardinal power and partitioning abstraction.
- 5 State partitioning
- Trace partitioning
 - Principles and examples
 - Abstract interpretation with trace partitioning
- Conclusion

Definition of trace partitioning

Principle

We start from a trace semantics and rely on an abstraction of execution history for partitioning

- concrete domain: $\mathbb{D} = \mathcal{P}(\mathbb{S}^*)$
- left side abstraction $\gamma_0:\mathbb{D}_0^\sharp\to\mathbb{D}$: a trace abstraction to be defined precisely later
- right side abstraction, as a composition of two abstractions:
 - ▶ the final state abstraction defined by $(\mathbb{D}_1^{\sharp}, \sqsubseteq_1^{\sharp}) = (\mathcal{P}(\mathbb{S}), \subseteq)$ and:

$$\gamma_1: M \longmapsto \{\langle s_0, \ldots, s_k, (\ell, m) \rangle \mid m \in M, \ell \in \mathbb{L}, s_0, \ldots, s_k \in \mathbb{S}\}$$

• a store abstraction applied to the traces final memory state $\gamma_2:\mathbb{D}^\sharp_1\to\mathbb{D}^\sharp_1$

Trace partitioning

Cardinal power abstraction defined by abstractions γ_0 and $\gamma_1 \circ \gamma_2$

Application 1: partitioning by control states

Flow sensitive abstraction

- We let $\mathbb{D}_0^{\sharp} = \mathbb{L} \cup \{\top\}$
- Concretization is defined by:

$$\gamma_0: \mathbb{D}_0^{\sharp} \longrightarrow \mathcal{P}(\mathbb{S}^*)$$
 $\ell \longmapsto \mathbb{S}^* \cdot (\{\ell\} \times \mathbb{M})$

This produces the same flow sensitive abstraction as with state partitioning; in the following we always compose context sensitive abstraction with other abstractions...

Trace partitioning is more general than state partitioning

Any state partitioning abstraction is also a trace partitioning abstraction:

- context-sensitivity, partial context sensitivity
- partitioning guided by a boolean condition...

Application 2: partitioning guided by a condition

We consider a program with a conditional statement:

```
რ: if(c){
6 : }else{
```

Domain of partitions

The partitions are defined by $\mathbb{D}_0^{\sharp} = \{ \tau_{if:t}, \tau_{if:f}, \top \}$ and:

$$\begin{array}{cccc} \gamma_0: & \tau_{\mathrm{if:t}} & \longmapsto & \{\langle (\ell_0, m), (\ell_1, m'), \ldots \rangle \mid m \in \mathbb{M}, m' \in \mathbb{M} \} \\ & \tau_{\mathrm{if:f}} & \longmapsto & \{\langle (\ell_0, m), (\ell_3, m'), \ldots \rangle \mid m \in \mathbb{M}, m' \in \mathbb{M} \} \\ & \top & \longmapsto & \mathbb{S}^* \end{array}$$

Application:

discriminate the executions depending on the branch they visited

Application 2: partitioning guided by a condition

This partitioning resolves the second example:

```
int x \in \mathbb{Z}:
int s:
int y;
if(x > 0){
                           \tau_{\rm if:t} \Rightarrow (0 < x) \land \tau_{\rm if:f} \Rightarrow \bot
              s = 1:
                            \tau_{\text{if}} \Rightarrow (0 < x \land s = 1) \land \tau_{\text{if}} \Rightarrow \bot
} else {
                           \tau_{\text{if-f}} \Rightarrow (x < 0) \land \tau_{\text{if-f}} \Rightarrow \bot
              s = -1
                            \tau_{\rm if:f} \Rightarrow (x < 0 \land s = -1) \land \tau_{\rm if:f} \Rightarrow \bot
                           \left\{ \begin{array}{ccc} \tau_{\mathrm{if:t}} & \Rightarrow & \left(0 \leq \mathtt{x} \land \mathtt{s} = 1\right) \\ \land & \tau_{\mathrm{if:f}} & \Rightarrow & \left(\mathtt{x} < 0 \land \mathtt{s} = -1\right) \end{array} \right. 
y = x/s;
                           \begin{cases} \tau_{if:t} \Rightarrow (0 \le x \land s = 1 \land 0 \le y) \\ \land \tau_{s:s} \Rightarrow (x < 0 \land s = -1 \land 0 < y) \end{cases}
```

Application 3: partitioning guided by a loop

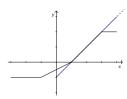
We consider a program with a **loop statement**:

```
f<sub>0</sub>: while(c){
l<sub>1</sub>: ... β: }
b : ...
```

Domain of partitions

For a given $k \in \mathbb{N}$, the partitions are defined by

$$\mathbb{D}_0^\sharp = \{ au_{\text{loop}:0}, au_{\text{loop}:1}, \dots, au_{\text{loop}:k}, op \}$$
 and:


Application:

discriminate executions depending on the number of iterations in a loop

Application 3: partitioning guided by a loop

An interpolation function:

$$y = \begin{cases} -1 & \text{if } x \le -1 \\ -\frac{1}{2} + \frac{x}{2} & \text{if } x \in [-1, 1] \\ -1 + x & \text{if } x \in [1, 3] \\ 2 & \text{if } 3 \le x \end{cases}$$

Typical implementation:

- use tables of coefficients and loops to search for the range of x
- here we assume the entrance is positive:

$$\begin{array}{l} \text{int } i = 0; \\ \text{while} (i < 4 \text{ \&\& } x > t_x[i+1]) \{ \\ i + +; \} \\ \\ \begin{cases} \tau_{loop:0} \ \Rightarrow \ \ \bot & (\text{case } x \le -1) \\ \tau_{loop:1} \ \Rightarrow \ 0 \le x \le 1 \wedge i = 1 \\ \tau_{loop:2} \ \Rightarrow \ 1 \le x \le 3 \wedge i = 2 \\ \tau_{loop:3} \ \Rightarrow \ 3 \le x \wedge i = 3 \\ \end{cases} \\ y = t_r[i] \times (x - t_x[i]) + t_v[i] \end{array}$$

Application 4: partitioning guided by the value of a variable

We consider a program with an integer variable x, and a program point ℓ :

int x: . . . : [: . . .

Domain of partitions: partitioning by the value of a variable

For a given $\mathcal{E} \subseteq \mathbb{V}_{\mathrm{int}}$ finite set of integer values, the partitions are defined by $\mathbb{D}_0^{\sharp} = \{ \tau_{\text{val}:i} \mid i \in \mathcal{E} \} \uplus \{ \top \} \text{ and}:$

$$\gamma_0: \quad au_{\mathrm{val}:k} \quad \longmapsto \quad \{\langle \dots, (\ell, m), \dots \rangle \mid m(\mathbf{x}) = k\}$$

$$\quad \top \quad \longmapsto \quad \mathbb{S}^*$$

Domain of partitions: partitioning by the property of a variable

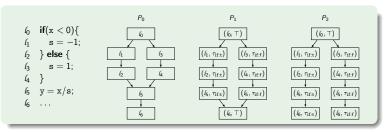
For a given abstraction $\gamma: (V^{\sharp}, \Box^{\sharp}) \to (\mathcal{P}(\mathbb{V}_{\mathrm{int}}), \subset)$, the partitions are defined by $\mathbb{D}_0^{\sharp} = \{ \tau_{\text{var:}\nu^{\sharp}} \mid \nu^{\sharp} \in V^{\sharp} \}$ and:

$$\gamma_0: \quad \tau_{\mathrm{val}:v^{\sharp}} \quad \longmapsto \quad \{\langle \ldots, (\ell, m), \ldots \rangle \mid m(\mathbf{x}) \in \tau_{\mathrm{var}:v^{\sharp}} \}$$

Application 4: partitioning guided by the value of a variable

- Left side abstraction shown in blue: sign of x at entry
- Right side abstraction shown in green: non relational abstraction (we omit the information about x)
- Same precision and similar results as boolean partitioning, but very different abstraction, fewer partitions, no re-partitioning

```
bool b_0, b_1;
             int x. v:
                                    (uninitialized)
(1)
                            (x < 0@1 \Rightarrow \top) \land (x = 0@1 \Rightarrow \top) \land (x > 0@1 \Rightarrow \top)
              b_0 = x > 0;
                            (x < 000 \Rightarrow \neg b_0) \land (x = 000 \Rightarrow b_0) \land (x > 000 \Rightarrow b_0)
              b_1 = x < 0;
                            (x < 000) \Rightarrow \neg b_0 \land b_1) \land (x = 000) \Rightarrow b_0 \land b_1) \land (x > 000) \Rightarrow b_0 \land \neg b_1)
              if(bn && b1){
                            (x < 0@@ \Rightarrow \bot) \land (x = 0@@ \Rightarrow b_0 \land b_1) \land (x > 0@@ \Rightarrow \bot)
                     y = 0:
                            (x < 0@1 \Rightarrow \bot) \land (x = 0@1 \Rightarrow b_0 \land b_1 \land y = 0) \land (x > 0@1 \Rightarrow \bot)
              } else {
                            (x < 0@@ \Rightarrow \neg b_0 \land b_1) \land (x = 0@@ \Rightarrow \bot) \land (x > 0@@ \Rightarrow b_0 \land \neg b_1)
                     v = 100/x;
                            (x < 0@@ \Rightarrow \neg b_0 \land b_1 \land y < 0) \land (x = 0@@ \Rightarrow \bot) \land (x > 0@@ \Rightarrow b_0 \land \neg b_1 \land y > 0)
```


Outline

- Introduction
- 2 Imprecisions in convex abstractions
- 3 Disjunctive completion
- 4 Cardinal power and partitioning abstraction.
- 5 State partitioning
- Trace partitioning
 - Principles and examples
 - Abstract interpretation with trace partitioning
- Conclusion

Trace partitioning induced by a refined transition system

We consider possible partitions for a condition, and formalize the analysis:

- P₀: the analysis does merge them right after the condition, at l₅
 (this amounts to doing no partitioning at all)
- P_1 : the analysis may merge them at a further point l_6 (more precise, but more expensive)
- P₂: the analysis may never merge traces from both branches (very precise, but very expensive)

Intuition: we can view this form of trace partitioning as the use of a refined control flow graph

Trace partitioning induced by a refined transition system

We now formalize this intuition:

- we augment control states with partitioning tokens: $\mathbb{L}' = \mathbb{L} \times \mathbb{D}_0^{\sharp}$ and let $\mathbb{S}' = \mathbb{L}' \times \mathbb{M}$
- let $\to' \subseteq \mathbb{S}' \times \mathbb{S}'$ be an extended transition relation

Definition: partitioning transition system

We say that system $S' = (S', \to', S'_{\mathcal{I}})$ is a **partition** of the transition system $S = (S, \to, S_{\mathcal{I}})$ if and only if:

- (initial states) $\forall (\ell, m) \in \mathbb{S}_{\mathcal{I}}, \ \exists \tau \in \mathbb{D}_0^{\sharp}, \ ((\ell, \tau), m) \in \mathbb{S}_{\mathcal{I}}'$
- (transitions) $\forall (\ell, m), (\ell', m') \in \mathbb{S}, \ \forall \tau \in \mathbb{D}_0^{\sharp}, \ \text{if } ((\ell, \tau), m) \in \llbracket \mathcal{S} \rrbracket_{\mathcal{R}} \ \text{then,}$ $(\ell, m) \to (\ell', m') \Longrightarrow \exists \tau' \in \mathbb{D}_0^{\sharp}, \ ((\ell, \tau), m) \to ((\ell', \tau'), m')$

In that case, we write:

$$\mathcal{S}' \prec \mathcal{S}$$

Meaning: system \mathcal{S}' refines system \mathcal{S} with additional execution history information

Partitionned transition system and semantics

The partitioned transition system over-approximates the behaviors of the initial system:

Partitioned system and semantic approximation

Let us assume that $S' \prec S$. We let $[S]_{T^{*\omega}}$ (resp., $[S']_{T^{*\omega}}$) denote the trace semantics of S (resp., S'). Then:

$$\forall \langle (\ell_0, m_0), \dots, (\ell_n, m_n) \rangle \in \llbracket \mathcal{S} \rrbracket_{\mathcal{T}^{*\omega}},$$

$$\exists \tau_0, \dots, \tau_n \in \mathbb{D}_0^{\sharp}, \ \langle ((\ell_0, \tau_0), m_0), \dots, ((\ell_n, \tau_n), m_n) \rangle \in \llbracket \mathcal{S}' \rrbracket_{\mathcal{T}^{*\omega}},$$

Proof: by induction over the length of executions (exercise).

Properties of $S' \prec S$

- all traces of S have a counterpart in S' (up to token addition)
- ullet a trace in \mathcal{S}' embeds more information than a trace in \mathcal{S}
- ullet moreover, if we reason up to isomorphisms (e.g., either $\ell \equiv (\ell, ullet)$ or $((\ell, \tau), \tau') \equiv (\ell, (\tau, \tau')), \prec \text{ extends into a pre-order}$

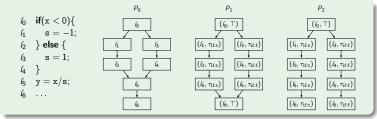
Trace partitioning induced by a refined transition system

Assumptions:

- refined control system $(\mathbb{S}', \to', \mathbb{S}'_{\mathcal{I}}) \prec (\mathbb{S}, \to, \mathbb{S}_{\mathcal{I}})$
- erasure function: $\Psi: (\mathbb{S}')^* \to \mathbb{S}^*$ removes the tokens

Definition of a trace partitioning

The abstraction defining partitions is defined by:


$$egin{array}{lll} \gamma_0: & \mathbb{D}_0^\sharp & \longrightarrow & \mathcal{P}(\mathbb{S}^*) \ & au & \longmapsto & \{\sigma \in \mathbb{S}^* \mid \exists \sigma' = \langle \dots, ((\ell, au), au)
angle \in (\mathbb{S}')^*, \ \Psi(\sigma') = \sigma \} \end{array}$$

Not all instances of trace partitionings can be expressed that way but **many interesting instances can**:

- control states and call stack partitioning
- partitioning guided by conditions and loops
- partitioning guided by the value of a variable

Trace partitioning induced by a refined transition system

Example of the partitioning guided by a condition:

• each system induces a partitioning, with different merging points:

$$P_1 \prec P_0$$
 $P_2 \prec P_1$

these systems induce hierarchy of refining control structures

$$P_2 \prec P_1 \prec P_0 \qquad \text{thus,} \qquad \llbracket P_0 \rrbracket_{\mathcal{T}^{*\omega}} \subseteq \llbracket P_1 \rrbracket_{\mathcal{T}^{*\omega}} \subseteq \llbracket P_2 \rrbracket_{\mathcal{T}^{*\omega}}$$

- this approach also applies to:
 - partitioning induced by a loop
 - partitioning induced by the value of a variable at a given point...

Transfer functions: example

```
int x \in \mathbb{Z}:
int s:
int v:
if(x > 0){
                   \tau_{\text{iff}} \Rightarrow (0 < x) \land \tau_{\text{iff}} \Rightarrow \bot
                                                                                                                         partition creation: \tau_{if:t}
                   \tau_{\rm if:t} \Rightarrow (0 \le x \land s = 1) \land \tau_{\rm if:f} \Rightarrow \bot
                                                                                                                         no modification of partitions
} else {
                   \tau_{if,f} \Rightarrow (x < 0) \land \tau_{if,f} \Rightarrow \bot
                                                                                                                         partition creation: \tau_{iff}
                   \tau_{\rm if:f} \Rightarrow (x < 0 \land s = -1) \land \tau_{\rm if:t} \Rightarrow \bot
                                                                                                                         no modification of partitions
                   \left\{ \begin{array}{ccc} & \tau_{if:t} & \Rightarrow & \left(0 \leq x \wedge s = 1\right) \\ \wedge & \tau_{if:f} & \Rightarrow & \left(x < 0 \wedge s = -1\right) \end{array} \right. 
                                                                                                                         no modification of partitions
y = x/s;
                    \begin{cases} \tau_{\text{if:t}} \Rightarrow (0 \le x \land s = 1 \land 0 \le y) \\ \land \tau_{\text{if:t}} \Rightarrow (x < 0 \land s = -1 \land 0 < y) \end{cases} 
                                                                                                                    no modification of partitions
                    \Rightarrow s \in [-1,1] \land 0 < y
                                                                                                                         fusion of partitions
```

Partitions are rarely modified, and only some (branching) points

Transfer functions: partition creation

Analysis of an if statement, with partitioning

```
\begin{array}{lll} \ell_{0}: & \textbf{if}(c) \{ & & & & \\ \ell_{1}: & & & \\ \ell_{2}: & \} \textbf{else} \{ & & & \\ \delta^{\sharp}_{\ell_{0},\ell_{0}}(X^{\sharp}) & = & [\tau_{\mathrm{if}:\mathsf{t}} \mapsto \mathit{test}(\mathsf{c}, \sqcup X^{\sharp}(\tau)), \tau_{\mathrm{if}:\mathsf{f}} \mapsto \bot] \\ \ell_{2}: & \} \textbf{else} \{ & & & \\ \delta^{\sharp}_{\ell_{0},\ell_{0}}(X^{\sharp}) & = & [\tau_{\mathrm{if}:\mathsf{t}} \mapsto \bot, \tau_{\mathrm{if}:\mathsf{f}} \mapsto \mathit{test}(\neg \mathsf{c}, \sqcup X^{\sharp}(\tau))] \\ \ell_{3}: & & & \\ \delta^{\sharp}_{\ell_{2},\ell_{0}}(X^{\sharp}) & = & X^{\sharp} \\ \ell_{4}: & \} & & \\ \delta^{\sharp}_{\ell_{4},\ell_{0}}(X^{\sharp}) & = & X^{\sharp} \end{array}
```

Observations:

- in the body of the condition: either τ_{if:t} or τ_{if:f}
 i.e., no partition modification there
- effect at point l_5 : both $\tau_{if:t}$ and $\tau_{if:f}$ exist
- partitions are modified only at the condition point, that is only by $\delta^{\sharp}_{6,4}(X^{\sharp})$ and $\delta^{\sharp}_{6,4}(X^{\sharp})$

Transfer functions: partition fusion

When partitions are not useful anymore, they can be merged

$$\delta^{\sharp}_{\ell_{0},\ell_{1}}(X^{\sharp}) = [_ \mapsto \sqcup_{\tau} X^{\sharp}(\ell_{0})(\tau)]$$

Remarks:

- at this point, all partitions are effectively collapsed into just one set
- example: fusion of the partition of a condition when not useful
- choice of fusion point:
 - precision: merge point should not occur as long as partitions are useful
 - efficiency: merge point should occur as early as partitions are not needed anymore

Choice of partitions

How are the partitions chosen?

Static partitioning [always the case in this lecture]

- a fixed partitioning abstraction \mathbb{D}_0^{\sharp} , γ_0 is **fixed before the analysis**
- usually \mathbb{D}_0^{\sharp} , γ_0 are chosen by a pre-analysis
- static partitioning is rather easy to formalize and implement
- but it might be limiting, when choosing partitions beforehand is hard

Dynamic partitioning

- the partitioning abstraction \mathbb{D}_0^{\sharp} , γ_0 is **not fixed before the analysis**
- instead, it is computed as part of the analysis
- *i.e.*, the analysis uses on a lattice of partitioning abstractions \mathcal{D}^{\sharp} and computes $(\mathbb{D}_{0}^{\sharp}, \gamma_{0})$ as an element of this lattice

Outline

- Introduction
- 2 Imprecisions in convex abstractions
- 3 Disjunctive completion
- 4 Cardinal power and partitioning abstractions
- State partitioning
- Trace partitioning
- Conclusion

Adding disjunctions in static analyses

Disjunctive completion: brutally adds disjunctions too expensive in practice

$$P_0 \vee \ldots \vee P_n$$

Cardinal power abstraction expresses collections of implications between abstract facts in two abstract domains

$$(P_0 \Longrightarrow Q_0) \wedge \ldots \wedge (P_n \Longrightarrow Q_n)$$

Two major cases:

- **State partitioning** is **easier** to use when the criteria for partitioning can be easily expressed at the state level
- Trace partitioning is more expressive in general it can also allow the use of simpler partitioning criteria, with less "re-partitioning"

Assignment: proofs and paper reading

```
 \begin{array}{ll} \textbf{Proof 1} \text{ (simple):} \\ \text{prove the disjunctive completion algorithm (Slide 15)} \end{array}
```

```
Proof 2 (harder):
  justify the general cardinal power post-condition (Slide 37)
```

Proof 3:

what happens in the case we use coverings instead of partitions (Slide 42)

Refining static analyses by trace-partitioning using control flow

Maria Handjieva and Stanislas Tzolovski,

Static Analysis Symposium, 1998,

http://link.springer.com/chapter/10.1007/3-540-49727-7_12