Some notions of information flow

Jérôme Feret
Laboratoire d’Informatique de l’École Normale Supérieure
INRIA, ÉNS, CNRS
http://www.di.ens.fr/~feret

Wednesday, the 23th of October, 2019
Syntax

Let $\mathcal{V} \triangleq \{V, V_1, V_2, \ldots\}$ be a finite set of variables.
Let $\mathbb{Z} \triangleq \{z, \ldots\}$ be the set of relative numbers.
Expressions are polynomial of variables \mathcal{V}.

$$E ::= z \mid V \mid E + E \mid E \times E$$

Programs are given by the following grammar:

$$P ::= \text{skip} \mid P;P \mid V := E \mid \text{if } (V \geq 0) \{P\} \text{ else } \{P\} \mid \text{while } (V \geq 0) \{P\}$$
We define the semantics $\sem P \in \mathcal{F}((V \rightarrow \mathbb{Z}) \cup \Omega)$ of a program P:

- $\sem \text{skip}(\rho) = \rho$,
- $\sem P_1;P_2(\rho) = \begin{cases} \Omega & \text{if } \sem P_1(\rho) = \Omega \\ \sem P_2(\sem P_1(\rho)) & \text{otherwise} \end{cases}$
- $\sem V := E(\rho) = \begin{cases} \Omega & \text{if } \rho = \Omega \\ \rho[V \mapsto \bar{\rho}(E)] & \text{otherwise} \end{cases}$
- $\sem \text{if } (V \geq 0) \{P_1\} \text{ else } \{P_2\}(\rho) = \begin{cases} \Omega & \text{if } \rho = \Omega \\ \sem P_1(\rho) & \text{if } \rho(V) \geq 0 \\ \sem P_2(\rho) & \text{otherwise} \end{cases}$
- $\sem \text{while } (V \geq 0) \{P\}(\rho) = \begin{cases} \Omega & \text{if } \rho = \Omega \\ \rho' & \text{if } \{\rho'\} = \{\rho' \in \text{inv} | \rho'(V) < 0\} \\ \Omega & \text{otherwise} \end{cases}$

where $\text{inv} = \text{lfp}(X \mapsto \{\rho\} \cup \{\rho'' | \exists \rho' \in X, \rho'(V) \geq 0 \text{ and } \rho'' \in \sem P(\rho')\})$.
Flow of information

Given a program P, we say that the variable V_1 flows into the variable V_2 if, and only if, the final value of V_2 depends on the initial value of V_1, which is written $V_1 \Rightarrow_P V_2$.

More formally, $V_1 \Rightarrow_P V_2$ if and only if there exists $\rho \in \mathcal{V} \rightarrow \mathbb{Z}$, $z, z' \in \mathbb{Z}$ such that one of the following three assertions is satisfied:

1. $\llbracket P \rrbracket (\rho[V_1 \mapsto z]) \neq \Omega$, $\llbracket P \rrbracket (\rho[V_1 \mapsto z']) \neq \Omega$, and $\llbracket P \rrbracket (\rho[V_1 \mapsto z])(V_2) \neq \llbracket P \rrbracket (\rho[V_1 \mapsto z'])(V_2)$;

2. $\llbracket P \rrbracket (\rho[V_1 \mapsto z]) = \Omega$ and $\llbracket P \rrbracket (\rho[V_1 \mapsto z']) \neq \Omega$;

3. $\llbracket P \rrbracket (\rho[V_1 \mapsto z]) \neq \Omega$ and $\llbracket P \rrbracket (\rho[V_1 \mapsto z']) = \Omega$.
Let P be a program.

We define the following binary relation \rightarrow_P among variables in \mathcal{V}: $V_1 \rightarrow_P V_2$ if and only if there is an assignment in P of the form $V_2 := E$ such that V_1 occurs in E.

Does $V_1 \Rightarrow_P V_2$ imply that $V_1 \rightarrow_P^* V_2$?
Counter-example

We consider the following program P:

$$P ::= \begin{cases} \text{if } (V_1 \geq 0) \\ \{ V_2 := 0 \} \\ \text{else} \\ \{ V_2 := 1 \} \end{cases}$$

For any $\rho \in \mathcal{V} \to \mathbb{Z}$, we have $\llbracket P \rrbracket(\rho[V_1 \mapsto 0])(V_2) = 0$; but, $\llbracket P \rrbracket(\rho[V_1 \mapsto 1])(V_2) = 1$; so $V_1 \Rightarrow_P V_2$; But $V_1 \not\Rightarrow_P^* V_2$.
Syntactic approximation (tentative)

For each program point p in P, we denote by $\text{test}(p)$ the set of variables which occur in the guards of tests and while loops the scope of which contains the program point p.

We define the following binary relation \rightarrow among variables in \mathcal{V}: $V_1 \rightarrow_p V_2$ if and only if there is an assignment in P of the form $V_2 := E$ at program point p such that:

1. either V_1 occurs in E;
2. or $V_1 \in \text{test}(p)$.

Does $V_1 \Rightarrow_p V_2$ imply that $V_1 \rightarrow^*_p V_2$?
Counter-example

We consider the following program P:

$$P ::= \text{while } (V_1 \geq 0) \{\text{skip}\}$$

For any $\rho \in \mathcal{V} \rightarrow \mathbb{Z}$, we have $\llbracket P \rrbracket(\rho[V_1 \mapsto -1]) \neq \Omega$; but, $\llbracket P \rrbracket(\rho[V_1 \mapsto 0]) = \Omega$; so $V_1 \not\Rightarrow_P V_2$; But $V_1 \not\Rightarrow^*_P V_2$.
Approximation of the information flow

So as to get a sound approximation of the information flow, we have to consider that a variable that is tested in the guard of a loop may flow in any variable.

We define the following binary relation \rightarrow_P among variables in \mathcal{V}: $V_1 \rightarrow V_2$ if and only if there is an assignment in P of the form $V_2 := E$ at program point p such that:

1. either V_1 occurs in E;
2. or V_1 is tested in the guard of a loop;
3. or $V_1 \in \text{test}(p)$.

Theorem 1 If $V_1 \Rightarrow_P V_2$, then $V_1 \rightarrow_P^* V_2$!
Limitations

The approximation is highly syntax-oriented.

- It is context-insensitive;
- It is very rough in the case of while loop, \(\implies \) we could show statically that some loops always terminate to avoid fictitious dependencies;
- we could detect some invariants to avoid fictitious dependencies.

Other forms of attacks could be modeled in the semantics: an attacker could observe:

- computation time;
- memory assumption;
- heating.

(attacks cannot be exhaustively specified).