Thread-Modular Static Analysis of Concurrent Programs

MPRI 2–6: Abstract Interpretation, application to verification and static analysis

Antoine Miné

Year 2020–2021

Course 16
19 February 2021
Concurrent programming

Decompose a program into a set of (loosely) interacting processes.

- exploit parallelism in current computers
 (multi-processors, multi-cores, hyper-threading)

 “Free lunch is over” (change in Moore’s law, \(\times 2 \) transistors every 2 years)

- exploit several computers (distributed computing)

- ease of programming (GUI, network code, reactive programs)

But concurrent programs are hard to program and hard to verify:

- combinatorial exposition of execution paths (interleavings)

- errors lurking in hard-to-find corner cases (race conditions)

- unintuitive execution models (weak memory consistency)
Scope

In this course: static thread model

- implicit communication through shared memory
- explicit communication through synchronisation primitives
- fixed number of threads (no dynamic creation of threads)
- numeric programs (real-valued variables)

Goal: static analysis

- infer numeric program invariants
- parameterized by a choice of numeric abstract domains
- discover run-time errors (e.g., divisions by 0)
- discover data-races (unprotected accesses by concurrent threads)
- discover deadlocks (some threads block each other indefinitely)
- application to analyzing embedded C programs
Outline

- Simple concurrent language
- Non-modular concurrent semantics
- Simple interference thread-modular concurrent semantics
- Locks and synchronization
- Abstract rely-guarantee thread-modular concurrent semantics
- Relational interference abstractions
- Application: the AstréeA analyzer
Language and semantics
Structured numeric language

- finite set of (toplevel) threads: stmt₁ to stmtₙ
- finite set of numeric program variables V ∈ ℒ
- finite set of statement locations ℓ ∈ ℒ
- locations with possible run-time errors ω ∈ Ω (divisions by zero)

Structured language syntax

```
prog ::= ℓ stmt₁ ℓ || ... || ℓ stmtₙ ℓ (parallel composition)

ℓ stmt ℓ ::= ℓ V ← exp ℓ (assignment)
  | ℓ if exp ⊗ 0 then ℓ stmt ℓ fi ℓ (conditional)
  | ℓ while ℓ exp ⊗ 0 do ℓ stmt ℓ done ℓ (loop)
  | ℓ stmt; ℓ stmt ℓ (sequence)

exp ::= V | [c₁, c₂] | − exp | exp ⊗ exp

| c₁, c₂ ∈ ℛ ∪ { +∞, −∞ }, ⊗ ∈ { +, −, ×, /ω }, ⊗ ∈ { =, <, ... } |
```
Multi-thread execution model

<table>
<thead>
<tr>
<th>t_1</th>
<th>t_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ_1 while random do</td>
<td>ℓ_4 while random do</td>
</tr>
<tr>
<td>ℓ_2 if $x < y$ then</td>
<td>ℓ_5 if $y < 100$ then</td>
</tr>
<tr>
<td>ℓ_3 $x \leftarrow x + 1$</td>
<td>ℓ_6 $y \leftarrow y + [1, 3]$</td>
</tr>
</tbody>
</table>

Execution model:
- finite number of threads
- the memory is shared (x, y)
- each thread has its own program counter
- execution interleaves steps from threads t_1 and t_2
 assignments and tests are assumed to be atomic

\implies we have the global invariant $0 \leq x \leq y \leq 102$
Semantic model: labelled transition systems

simple extension of transition systems

Labelled transition system: \((\Sigma, \mathcal{A}, \tau, \mathcal{I})\)

- \(\Sigma\): set of program states
- \(\mathcal{A}\): set of actions
- \(\tau \subseteq \Sigma \times \mathcal{A} \times \Sigma\): transition relation we note \((\sigma, a, \sigma') \in \tau\) as \(\sigma \xrightarrow{a} \tau \sigma'\)
- \(\mathcal{I} \subseteq \Sigma\): initial states

Labelled traces: sequences of states interspersed with actions

denoted as \(\sigma_0 \xrightarrow{a_0} \sigma_1 \xrightarrow{a_1} \cdots \sigma_n \xrightarrow{a_n} \sigma_{n+1}\)

\(\tau\) is omitted on \(\rightarrow\) for traces for simplicity
From concurrent programs to labelled transition systems

given: \(\text{prog} ::= \ell_1 \text{stmt}_1 \ell_1 \| \cdots \| \ell_n \text{stmt}_n \ell_n \)

threads are numbered: \(\mathbb{T} \overset{\text{def}}{=} \{1, \ldots, n\} \)

Program states: \(\Sigma \overset{\text{def}}{=} (\mathbb{T} \rightarrow \mathcal{L}) \times \mathcal{E} \)

- a control state \(L(t) \in \mathcal{L} \) for each thread \(t \in \mathbb{T} \) and
- a single shared memory state \(\rho \in \mathcal{E} \overset{\text{def}}{=} \forall \rightarrow \mathbb{Z} \)

Initial states:
threads start at their first control point \(\ell_t^i \), variables are set to 0:
\(\mathcal{I} \overset{\text{def}}{=} \{ \langle \lambda t.\ell_t^i, \lambda V.0 \rangle \} \)

Actions: actions are thread identifiers: \(\mathcal{A} \overset{\text{def}}{=} \mathbb{T} \)
Transition relation: \[\tau \subseteq \Sigma \times \mathcal{A} \times \Sigma \]

\[\langle L, \rho \rangle \xrightarrow{t} \tau \langle L', \rho' \rangle \iff \langle L(t), \rho \rangle \xrightarrow{\tau[\text{stmt}_t]} \langle L'(t), \rho' \rangle \wedge \]

\[\forall u \neq t: L(u) = L'(u) \]

- based on the transition relation of individual threads seen as sequential processes \(\text{stmt}_t: \tau[\text{stmt}_t] \subseteq (\mathcal{L} \times \mathcal{E}) \times (\mathcal{L} \times \mathcal{E}) \)
 - choose a thread \(t \) to run
 - update \(\rho \) and \(L(t) \)
 - leave \(L(u) \) intact for \(u \neq t \)

see course 2 for the full definition of \(\tau[\text{stmt}] \)

- each transition \(\sigma \xrightarrow{\tau[\text{stmt}_t]} \sigma' \) leads to many transitions \(\xrightarrow{\tau} \)!
Interleaved trace semantics

Maximal and finite prefix trace semantics are as before:

Blocking states: \(\mathcal{B} \overset{\text{def}}{=} \{ \sigma \mid \forall \sigma': \forall t: \sigma \xrightarrow{t} \tau \sigma' \} \)

Maximal traces: \(\mathcal{M}_\infty \) (finite or infinite)
\[
\mathcal{M}_\infty \overset{\text{def}}{=} \{ \sigma_0 \xrightarrow{t_0} \cdots \xrightarrow{t_{n-1}} \sigma_n \mid n \geq 0 \land \sigma_0 \in \mathcal{I} \land \sigma_n \in \mathcal{B} \land \forall i < n: \sigma_i \xrightarrow{t_i} \tau \sigma_{i+1} \} \cup \\
\{ \sigma_0 \xrightarrow{t_0} \sigma_1 \cdots \mid n \geq 0 \land \sigma_0 \in \mathcal{I} \land \forall i < \omega: \sigma_i \xrightarrow{t_i} \tau \sigma_{i+1} \}
\]

Finite prefix traces: \(\mathcal{T}_p \)
\[
\mathcal{T}_p \overset{\text{def}}{=} \{ \sigma_0 \xrightarrow{t_0} \cdots \xrightarrow{t_{n-1}} \sigma_n \mid n \geq 0 \land \sigma_0 \in \mathcal{I} \land \forall i < n: \sigma_i \xrightarrow{t_i} \tau \sigma_{i+1} \}
\]

\(\mathcal{T}_p = \text{lfp } F_p \) where
\[
F_p(X) = \mathcal{I} \cup \{ \sigma_0 \xrightarrow{t_0} \cdots \xrightarrow{t_n} \sigma_{n+1} \mid n \geq 0 \land \sigma_0 \xrightarrow{t_0} \cdots \xrightarrow{t_{n-1}} \sigma_n \in X \land \sigma_n \xrightarrow{t_n} \tau \sigma_{n+1} \}
\]
Fairness

Fairness conditions: avoid threads being denied to run forever

Given \(enabled(\sigma, t) \overset{\text{def}}{\iff} \exists \sigma' \in \Sigma: \sigma \xrightarrow{t} \tau \sigma' \)

an infinite trace \(\sigma_0 \xrightarrow{t_0} \cdots \sigma_n \xrightarrow{t_n} \cdots \) is:

- **weakly fair** if \(\forall t \in T: \exists i: \forall j \geq i: enabled(\sigma_j, t) \implies \forall i: \exists j \geq i: a_j = t \)
 no thread can be continuously enabled without running

- **strongly fair** if \(\forall t \in T: \forall i: \exists j \geq i: enabled(\sigma_j, t) \implies \forall i: \exists j \geq i: a_j = t \)
 no thread can be infinitely often enabled without running

Proofs under fairness conditions given:

- the maximal traces \(\mathcal{M}_\infty \) of a program
- a property \(X \) to prove (as a set of traces)
- the set \(F \) of all (weakly or strongly) fair and of finite traces

\(\implies \) prove \(\mathcal{M}_\infty \cap F \subseteq X \) instead of \(\mathcal{M}_\infty \subseteq X \)
Fairness (cont.)

Example: while $x \geq 0$ do $x \leftarrow x + 1$ done $|| x \leftarrow -2$
- may not terminate without fairness
- always terminates under weak and strong fairness

Finite prefix trace abstraction

$M_\infty \cap F \subseteq X$ is abstracted into testing $\alpha_* \preceq (M_\infty \cap F) \subseteq \alpha_* \preceq (X)$

for all fairness conditions F, $\alpha_* \preceq (M_\infty \cap F) = \alpha_* \preceq (M_\infty) = T_p$

recall that $\alpha_* \preceq (T) \overset{\text{def}}{=} \{ t \in \Sigma^* \mid \exists u \in T : t \preceq u \}$ is the finite prefix abstraction

and $T = \alpha_* \preceq (M_\infty)$

\implies fairness-dependent properties cannot be proved with finite prefixes only

In the following, we ignore fairness conditions
Reminder: reachable state abstraction

Reachable state semantics: \(R \in \mathcal{P}(\Sigma) \)

Reachable states in any execution:

\[
R \overset{\text{def}}{=} \{ \sigma \mid \exists n \geq 0, \sigma_0, \ldots, \sigma_n: \\
\sigma_0 \in I, \forall i < n: \exists t \in T: \sigma_i \xrightarrow{t} \sigma_{i+1} \land \sigma = \sigma_n \}
\]

\[R = \text{lfp } F_R \text{ where } F_R(X) = I \cup \{ \sigma \mid \exists \sigma' \in X, t \in T: \sigma' \xrightarrow{t} \sigma \}\]

Can prove (non-)reachability, but not ordering, termination, liveness and cannot exploit fairness.

Abstraction of the finite trace semantics.

\[R = \alpha_p(T_p) \text{ where } \alpha_p(X) \overset{\text{def}}{=} \{ \sigma \mid \exists n \geq 0, \sigma_0 \xrightarrow{t_0} \cdots \sigma_n \in X: \sigma = \sigma_n \}\]
Reminders: sequential semantics
Equational state semantics of sequential program

- see \(\text{lfp } f \) as the least solution of an equation \(x = f(x) \)
- partition states by control: \(\mathcal{P}(\mathcal{L} \times \mathcal{E}) \cong \mathcal{L} \to \mathcal{P}(\mathcal{E}) \)
 \[\mathcal{X}_\ell \in \mathcal{P}(\mathcal{E}) : \text{ invariant at } \ell \in \mathcal{L} \]
 \[\forall \ell \in \mathcal{L} : \mathcal{X}_\ell \overset{\text{def}}{=} \{ m \in \mathcal{E} | \langle \ell, m \rangle \in \mathcal{R} \} \]
 \[\implies \text{ set of recursive equations on } \mathcal{X}_\ell \]

\textbf{Example:}

\[
\ell^1 i \leftarrow 2; \\
\ell^2 n \leftarrow [-\infty, +\infty]; \\
\ell^3 \text{ while } \ell^4 i < n \text{ do} \\
\quad \ell^5 \text{ if } [0,1] = 0 \text{ then} \\
\quad \quad \ell^6 i \leftarrow i + 1 \\
\quad \text{fi} \\
\ell^7 \text{ done} \\
\ell^8
\]

\[
\begin{align*}
\mathcal{X}_1 & = \mathcal{I} \\
\mathcal{X}_2 & = \text{C}[i \leftarrow 2] \mathcal{X}_1 \\
\mathcal{X}_3 & = \text{C}[n \leftarrow [-\infty, +\infty]] \mathcal{X}_2 \\
\mathcal{X}_4 & = \mathcal{X}_3 \cup \mathcal{X}_7 \\
\mathcal{X}_5 & = \text{C}[i < n] \mathcal{X}_4 \\
\mathcal{X}_6 & = \mathcal{X}_5 \\
\mathcal{X}_7 & = \mathcal{X}_5 \cup \text{C}[i \leftarrow i + 1] \mathcal{X}_6 \\
\mathcal{X}_8 & = \text{C}[i \geq n] \mathcal{X}_4
\end{align*}
\]
Abstract equation system

Given a numeric abstract domain:

- abstract elements $\mathcal{E}^\#$ abstracting $\mathcal{P}(\mathcal{E})$
 with concretization $\gamma : \mathcal{E}^\# \rightarrow \mathcal{P}(\mathcal{E})$
- sound abstract operators $C^\#[X \leftarrow e]$, $C^\#[e \bowtie 0]$, $\cup^\#$
 $f^\#$ is sound $\iff \forall X^\# \in \mathcal{E}^\# : f(\gamma(X^\#)) \subseteq \gamma(f^\#(X^\#))$
- a widening operator \triangledown

we can over-approximate in the abstract the solution of the system

Benefits:

- separate programming language from equation language
- various choices of solving strategies
 chaotic iterations [Bour93], etc.
Semantics in denotational form

Alternate view as an input-output state function $C[\text{stmt}]$

$$C[\text{stmt}] : \mathcal{P}(\mathcal{E}) \to \mathcal{P}(\mathcal{E})$$

- $C[X \leftarrow e] R \overset{\text{def}}{=} \{ \rho[X \mapsto v] | \rho \in R, v \in E[e] \rho \}$
- $C[e \ntriangleright 0] R \overset{\text{def}}{=} \{ \rho \in R | \exists v \in E[e] \rho : v \ntriangleright 0 \}$
- $C[\text{if } e \ntriangleright 0 \text{ then } s \text{ fi }] R \overset{\text{def}}{=} (C[s] \circ C[e \ntriangleright 0]) R \sqcup C[e \ntriangleright 0] R$
- $C[s_1 ; s_2] \overset{\text{def}}{=} C[s_2] \circ C[s_1]$
- $C[\text{while } e \ntriangleright 0 \text{ do } s \text{ done }] R \overset{\text{def}}{=} C[e \ntriangleright 0](\text{lfp}\lambda Y. R \sqcup (C[s] \circ C[e \ntriangleright 0]) Y)$

- Mutate memory states in \mathcal{E}
- Structured: nested loops yield nested fixpoints
- Big-step: forget information on intermediate locations ℓ
Abstract semantics in denotational form

\[C^\#[\text{stmt}] : \mathcal{E}^\# \rightarrow \mathcal{E}^\# \]

\[C^\#[X \leftarrow e] R^\# \text{ and } C^\#[e \triangleright 0] R^\# \text{ are given} \]

\[C^\#[\text{if } e \triangleright 0 \text{ then } s \text{ fi}] X^\# \overset{\text{def}}{=} (C^\#[s] \circ C^\#[e \triangleright 0])X^\# \sqcup C^\#[e \triangleright 0] X^\# \]

\[C^\#[s_1; s_2] \overset{\text{def}}{=} C^\#[s_2] \circ C^\#[s_1] \]

\[C^\#[\text{while } e \triangleright 0 \text{ do } s \text{ done}] X^\# \overset{\text{def}}{=} C^\#[e \triangleright 0] (\lim_{\lambda} Y^\#.Y^\# \triangledown (X^\# \sqcup (C^\#[s] \circ C^\#[e \triangleright 0]))) \]

The abstract interpreter mimics an actual interpreter.
Equational vs. denotational form

Equational:

\[
\begin{align*}
X_1 &= \top \\
X_2 &= F_2(X_1) \\
X_3 &= F_3(X_1) \\
X_4 &= F_4(X_3, X_4)
\end{align*}
\]

Denotational:

\[
C[\text{while } c \text{ do } b \text{ done}] X \overset{\text{def}}{=} \\
C[\neg c](\text{lfp } \lambda Y. X \cup C[b](C[c] Y)) \\
C[\text{if } c \text{ then } t \text{ fi}] X \overset{\text{def}}{=} \\
C[t](C[c] X) \cup C[\neg c] X
\]

- linear memory in program **length**
- flexible solving strategy
- flexible context sensitivity
- easy to adapt to concurrency, using a product of CFG

- linear memory in program **depth**
- fixed iteration strategy
- fixed context sensitivity (follows the program structure)
- no inductive definition of the product
 \(\Longrightarrow\) thread-modular analysis
Non-modular concurrent semantics
Equational concurrent state semantics

Equational form:

- for each $L \in \mathbb{T} \rightarrow \mathcal{L}$, a variable \mathcal{X}_L with value in \mathcal{E}

- equations are derived from thread equations $eq(\text{stmt}_t)$ as:

$$\mathcal{X}_{L_1} = \bigcup_{t \in \mathbb{T}} \{ F(\mathcal{X}_{L_2}, \ldots, \mathcal{X}_{L_N}) \mid \exists (\mathcal{X}_{\ell_1} = F(\mathcal{X}_{\ell_2}, \ldots, \mathcal{X}_{\ell_N})) \in eq(\text{stmt}_t);$$

$$\forall i \leq N: L_i(t) = \ell_i, \forall u \neq t: L_i(u) = L_1(u) \}$$

Join with \bigcup equations from $eq(\text{stmt}_t)$ updating a single thread $t \in \mathbb{T}$. (see course 2 for the full definition of $eq(\text{stmt})$)
Equational state semantics (illustration)

Product of control-flow graphs:
- control state = tuple of program points
 \[\longrightarrow\] combinatorial explosion of abstract states
- transfer functions are duplicated
Equational state semantics (example)

Example: inferring $0 \leq x \leq y \leq 102$

<table>
<thead>
<tr>
<th>t_1</th>
<th>t_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ_1 while random do</td>
<td>ℓ_4 while random do</td>
</tr>
<tr>
<td>ℓ_2 if $x < y$ then</td>
<td>ℓ_5 if $y < 100$ then</td>
</tr>
<tr>
<td>ℓ_3 $x \leftarrow x + 1$</td>
<td>ℓ_6 $y \leftarrow y + [1,3]$</td>
</tr>
</tbody>
</table>

Equation system:

\begin{align*}
\chi_{1,4} &= \mathcal{I} \\
\chi_{2,4} &= \chi_{1,4} \cup C[x \geq y] \chi_{2,4} \cup C[x \leftarrow x + 1] \chi_{3,4} \\
\chi_{3,4} &= C[x < y] \chi_{2,4} \\
\chi_{1,5} &= \chi_{1,4} \cup C[y \geq 100] \chi_{1,5} \cup C[y \leftarrow y + [1,3]] \chi_{1,6} \\
\chi_{2,5} &= \chi_{1,5} \cup C[x \geq y] \chi_{2,5} \cup C[x \leftarrow x + 1] \chi_{3,5} \cup \\
& \hspace{1cm} \chi_{2,4} \cup C[y \geq 100] \chi_{2,5} \cup C[y \leftarrow y + [1,3]] \chi_{2,6} \\
\chi_{3,5} &= C[x < y] \chi_{2,5} \cup \chi_{3,4} \cup C[y \geq 100] \chi_{3,5} \cup C[y \leftarrow y + [1,3]] \chi_{3,6} \\
\chi_{1,6} &= C[y < 100] \chi_{1,5} \\
\chi_{2,6} &= \chi_{1,6} \cup C[x \geq y] \chi_{2,6} \cup C[x \leftarrow x + 1] \chi_{3,6} \cup C[y < 100] \chi_{2,5} \\
\chi_{3,6} &= C[x < y] \chi_{2,6} \cup C[y < 100] \chi_{3,5}
\end{align*}
Equational state semantics (example)

<table>
<thead>
<tr>
<th>t_1</th>
<th>t_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ_1 while random do</td>
<td>ℓ_4 while random do</td>
</tr>
<tr>
<td>ℓ_2 if $x < y$ then</td>
<td>ℓ_5 if $y < 100$ then</td>
</tr>
<tr>
<td>ℓ_3 $x \leftarrow x + 1$</td>
<td>ℓ_6 $y \leftarrow y + [1,3]$</td>
</tr>
</tbody>
</table>

Pros:
- easy to construct
- easy to further abstract in an abstract domain \mathcal{E}^H

Cons:
- explosion of the number of variables and equations
- explosion of the size of equations
 \longrightarrow efficiency issues
- the equation system does *not* reflect the program structure
 (not defined by induction on the concurrent program)
Wish-list

We would like to:

- keep information attached to **syntactic** program locations
 (control points in \mathcal{L}, not control point tuples in $\mathbb{T} \rightarrow \mathcal{L}$)

- be able to **abstract away control information**
 (precision/cost trade-off control)

- avoid **duplicating** thread instructions

- have a computation structure based on the **program syntax**
 (denotational style)

Ideally: thread-modular denotational-style semantics

analyze each thread independently by induction on its syntax

but **remain sound** with respect to all interleavings!
Simple interference semantics
Thread-modular analysis with simple interferences

Principle:
- analyze each thread in isolation
Thread-modular analysis with simple interferences

Principle:
- analyze each thread in isolation
- gather the values written into each variable by each thread
 \[\Rightarrow\] so-called interferences
 suitably abstracted in an abstract domain, such as intervals
Thread-modular analysis with simple interferences

Principle:
- analyze each thread in **isolation**
- gather the **values** written into each variable by each thread
 ⇒ so-called **interferences**
 suitably abstracted in an abstract domain, such as intervals
- reanalyze threads, **injecting** these values at each read
Thread-modular analysis with simple interferences

Principle:

- analyze each thread in **isolation**
- gather the **values** written into each variable by each thread
 \[\implies\text{so-called interferences}\]
 suitably abstracted in an abstract domain, such as intervals
- reanalyze threads, injecting these values at each read
- iterate until stabilization while widening interferences
 \[\implies\text{one more level of fixpoint iteration}\]
Example

t_1
\[\ell^1 \text{ while random do} \]
\[\ell^2 \text{ if } x < y \text{ then} \]
\[\ell^3 \quad x \leftarrow x + 1 \]

t_2
\[\ell^4 \text{ while random do} \]
\[\ell^5 \text{ if } y < 100 \text{ then} \]
\[\ell^6 \quad y \leftarrow y + [1, 3] \]
Example

\[t_1 \]
\[\ell_1 \text{ while random do} \]
\[\ell_2 \text{ if } x < y \text{ then} \]
\[\ell_3 x \leftarrow x + 1 \]

\[t_2 \]
\[\ell_4 \text{ while random do} \]
\[\ell_5 \text{ if } y < 100 \text{ then} \]
\[\ell_6 y \leftarrow y + [1, 3] \]

Analysis of \(t_1 \) in isolation

(1): \(x = y = 0 \)
\(\mathcal{X}_1 = I \)

(2): \(x = y = 0 \)
\(\mathcal{X}_2 = \mathcal{X}_1 \cup C[x \leftarrow x + 1] \mathcal{X}_3 \cup C[x \geq y] \mathcal{X}_2 \)

(3): \(\bot \)
\(\mathcal{X}_3 = C[x < y] \mathcal{X}_2 \)
Example

Analysis of \(t_2 \) **in isolation**

\((4): x = y = 0 \quad \mathcal{X}_4 = I \)

\((5): x = 0, \ y \in [0, 102] \quad \mathcal{X}_5 = \mathcal{X}_4 \cup C[y \leftarrow y + [1, 3]] \mathcal{X}_6 \cup C[y \geq 100] \mathcal{X}_5 \)

\((6): x = 0, \ y \in [0, 99] \quad \mathcal{X}_6 = C[y < 100] \mathcal{X}_5 \)

output interferences: \(y \leftarrow [1, 102] \)
Example

Simple interference semantics

Intuition

Example

```
while random do
    if x < y then
        x ← x + 1
```

```
while random do
    if y < 100 then
        y ← y + [1, 3]
```

Re-analysis of \(t_1 \) with interferences from \(t_2 \)

Input interferences: \(y \leftarrow [1, 102] \)

1. \(x = y = 0 \)
 \(\mathcal{X}_1 = \emptyset \)

2. \(x \in [0, 102], y = 0 \)
 \(\mathcal{X}_2 = \mathcal{X}_{1a} \cup C[x \leftarrow x + 1] \mathcal{X}_3 \cup C[x \geq (y \mid [1, 102])] \mathcal{X}_2 \)

3. \(x \in [0, 102], y = 0 \)
 \(\mathcal{X}_3 = C[x < (y \mid [1, 102])] \mathcal{X}_2 \)

Output interferences: \(x \leftarrow [1, 102] \)

Subsequent re-analyses are identical (fixpoint reached)
Example

\[t_1 \]
\[
\begin{align*}
\ell_1 & \text{ while random do } \\
\ell_2 & \text{ if } x < y \text{ then } \\
\ell_3 & x \leftarrow x + 1
\end{align*}
\]

\[t_2 \]
\[
\begin{align*}
\ell_4 & \text{ while random do } \\
\ell_5 & \text{ if } y < 100 \text{ then } \\
\ell_6 & y \leftarrow y + [1, 3]
\end{align*}
\]

Derived abstract analysis:

- similar to a sequential program analysis, but iterated
 - can be parameterized by arbitrary abstract domains
- efficient few reanalyses are required in practice
- interferences are non-relational and flow-insensitive
 - limit inherited from the concrete semantics

Limitation:

we get \(x, y \in [0, 102] \); we don't get that \(x \leq y \)

simplistic view of thread interferences (volatile variables)

based on an incomplete concrete semantics (we'll fix that later)
Formalizing the simple interference semantics
Denotational semantics with interferences

Interferences in $\mathcal{I} \overset{\text{def}}{=} T \times V \times R$

$\langle t, X, v \rangle$ means that t can store the value v into the variable X.

We define the analysis of a thread t
with respect to a set of interferences $I \subseteq \mathcal{I}$.

Expressions : $E_t[\text{exp}] : \mathcal{E} \times \mathcal{P}(\mathcal{I}) \rightarrow \mathcal{P}(R \times \mathcal{P}(\Omega))$ for thread t

- add interference $I \in \mathcal{I}$, as input
- add error information $\omega \in \Omega$ as output

 locations of / operators that can cause a division by 0

Example:

- Apply interferences to read variables:

 $E_t[X] \langle \rho, I \rangle \overset{\text{def}}{=} \langle \{ \rho(X) \} \cup \{ v \mid \exists u \neq t : \langle u, X, v \rangle \in I \}, \emptyset \rangle$

- Pass recursively I down to sub-expressions:

 $E_t[-e] \langle \rho, I \rangle \overset{\text{def}}{=} \text{let } \langle V, O \rangle = E_t[e] \langle \rho, I \rangle \text{ in } \langle \{ -v \mid v \in V \}, O \rangle$

- etc.
Simple interference semantics

Formalizing the simple interference semantics

Denotational semantics with interferences (cont.)

Statements with interference: for thread \(t \)

\[
C_t[\text{stmt}] : \mathcal{P}(\mathcal{E}) \times \mathcal{P}(\Omega) \times \mathcal{P}(I) \rightarrow \mathcal{P}(\mathcal{E}) \times \mathcal{P}(\Omega) \times \mathcal{P}(I)
\]

- pass interferences to expressions
- collect new interferences due to assignments
- accumulate interferences from inner statements
- collect and accumulate errors from expressions

\[
C_t[X \leftarrow e] \langle R, O, I \rangle \overset{\text{def}}{=} \langle \emptyset, O, I \rangle \sqcup \bigsqcup_{\rho \in R} \langle \{ \rho[X \mapsto v] \mid v \in V_\rho \}, O_\rho, \{ \langle t, X, v \rangle \mid v \in V_\rho \} \rangle
\]

\[
C_t[s_1; s_2] \overset{\text{def}}{=} C_t[s_2] \circ C_t[s_1]
\]

\[
\ldots
\]

noting \(\langle V_\rho, O_\rho \rangle \overset{\text{def}}{=} E_t[e] \langle \rho, I \rangle \)

\(\sqcup \) is now the element-wise \(\cup \) in \(\mathcal{P}(\mathcal{E}) \times \mathcal{P}(\Omega) \times \mathcal{P}(I) \)
Program semantics: \(P[\text{prog}] \subseteq \Omega \)

Given \(\text{prog} ::= \text{stmt}_1 \parallel \cdots \parallel \text{stmt}_n \), we compute:

\[
P[\text{prog}] \overset{\text{def}}{=} \lf \lambda \langle O, I \rangle. \bigsqcup_{t \in \mathcal{T}} [C_t[\text{stmt}_t] \langle E_0, \emptyset, I \rangle]_{\Omega, \emptyset} \bigsqcup_{t \in \mathcal{T}} [C_t[\text{stmt}_t] \langle E_0, \emptyset, I \rangle]_{\Omega, \emptyset} \]

- each thread analysis starts in an initial environment set \(E_0 \overset{\text{def}}{=} \{ \lambda V.0 \} \)

- \([X]_{\Omega, \emptyset}\) projects \(X \in \mathcal{P}(\mathcal{E}) \times \mathcal{P}(\Omega) \times \mathcal{P}(\emptyset) \) on \(\mathcal{P}(\Omega) \times \mathcal{P}(\emptyset) \) and interferences and errors from all threads are joined

- the output environments from a thread analysis are not easily exploitable

- \(P[\text{prog}] \) only outputs the set of possible run-time errors

We will need to prove the soundness of \(P[\text{prog}] \) with respect to the interleaving semantics...
Interference abstraction

Abstract interferences $\#^*$

$P(\bot) \overset{\text{def}}{=} P(\mathbb{T} \times \mathbb{V} \times \mathbb{R})$ is abstracted as $\#^* \overset{\text{def}}{=} (\mathbb{T} \times \mathbb{V}) \rightarrow \mathcal{R}^*$

where \mathcal{R}^* abstracts $P(\mathbb{R})$ (e.g. intervals)

Abstract semantics with interferences $C^*[s]$

derived from $C^*[s]$ in a generic way:

Example: $C^*[X \leftarrow e]\langle R^*, \Omega, I^* \rangle$

- for each Y in e, get its interference $Y^*_\mathcal{R} = \bigcup^*_{\mathcal{R}} \{ I^*\langle u, Y \rangle \mid u \neq t \}$
- if $Y^*_\mathcal{R} \neq \bot^*_\mathcal{R}$, replace Y in e with $\text{get}(Y, R^*) \sqcup^*_\mathcal{R} Y^*_\mathcal{R}$

 $\text{get}(Y, R^*)$ extracts the abstract values variable Y from $R^* \in \mathcal{E}^*$

- compute $\langle R'^*, O' \rangle = C^*[e]\langle R^*, O \rangle$

- enrich $I^*\langle t, X \rangle$ with $\text{get}(X, R'^*)$
Static analysis with interferences

Abstract analysis

\[
P^\#[\text{prog}] \overset{\text{def}}{=} \lim \lambda \langle O, I^\# \rangle. \langle O, I^\# \rangle \triangledown \bigcup_{t \in T} \left[C^\#_t[\text{stmt}_t] \langle E^\#_0, \emptyset, I^\# \rangle \right]_{\Omega, I^\#} \right]_{\Omega}
\]

- **effective** analysis by structural induction
- \(P^\#[\text{prog}] \) is sound with respect to \(P[\text{prog}] \)
- termination ensured by a widening
- parameterized by a choice of abstract domains \(R^\#, E^\# \)

- interferences are **flow-insensitive** and **non-relational** in \(R^\# \)
- thread analysis remains **flow-sensitive** and **relational** in \(E^\# \)

Reminder: \([X]_\Omega, [Y]_\Omega, I^\# \) keep only \(X \)'s component in \(\Omega \), \(Y \)'s components in \(\Omega \) and \(I^\# \)
Path-based soundness proof
Control paths of a sequential program

atomic ::= $X \leftarrow \text{exp} \mid \text{exp} \gg 0$

Control paths

\[\pi : \text{stmt} \rightarrow \mathcal{P}(\text{atomic}^*) \]

\[\pi(X \leftarrow e) \overset{\text{def}}{=} \{ X \leftarrow e \} \]

\[\pi(\text{if } e \gg 0 \text{ then } s \text{ fi}) \overset{\text{def}}{=} (\{ e \gg 0 \} \cdot \pi(s)) \cup \{ e \ll 0 \} \]

\[\pi(\text{while } e \gg 0 \text{ do } s \text{ done}) \overset{\text{def}}{=} \left(\bigcup_{i \geq 0} (\{ e \gg 0 \} \cdot \pi(s))^i \right) \cdot \{ e \ll 0 \} \]

\[\pi(s_1; s_2) \overset{\text{def}}{=} \pi(s_1) \cdot \pi(s_2) \]

\[\pi(\text{stmt}) \text{ is a (generally infinite) set of finite control paths} \]

e.g.

\[\pi(i \leftarrow 0; \text{while } i < 10 \text{ do } i \leftarrow i + 1 \text{ done}; x \leftarrow i) = i \leftarrow 0 \cdot (i < 10 \cdot i \leftarrow i + 1)^* \cdot x \leftarrow i \]
Path-based concrete semantics of sequential programs

Join-over-all-path semantics

\[\Pi[P] : (\mathcal{P}(E) \times \mathcal{P}(\Omega)) \rightarrow (\mathcal{P}(E) \times \mathcal{P}(\Omega)) \quad P \subseteq \text{atomic}^* \]

\[\Pi[P] \langle R, O \rangle \overset{\text{def}}{=} \bigsqcup_{s_1, \ldots, s_n \in P} (C[s_n] \circ \cdots \circ C[s_1]) \langle R, O \rangle \]

Semantic equivalence

\[C[\text{stmt}] = \Pi[\pi(\text{stmt})] \]

no longer true in the abstract
Simple interference semantics

Path-based soundness proof

Path-based concrete semantics of concurrent programs

Concurrent control paths

\[\pi_* \overset{\text{def}}{=} \{ \text{interleavings of } \pi(stmt_t), \ t \in \mathbb{T} \} \]

\[= \{ p \in \text{atomic}^* | \forall t \in \mathbb{T}, \text{proj}_t(p) \in \pi(stmt_t) \} \]

Interleaving program semantics

\[P_*[\text{prog}] \overset{\text{def}}{=} [\prod[\pi_*][\mathcal{E}_0, \emptyset]]_{\Omega} \]

(\text{proj}_t(p) \text{ keeps only the atomic statement in } p \text{ coming from thread } t)

(\simeq \text{sequentially consistent executions} [\text{Lamport 79}])

Issues:

- too many paths to consider exhaustively
- no induction structure to iterate on

\[\implies \text{abstract as a denotational semantics} \]
Soundness of the interference semantics

Soundness theorem

\[P_∗[\text{prog}] \subseteq P[\text{prog}] \]

Proof sketch:

- define \(\Pi_t[P] X \) \(\overset{\text{def}}{=} \bigsqcup \{ C_t[s_1; \ldots; s_n] X | s_1 \cdot \ldots \cdot s_n \in P \} \), then \(\Pi_t[\pi(s)] = C_t[s] \);

- given the interference fixpoint \(I \subseteq \emptyset \) from \(P[\text{prog}] \), prove by recurrence on the length of \(p \in \pi_* \) that:
 - \(\forall \rho \in [\Pi[p] \langle E_0, \emptyset \rangle]_\mathcal{E}, \forall t \in T, \exists \rho' \in [\Pi_t[proj_t(p)] \langle E_0, \emptyset, I \rangle]_\mathcal{E} \) such that \(\forall X \in \mathcal{V}, \rho(X) = \rho'(X) \) or \(\langle u, X, \rho(X) \rangle \in I \) for some \(u \neq t \).
 - \([\Pi[p] \langle E_0, \emptyset \rangle]_\Omega \subseteq \bigcup_{t \in T} [\Pi_t[proj_t(p)] \langle E_0, \emptyset, I \rangle]_\Omega \)

Notes:

- sound but not complete
- can be extended to soundness proof under weakly consistent memories
Locks and synchronization
Scheduling

mutexes ensure **mutual exclusion**

at each time, each mutex can be locked by a single thread
Mutual exclusion

We use a refinement of the simple interference semantics by partitioning wrt. an abstract local view of the scheduler \mathbb{C}

- $\mathcal{E} \rightsquigarrow \mathcal{E} \times \mathbb{C}$, $\mathcal{E}^\# \rightsquigarrow \mathbb{C} \rightarrow \mathcal{E}^\#$
- $I \overset{\text{def}}{=} T \times V \times R \rightsquigarrow I \overset{\text{def}}{=} T \times \mathbb{C} \times V \times R$,
 $I^\# \overset{\text{def}}{=} (T \times V) \rightarrow \mathcal{R}^\# \rightsquigarrow I^\# \overset{\text{def}}{=} (T \times \mathbb{C} \times V) \rightarrow \mathcal{R}^\#$

$\mathbb{C} \overset{\text{def}}{=} \mathbb{C}_{\text{race}} \cup \mathbb{C}_{\text{sync}}$ separates
- data-race writes \mathbb{C}_{race}
- well-synchronized writes \mathbb{C}_{sync}
Simple interference semantics

Locks and synchronization

Mutual exclusion

![Diagram of lock and unlock operations for processes p1 and p2]

Data-race effects

\(C_{race} \simeq \mathcal{P}(M) \)

Across read / write not protected by a mutex.

Partition wrt. mutexes \(M \subseteq M \) held by the current thread \(t \).

- \(C_t[X \leftarrow e] \langle \rho, M, I \rangle \) adds \(\{ \langle t, M, X, v \rangle \mid v \in E_t[X] \langle \rho, M, I \rangle \} \) to \(I \)

- \(E_t[X] \langle \rho, M, I \rangle = \{ \rho(X) \} \cup \{ v \mid \langle t', M', X, v \rangle \in I, t \neq t', M \cap M' = \emptyset \} \)

Bonus: we get a data-race analysis for free!
Mutual exclusion

Well-synchronized effects \(\mathbb{C}_{sync} \cong M \times \mathcal{P}(M) \)

- last write before unlock affects first read after lock
- partition interferences wrt. a protecting mutex \(m \) (and \(M \))
- \(C_t[\text{unlock}(m)] \langle \rho, M, l \rangle \) stores \(\rho(X) \) into \(l \)
- \(C_t[\text{lock}(m)] \langle \rho, M, l \rangle \) imports values form \(l \) into \(\rho \)
- imprecision: non-relational, largely flow-insensitive

\(\Rightarrow \mathbb{C} \cong \mathcal{P}(M) \times (\{\text{data} - \text{race}\} \cup M) \)
Deadlock checking

During the analysis, gather:

- all reachable mutex configurations: \(R \subseteq T \times \mathcal{P}(M) \)
- lock instructions from these configurations \(R \times M \)
Deadlock checking

During the analysis, gather:

- all reachable mutex configurations: \(R \subseteq T \times P(M) \)
- lock instructions from these configurations \(R \times M \)

Then, construct a blocking graph between lock instructions

- \(((t, m), \ell) \) blocks \(((t', m'), \ell') \) if
 - \(t \neq t' \) and \(m \cap m' = \emptyset \) (configurations not in mutual exclusion)
 - \(\ell \in m' \) (blocking lock)

A deadlock is a cycle in the blocking graph.
Priority-based scheduling

Real-time scheduling:
- priorities are strict (but possibly dynamic)
- a process can only be preempted by a process of strictly higher priority
- a process can block for an indeterminate amount of time (yield, lock)

Analysis: refined transfer of interference based on priority
- partition interferences wrt. thread and priority
 support for manual priority change, and for priority ceiling protocol
- higher priority processes inject state from yield into every point
- lower priority processes inject data-race interferences into yield
Beyond non-relational interferences
Inspiration from program logics
Reminder: Floyd–Hoare logic

Logic to prove properties about sequential programs [Hoar69].

Hoare triples: \(\{P\} \text{stmt} \{Q\} \)

- annotate programs with logic assertions \(\{P\} \text{stmt} \{Q\} \)
 (if \(P \) holds before \(\text{stmt} \), then \(Q \) holds after \(\text{stmt} \))
- check that \(\{P\}\text{stmt}\{Q\} \) is derivable with the following rules
 (the assertions are program invariants)

\[
\begin{align*}
\{P[e/X]\} & X \leftarrow e \{P\} \\
\{P\} & s_1 \{Q\} \quad \{Q\} s_2 \{R\} \\
\{P\} & s_1;s_2 \{R\} \\
\{P\} & \text{if } e \not= 0 \text{ then } s \text{ fi } \{Q\} \\
\{P\} & \text{while } e \not= 0 \text{ do } s \text{ done } \{P \land e \not= 0\} \\
\{P'\} & s \{Q'\} \quad P \Rightarrow P' \quad Q' \Rightarrow Q \\
\{P\} & s \{Q\}
\end{align*}
\]

Link with abstract interpretation:
- the equations reachability semantics \((\mathcal{X}_\ell)_{\ell \in \mathcal{L}} \) provides the most precise Hoare triples in fixpoint constructive form
Jones’ rely-guarantee proof method

Idea: explicit interferences with (more) annotations [Jone81].

Rely-guarantee “quintuples”: \(R, G \vdash \{ P \} \text{stmt} \{ Q \} \)

- if \(P \) is true before \(\text{stmt} \) is executed
- and the effect of other threads is included in \(R \) (rely)
- then \(Q \) is true after \(\text{stmt} \)
- and the effect of \(\text{stmt} \) is included in \(G \) (guarantee)

where:

- \(P \) and \(Q \) are assertions on states (in \(\mathcal{P}(\Sigma) \))
- \(R \) and \(G \) are assertions on transitions (in \(\mathcal{P}(\Sigma \times A \times \Sigma) \))

The parallel composition rule is:

\[
\begin{align*}
R \lor G_2, G_1 & \vdash \{ P_1 \} s_1 \{ Q_1 \} \quad R \lor G_1, G_2 & \vdash \{ P_2 \} s_2 \{ Q_2 \} \\
R, G_1 \lor G_2 & \vdash \{ P_1 \land P_2 \} s_1 \parallel s_2 \{ Q_1 \land Q_2 \}
\end{align*}
\]
Rely-guarantee example

checking \(t_1 \)

\[\begin{align*}
\ell_1 & \text{ while random do} \\
\ell_2 & \text{ if } x < y \text{ then} \\
\ell_3 & \text{ } x \leftarrow x+1 \\
\text{fi} \\
\text{done}
\end{align*}\]

- \(\ell_1 : x = y = 0 \)
- \(\ell_2 : x, y \in [0, 102], x \leq y \)
- \(\ell_3 : x \in [0, 101], y \in [1, 102], x < y \)

checking \(t_2 \)

\[\begin{align*}
\ell_4 & \text{ while random do} \\
\ell_5 & \text{ if } y < 100 \text{ then} \\
\ell_6 & \text{ } y \leftarrow y + [1,3] \\
\text{fi} \\
\text{done}
\end{align*}\]

- at \(\ell_4 : x = y = 0 \)
- at \(\ell_5 : x, y \in [0, 102], x \leq y \)
- at \(\ell_6 : x \in [0, 99], y \in [0, 99], x \leq y \)
Rely-guarantee example

In this example:

- guarantee exactly what is relied on \((R_1 = G_1 \text{ and } R_2 = G_2)\)
- rely and guarantee are global assertions

Benefits of rely-guarantee:

- more precise: can prove \(x \leq y\)
- invariants are still local to threads
- checking a thread does not require looking at other threads, only at an abstraction of their semantics
Rely-guarantee as abstract interpretation
Main idea: separate execution steps

- from the current thread \(a \)
 - found by analysis by induction on the syntax of \(a \)
- from other threads \(b \)
 - given as parameter in the analysis of \(a \)
 - inferred during the analysis of \(b \)

\[\Longrightarrow \] express the semantics from the point of view of a single thread
Reachable states projected on thread t: \(\mathcal{RL}(t) \)

- attached to thread control point in \(\mathcal{L} \), not control state in \(\mathbb{T} \to \mathcal{L} \)
- remember other thread’s control point as “auxiliary variables”

 (required for completeness)

\[
\mathcal{RL}(t) \overset{\text{def}}{=} \pi_t(\mathcal{R}) \subseteq \mathcal{L} \times (\forall \cup \{ pc_{t'} \mid t \neq t' \in \mathbb{T} \}) \to \mathbb{R}
\]

where \(\pi_t(R) \overset{\text{def}}{=} \{ \langle L(t), \rho[\forall t' \neq t: pc_{t'} \mapsto L(t')] \rangle \mid \langle L, \rho \rangle \in R \} \)
Beyond non-relational interferences
Rely-guarantee as abstract interpretation

Trace decomposition

Interferences generated by \(t \): \(A(t) \)
\(\bowtie \) guarantees on transitions

Extract the transitions with action \(t \) observed in \(\mathcal{T}_p \)
(subset of the transition system, containing only transitions actually used in reachability)

\[A(t) \overset{\text{def}}{=} \alpha\overset{\bot}{\llbracket} (\mathcal{T}_p) (t) \]

where \(\alpha\overset{\bot}{\llbracket} (X)(t) \overset{\text{def}}{=} \{ \langle \sigma_i, \sigma_{i+1} \rangle \mid \exists \sigma_0 \xrightarrow{a_0} \sigma_1 \cdots \xrightarrow{a_{n-1}} \sigma_n \in X : a_i = t \} \)
We express $\mathcal{R}l(t)$ and $A(t)$ directly from the transition system, without computing \mathcal{T}_p.

States: $\mathcal{R}l$

Interleave:
- transitions from the current thread t
- transitions from interferences A by other threads

$\mathcal{R}l(t) = \text{lfp } R_t(A)$, where

$R_t(Y)(X) \overset{\text{def}}{=} \pi_t(I) \cup \{ \pi_t(\sigma') | \exists \pi_t(\sigma) \in X: \sigma \xrightarrow{t} \tau \sigma' \} \cup \{ \pi_t(\sigma') | \exists \pi_t(\sigma) \in X: \exists t' \neq t: \langle \sigma, \sigma' \rangle \in Y(t') \}$

\implies similar to reachability for a sequential program, up to A
We express $\mathcal{R}I(t)$ and $A(t)$ directly from the transition system, without computing T_p.

Interferences:

Collect transitions from a thread t and reachable states \mathcal{R}:

$A(t) = B(\mathcal{R}I)(t)$, where

$B(Z)(t) \overset{\text{def}}{=} \{ \langle \sigma, \sigma' \rangle \mid \pi_t(\sigma) \in Z(t) \land \sigma \xrightarrow{t} \sigma' \}$
We express $\mathcal{R}I(t)$ and $A(t)$ directly from the transition system, without computing T_p.

Recursive definition:

- $\mathcal{R}I(t) = \text{lfp } R_t(A)$
- $A(t) = B(\mathcal{R}I)(t)$

\Rightarrow express the most precise solution as nested fixpoints:

$$\mathcal{R}I = \text{lfp } \lambda Z. \lambda t. \text{lfp } R_t(B(Z))$$

Completeness: $\forall t: \mathcal{R}I(t) \simeq \mathcal{R}$ \hspace{1em} (π_t is bijective thanks to auxiliary variables) any property provable with the interleaving semantics can be proven with the thread-modular semantics!
Constructive fixpoint form:

Use Kleene’s iteration to construct fixpoints:

- $\mathcal{R}l = \text{lfp } H = \bigcup_{n \in \mathbb{N}} H^n(\lambda t.\emptyset)$

 in the pointwise powerset lattice $\prod_{t \in T} \{t\} \to \mathcal{P}(\Sigma_t)$

- $H(Z)(t) = \text{lfp } R_t(B(Z)) = \bigcup_{n \in \mathbb{N}} (R_t(B(Z)))^n(\emptyset)$

 in the powerset lattice $\mathcal{P}(\Sigma_t)$

 (similar to the sequential semantics of thread t in isolation)

\implies nested iterations
Abstract rely-guarantee

Suggested algorithm: nested iterations with acceleration

once abstract domains for states and interferences are chosen

- start from $R_l^♯_0 \overset{\text{def}}{=} A_0^♯ \overset{\text{def}}{=} \lambda t.\bot^♯$
- while $A_n^♯$ is not stable
 - compute $\forall t \in T: R_l^♯_{n+1}(t) \overset{\text{def}}{=} \text{lfp } R_t^♯(A_n^♯)$ by iteration with widening ∇
 (≈ separate analysis of each thread)
- compute $A_{n+1}^♯ \overset{\text{def}}{=} A_n^♯ \nabla B^♯(R_l^♯_{n+1})$
- when $A_n^♯ = A_{n+1}^♯$, return $R_l^♯_n$

\Rightarrow thread-modular analysis
parameterized by abstract domains (only source of approximation)
able to easily reuse existing sequential analyses
Retrieving thread-modular abstractions
Flow-insensitive abstraction:
- reduce as much control information as possible
- but keep flow-sensitivity on each thread’s control location

Local state abstraction: remove auxiliary variables
\[\alpha_{nf}^R(X) \overset{\text{def}}{=} \{ \langle \ell, \rho|_{\mathcal{V}} \rangle | \langle \ell, \rho \rangle \in X \} \cup X \]

Interference abstraction: remove all control state
\[\alpha_{nf}^A(Y) \overset{\text{def}}{=} \{ \langle \rho, \rho' \rangle | \exists L, L' \in \mathbb{T} \rightarrow \mathcal{L} : \langle \langle L, \rho \rangle, \langle L', \rho' \rangle \rangle \in Y \} \]
Flow-insensitive abstraction (cont.)

Flow-insensitive fixpoint semantics:

We apply α_{R}^{nf} and α_{A}^{nf} to the nested fixpoint semantics.

$$R_{nf}^{lf} \overset{\text{def}}{=} \text{lfp } \lambda Z. \lambda t. \text{lfp } R_{nf}^{t}(B_{nf}^{Z}(Z)),$$

where

- $B_{nf}^{Z}(Z)(t) \overset{\text{def}}{=} \{ \langle \rho, \rho' \rangle | \exists \ell, \ell' \in L: \langle \ell, \rho \rangle \in Z(t) \land \langle \ell, \rho \rangle \rightarrow t \langle \ell', \rho' \rangle \}$
 (extract interferences from reachable states)

- $R_{t}^{nf}(Y)(X) \overset{\text{def}}{=} R_{t}^{loc}(X) \cup A_{t}^{nf}(Y)(X)$
 (interleave steps)

- $R_{t}^{loc}(X) \overset{\text{def}}{=} \{ \langle \ell_{i}, \lambda V.0 \rangle \} \cup \{ \langle \ell', \rho' \rangle | \exists \langle \ell, \rho \rangle \in X: \langle \ell, \rho \rangle \rightarrow t \langle \ell', \rho' \rangle \}$
 (thread step)

- $A_{t}^{nf}(Y)(X) \overset{\text{def}}{=} \{ \langle \ell, \rho' \rangle | \exists \rho, u \neq t: \langle \ell, \rho \rangle \in X \land \langle \rho, \rho' \rangle \in Y(u) \}$
 (interference step)

Cost/precision trade-off:

- less variables
 $$\implies$$ subsequent numeric abstractions are more efficient
- insufficient to analyze $x \leftarrow x + 1 \parallel x \leftarrow x + 1$
Retrieving the simple interference-based analysis

Cartesian abstraction: on interferences

- forget the relations between variables
- forget the relations between values before and after transitions (input-output relationship)
- only remember which variables are modified, and their value:

\[\alpha_{\lambda}^{nr}(Y) \overset{\text{def}}{=} \lambda V. \{ x \in V \mid \exists \langle \rho, \rho' \rangle \in Y : \rho(V) \neq x \land \rho'(V) = x \} \]

- to apply interferences, we get, in the nested fixpoint form:

\[A_{t}^{nr}(Y)(X) \overset{\text{def}}{=} \{ \langle \ell, \rho[V \mapsto v] \rangle \mid \langle \ell, \rho \rangle \in X, V \in \mathbb{V}, \exists u \neq t : v \in Y(u)(V) \} \]

- no modification on the state (the analysis of each thread can still be relational)

\[\implies \text{we get back our simple interference analysis!} \]

Finally, use a numeric abstract domain \(\alpha : \mathcal{P}(\mathbb{V} \rightarrow \mathbb{R}) \rightarrow \mathcal{D}^\# \)

for interferences, \(\mathbb{V} \rightarrow \mathcal{P}(\mathbb{R}) \) is abstracted as \(\mathbb{V} \rightarrow \mathcal{D}^\# \)
Beyond non-relational interferences

Retrieving thread-modular abstractions

From traces to thread-modular analyses

abstract states
\[(\mathbb{T} \times \mathcal{L}) \rightarrow \mathcal{E}^\#\]

\[\alpha_{\mathcal{E}}\]

local states
\[(\mathbb{T} \times \mathcal{L}) \rightarrow \mathcal{P}(\mathcal{E})\]

\[\alpha_{\mathcal{E}}^{nf}\]

interferences
\[\mathcal{A} : \mathbb{T} \rightarrow \mathcal{P}(\Sigma \times \Sigma)\]

\[\alpha_{\mathcal{A}}^{itf}\]

interleaved execution trace prefixes
\[\mathcal{T}_p \in \mathcal{P}(\Sigma^*)\]

abstract interferences
\[\mathbb{T} \rightarrow \mathcal{E}^\#\]

\[\alpha_{\mathcal{E}}\]

non-relational interferences
\[\mathbb{T} \rightarrow \mathcal{P}(\mathcal{E})\]

\[\alpha_{nr}^{\mathcal{A}}\]

flow-insensitive interferences
\[\mathbb{T} \rightarrow \mathcal{P}(\mathcal{E} \times \mathcal{E})\]

\[\alpha_{nf}^{\mathcal{A}}\]

static analyzer

rely-guarantee
(without aux. variables)

rely-guarantee
(with aux. variables)

concrete executions
Relational thread-modular abstractions
Fully relational interferences with numeric domains

Reachability: $\mathcal{R}(t): \mathcal{L} \rightarrow \mathcal{P}(\forall_a \rightarrow \mathbb{Z})$
approximated as usual with one numeric abstract element per label
auxiliary variables $pc_b \in \forall_a$ are kept (program labels as numbers)

Interferences: $A(t) \in \mathcal{P}(\Sigma \times \Sigma)$
a numeric relation can be expressed in a classic numeric domain
as $\mathcal{P}((\forall_a \rightarrow \mathbb{Z}) \times (\forall_a \rightarrow \mathbb{Z})) \cong \mathcal{P}((\forall_a \cup \forall'_a) \rightarrow \mathbb{Z})$

- $X \in \forall_a$ value of variable X or auxiliary variable in the pre-state
- $X' \in \forall'_a$ value of variable X or auxiliary variable in the post-state

e.g.: $\{ (x, x + 1) \mid x \in [0, 10] \}$ is represented as $x' = x + 1 \land x \in [0, 10]$
\implies use one global abstract element per thread

Benefits and drawbacks:

- **simple**: reuse stock numeric abstractions and thread iterators
- **precise**: the only source of imprecision is the numeric domain
- **costly**: must apply a (possibly large) relation at each program step
Experiments with fully relational interferences

- t_1

 $\text{while } z < 10000$

 $z \leftarrow z + 1$

 $\text{if } y < c \text{ then } y \leftarrow y + 1$

 done

- t_2

 $\text{while } z < 10000$

 $z \leftarrow z + 1$

 $\text{if } x < y \text{ then } x \leftarrow x + 1$

 done

Experiments by R. Monat

Scalability in the number of threads (assuming fixed number of variables)
Partially relational interferences

Abstraction: keep relations maintained by interferences

- remove control state in interferences
- keep mutex state M
- forget input-output relationships
- keep relationships between variables

$$
\alpha^{nf}_A \equiv \{ \tuple{M, \rho} \mid \exists \rho': \tuple{\tuple{M, \rho}, \tuple{M, \rho'}} \in Y \lor \tuple{\tuple{M, \rho'}, \tuple{M, \rho}} \in Y \}
$$

$$
\langle M, \rho \rangle \in \alpha^{inv}_A (Y) \implies \langle M, \rho \rangle \in \alpha^{inv}_A (Y) \text{ after any sequence of interferences from } Y
$$

Lock invariant:

$$
\{ \rho \mid \exists t \in T, M: \langle M, \rho \rangle \in \alpha^{inv}_A (\overline{\bar{t}}(t)), m \notin M \}
$$

- property maintained outside code protected by m
- possibly broken while m is locked
- restored before unlocking m
Relational lock invariants

Improved interferences: mixing simple interferences and lock invariants
Relational lock invariants

Improved interferences: mixing simple interferences and lock invariants

- apply non-relational data-race interferences
- unless threads hold a common lock (mutual exclusion)
Beyond non-relational interferences

Relational thread-modular abstractions

Relational lock invariants

Improved interferences:

- mixing simple interferences and lock invariants

 - apply **non-relational data-race interferences** unless threads hold a common lock (mutual exclusion)

 - apply **non-relational well-synchronized interferences** at lock points then intersect with the lock invariant

 - gather **lock invariants** for lock / unlock pairs
Relational lock invariants

Improved interferences: mixing simple interferences and lock invariants

- apply **non-relational data-race interferences** unless threads hold a common lock (mutual exclusion)

- apply **non-relational well-synchronized** interferences at lock points then intersect with the lock invariant

- gather lock invariants for lock / unlock pairs
Monotonicity abstraction

Abstraction:
map variables to \uparrow monotonic or \top don’t know

\[\alpha_A^{\text{mono}}(Y) \overset{\text{def}}{=} \lambda V . \text{if } \forall \langle \rho, \rho' \rangle \in Y : \rho(V) \leq \rho'(V) \text{ then } \uparrow \text{ else } \top \]

- keep some input-output relationships
- forgets all relations between variables
- flow-insensitive

Inference and use

- gather:
 \[A^{\text{mono}}(t)(V) = \uparrow \iff \text{all assignments to } V \text{ in } t \text{ have the form } V \leftarrow V + e, \text{ with } e \geq 0 \]

- use: combined with non-relational interferences
 if $\forall t : A^{\text{mono}}(t)(V) = \uparrow$
 then any test with non-relational interference $C \llbracket X \leq (V | [a, b]) \rrbracket$
 can be strengthened into $C \llbracket X \leq V \rrbracket$
Using all three interference abstractions:

- non-relational interferences \((0 \leq y \leq 102, 0 \leq x)\)
- lock invariants, with the octagon domain \((x \leq y)\)
- monotonic interferences \((y \text{ monotonic})\)

we can prove automatically that \(x \leq y\) holds
Application: The AstréeA analyzer
The Astrée analyzer

Astrée:
- started as an academic project by: P. Cousot, R. Cousot, J. Feret, A. Miné, X. Rival, B. Blanchet, D. Monniaux, L. Mauborgne
- checks for absence of run-time error in embedded synchronous C code
- applied to Airbus software with zero alarm (A340 in 2003, A380 in 2004)
- industrialized by AbsInt since 2009

Design by refinement:
- incompleteness: any static analyzer fails on infinitely many programs
- completeness: any program can be analyzed by some static analyzer
- in practice:
 - from target programs and properties of interest
 - start with a simple and fast analyzer (interval)
 - while there are false alarms, add new / tweak abstract domains
The AstréeA analyzer

From Astrée to AstréeA:
- follow-up project: Astrée for concurrent embedded C code (2012–2016)
- interferences abstracted using stock non-relation domains
- memory domain instrumented to gather / inject interferences
- added an extra iterator \(\Rightarrow\) minimal code modifications
- additionally: 4 KB ARINC 653 OS model

Target application:
- ARINC 653 embedded avionic application
- 15 threads, 1.6 Mlines
- embedded reactive code + network code + string formatting
- many variables, arrays, loops
- shallow call graph, no dynamic allocation
From simple interferences to relational interferences

<table>
<thead>
<tr>
<th>monotonicity domain</th>
<th>relational lock invariants</th>
<th>analysis time</th>
<th>memory</th>
<th>iterations</th>
<th>alarms</th>
</tr>
</thead>
<tbody>
<tr>
<td>×</td>
<td>×</td>
<td>25h 26mn</td>
<td>22 GB</td>
<td>6</td>
<td>4616</td>
</tr>
<tr>
<td>✓</td>
<td>×</td>
<td>30h 30mn</td>
<td>24 GB</td>
<td>7</td>
<td>1100</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>110h 38mn</td>
<td>90 GB</td>
<td>7</td>
<td>1009</td>
</tr>
</tbody>
</table>
Conclusion
Conclusion

We presented static analysis methods that are:

- inspired from *thread-modular* proof methods
- abstractions of *complete concrete semantics*
 (for safety properties)
- *sound* for all *interleavings*
- *sound* for *weakly consistent memory* semantics
 (when using non-relational, flow-insensitive interference abstraction)
- aware of *scheduling, priorities and synchronization*
- *parameterized* by (possibly relational) *abstract domains*
 (independent domains for state abstraction and interference abstraction)
Bibliography

