Problem 1

1. The concrete evaluation gives:

\[\text{wrap}[-128, 127](\text{wrap}[0, 255](\{-1, 0, 1\}) + \text{wrap}[0, 255](\{-1, 0, 1\})) \]
\[= \text{wrap}[-128, 127](\{0, 1, 255\} + \{0, 1, 255\}) \]
\[= \text{wrap}[-128, 127](\{0, 1, 2, 255, 256, 510\}) \]
\[= \{-2, -1, 0, 1, 2\} \]

2. We define the optimal \(\text{wrap}[\ell, h]_{\ell}^{\ell} \) as:

\[
\text{wrap}[\ell, h]_{\ell}^{\ell}([a, b]) = \alpha_i(\text{wrap}[\ell, h]_{\ell}^{\ell}(\gamma_i([a, b])))
\]
\[= \min \{ \text{wrap}[\ell, h](v) \mid v \in [a, b] \}, \max \{ \text{wrap}[\ell, h](v) \mid v \in [a, b] \} \]

where \(\alpha_i \) and \(\gamma_i \) are the interval abstraction and the interval concretization.

We then have two cases:

- either \(a \) and \(b \) are contained in a single interval of the form \([\ell + h] + k(h - \ell + 1)\), i.e., if \(\exists k : \ell + k(h - \ell + 1) \leq a \leq b \leq h + k(h - \ell + 1) \). In that case, \(\text{wrap}[\ell, h]_{\ell}^{\ell}([a, b]) = [a - k(h - \ell + 1), b - k(h - \ell + 1)] = [\text{wrap}[\ell, h](a), \text{wrap}[\ell, h](b)] \);
- otherwise, \(\text{wrap}[\ell, h]_{\ell}^{\ell}([a, b]) = [\ell, h] \), as the interval \([a, b] \) contains both a point \(x \) such that \(\text{wrap}[\ell, h](x) = \ell \) and a point \(y \) such that \(\text{wrap}[\ell, h](y) = h \).

The operator is exact if and only if:

- either we are in the first case: \(\exists k : \ell + k(h - \ell + 1) \leq a \leq b \leq h + k(h - \ell + 1) \);
- or \(b - a \geq h - \ell \), which implies \(\{ \text{wrap}[\ell, h](v) \mid v \in [a, b] \} = [\ell, h] \) in the concrete anyway.

An example of non-exact application of the operator is \(\text{wrap}[0, 255]([\{-1, 0\}) = [0, 255] \) as, in the concrete, we would get the set \(\{0, 255\} \).

3. We get:

\[\text{wrap}[-128, 127]_{\ell}^{\ell}(\text{wrap}[0, 255]([x^2] + \text{wrap}[0, 255]([y^2])) \]
\[= \text{wrap}[-128, 127]_{\ell}^{\ell}(\text{wrap}[0, 255]([\{-1, 1\}] + \text{wrap}[0, 255]([y[-1, 1]])) \]
\[= \text{wrap}[-128, 127]_{\ell}^{\ell}([0, 255] + \text{wrap}[0, 255]([0, 255])) \]
\[= \text{wrap}[-128, 127]_{\ell}^{\ell}([0, 510]) \]
\[= [-128, 127] \]
The concrete is, by question 1, \{-2, -1, 0, 1, 2\}. Note that it can be exactly represented as an interval \([-2, 2]\), yet, the evaluation of the expression in the interval domain gives a much coarser result: \([-128, 127]\). Hence, the abstract result is neither exact nor optimal.

This imprecision is caused by the accumulated loss of precision due to applying several optimal but non-exact operators in sequence (in general, the composition of optimal but non-exact operators is not an optimal operator). In particular, the first applications of \(\text{wrap}[0, 255]^\sharp_m\) results in a non-recoverable loss of precision.

4. The set of values \(V \overset{\text{def}}{=} \{0, 1, 4\}\) can be abstracted both as \(x^\sharp \overset{\text{def}}{=} [0, 1] + 3\mathbb{Z}\) and as \(y^\sharp \overset{\text{def}}{=} [0, 1] + 4\mathbb{Z}\). Moreover, both abstract values are minimal in \(\mathcal{D}_m\), i.e., no \(z^\sharp\) such that \(\gamma_m(z^\sharp) \subseteq \gamma_m(x^\sharp)\) or \(\gamma_m(z^\sharp) \subseteq \gamma_m(y^\sharp)\) can satisfy \(V \subseteq \gamma_m(z^\sharp)\). If it existed, \(\alpha_m\) would allow constructing a unique minimal element \(\alpha_m(V)\) overapproximating \(V\).

5. To design an abstraction \(+^m\) of + in \(\mathcal{D}_m\), we add separately the interval component and the modular component:

\[
([a_1, b_1] + k_1\mathbb{Z}) +^m ([a_2, b_2] + k_2\mathbb{Z}) \overset{\text{def}}{=} [a_1 + a_2, b_1 + b_2] + \gcd(k_1, k_2)\mathbb{Z}
\]

The operator is sound because, given \(x_1 = c_1 + k_1n_1, x_2 = c_2 + k_2n_2\) where \(c_1 \in [a_1, b_1]\) and \(c_2 \in [a_2, b_2]\), we have \(x_1 + x_2 = (c_1 + c_2) + (k_1n_1 + k_2n_2)\), where \(c_1 + c_2 \in [a_1 + a_2, b_1 + b_2] = [a_1, b_1] + [a_2, b_2]\) and \(k_1n_1 + k_2n_2 \in k_1\mathbb{Z} + k_2\mathbb{Z} = \gcd(k_1, k_2)\mathbb{Z}\). Note that, in this definition, \(\gcd\) is extended to \(\mathbb{N}\) by defining \(\forall x : \gcd(0, x) = \gcd(x, 0) = x\) (similarly to the simple congruence domain seen in the course).

For \(\text{wrap}[\ell, h]^\sharp_m([a, b] + k\mathbb{Z})\) we consider two different cases:

(a) when the result, in the concrete, can be exactly represented as an interval, we return this interval; this can be checked by ensuring that \([a, b] + k\mathbb{Z}\) does not cross any boundary in \(\ell + (h - \ell + 1)\mathbb{Z}\), i.e., that \([a, b]\) does not cross any boundary in \(\ell + (h - \ell + 1)\mathbb{Z} + k\mathbb{Z} = \ell + \gcd(k, h - \ell + 1)\mathbb{Z}\);

(b) otherwise, we keep the interval component intact and adjust the modular component so that the result corresponds to the argument modulo \(h - \ell + 1\); i.e., we add \((h - \ell + 1)\mathbb{Z}\) to \([a, b] + k\mathbb{Z}\) to get \([a, b] + \gcd(h - \ell + 1, k)\mathbb{Z}\).

We get:

\[
\text{wrap}[\ell, h]^\sharp_m([a, b] + k\mathbb{Z}) \overset{\text{def}}{=} \begin{cases} \\
[\text{wrap}[\ell, h](a), \text{wrap}[\ell, h](b)] + 0\mathbb{Z} & \text{if } (\ell + k'\mathbb{Z}) \cap [a + 1, b] = \emptyset \\
[a, b] + k'\mathbb{Z} & \text{otherwise} \\
\end{cases}
\]

where \(k' \overset{\text{def}}{=} \gcd(k, h - \ell + 1)\)

In our example, both applications of \(\text{wrap}[0, 255]^\sharp_m\) exercise the second case of the definition, while the application of \(\text{wrap}[-128, 127]^\sharp_m\) exercises the first case. We get:

\[
\begin{align*}
\text{wrap}[-128, 127]^\sharp_m(\text{wrap}[0, 255]^\sharp_m(x^\sharp) +^m \text{wrap}[0, 255]^\sharp_m(y^\sharp)) \\
= \text{wrap}[-128, 127]^\sharp_m(\text{wrap}[0, 255]^\sharp_m([-1, 1] + 0\mathbb{Z}) +^m \text{wrap}[0, 255]^\sharp_m(y[-1, 1] + 0\mathbb{Z})) \\
= \text{wrap}[-128, 127]^\sharp_m([-1, 1] + 256\mathbb{Z} +^m [-1, 1] + 256\mathbb{Z}) \\
= \text{wrap}[-128, 127]^\sharp_m([-2, 2] + 256\mathbb{Z}) \\
= [-2, 2]
\end{align*}
\]
Hence, the result is optimal.

Problem 2

1. In the concrete, the set $X \subseteq \mathbb{R}$ of possible values for the variable X is given by the smallest solution of the equation:

$$X = \{0\} \cup \{ \alpha x + b \mid x \in X, b \in [0, \beta] \}$$

which can be computed using Kleene iterations as:

$$X = \bigcup_i F^i(\emptyset) \text{ where } F(S) \overset{\text{def}}{=} \{0\} \cup \{ \alpha x + b \mid x \in S, b \in [0, \beta] \}$$

We can prove by recurrence on i that $F^i(\emptyset) = [0, \sum_{k<i} \alpha^k \beta]$. The limit of this interval is the following interval, open at its upper bound: $\bigcup_i F^i = [0, \sum_k \alpha^k \beta]$. We have two cases:

(a) if $0 \leq \alpha < 1$, then the limit is $[0, m]$ where $m \overset{\text{def}}{=} \beta/(1 - \alpha)$;
(b) if $\alpha \geq 1$, then the limit is $[0, +\infty[$.

In the following, we will consider only the first case.

2. An interval $[0, m']$ is an inductive invariant if and only if it is a post-fixpoint of F, i.e.: $F([0, m']) \subseteq [0, m']$. As $F([0, m']) = [0, \alpha m' + \beta]$, we deduce that $[0, m']$ is an inductive invariant if and only if $\alpha m' + \beta \leq m'$, i.e., $m' \geq \beta/(1 - \alpha) = m$.

3. An analysis using the interval domain and the widening with threshold set T will find the smallest interval inductive invariant whose upper bound is in T. By the answer to the previous question, it will thus find an interval of the form $[0, m']$ where $m' \overset{\text{def}}{=} \min \{ m' \in T \mid m' \geq \beta/(1 - \alpha) \}$.

In order to find a bounded interval invariant, it is necessary and sufficient to ensure that T contains a value greater than or equal to $\beta/(1 - \alpha)$ and strictly smaller than $+\infty$.

The most precise invariant representable in the interval domain is $[0, \beta/(1 - \alpha)]$ (as we cannot represent open intervals). In order to find the most precise interval invariant, it is necessary and sufficient to have $\beta/(1 - \alpha) \in T$.

4. Assume that the result of an interval analysis is the interval $[0, a]$ where $a \neq +\infty$.

A first decreasing iteration will give $F([0, a]) = [0, \alpha a + \beta]$. We know, by the previous question that $a \geq \beta/(1 - \alpha)$; this implies $a(1 - \alpha) \geq \beta$ and then $a \geq \alpha + \beta$. We thus get $F([0, a]) \subseteq [0, a]$. When the invariant is not optimal, i.e., $a > \beta/(1 - \alpha)$ the inclusion is strict. By using decreasing iterations, we can compute a sequence $F^i([0, a])$ that converges to the optimal invariant $[0, \beta/(1 - \alpha)]$. The decreasing sequence of intervals is infinite, so, a narrowing must be used to converge in finite time (possibly to an interval between the optimal $[0, \beta/(1 - \alpha)]$ and the original invariant found $[0, a]$).

5. The first increasing iterates in the interval domain are:

$$F^0(\emptyset) = \emptyset$$
$$F^1(\emptyset) = [0, 0]$$
$$F^2(\emptyset) = [0, \beta]$$
$$F^3(\emptyset) = [0, \alpha \beta + \beta]$$
Denoting x_i the upper bound of $F^i(\emptyset)$, we get that $\beta = x_2$ and $\alpha = (x_3 - \beta)/\beta = x_3/x_2 - 1$. The exact concrete bound is then $\beta/(1 - \alpha) = (x_2)^2/(2x_2 - x_3)$.

We can modify the classic interval widening to check, after iteration 3, the stability of $(x_2)^2/(2x_2 - x_3)$. The new widening takes, as parameter, in addition to the two last iterates, the iteration count i. More precisely, the increasing sequence of intervals computed will now be $X_{i+1} = X_i \triangleright_i F(X_i)$ where, at iteration i, the widening is defined as:

$$[a, b] \triangleright_i [c, d] \overset{\text{def}}{=} \begin{cases} [c, d] & \text{if } c \leq a = b \leq d \\ [0, b^2/(2b - d)] & \text{if } a = c = 0 \land b^2/(2b - d) \geq b, d \land i = 2 \\ [a, b] \triangleright [c, d] & \text{otherwise} \end{cases}$$

where \triangleright is the classic interval widening:

$$[a, b] \triangleright [c, d] \overset{\text{def}}{=} \begin{cases} a & \text{if } a \leq c \\ -\infty & \text{otherwise} \end{cases}, \begin{cases} b & \text{if } b \geq d \\ +\infty & \text{otherwise} \end{cases}$$

The first case $c \leq a = b \leq d$ ensures that, at iteration 1, when the upper bound goes from 0 to β, it is not immediately widened to $+\infty$. The second case ensures that, at iteration 2, the limit $\beta/(1 - \alpha) = b^2/(2b - d)$ is chosen as upper bound, if it is sound (test $a = c = 0 \land b^2/(2b - d) \geq b, d$). The soundness of \triangleright completes the soundness proof of \triangleright_i.

To prove the termination, it is sufficient to remark that a strictly increasing sequence will keep applying \triangleright after a certain iterate, and so, the sequence terminates by the termination property of \triangleright.
