Static analysis by abstract interpretation
of concurrent programs

Antoine Miné

Habilitation
Ecole normale supérieure
Paris, France

28 May 2013

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p.1/50

Introduction

Ariane 5 example (1996)

Cause: software error
@ arithmetic overflow in unprotected data conversion

from 64-bit float to 16-bit integer

@ uncaught software exception = self-destruct sequence

Raised awareness about the importance of program verification:
even simple errors can have dramatic consequences
and are difficult to find a priori...

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p.-2/50

Introduction

Ariane 5 example (1996)

..despite progress in:

o safer programming languages (Ada)

@ rigorous development processes (embedded critical software)

@ extensive testing (but not exhaustive)

Formal methods can help
(provide rigorous, mathematical insurance)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p.-2/50

Introduction

Reasoning about programs

[2
n < input [—100, 100]
while / < ndo

if random() then
I 1+2

V.

Program proof: deductive method on a logic of programs
@ pioneered by [Floyd 1967], [Hoare 1969], [Turing 1949]

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p.-3/50

Introduction

Reasoning about programs

{i=0, n=0}
[< 2 {i=2,n=0}
n < input [—100, 100] {i=2, —100<n<100]}
while {i>2, i<max(2,n+2), —-100<n<100]} i < n do
{i>2,i<n,2<n<100}
if random() then
[i+2
{n<i<max(2,n+2), —100<n<100}

v

Program proof: deductive method on a logic of programs
@ pioneered by [Floyd 1967], [Hoare 1969], [Turing 1949]

@ rely on the programmer to insert properties

@ prove that they are (inductive) invariant
(possibly with computer assistance)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p-3/50

Introduction

Reasoning about programs

{i=0, n=0}
[< 2 {i=2,n=0}
n < input [—100, 100] {i=2, —100<n<100]}
while {i>2, i<max(2,n+2), —~100<n<100]} i < n do
{i>2,i<n,2<n<100}
if random() then
[i+2
{n<i<max(2,n+2), —100<n<100}

how can we infer invariants?
(especially loop invariants)

generally undecidable
= use approximations

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p-3/50

Introduction

Semantic-based static analysis

Static analysis:

analyses directly the source code (not a reduced model)
automatic and always terminating
sound (full control and data coverage

incomplete (properties missed, false alarms

)
)
traditionally used in low precision settings (e.g., optimization)
now precise enough for validation (few false alarms)

@ parametrized and adaptable to different classes of programs

Abstract interpretation: unifying theory of program semantics

@ introduced in [Cousot Cousot 1976]

@ theoretical tools to design and compare static analyzes

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p.4 /50

Correctne

The program is correct (blue Nred = ()

_ Static analysis by abstract interpretation of concurrent programs _

Correctne

The program is correct (blue Nred = ()
A polyhedral abstraction can prove the correctness (cyan Nred = ()

_ Static analysis by abstract interpretation of concurrent programs _

Correctness proof an

The program is correct (blue Nred = ()
A polyhedral abstraction can prove the correctness (cyan Nred = ()
An interval abstraction cannot (green Nred # (), false alarm)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs _ p.5/50

Introduction

Concurrent programming

Idea:

Decompose a program into a set of (loosely) interacting processes

Why concurrent programs?

@ can exploit parallelism in current computers
(multi-processors, multi-cores, hyper-threading)

“Free lunch is over”
change in Moore'’s law (%2 transistors every 2 years)

@ can exploit several computers
(distributed computing)

@ provides ease of programming
(GUI, network code, reactive programs)

— found in embedded critical applications (event-driven)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p.6 /50

Introduction

Concurrent programs verification

Concurrent programs are hard to design and hard to verify:

@ programs are highly non-deterministic
(many possible scheduling, execution interleavings)

— testing is costly and ineffective, with low coverage
@ errors appear in corner cases
@ new kinds of errors (data-races, deadlocks)

@ weakly consistent memory
(no more total order of memory operations,

causing unexpected behaviors)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné

p.7 /50

Introduction

Outline

e Abstract interpretation primer

e static analysis of sequential programs
e numeric abstract domains

@ Analysis of concurrent programs

e rely/guarantee reasoning, in abstract interpretation form
e thread-modular interference-based analysis
e advanced topics on interferences

e soundness in weak memory consistency models
e mutual exclusion and priorities
o relational interferences

e Implementation and experimentation

e Astrée: industrial static analyzer for sequential programs
o AstréeA: prototype analyzer for concurrent programs

@ Conclusion

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné

p.8/50

Abstract interpretation

Introduction to abstract interpretation

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p-9 /50

Abstract interpretation

Principles of abstract interpretation

Key design steps:

© Define a concrete semantics of the language
e precise mathematical definition of programs

e assumed correct (often w.r.t. informal specification)
e uncomputable or combinatorial
e constructive form (iterations up to fixpoints)

@ Extract a subset of properties of interest

e goal properties & intermittent properties
e generally infinite or very large classes (intervals, polyhedra)
e with an algebra: sound abstract operators

© Design abstract domains

e data-structure encoding
e algorithms implementing the abstract operators
e extrapolation operators (approximate fixpoints)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p-10 /50

Abstract interpretation Concrete semantics

Transition systems

Formal model of programs (X, 7,/)

@ Y: set of program states
e 7 C ¥ x X: transition relation, o — ¢’ (execution step)
@ [/ C X: set of initial states

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p-11 /50

Abstract interpretation

Transition systems

Concrete semantics

Formal model of programs

@ X: set of program states

e 7 C ¥ x X: transition relation, o — ¢’

@ | C ¥: set of initial states

Lie2
2 n < input [—100, 100]
3while *i < ndo
if random() then
[+ i+2

¥ ={1,2,3,4,5} x 22
I ={(1,0,0)}

HdR — 28 May 2013

(X, 7, 1)

(execution step)

®e——— =0 — 0
e —= 0

e —= 0

Static analysis by abstract interpretation of concurrent programs

: i
f

Antoine Miné p-11 /50

Abstract interpretation Concrete semantics

Trace semantics

Partial execution traces T

@ set of execution traces, in P(X*)

o T & Ifp F where
F(T) € 1U{{00,...,0n41) | (00,...,00) € TAG, = Opt1 }

Expressiveness:

computing T is equivalent to exhaustive test
= can answer question about program safety

Cost:

T is often very large or unbounded
— well-defined mathematically but not computable

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné

p.12/50

Abstract interpretation Concrete semantics

State semantics

State semantics S:
e set of reachable states, in P(X)

S = IfpG where G(S) = IU{c|30’ €S0’ =0}

Abstraction of the trace semantics:

® S = agpate(T) where
def

astate(T) = {oi|o0,...,00) € T:i €[0,n] }

Expressiveness:

o forget the ordering of states in traces:
astate({@ —0—0—0}) = {0 @ @}

o still sufficient to prove safety properties
(the program never reaches an error state)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p-13 /50

Abstract interpretation Concrete semantics

Instantiation on a simple language

stat = X+ expr (assignment)
| if expr >0 then stat (conditional)
| while expr < 0 do stat (loop)
| stat; stat (sequence)

expr = X|[ci,]| expropexpr| ---

XeV finite set of variables

a,o€R, oe{+,— x,/}, xe{=>2><<}

Idealized language:
o fixed, finite set of numeric variables (with value in R)
@ no function

@ sequential (no concurrency)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p- 14 /50

Abstract interpretation Concrete semantics

Semantic of expressions and commands

States: ¥ = Lx¢&
@ control state £ € £ (syntactic location)

@ memory state o € £ “yY 4R (maps variables to values)

Expression semantics: E[expr] : &€ — P(R)

Ella,]lp £ {veRla<v<a}

E[X]p = {p(X)}
E[-alp = {-v|veE[a]}
Eleac e]p = {viow|viecE[e]p, o#/Vv#0}

Command semantics: C[stat] : P(£) — P(€)

C[V+e]R £ {p[V—V]lpeR vee[p]}
C[ex0]R = {plpeR, Ivee[p]:vx0}

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné

p- 15 /50

Abstract interpretation Concrete semantics

State semantic as equation systems

, X1 ={(0,0)}
2 X =C[i 2]
|7 input [-100,100] |y, _ [« [~100,100]] A,
while “ i < ndo Xy = X5 U X
®if random() then Xs = C[i < n] X
7 i+ 2" Xo= X5 UC[i i+2] X
X7:C[[i>n]]X4

where:
o Ve L: X, CE (states are partitioned by control location)
e (recursive) equation system stems from the program syntax

@ program semantics is the least solution of the system
(least fixpoint = most precise invariant)

@ it can be solved by increasing iteration:
VeeL:XD =0, Vi>0:X"=F(X],.... X))
(may require transfinite iterations! = not computable)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p-16 /50

concrete sets, in P(€): {(0,3),(5.5,0),(12,7),...} (not computable)

Abstract interpretation Abstract numeric semantics

Numeric domains

We abstract P(£) ~ P(RV) further

concrete sets, in P(€): {(0,3),(5.5,0),(12,7),...} (not computable)
polyhedra: 6X +11Y >33A--- (exponential cost)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p.17 / 50

Abstract interpretation Abstract numeric semantics

Numeric domains

We abstract P(£) ~ P(RV) further

concrete sets, in P(€): {(0,3),(5.5,0),(12,7),...} (not computable)
polyhedra: 6X +11Y > 33A--- (exponential cost)
intervals: X e[0,12)AY €]0,8] (linear cost)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p.17 / 50

Abstract interpretation Abstract numeric semantics

Numeric domains

We abstract P(£) ~ P(RV) further

concrete sets, in P(€): {(0,3),(5.5,0),(12,7),...} (not computable)

polyhedra: 6X +11Y >33A--- (exponential cost)
intervals: X €[0,12] A Y €0, 8] (linear cost)
octagons: X+Y>3AY>0A--- (cubic cost)

Trade-off between cost and expressiveness / precision

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p.17 / 50

Abstract interpretation Abstract numeric semantics

Static analysis

. ¥ ooy
P42 XjHt = i 2] A
’n« input [—1007 100] xlivl Cﬁ[[n — [_1007 100]]]Xﬁl
3Whi|e 4I§ ndo 3:i+1 def fi #i # #i 2
®if random() then X‘f. 1 o * .V (A3 Uu.X6)
e it26 X = Cli<]y
’ XL S X i 2] A

def

XL >] &

@ abstract variables Xﬁ € &* replace concrete ones X; € P(£)
@ abstract operators are used: CF[-] : EF — &%, U £F x &F — &F
@ the system is solved by iterations
X0 e g)
@ widening V is used to force convergence in finite time
(e.g.: put unstable bounds to o)
— effective, terminating, sound static analyzer

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p- 18 /50

Abstract interpretation Abstract numeric semantics

Contribution: floating-point polyhedra

Original polyhedra use arbitrary precision rationals and
double descriptions (constraints / generator) [Cousot Halbwachs 78]

Goal: use floats for improved scalability [Ligian Chen’s PhD]
@ constraints with float coefficients [Chen et al. 2008]

@ constraints with float interval coefficients [Chen et al. 2009]

Algorithms: sound float versions of

@ Fourier-Motzkin elimination (approximate projection)
@ guaranteed linear programming (sound enclosure)
unsound floats sound float sound float intervals

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p-19 /50

Abstract interpretation Abstract numeric semantics

Contribution: domains for realistic data-types

Adapt domains from R to data-types found in actual programs

Machine integers: [Miné 2012]

@ wrap-around semantics after overflow (127 + 1 = —128)

@ specialized domain: modular intervals (X € [a, b] + ¢Z)

Floating-point numbers: [Miné 2004]

@ handle rounding-errors (non-linear)

@ abstract rounding as non-deterministic choice in intervals
(round(X) ~~» X 4 [—€,€]X + [—¢,¢])

Memory representation awareness: [Miné 2006]

@ C union types (dynamic decomposition of the memory)
@ ill-typed accesses through C pointer casts and arithmetic

@ bit-level manipulation in machine integers and floats

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p-20 /50

Abstract interpretation Abstract numeric semantics

Abstraction summary for sequential programs

abstracf states j (abstract invariants) implementable
E xter—e data-structures + algorithms
Tava/
states (invariants) :
'Y mathematical
SePLXE) non-computable

T Olstate

execution traces
Oo—0—0—0o

TePULxE™)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p-21 /50

Static analysis of concurrent software

Static analysis of concurrent software

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p-22 /50

Static analysis of concurrent software

Concurrent language

Language extension:

o finite, fixed set of threads stat;, t € T

@ all variables V are shared

Execution model: non-deterministic interleaving of thread actions

(sequential consistency with atomic assignments and tests)

Labelled transition system:

o states Y = (7 — L) x &
(thread-local control state in 7 — L, shared memory in &)

o labelled transitions o -5 o/, t € T

(L[t —1], p) 5 (L[t =10, p) <= ({, p) —stat, (U, p)
(derived from the transitions of individual threads)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p-23 /50

Static analysis of concurrent software

Trace and state semantics

Labelled trace semantics:

@ set of interleaved execution traces, with thread labels
def

o T = IfpF where

F(T) & IU{003~~gai+1|003~~t§0;6 T/\O','E)O'H_l}

State semantics: (as before)

def def

e S = Ifp G where G(S) =
® S = (state(T) where
asare(T) = {01300 % - 5 0, € T2i € [0,n]}

IU{c|30 t:0’ 50}

Idea:
forget about threads and labels
analyze as a sequential program interleaving thread statements

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p. 24 /50

Static analysis of concurrent software

Equational state semantics example

Example: inferring 0 < x < y <10

t1 to
while ! true do while * true do
2if x <ythen | °ify <10then
Sx—x+1 by y+1

e attach variables A, € P(€) to control locations L € T — L

o synthesize equations X} = F/ (X, 1), ---> Xz, 1))
from thread equations Xy, = Fy (X1, ..., Xz)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p-25 /50

Static analysis of concurrent software

Equational state semantics example

Example: inferring 0 < x < y <10

t

to

while ! true do
2if x < y then
Sxe—x+1

while * true do
5if y < 10 then
Cy«y+1

(Simplified) concrete equation system:
Xia=lUC[x+x+1]X5,UC[x>y] o4
@] C[[y —~y+ 1]] X1’6 @] C[[y > 10]]X1’5
X2)4 = X1’4 U C[[y —~y+ 1]]/‘{2’5 U C[[y > 10]] X2’5
X34 = C[[X < y]] o4 U C[[y —y+ 1]] X6 U C[[y > 10]]X3,5
X1,5 = C[[X — X+ 1]] X375 U C[[X > y]] X275 U X174

Koy =Xi5U Aoy

X3’5 = C[[X < y]] X2’5 U X3’4

X1’5 = C[[X — X+ 1]]')(3,6 U C[[X > y]]X2,6 U C[[y < 10]].)(175

Xz)g = Xl’ﬁ U C[[y < 10]] X2,5

X6 =Cl[x<y]XoeUC[y <10] X35

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné

p-25 /50

Static analysis of concurrent software Rely/guarantee as abstract interpretation

Rely/guarantee proof method

Modular proof method introduced by [Jones 1981]

while ! true do while * true do
2if x < y then °if y < 10 then
Sx+x+1 Sy+y+1

at4,5:0<x<y <10

t1.2:0<x<y<1
atl,2:0=sxsy<10 at6:0<x<y<10

at3:0<x<y<10

Annotate programs with:

@ local invariants (attached to £, not T — £)

For each thread, prove that local invariants hold

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p- 26 / 50

Static analysis of concurrent software Rely/guarantee as abstract interpretation

Rely/guarantee proof method

Modular proof method introduced by [Jones 1981]

while ! true do | x unchanged y unchanged | while * true do
2 if x < y then | y incremented °if y < 10 then
Sx+x+1 |y<10 Sy+y+1

at4,5:0<x<y <10
at6:0<x<y<10

at 1,2: 0<x<y <10
at3:0<x<y<10

Annotate programs with:

@ local invariants (attached to £, not T — £)

@ guarantees on transitions by other threads
For each thread, prove that local invariants and guarantees hold
relying on guarantees from other threads

= check a thread against an abstraction of the other threads

(does not require looking at other threads)
HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p- 26 / 50

Static analysis of concurrent software Rely/guarantee as abstract interpretation

Contribution: rely/guarantee as abstract interpretation

Formalization as abstract interpretation [Miné 2012]

@ constructive design (fixpoints)
@ infer invariants and guarantees (instead of only checking)
@ exploit existing abstractions (numeric domains)

Complementary abstractions: of the trace semantics T

o thread-local states for t € T
St d:ﬁ Wt(astate(T)) Where
def

(L, p) = (L(t), p|[Vt' # t: pcy — L(t")]) € P(L x &)

(keep other threads' location in auxiliary variables)

@ interferences generated by t € T
def t
Ar = {<J,’, U,‘+1>’E|'~-O',' — 041 GT}
transitions from 7 actually observed in execution traces

(relational and flow-sensitive information)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p- 27 / 50

Static analysis of concurrent software Rely/guarantee as abstract interpretation

Contribution: rely/guarantee as abstract interpretation

Nested fixpoint form: for the state semantics S

S = Ifp G where
Ge(S) L Ifp Hy(A . { (0, 0') |0 € Sp, 0 5 0 })
H(A)S) € m(lu{c'|3me(c) € Sio 5 o’ VI # t:(0,0") € Av })

@ H.(A): execute one step, in thread t or interferences A

@ Gi(S) ~ Ifp H;: analyze thread t completely
with fixed interferences (spawned from S)

Ifp G: re-analyze all threads until interferences stabilize

@ can be computed by (transfinite) iterations

Thread-modular, constructive, complete computation of safety properties)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p- 28 /50

Static analysis of concurrent software Rely/guarantee as abstract interpretation

Further abstractions

State abstractions:

o forget auxiliary variables
def

aaux(X) = {6 p) [(6, p) € XF € P(LXE)
(allows uniform analyses of threads with unbounded instances)

Interference abstractions:

@ flow-insensitive abstraction:

non(X) = {(p, o/)AL L (L, p), (L', p/)) € X}
(infer global interferences)

@ input-insensitive abstraction:
aou(X) % {0'13p:(p, /) € X} € P(E)

@ non-relational abstraction:
def

aa(X) AV eV {p(V)[peX} eV PR)

Further abstractions in numeric abstract domains

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p-29 /50

Static analysis of concurrent software Rely/guarantee as abstract interpretation

Application: simple interference analysis

Proposed initially and implemented in AstréeA in [Miné 2010]
reformulated as abstract rely-guarantee in [Miné 2012]

Interference abstraction inZ & 7 xV xR

(t, X, v) means: t can store the value v into the variable X

Modified semantic of expressions and commands:

def

EXT(p 1) & {p(X)}U{v[3t £ t:(, X, v) €1}

def

G X +e](R, I) =
({pX=V]lpeR, veV,}, IU{(t, X,v)|peR, veV,})
where V, & EJe] (p, I)

@ analyze each thread as a sequential program

with interferences | C T
@ a thread analysis infers new interferences
@ iterate (with widening V) until stabilization

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p-30 /50

Static analysis of concurrent software Rely/guarantee as abstract interpretation

Simple interference analysis: example

t1 | (553
while * true do while # true do
2if x < y then °if y < 10 then
Sxex+1 Cy+y+1

Interference semantics:

iteration 1

=0

at2: x=0,y=0

at5: x=0, y €[0,10]

new | = {(t2, ¥, 1),...,(t2, y, 10) }

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné

p.31/50

Static analysis of concurrent software Rely/guarantee as abstract interpretation

Simple interference analysis: example

t1 | (553
while * true do while # true do
2if x < y then °if y < 10 then
Sxex+1 Cy+y+1

Interference semantics:

iteration 2

I:{<t25ya 1>7"'a<t2a.ya 10>}

at2: x€10,10, y=0

at5: x=0, y€[0,10]

new | = {(t1, x, 1),...,{t1, x, 10),(to, y, 1),...,{t2, y, 10) }

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p-31/50

Static analysis of concurrent software Rely/guarantee as abstract interpretation

Simple interference analysis: example

t1 | (553
while * true do while # true do
2if x < y then °if y < 10 then
Sxex+1 Cy+y+1

Interference semantics:

iteration 3

I:{<t1, X,1>,...,<t1,X, 10>,<t2,y,1>,...,<t2,y, 10>}
at2: x€10,10, y=0

at5: x=0, y €[0,10]

new | = {(t1, x, 1),...,{t1, x, 10),(to, y, 1),...,{t2, y, 10) }

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p-31/50

Static analysis of concurrent software Rely/guarantee as abstract interpretation

Simple interference analysis: example

t1 | (553
while * true do while # true do
2if x < y then °if y < 10 then
Sxex+1 Cy+y+1

Interference semantics:

iteration 3

I:{<l’1, X,1>,...,<t1,X, 10>,<f2,y,1>,...,<f2,y, 10>}
at2: x€10,10, y=0

at5: x=0, y €[0,10]

new | = {(t1, x, 1),...,{t1, x, 10),(to, y, 1),...,{t2, y, 10) }

Note: we cannot infer x < y at 2, only x,y € [0,10]

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p-31/50

Static analysis of concurrent software Rely/guarantee as abstract interpretation

Abstraction summary for sequential programs

abstracf states j (abstract invariants) implementable
E xter—e data-structures + algorithms
Tava/
states (invariants) :
'Y mathematical
SePLXE) non-computable

T Olstate

execution traces
Oo—0—0—0o

TePULxE™)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p-32 /50

Static analysis of concurrent software Rely/guarantee as abstract interpretation

Abstraction summary for concurrent programs

abstract states abstract interferences static analyzer

E T L&t E T > &t
ﬁaval

input-insensitive interferences

Qyal —@ — @ — @

T = P(E)

ﬁaout
local states flow-insensitive interferences rely/guarantee
[N] e—@ e— 0 o - ° (without aux. variables)

T — P(LXE) T — P(E X E)

'Taaux ?aﬂow

local states interferences rely/guarantee
L X N J o e o oo o o (with aux. variables)
S € [lieT P(L X &) AEP(((T = L)Yx E)x (T — L) x &)
’Tﬂt O Qstate ﬁaintr’
interleaved execution traces concrete executions

® @ @ @ TcP(TL)xE)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p-33 /50

Static analysis of concurrent software Advanced interferences

Weak memory consistency

program written

Fl(—].; Fg(—l;
if F, = 0 then | if F, = 0 then
S S,

(simplified Dekker mutual exclusion algorithm)

S1 and S cannot execute simultaneously

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs

Antoine Miné

p- 34 /50

Static analysis of concurrent software Advanced interferences

Weak memory consistency

program written program executed
Fl(—].; F2(—1; — ifF2:Othen ifF1:Othen
if F, =0 then | if F; = 0 then F o+~ 1; F 1
51 52 51 S2

(simplified Dekker mutual exclusion algorithm)
51 and S, can execute simultaneously
(non sequentially consistent behavior)

Causes:
@ weak hardware memory model (write FIFOs, caches)
@ thread-unaware compiler optimizations (reordering)

@ now part of standards (Java, C, C++)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p-34 /50

Static analysis of concurrent software Advanced interferences

Weak memory consistency

program written program executed
Fl(—].; F2<—1; — ifF2:Othen ifF1:Othen
ifF2:0then ifF1:0then F1%1; F2<—1;

51 52 51 S2

(simplified Dekker mutual exclusion algorithm)

Soundness theorem: [Miné 2011] [Alglave et al. 2011]

For flow-insensitive interference abstractions
the analysis is invariant by a wide range of thread transformations

@ inserting FIFO buffers

@ reordering of “independent” statements
@ common sub-expression elimination

@ change of granularity

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p-34 /50

Static analysis of concurrent software Advanced interferences

Handling mutual exclusion

lock(m) unlock(m)
W W w
p1 R

R R W R
lock(m) unlock(m)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p-35 /50

Static analysis of concurrent software Advanced interferences

Handling mutual exclusion

lock(m) unlock(m)

W W w
p1 { ‘ B
P2 oo —O—H
R R W R

lock(m) unlock(m)

No interference unless:
@ write / read not protected by a common mutex (data-races), or

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p-35 /50

Static analysis of concurrent software Advanced interferences

Handling mutual exclusion

lock(m) unlock(m)
W W w
p1 L R
P2
R R W R
lock(m) unlock(m)

No interference unless:
@ write / read not protected by a common mutex (data-races), or
@ last write before unlocking affects first read after lock

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p-35 /50

Static analysis of concurrent software Advanced interferences

Handling mutual exclusion

lock(m) unlock(m)

- BNt SEuE

lock(m) unlock(m)

No interference unless:
@ write / read not protected by a common mutex (data-races), or
@ last write before unlocking affects first read after lock

Solution:
@ partition interferences wrt. mutexes
T xV xR ~ T xP(mutexes) x V x R
@ extract / apply interferences at critical section boundaries

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p-35 /50

Static analysis of concurrent software

Priority-based scheduling

Advanced interferences

priority-based critical sections

high thread low thread
L < islocked(m); lock(m);
if L =0 then Z<+Y;
Y+~ Y+1; Y < 0;
yield unlock(m)

Real-time scheduling:

@ the runnable thread of highest priority always runs

@ threads can yield for a non-deterministic time
and preempt lower priority threads when waking up

= predictable scheduling, but not fixed

Static analysis:

Partition wrt. enriched scheduling state

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p- 36 / 50

Static analysis of concurrent software

Relational lock invariants
Work in progress

Advanced interferences

example

while true do

lock(m);

if X > 0 then
X+~ X-1;
Y«+~Y-1;

unlock(m)

while true do
lock(m);
if X <10 then
X<+~ X+1;
Y+~ Y+1;
unlock(m)

Non-relational interferences find X € [0, 10], but no bound on Y

Actually, Y € [0, 10]

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs

p. 37 /50

Static analysis of concurrent software Advanced interferences

Relational lock invariants
Work in progress

example

while true do while true do
lock(m); lock(m);
if X > 0 then if X < 10 then
X X—1; X — X +1;
Y—~Y-1; Y+ Y+1;
unlock(m) unlock(m)

Non-relational interferences find X € [0, 10], but no bound on Y
Actually, Y € [0, 10]

Solution: infer the relational invariant X = Y at lock boundaries
def

are(X) = {p|3":(p, o) €XV (P, p)EX}EP(E)

(keep only constraints that are respected by the critical section)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné

p. 37 /50

Static analysis of concurrent software Advanced interferences

Lack of inter-process flow-sensitivity

Future work
a more difficult example

while true do while true do
lock(m); lock(m);
X< X+1, X<+ X+1;
unlock(m); unlock(m);
lock(m); lock(m);
X~ X—-1; X+ X—-1
unlock(m) unlock(m)

Our analysis finds no bound on X
Actually X € [—2,2] at all program points

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné

p.38/50

Static analysis of concurrent software Advanced interferences

Lack of inter-process flow-sensitivity

Future work

a more difficult example

while true do while true do
lock(m); lock(m);
X< X+1, X<+ X+1;
unlock(m); unlock(m);
lock(m); lock(m);
X~ X—-1; X+ X—-1
unlock(m) unlock(m)

Our analysis finds no bound on X
Actually X € [—2,2] at all program points

To prove this, we need to infer an

invariant on the history of interleaved executions:
at most two incrementations (resp. decrementation) can occur
without a decrementation (resp. incrementation)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p- 38 /50

Applications

Applications

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p-39 /50

Applications Astree

Specialized static analyzers

Design by refinement:

@ focus on a specific family of programs and properties

@ start with a fast and coarse analyzer (intervals)
@ while the precision is insufficient (too many false alarms)
e add new abstract domains (generic or application-specific)

o refine existing domains (better transfer functions)
e improve communication between domains (reductions)
= analyzer specialized for a (infinite) class of programs
o efficient and precise
@ parametric (by end-users, to analyze new programs in the family)

@ extensible (by developers, to analyze related families)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p- 40 / 50

Applications Astree

The Astrée static analyzer

Analyseur statique de programmes temps-réels embarqués

(static analyzer for real-time embedded software)

@ developed at ENS (since 2001)
B. Blanchet, P. Cousot, R. Cousot, J. Feret,
L. Mauborgne, D. Monniaux, A. Miné, X. Rival

@ industrialized and made commercially available by AbsInt
(since 2009)

A @
G

7
Astrée Absint
www.astree.ens.fr www.absint.com
HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné

p. 41 /50

Applications Astree

Astrée specialization

Specialized:
o for the analysis of run-time errors

(arithmetic overflows, array overflows, divisions by 0, etc.)

@ on embedded critical C software
(no dynamic memory allocation, no recursivity)

@ in particular on control / command software
(reactive programs, intensive floating-point computations)

@ intended for validation
(does not miss any error and tries to minimise false alarms)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné

p- 42 /50

Applications Astree

Astrée specialization

Specialized:
o for the analysis of run-time errors

(arithmetic overflows, array overflows, divisions by 0, etc.)

@ on embedded critical C software
(no dynamic memory allocation, no recursivity)

@ in particular on control / command software
(reactive programs, intensive floating-point computations)

@ intended for validation
(does not miss any error and tries to minimise false alarms)

Approximately 40 abstract domains are used at the same time:
e numeric domains (intervals, octagons, ellipsoids, etc.)
@ boolean domains

@ domains expressing properties on the history of computations

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p- 42 /50

Applications Astree

Astrée applications

Airbus A340-300 (2003) Airbus A380 (2004)

(case study for) ESA ATV (2008)

@ size: from 70 000 to 860 000 lines of C
@ analysis time: from 45mn to ~40h
@ alarm(s): 0 (proof of absence of run-time error)

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs

Antoine Miné

p- 43 /50

Applications AstreeA

AstréeA project

Goal: Astrée for asynchronous programs J

Target programs: large embedded avionic C software

Scope: ARINC 653 real-time operating system

@ several concurrent threads, one a single processor

@ shared memory (implicit communications)
synchronisation primitives (mutexes)
real-time scheduling (priority-based)
fixed set of threads and mutexes, fixed priorities

no dynamic memory allocation, no recursivity

Computeall run-time errors in a sound way:
@ classic C run-time errors (overflows, invalid pointers, etc.)
o data-races (report & factor in the analysis)
but not deadlocks, livelocks, nor priority inversions

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p.- 44 / 50

Applications AstreeA

Abstract interpreter

Astrée

syntax iterator
trace partitioning domain
memory domain
pointer domain
(reduced product of) numerical abstract domains
intervals congruences octagons filters exponentials
2 MR 2 v v
HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p- 45 / 50

Applications AstreeA

Abstract interpreter

AstréeA
thread iterator
syntaxiiterator
!
trace partitioning domain
scheduler parti{ioning domain
memoryidomain
! 0
interference domain :
N
pginter domain
(reduced product of) numerical abstract domains
I
intervals congr%ences octaigons filtiers exponientials
HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p.45 /50

Applications AstreeA

Target system

@ embedded avionic code
@ 1.6 Mloc of C, 15 threads
+ 2.6 Kloc (hand-written) OS model (ARINC 653)
@ many variables, large arrays, many loops
@ reactive code + network code + lists, strings. pointers
@ initialization phase, followed by a multithreaded phase

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p- 46 / 50

Applications

Analysis results

AstreeA

Analysis on our intel 64-bit 2.66 GHz server, 64 GB RAM

lines | # threads | # iters. time | # alarms
100 K 5 4| 46 mn 64
1.6 M 15 6 43 h 1208

efficiency on par with analyses of synchronous code

o few thread reanalyses

o few partitions

but still many alarms

HdR — 28 May 2013

(time efficiency)

(memory efficiency)

Static analysis by abstract interpretation of concurrent programs Antoine Miné

p. 47 /50

Conclusion

Conclusion

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p- 48 /50

Conclusion

Summary

A method to analyze concurrent programs:

sound for all interleavings

sound for weakly consistent memory semantics
taking synchronization into account
thread-modular

parametrized by abstract domains

exploits directly existing non-parallel analyzers
efficient (on par with non-parallel analyses)

abstraction of a semantics complete for safety (rely/guarantee)
(= wide range of trade-offs between cost and precision)

Encouraging experimental results
on embedded real-time concurrent programs

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p- 49 /50

Conclusion

Future work

Ongoing work:

@ new classes of interference abstractions
(relational and history-sensitive interferences)

dynamic threads
(thread creation, dynamic priorities)

o refined weakly consistent memory models (TSO)

improve AstréeA (zero false alarm goal)

extend to other synchronization mechanisms and OS kinds
(towards industrialization)

Long-term challenges:

o functional, time-related, and security properties

@ liveness proofs under fairness conditions

HdR — 28 May 2013 Static analysis by abstract interpretation of concurrent programs Antoine Miné p- 50 / 50

	Introduction
	Abstract interpretation
	Concrete semantics
	Abstract numeric semantics

	Static analysis of concurrent software
	Rely/guarantee as abstract interpretation
	Advanced interferences

	Applications
	Astrée
	AstréeA

	Conclusion

