
MÉMOIRE D’HABILITATION À DIRIGER DES RECHERCHES

présentée à

l’ÉCOLE NORMALE SUPÉRIEURE

Static analysis

by abstract interpretation
of concurrent programs

Analyse statique par interprétation abstraite
de programmes concurrents

Antoine MINÉ

28 mai 2013

Rapporteurs:
Roberto Giacobazzi Università di Verona, Italie

Nicolas Halbwachs Vérimag, France

Manuel Hermenegildo IMDEA Software Institute & Technical University of Madrid, Espagne

Examinateurs:
Ahmed Bouajjani Université Paris Diderot (Paris 7), France

Patrick Cousot École normale supérieure, France & New York University, U.S.A.

Éric Goubault Commissariat à l’énergie atomique, France

Marc Pouzet École normale supérieure, France

École Normale Supérieure

Département d’Informatique

Overview

This report presents the bulk of my research work from the completion of my PhD, in late
2004, until the present day. It is submitted in partial fulfillment of the requirements for
the French qualification of habilité à diriger des recherches (accreditation to supervise re-
search). This report is a brief synthesis of several results published in distinct articles. Due
to page limitation some technical material (including proofs and raw experimental data)
are omitted; the interested reader is invited to consult the cited articles for more informa-
tion. Some of the contributions presented here were purely my own, others were pursued
in a team work within the Abstraction group at ENS and, finally, some contributions are
that of a PhD student that I helped supervise.

The overall aim of my research is the development of mathematically sound and practi-
cally efficient methods to check the correctness of computer software. Efficiency is achieved
using approximations, while soundness is guaranteed by employing over-approximations
of program behaviors. My research is grounded in the theory of abstract interpretation,
a powerful mathematical framework facilitating the development, use, comparison, and
composition of approximations in a sound way. I am mainly interested in developing new
reusable abstraction components (so called abstract domains) that can be readily imple-
mented, and in using them to develop static analyzers, which are computer programs able
to check automatically the safety of software. While my early research was focused on
inferring the values of variables in sequential programs, my current interest and latest
results concern the analysis of concurrent programs, hence the title of this report.

The first two chapters of this report constitute an introduction. The first chapter is
an informal introduction to the problem at hand, existing solutions, their strengths and
their shortcomings. The second chapter presents prior mathematical and formal tools on
which our work is based, including some notions of abstract interpretation, a description
of existing abstract domains and their application to the static analysis of sequential
programs. It also recalls some results I obtained during my PhD and that will be useful
in the rest of the report. The subsequent chapters describe the work I performed after
completing my PhD.

The third chapter is devoted to aspects of static analyzers that are specific to concur-
rent programs. This topic of personal research has led to the construction of a generic
analysis method for concurrent programs, parametrized by the choice of abstract domains.
The method is based on a notion of “interference” that abstracts thread interleavings in

iii

a sound way in order to achieve a thread-modular analysis. It is related to Jones’ rely-
guarantee proof method, and we make this connection formal in a first part. Then, we
present an interference-based analysis in big-step form that is efficient and easy to im-
plement. In a third part, we study the interaction of the analysis with weakly consistent
memory models, found in modern processors and language specifications. The last part
discusses how to adapt the analysis to exploit some properties of the scheduling (such as
the use of real-time thread priorities and synchronization primitives).

The fourth and fifth chapters are devoted to the design of abstract domains. Although
some of them found their application in the analysis of concurrent programs, they are
actually generic and could be exploited in any kind of static analysis, for concurrent or
sequential programs. The fourth chapter concerns numeric domains to infer linear equality
and inequality relations, developed in collaboration with Liqian Chen while he visited ENS
during his PhD. The initial motivation was to revise the classic polyhedra domain using
sound floating-point arithmetic to improve its efficiency, but it unexpectedly yielded the
construction of new, more expressive domains based on interval affine relations, which we
also present. The fifth chapter concerns the abstraction of realistic data-types as found
in the C programming language, including machine integers, floating-point numbers, and
structured blocks of memory (structs, unions, and arrays). We design abstractions that
are aware of the low-level memory representation of data-types, to support the analysis
of programs that rely on assumptions about this representation (such as “type punning”
constructions in C). The need for such abstractions was motivated by the analysis, in the
scope of the Astrée and AstréeA static analyzers, of industrial C programs, where such
low-level constructions are widespread.

The sixth chapter is devoted to the application of these methods to the design of static
analyzer tools. It mainly reports on my experience with the Astrée analyzer, a team
effort initiated during my PhD in 2001 that extended well beyond it and culminated in
its industrialization in 2009. Much of my theoretical work could find some application in
Astrée, as Astrée fuelled my research with not only practical problems to solve, but also
concrete problems that could only be overcome by theoretical developments. This part
also reports my own ongoing effort on AstréeA, an extension of Astrée that incorporates
the interference abstraction presented above and aims at proving the absence of run-
time error in concurrent embedded programs (while Astrée only considers synchronous
programs). Additionally, this chapter presents the Apron abstract domain library, another,
more academic, team effort, which aims at encouraging the research on numeric abstract
domains.

The report concludes with some perspectives for future researches.

iv

Résumé

Ce mémoire d’habilitation résume la majeure partie de mes recherches, depuis la fin de
mon doctorat, fin 2004, jusqu’à aujourd’hui. Les travaux résumés dans ce mémoire ont par
ailleurs été publiés dans plusieurs journaux et actes de conférences. Par manque de place,
les développements les plus techniques sont omis (c’est en particulier le cas des preuves et
des tables de résultats expérimentaux) ; le lecteur intéressé est invité à les consulter dans
les articles cités. Certains des résultats présentés ici sont les miens propres, tandis que
d’autres sont issus d’un travail en équipe au sein du groupe Abstraction, et d’autres enfin
ont été obtenus par un doctorant que j’ai co-encadré.

Le but essentiel de mes recherches est le développement de méthodes fondées sur des
bases mathématiques et performantes en pratique pour s’assurer de la correction des logi-
ciels. J’utilise des approximations pour permettre une bonne performance, tandis que la
validité des résultats est garantie par l’emploi exclusif de sur-approximations des ensembles
des comportements des programmes. Ma recherche est basée sur l’interprétation abstraite,
une théorie très puissante des approximations de sémantiques permettant aisément de les
développer, les comparer, les combiner. Je m’emploie en particulier au développement de
nouveaux composants réutilisables d’abstraction, les domaines abstraits, qui sont directe-
ment implantables en machine, ainsi qu’à leur utilisation au sein d’analyseurs statiques,
qui sont des outils de vérification automatique de programmes. Mes premières recherches
concernaient l’inférence de propriétés numériques de programmes séquentiels, tandis que
mes recherches actuelles se tournent vers l’analyse de programmes concurrents, d’où le
titre de ce mémoire.

Les deux premiers chapitres de ce mémoire constituent une introduction, tandis que
les suivants présentent mon travail d’habilitation proprement dit. Le premier chapitre est
une introduction informelle à la problématique de l’analyse de programmes, aux méthodes
existantes, leurs forces et leurs faiblesses. Le deuxième chapitre présente de manière
formelle les outils dont nous aurons besoin par la suite : les bases de l’interprétation
abstraite, quelques domaines abstraits existants et la construction d’analyses statiques par
interprétation abstraite, ainsi que quelques résultats utiles que j’ai obtenu en doctorat.

Le troisième chapitre est consacré aux aspects spécifiques de l’analyse de programmes
concurrents. Cette recherche, très personnelle, a abouti à la construction d’une méthode
d’analyse de programmes concurrents, paramétrée par le choix de domaines abstraits,
et basée sur une notion d’interférence abstrayant les interactions entre threads. Ainsi,

v

l’analyse construite est modulaire pour les threads. Cette méthode est reliée aux preuves
rely-guarantee proposées par Jones, ce que nous montrons formellement dans une première
partie. Nous construisons ensuite une analyse à grands pas basée sur les interférences,
efficace et facile à implanter. Les deux dernière parties étudient les liens entre l’analyse
et les modèles mémoires faiblement cohérents (désormais incontournables) ainsi que le
raffinement de l’analyse pour tenir compte des propriétés spécifiques des ordonnanceurs
temps-réels (nous étudions en particulier l’effet des priorités des threads et l’emploi d’objets
de synchronisation).

Le quatrième et le cinquième chapitre sont consacrés à la constructions de domaines
abstraits. Ceux-ci ne sont pas spécifiquement liés au problème de la concurrence ; ils
sont utiles à l’analyse de tous programmes, séquentiels comme concurrents. Le chapitre
4 étudie des domaines numériques inférant des égalités et inégalités affines, développés
en collaboration avec Liqian Chen, alors doctorant en visite à l’ENS. La motivation
première était l’emploi de nombres à virgule flottante afin d’améliorer l’efficacité du do-
maine des polyèdres, mais ces travaux ont également débouché sur la découverte de nou-
veaux domaines, basés sur les relations affines à coefficients intervalles, que nous présentons
également. Le chapitre 5 étudie les abstractions de types de données réalistes, comme ceux
rencontrés dans le langage C : les entiers machines, les nombres à virgule flottante, et les
blocs structurés (tableaux, structures, unions). Nos abstractions modélisent finement les
détails de l’encodage en mémoire des données afin de permettre l’analyse de programmes
qui en dépendent (par exemple, ceux utilisant le type-punning). Ces abstractions sont
motivées par nos expériences d’analyses, avec les outils Astrée et AstréeA, de programmes
C industriels ; ceux-ci employant fréquemment ce type de constructions de bas niveau.

Le sixième chapitre est consacré aux applications des méthodes présentées ci-dessus à
la construction d’outils d’analyse statique. Il décrit en particulier mon travail sur l’outil
Astrée que j’ai co-développé avec l’équipe Abstraction pendant et après mon doctorat,
et qui a été industrialisé en 2009. Mes résultats théoriques et appliqués ont contribué
au succès d’Astrée, tandis que celui-ci m’a fourni de nouveaux thèmes de recherches,
sous la forme de problèmes concrets dont la résolution n’a pu se faire que grâce à des
développements théoriques. Ce chapitre décrit également AstréeA, une extension d’Astrée
utilisant l’abstraction d’interférences proposée plus haut pour l’analyse de programmes
concurrents (Astrée étant limité aux programmes séquentiels). Il décrit également Apron,
une bibliothèque de domaines abstraits numériques que j’ai co-développée. Il s’agit d’un
outil plus académique, dont le but est d’encourager la recherche sur les domaines numéri-
ques abstraits.

Le mémoire se conclue par quelques perspectives sur des recherches futures.

vi

CONTENTS

Contents

Overview iii

Résumé v

1 Introduction 1

1.1 Program verification . 1

1.2 Abstract interpretation . 3

1.3 Concurrent programs . 5

2 Background 9

2.1 Notations . 9

2.2 Elements of abstract interpretation . 11

2.3 Sequential static analysis . 16

2.3.1 Language . 16

2.3.2 Transition system . 17

2.3.3 From traces to states . 19

2.3.4 Equational semantics . 21

2.3.5 Big-step semantics . 23

2.3.6 Environment abstraction . 24

2.4 Numeric abstractions . 26

2.4.1 Intervals . 27

2.4.2 Polyhedra . 30

2.4.3 Linearization . 34

2.4.4 Floating-point numbers . 36

2.5 Conclusion . 38

3 Analysis of concurrent programs 39

3.1 Concurrent language . 40

3.1.1 Syntax . 40

3.1.2 Semantics . 40

3.1.3 Trace and state semantics . 41

3.1.4 Equational semantics . 43

3.1.5 Big-step semantics . 44

vii

CONTENTS

3.2 Rely-guarantee reasoning as abstract interpretation 45

3.2.1 Proof methods . 45

3.2.2 Interference semantics . 47

3.2.3 Abstraction . 49

3.2.4 Unbounded number of threads . 51

3.3 Big-step interference analysis . 52

3.3.1 Concrete interference semantics . 52

3.3.2 Abstract interference semantics . 55

3.4 Scheduling . 57

3.4.1 Mutexes . 57

3.4.2 Real-time scheduling . 60

3.5 Weakly consistent memories . 61

3.5.1 Non-consistent behaviors . 62

3.5.2 Formal model . 64

3.6 Discussion . 66

4 Affine abstractions 69

4.1 Floating-point polyhedra . 70

4.1.1 Motivation . 70

4.1.2 Representation . 70

4.1.3 Core algorithms . 71

4.1.4 Abstract operators . 73

4.1.5 Experimental results . 74

4.1.6 Discussion . 75

4.2 Interval polyhedra . 76

4.2.1 Float interval polyhedra . 76

4.2.2 Exact interval polyhedra . 79

4.2.3 Interval affine equalities . 82

4.2.4 Discussion . 85

5 Abstracting C data-types 89

5.1 Machine integers . 90

5.1.1 Extended language . 90

5.1.2 Adapting classic domains . 92

5.1.3 Modular intervals . 94

5.1.4 Bit-field domain . 96

5.1.5 Discussion . 97

5.2 Structured types . 97

5.2.1 Extended types . 97

5.2.2 Well-structured semantics . 98

5.2.3 Low-level semantics . 101

5.2.4 Cell-based memory model . 106

5.2.5 Discussion . 111

viii

CONTENTS

5.3 Bit-aware float abstractions . 113
5.3.1 Examples . 114
5.3.2 Concrete semantics . 115
5.3.3 Abstract semantics . 116
5.3.4 Future work . 120

5.4 Conclusion . 120

6 Applications 123
6.1 Apron: numeric abstract domain library . 124
6.2 Astrée: proving the absence of run-time error in synchronous embedded C

software . 125
6.2.1 Scope and limitations . 126
6.2.2 Architecture . 127
6.2.3 Specialization . 130
6.2.4 Interface . 132
6.2.5 Industrial applications . 133

6.3 AstréeA: detecting run-time errors in concurrent embedded C software . . . 135
6.3.1 Architecture . 135
6.3.2 Target code . 136
6.3.3 Results . 138
6.3.4 Future work . 139

7 Conclusion and perspectives 141
7.1 Concurrency analysis . 142
7.2 Numeric abstractions . 145

Bibliography 147

Index of notations 161

Index 169

ix

Chapter 1

Introduction

In this short introductory chapter, we explain informally the meaning of our title “static
analysis by abstract interpretation of concurrent programs.” We expose the problem at
hand, program verification, and give an overview of existing methods to solve it. We recall
the concept of static analysis by abstract interpretation. Finally, we discuss the specific
challenges related to the verification of concurrent programs.

1.1 Program verification

Programming is an error-prone activity and “bugs” (programming errors) are pervasive,
resulting in spectacular failures (such as the Ariane failure in 1996 [Lio96]) and, more
generally, economic losses (NIST evaluated their annual cost to the U.S. industry at $59.5
billion in 2002 [NIS02]). While it might seem acceptable in some cases to ship potentially
erroneous programs and rely on regular updates to correct them, this is not the case
for embedded software, which are often mission critical and cannot be corrected during
missions.

Testing. The most widespread (and in many cases the only) method used to ensure
the quality of software is testing. Many testing methods exist (black-box and white-box
testing, unit and integration testing, etc.); all consist in executing parts or the whole of the
program with selected or random inputs in a controlled environment, while monitoring its
execution or its output. A variant is dynamic analysis, where an instrumented version of
the program with extra checks is executed, so as to detect errors earlier, more reliably, or
to detect errors having a non-deterministic but not always fatal outcome (such as memory
errors [NS07]). Achieving an acceptable level of confidence with testing is generally costly
([WM11] reports that tests account for as much as 50% of the cost of developing software-
based systems) and, even then, testing cannot completely eliminate bugs [NIS02].

Formal methods. Unlike testing, formal methods employ mathematical and logical
tools to reason on the program itself, at compile-time. As such, they can prove without

1

CHAPTER 1. INTRODUCTION

ambiguity the correctness of programs (or at least, clearly express what is proved and
what is not) before they are run: these methods are sound. The idea of formally discussing
about programs dates back from the early history of computer science: program proofs
and invariants are attributed to Floyd [Flo67] and Hoare [Hoa69] in the late 60s, but may
be latent in the work of Turing in the late 40s [Tur49] (as reported by Morris and Jones
[MJ84]). The lack of automation severely hindered early efforts but, with the progress of
both computers and formal manipulation software, there is, according to Hoare [Hoa03],
some hope to design a “verifying compiler that guarantees correctness of a program before
running it” (although this hope should be tempered by the accompanying increase in
the complexity of the software to verify). Current methods can be classified into three
categories [CC10]:

• deductive methods employ proof assistants (such as Coq [BC04]) or theorem
provers (such as PVS [ORS92]); they rely on the user to provide the inductive
invariants needed in the proof, and sometimes to interactively direct the proof itself;

• model checking [CES86] explores exhaustively and automatically finite models
of programs; a per-program user intervention is required beforehand to abstract
programs with an infinite or large state space into such models;

• static analyses analyze directly and without user intervention the source code at
some level of abstraction; due to decidability and efficiency concerns, the abstraction
is incomplete and can miss properties, resulting in false alarms (a.k.a. false posi-
tive, i.e., correct programs reported as incorrect) but never false negative (so that
programs reported as correct are indeed correct despite the approximation).

In addition to these sound methods, we must also mention the use of formal tools in
unsound contexts. Some versions of model checking perform a partial exploration of infinite
or very large models (as in bounded model checking [BCCZ99]), or of infinite sequences
of finite models (as in counter-example guided abstract refinement [CGJ+00]). Another
example is symbolic execution [Kin76], which executes the program on a symbolic abstract
domain of properties, but on a single (finite) program path at a time, and must be aborted
after a finite number (out of the generally infinite set) of paths have been investigated. As
with testing, these unsound methods can miss errors as they rarely explore the set of all
possible executions.

Sound static analysis. Our work focuses on sound static analysis. Due to a low preci-
sion, early static analyses have been applied mostly, and with some success, to non-critical
domains such as optimizing compilers where speed and automation are more important
than precision (a missed property results at worse in disabling some valid optimization,
for a slight cost in efficiency). However, by carefully designing the abstraction used in
the analysis, it becomes possible to infer properties related to the correctness of programs
with no or few false alarms. This is the case, for instance, for Astrée [BCC+03], a static
analyzer that checks for the absence of run-time error (such as arithmetic or memory over-
flows) in embedded synchronous C programs. Such an analysis does not require much user

2

1.2. ABSTRACT INTERPRETATION

intervention: the correctness conditions are part of the programming language semantics
(and not externally-provided program-specific conditions), the analysis is performed on
the source code (and not a hand-crafted model) and automatically (not interactively).
It is thus very attractive in an industrial context [DS07], where it can be operated by
engineers with a limited knowledge of formal methods.

Astrée is specialized, by its choice of abstractions, to a class of properties and an
(infinite) class of programs: it cannot express arbitrary program verification conditions
and might perform poorly in terms of efficiency and false alarm rate on some programs.
On its intended targets, however, Astrée scales up to large programs (one million lines or
more) with a good precision (few or no false alarm).

We have participated to the design and implementation of Astrée, and several results
described in this report were integrated into Astrée. Chapter 6, which is devoted to
applications, reports our experience with Astrée.

A major promise of abstract interpretation is that more complex properties, generally
thought to be out of the scope of static analysis, can nevertheless be tackled by designing
adequate abstractions (including, for instance, temporal properties [Mas02] traditionally
handled by model checking, and proofs of functional correctness [CCM10] traditionally
handled with user-assisted theorem provers). In this work, we stay modest and focus
on relatively simple properties: mainly discovering invariants on numeric program vari-
ables. Such properties are nevertheless challenging (as they are undecidable) and useful
in practice (as they are sufficient to prove the absence of many kinds of run-time errors).

1.2 Abstract interpretation

Abstract interpretation is a very general theory of the approximation of program seman-
tics, introduced by Patrick Cousot and Radhia Cousot in the late 70s [CC77]. It stems
from the observation that, while there exists a wide variety of program semantics, they
can be uniformly described as fixpoints of operators in partially ordered structures. This
observation extends to the formal methods used to ensure the correctness of programs, in-
cluding proof methods, model checking, type checking, type inference, and semantic-based
static analysis. Having expressed seemingly unrelated semantics in a uniform framework,
it becomes possible to compare them in term of the amount of information they carry
(understood as the set of program properties they can express). Abstract interpretation
is thus a unifying force in formal program semantics.

Example 1.2.1. Big-step semantics model programs as input-output relations, forgetting
the history of the computations modeled by small-step operational semantics. The latter
can express properties on the length (number of steps) of computations while the former
cannot: it is an abstraction [Cou02].

End of example.

Additionally, abstract interpretation presents semantics in a constructive form (often
as limits of finite or, possibly uncountable, transfinite iterations). It expresses properties

3

CHAPTER 1. INTRODUCTION

as a function of programs, which opens the way to property inference. This is in contrast
to deductive methods, which can only verify statements provided externally by the user.

Example 1.2.2. In [CC84], Cousot ant Cousot present a constructive version of Owicki–
Gries–Lamport proof method for parallel programs [OG76, Lam77] and derive static ana-
lyzers by abstraction. In Sec. 3.2, we will apply the same method to Jones’ rely–guarantee
proof method [Jon81].
End of example.

According to Rice [Ric53] all non-trivial program properties are undecidable. Even in
constructive form, the semantics that express them cannot always be computed by a
program in finite time. Abstract interpretation provides a systematic method to derive
computable abstract approximate semantics:

• A first step is to choose a level of abstraction. The set of concrete semantic objects
is replaced with a (partially ordered) set of abstract ones carrying less information.
Ideally the abstraction forgets all the properties we do not care about (and properties
that are not necessary to prove those we care about).

• Operators on the concrete world are then (systematically) mapped to operators on
the abstract one. As even abstract operators may be too complex, it is sometimes
useful, for the sake of efficiency, to over-approximate them (the abstract partial order
modeling the relative precision of properties and operators).

• Concrete fixpoints of operators are replaced with fixpoints of abstract operators,
generally approximated by iteration with extrapolation to ensure termination in
finite time even when the abstract partial order has infinite chains [CC92b].

One fundamental application of abstract interpretation is the derivation of static analyzers
that are, by construction, sound: any property proved in the abstract also holds in the
original, concrete semantics. The abstract interpretation methodology helps tremendously
on the semantic aspects (i.e., what is computed). Constructing an effective analysis ad-
ditionally requires algorithms and data-structures (i.e., how it is computed), which are
generally borrowed from other fields in mathematics and computer science.

Example 1.2.3. The polyhedra domain, introduced by Cousot and Halbwachs in [CH78],
abstracts a set of points in a vector space as a polyhedron that encloses them. One way
of implementing it is through linear programming. We describe this domain in Sec. 2.4.2
and extend it in Chap. 4.
End of example.

Abstract interpretation also studies the abstractions for themselves. It states which
desirable properties abstractions should possess, if possible (such as being a Moore family,
enjoying Galois connections, being complete, etc.). It also studies operators to manipulate
and combine them (such as reduced products, completions, etc.). This encourages a
modular approach to abstraction, where a set of abstract values and atomic abstract
operators are bundled into a reusable building block, called an abstract domain.

4

1.3. CONCURRENT PROGRAMS

We present Abstract interpretation formally in Chap. 2 and recall its main results,
with a special focus on the design of static analyses for numeric properties, illustrated
on an idealized language on real numbers. This introductory chapter recalls a few classic
numeric abstract domains, while Chaps. 4 and 5 are devoted to the construction of new
abstract domains. More precisely, Chap. 4 presents variations and extensions on the
classic polyhedra domain, while Chap. 5 introduces domains adapted to more realistic
data-types found in actual programming languages (such as machine integers, floating-
point numbers, and structured data). The design of Apron, a library of numeric abstract
domains, is described in Chap. 6.

1.3 Concurrent programs

Concurrent programming consists in designing software as collections of interacting com-
puting processes, each following its flow of instructions. This is in contrast to sequential
programs, i.e., executing a single flow of instructions. The processes of a concurrent pro-
gram may run in parallel on different execution units (processors or cores) of a computer
or on different computers, or be scheduled on a single processor through time-slicing, or
a combination of these methods. The use of concurrent programming is not new, dating
from the work by Dijkstra in the 60s [Dij65]. Since the mid-2000s and the advent of
consumer multi-core computers, the development of concurrent programs has intensified:
exploiting the parallelism in today’s computers is considered the main (if only) way to
improve the performance of software [Sut05].

Even without true parallel execution, some software benefit from a decomposition into
largely independent processes. This is the case for instance for web-servers, where each
request is handled by a distinct process executing a protocol instance, or for event-driven
applications, where processes wait for inputs on different channels without inhibiting the
progress of processes computing outputs. Concurrent programming has also entered the
embedded critical world. For instance, Integrated Modular Avionics (IMA) [WW07] sug-
gests transitioning, in avionic applications, from networks of processors executing a single
task each and communicating on a bus into single processors executing many concurrent
tasks communicating in a shared memory. Reducing the number of hardware components
(buses and processors) has clear benefits in terms of cost, dependability, and scalability;
however, it results in an increase in software complexity, and so, software verification cost.

Concurrent programming is now an integrated part of many programming languages
(including object-oriented and functional languages) and many models exist to support it
(examples include shared memory, message-passing, and transactional memory). In this
work, we focus on low-level concurrency. We thus consider simple imperative C-like lan-
guages, ignoring issues related to objects, higher-order constructions, and focusing on the
thread model, where processes execute in a shared memory. This model is pervasive in
embedded concurrent software. Some parts of our work will consider additional restric-
tions, such as the use of a fixed number of processes and a real-time scheduler, which is
motivated by our application to the verification of embedded avionic software.

5

CHAPTER 1. INTRODUCTION

Verification. The major drawback of concurrent programs is that they are hard to de-
sign, and hard to verify, even more so than sequential ones. Even a seemingly simple
problem, such as mutual exclusion, can be difficult to solve correctly (an early example
is given by Dijkstra [Dij65]). Executing a concurrent program is (in first approximation,
using Lamport’s sequential consistency model [Lam78]) achieved by interleaving the ex-
ecution of its processes, according to some scheduler algorithm. Schedulers are highly
non-deterministic, resulting in a combinatorial explosion of the set of possible executions.
Testing and symbolic execution perform poorly as they rely on sampling finite executions
or program paths: they can explore a tiny fraction of the large execution space while er-
rors (such as data-races) often appear only in difficult-to-reach corner cases. Even the set
of possible program configurations grows tremendously as each process features its own
control space and local variables, so that model checking, which employs an exhaustive
state-space exploration, also has difficulties scaling up. Unsound partial exploration tech-
niques have thus been proposed, such as context-bounded model checking [QR05] which
only allows a finite (generally small) number of context switches.

This verification problem is further complicated by the advent of weakly consistent
memory models [ABBM10]. These execution models take into account the various hard-
ware and software optimisations that are present in today’s computer, such as non-coherent
caches and out-of-order execution units. They exhibit executions that do not obey Lam-
port’s model of sequential consistency. In order to be of any use, program verification
must be sound with respect to these new execution models.

Another complexity added by concurrency is the emergence of new kinds of program-
ming errors, that cannot occur in sequential programs:

− data-races occur when two processes simultaneously access the same memory location
and one access at least is a write;

− deadlock is a situation where a subset of processes wait for each other in a circular
fashion, thus blocking indefinitely all the concerned processes;

− livelocks are similar, but processes execute without making any progress (e.g., busy
waiting) instead of blocking;

− starvation occurs when a process is indefinitely denied a resource, which is held by a
process or passed along a set of conspiring processes.

Our focus is on sound static analysis with the intend to scale up to large programs. We
will side-step the combinatorial explosion of executions by employing thread-modular tech-
niques. Ideally, the analysis of a program should be reduced to the independent analysis
of each of his processes. Note that employing existing sequential program static analyses
on each process ignores their interaction, and is thus not sound. We will however show
that a sound analysis can be constructed with only minor modifications to a sequential
process analysis. The resulting analysis is almost as efficient as for sequential programs.
Our focus is on (mostly numeric) invariant inference for concurrent programs. We will be
able to prove invariance properties, including the absence of run-time error, of data-race,
and of deadlock. However, the absence of livelock and starvation belongs to the class of
liveness properties [LS85], which cannot be expressed with mere invariants and remain out

6

1.3. CONCURRENT PROGRAMS

of reach for our analysis. Our design is described, on the theoretical level, in Chap. 3. Its
application to the construction of the AstréeA static analyzer, an extension to Astrée, is
described in Chap. 6.

7

Chapter 2

Background

This chapter introduces formally notions and notations, and recalls existing results that
are at the foundation of our work and will serve in subsequent chapters. We provide a
short overview of abstract interpretation, focusing on its application to the design of sound
static analyses. We also present a simple numeric sequential programming language, its
semantics, and its static analysis. Chapter 3 will illustrate our concurrent program analysis
method on an multi-thread extension of this language. Finally, we present several classic
abstractions that parametrize sequential and concurrent analyses. Chapters 4 and 5 will
present novel variants and extensions of these domains.

2.1 Notations

We introduce briefly the standard notations we use, which are drawn from various fields
of mathematics and computer science. An index of all the notations introduced here and
later, as well as an index of all notions, are available in the Appendix.

Partial orders. A partially ordered set (A,v) is a set A equipped with a binary reflexive,
transitive, anti-symmetric relation v. When it exists, the least upper bound (also called
join) of a pair of elements a, b ∈ A is denoted a t b, and its greatest lower bound (also
called meet) is denoted a u b. Note that, when they exist, joins and meets are unique. A
lattice (A,v,⊥,>,t,u) is a partially ordered set with a least element ⊥ and a greatest
element > in A, and a least upper bound t and a greatest lower bound u for every pair
of elements in A. A lattice is complete when joins and meets exist for sets of arbitrary
size; we denote the join and meet of S ⊆ A respectively as tS and uS.1

Example 2.1.1. A useful example of complete lattice is the powerset (P(X),⊆, ∅, X,∪,∩)
of an arbitrary set X.
End of example.

1A more economical definition of complete lattices is: a partial order (A,v) with arbitrary joins. The

other lattice operators can be derived from the join as: ⊥ def
= t ∅, > def

= t A, and uX def
= t { y ∈

A | ∀x ∈ X : y v x }.

9

CHAPTER 2. BACKGROUND

A complete partial order is a partial order (A,v) such that, for any X ⊆ A, if every pair
of elements in X has a least upper bound in X, then X has a least upper bound in A.

Partial orders (A1,v1), (A2,v2) can be combined element-wise: we define 〈a1, a2〉 v
〈a′1, a′2〉

def⇐⇒ a1 v1 a′1 ∧ a2 v2 a′2. The same holds for complete partial orders and

(complete) lattices: ⊥ def
= 〈⊥1, ⊥2〉, >

def
= 〈>1, >2〉, 〈a1, a2〉 t 〈a′1, a′2〉

def
= 〈a1 t1 a

′
1, a2 t2

a′2〉, and 〈a1, a2〉 u 〈a′1, a′2〉
def
= 〈a1 u1 a

′
1, a2 u2 a

′
2〉. Likewise, (A,v) extends element-wise

to functions from arbitrary sets X to A: f v g def⇐⇒ ∀x ∈ X : f(x) v g(x), and similarly
for complete partial orders and (complete) lattices.

Functions. Given two sets A and B, we denote as A → B the set of functions from
A (called the codomain) to B (called the domain). We often use the lambda notation
λx ∈ A. f(x), or more concisely λx. f(x), to denote functions. If f is a function, then
f [x 7→ v] is the function that maps x to v and other elements y 6= x to f(y); its domain
is that of f plus x. Likewise f [∀x ∈ X : x 7→ g(x)] maps elements x ∈ X to g(x)
and other elements y /∈ X to f(y). We will use the notation [x1 7→ v1, . . . , xn 7→ vn] to
define a function in extension from scratch. When A′ ⊆ A, f|A′ denotes the restriction of
f ∈ A→ B to a function in A′ → B.

When (A,vA) and (B,vB) are partial orders, then f ∈ A → B is monotonic if
∀a, a′ ∈ A : a vA a′ =⇒ f(a) vB f(a′). It is a join-morphism if, for any X ⊆ A, if
tA X exists, then so does tB { f(x) | x ∈ X } and f(tA X) = tB { f(x) | x ∈ X }. This
implies, in particular, f(⊥A) = ⊥B.

Dependent types. Given a set A and a family (Ba)a∈A of sets indexed by A, we denote
as Πa:A.Ba the set of functions f from A to ∪a∈ABa such that ∀a ∈ A : f(a) ∈ Ba. This
generalizes function spaces A → B to the case where the domain B can be different for
every element of the codomain A.

Fixpoints. A fixpoint of a function f ∈ A→ A is any element a ∈ A such that f(a) = a.
When a v f(a), we say that a is a pre-fixpoint while, when f(a) v a, a is said to be a
post-fixpoint . We denote as lfp f the least fixpoint of f , when it exists. Moreover, lfpa f is
the least fixpoint of f greater than or equal to a.

Semantics. We denote semantic functions with double brackets, as in XJ y K, where y
is a syntactic object and X denotes the kind of objects (such as S for statements, E for
expressions, P for programs). Subscripts over X are used to distinguish several kinds of
semantics. Abstract semantics are distinguished using a] superscript.

Sequences. Given a set Σ, we denote as Σn the set of sequences of exactly n elements
from Σ. The set of finite sequences is Σ∗

def
=
⋃
n∈N Σn. The set of infinite sequences is

denoted Σω, while the set of all sequences is Σ∞
def
= Σ∗ ∪ Σω. The empty sequence is

denoted as ε. Sequence concatenation is denoted as . where t · t′ = t when t ∈ Σω. It is
naturally extended to sets of sequences: A ·B def

= { a · b | a ∈ A, b ∈ B }.

10

2.2. ELEMENTS OF ABSTRACT INTERPRETATION

Traces. Traces generalize sequences. Given a set Σ of states and a set A of actions,
a trace is a non-empty finite or infinite sequence of states in Σ interspersed with actions

in A, which we note as σ0
a1→ σ1

a2→ · · ·σn−2
an−1→ σn−1 (for a finite trace of length n) or

σ0
a1→ σ1

a2→ · · · (for an infinite trace), where ∀i : σi ∈ Σ, ai ∈ A. As for sequences, we note

Tr n(Σ,A), Tr ∗(Σ,A)
def
=
⋃
n∈N Tr

n(Σ,A), Tr ω(Σ,A), and Tr ∞(Σ,A)
def
= Tr ∗(Σ,A) ∪

Tr ω(Σ,A) respectively the set of traces of length n, of finite length, of infinite length,
and the set of all traces. The concatenation of two traces t and t′ by an action a ∈ A
is denoted t

a→ t′: when t is infinite, t
a→ t′ = t; otherwise, if t = σ0

a1→ · · · an→ σn and

t′ = σ′0
a′1→ · · · , then t

a→ t′ = σ0
a1→ · · · an→ σn

a→ σ′0
a′1→ · · · . When the action set A is a

singleton, we will dispense from the (constant) action in traces, denoting them simply as
σ0 → σ1 → · · · → σn, and sometimes assimilating traces to sequences.

Vectors. We use linear algebra: vectors are denoted as ~V and matrices as M. The null
vector is denoted as ~0. The components of a vector ~V are denoted as V1, . . . , Vn. The
columns of a matrix M are denoted as ~M1, . . . , ~Mm and its elements as M1,1, . . . ,Mn,m.

Matrix-vector and matrix-matrix products are denoted as M×~V and M×N, while the dot
product of vectors is denoted as ~V · ~W . We overload the relational operators on vectors
and matrices to denote the element-wise relation so that, for instance, ~V ≥ ~W means
∀i : Vi ≥Wi. Given a (column) vector ~C, ~Ct denotes its transpose (row). We also denote
as Mt the transpose of a matrix. Finally, we denote as ~ei the i−th basis vector , i.e., the
vector with all components set to 0, except the i−th which is set to 1.

Substitutions. We denote as e[e1/e2] the (syntactic) operation of substituting in e every
occurrence of e1 with e2.

2.2 Elements of abstract interpretation

We recall some core definitions and results of abstract interpretation, focusing on those
that will be useful later to us (see [CC92a] for an in-depth presentation).

Abstractions and concretizations. A semantic domain is a set of elements carrying
information about our objects of study (here, programs). We wish to quantify information,
hence, a semantic domain is a partially ordered set (D,v), where d v d′ means that d′

carries less information than d. We say that a semantic domain (D],v]), called the abstract
domain, is an abstraction of another semantic domain, the concrete domain (D,v), if each
abstract element d] ∈ D] represents some concrete information γ(d]) ∈ D and the structure
respects the information order: i.e., γ ∈ D] → D is a monotonic function; it is called the
concretization function.

Remark. Two abstract elements can represent the same concrete one: γ needs not be
injective.

End of remark.

11

CHAPTER 2. BACKGROUND

When D] has arbitrary meets, it forms a so-called Moore family [CC79b] and we can
define an abstraction function α ∈ D → D] as:

α(d)
def
=

d] { d] | d v γ(d]) } .

By definition, α(d) is the best (i.e., most precise) abstraction of d in D]. The pair (α, γ)
enjoys many well-known interesting properties:

− (α, γ) is a Galois connection:∀d ∈ D, d] ∈ D] : d v γ(d]) ⇐⇒ α(d) v] d];

− ∀d ∈ D : d v (γ ◦ α)(d);

− ∀d] ∈ D] : (α ◦ γ)(d]) v d].

When γ is injective (which is equivalent to state that α is surjective), then we actually
have α ◦ γ = λd]. d], and the pair (α, γ) is called a Galois injection.

Example 2.2.1. In the interval domain (described in more details in Sec. 2.4.1), sets of

reals in D (ordered by subset inclusion) are abstracted as intervals in D]i with finite or
infinite bounds:

D def
= P(R)

v def
= ⊆

D]i
def
= { [a, b] | a ∈ R ∪ {−∞}, b ∈ R ∪ {+∞}, a ≤ b } ∪ {⊥]}

d]1 v
]
i d

]
2

def⇐⇒ d]1 = ⊥] ∨ (d]1 = [a, b] ∧ d]2 = [c, d] ∧ a ≥ c ∧ b ≤ d)

γi([a, b])
def
= {x ∈ R | a ≤ x ≤ b }, γ(⊥]) def

= ∅

αi(X)
def
=

{
⊥] if X = ∅
[minX,maxX] otherwise

(αi, γi) forms a Galois injection.
End of example.

Operator abstraction. Given a concrete operator f ∈ D → D, an abstraction of f is
a function f] ∈ D] → D] obeying the soundness condition:

∀d] ∈ D] : f(γ(d])) v γ(f](d])) (2.1)

which states that computing in the abstract always yields less or as much information as
in the concrete. Ideally, we would have f ◦ γ = γ ◦ f], which means that the abstract
computation does not lose any information with respect to the concrete one; in this case,
we will call f] an exact abstraction. Unfortunately, this seldom happens: it requires f to
be forward-complete, that is, to map abstract properties to abstract properties [GRS98].
When an abstraction function α exists, then we can define f] as:

f]
def
= α ◦ f ◦ γ (2.2)

which is, by definition, the best abstraction of f . These definitions extent naturally to the
case of n−ary operators.

12

2.2. ELEMENTS OF ABSTRACT INTERPRETATION

Example 2.2.2. Anticipating again on Sec. 2.4.1, we consider the interval abstractions of
f

def
= λX. {−x | x ∈ X } and λ(X,Y). X ∪ Y . Then f]i

def
= λ[a, b]. [−b,−a] is an exact

abstraction of f , while ∪]i
def
= λ[a, b], [c, d]. [min(a, c),max(b, d)] is the best abstraction of ∪

but is not exact.
End of example.

It is important to notice that, although the composition of exact abstractions is an exact
abstraction, the composition of best abstractions is not necessarily a best abstraction.
Hence, when building an analysis by combining a set of atomic abstract operations, im-
precisions can accumulate to an overall poor result, even if each atomic operation is a best
abstraction. Adding to this the occasional lack of a best abstraction function α, and the
occasional lack of an algorithm to implement efficiently (or at all) α ◦ f ◦ γ, it turns out
that abstract analyses seldom output the optimal result expressible in the chosen abstract
domain. Thus, in order to prove properties of a certain kind, a strictyl more expressive
abstract semantic domain is often required.

Reduced product. To obtain more precision, it is convenient to combine existing do-
mains into new, more powerful ones. Given two domains D]1 and D]2 with concretizations

γ1 and γ2, the product domain D] def
= D]1×D

]
2 with concretization γ(〈X]

1, X
]
2〉)

def
= γ1(X]

1)u
γ2(X]

2) and ordering 〈X]
1, X

]
2〉 v] 〈Y

]
1 , Y

]
2 〉

def⇐⇒ X]
1 v

]
1 Y

]
1 ∧ X

]
2 v

]
2 Y

]
2 can represent

conjunctions of properties expressed in D]1 and D]2.

While f]
def
= λ〈X]

1, X
]
1〉. 〈f

]
1(X]

1), f]2(X]
2)〉 is a sound abstraction of f in D] when f]1

and f]2 are sound abstractions of f in, respectively, D]1 and D]2, it does not bring any
precision improvement with respect to separate analyses as each component is computed
in isolation. This can be corrected by adding a reduction step that propagates information:
f] is replaced with ρ]◦f] where the reduction function ρ] ∈ D] → D] satisfies the soundness
condition (γ ◦ ρ])(X]) = γ(X]), and the improvement condition ρ](X]) v] X]. When D]1
and D]2 feature abstraction functions α1 and α2, an optimal reduction can be defined

as ρ](X])
def
= 〈(α1 ◦ γ)(X]), (α2 ◦ γ)(X])〉. When no abstraction function exists or no

efficient algorithm to compute ρ] exists, one generally settles for a sound reduction that
only partially propagates information. We refer the reader to [CCF+06] on how to design
partially reduced products on a large scale.

Fixpoint theorems. In abstract interpretation, many objects are expressed as fixpoints
of operators. The existence of fixpoints requires suitable hypotheses on those operators.
We recall an important result due to Tarski [Tar55]:

Theorem 2.2.1. The set of fixpoints of a monotonic function f ∈ A→ A in a complete
lattice A is a non-empty complete lattice.

In particular, f has a least fixpoint. Additionally, least fixpoints are expressed as meets
of post-fixpoints:

lfpa f =
l
{ b ∈ A | a v b ∧ f(b) v b } .

13

CHAPTER 2. BACKGROUND

This characterization is not very convenient to compute fixpoints algorithmically. Hence,
another theorem, by Cousot and Cousot [CC79a], expresses fixpoints as limits of (possibly
transfinite) iteration sequences:

Theorem 2.2.2. If f ∈ A → A is a monotonic function in a complete partial order A
and a is a pre-fixpoint of A, then the following sequence:

xδ
def
=


a if δ = 0

f(xβ) if δ = β + 1

t {xβ | β < δ } if δ is a limit ordinal

converges towards lfpa f . If f is additionally a join-morphism, then lfpa f = xω (i.e., the
iteration converges after a countable number of steps).

This theorem is constructive. It suggests a simple iterative way to compute fixpoints: we
simply need to ensure that the involved sequences converge in finite time. Another remark
is that the sequence xδ is increasing for v. Hence, the partial order, originally introduced
to quantify information, also denotes a computation order for fixpoints (in fact, distinct
orders can be used [Cou02], but this will not be necessary here).

Fixpoint approximation. Given a semantics expressed as lfpa f in the concrete world,
a natural idea is to abstract it as lfpa] f

] in the abstract world. We can then use fixpoint
transfer theorems, such as [Cou02]:

Theorem 2.2.3. If f] ◦ α = α ◦ f and a] = α(a), then lfpa] f
] = α(lfpa f).

i.e., lfpa] f
] exists and is the best abstraction of lfpa f . However, in many cases, the

condition f] ◦α = α ◦ f (also called backward completeness [GRS98]) is not satisfied. We
must also consider the common case where f] 6= α ◦ f ◦ γ as the latter is too difficult to
compute or does not exist at all (if there is no abstraction function α). When f] 6= α◦f ◦γ,
it is even possible that f] does not admit a least fixpoint (or any fixpoint at all). In all
those cases, where no optimal fixpoint abstraction can be defined or computed, we settle
for a sound abstraction, i.e., some x] such that lfpa f v γ(x]). This can be easily achieved:

Theorem 2.2.4. If f] is a sound abstraction of f , a v γ(a]), and x] satisfies f](x]) v] x]
and a] v] x], then lfpa f v γ(x]).

that is, we abstract a concrete least fixpoint as an abstract post-fixpoint.

Fixpoint extrapolation. Theorem 2.2.2 suggests computing lfpa] f
] as the limit of

the sequence defined as: x]0
def
= a] and x]n+1

def
= f](x]n). To enforce termination of such

iterations in finite time, Cousot and Cousot introduced widening operators, which are
binary operators O ∈ (D] ×D])→ D] satisfying:

14

2.2. ELEMENTS OF ABSTRACT INTERPRETATION

Definition 2.2.1.

− ∀x], y] : x] v] x] O y] and y] v] x] O y];
− for any sequence (y]i)i∈N, the sequence defined as x]0

def
= y]0 and x]i+1

def
= x]i O y

]
i is not

strictly increasing.

We can then approximate lfpa f with finite iterations:

Theorem 2.2.5. If f] is a sound abstraction of f and a v γ(a]), then the sequence

x]0
def
= a], x]i+1

def
= x]i O f

](x]i) reaches a stable iterate x]β = x]β+1 for some β < ω.

Moreover, lfpa f v γ(x]β).

Intuitively, O performs an extrapolation: it observes finite sequences of iterates and jumps
higher and higher until it reaches (or overshots) the fixpoint. It is a form of inductive
reasoning, in the logical sense of generalizing from finite examples, i.e., from the iterates
(not to be confused with mathematical induction, which proceeds by applying induction
axioms or rules, and is thus actually deductive in nature). Theorem 2.2.5 is, in fact,
very general: it does not require lfpa] f

] to exist, nor any monotony nor join-morphism
property on f]. However, it does not make any guarantee on the precision of the computed
approximation, but only ensures soundness and termination.

Example 2.2.3. Anticipating again on Sec. 2.4.1, we present the classic interval widening:

[a, b] Oi [c, d]
def
=

[{
a if a ≤ c
−∞ otherwise

,

{
b if b ≥ d
+∞ otherwise

]

which sets unstable bounds to infinity. Consider the abstract function f]
def
= λ[a, b]. [a, b]∪]i

(([a, b] ∩]i [0, 10]) +]
i 1), modeling a loop increasing a counter while it is smaller than 10

(∩]i and +]
i are, respectively, the interval intersection and addition, which are exact). The

iteration with widening starting from [0, 0] stabilizes at [0,+∞] after one iteration, which
over-approximates the actual least fixpoint [0, 11].

End of example.

Sometimes, a fixpoint x]β = x]β O f
](x]β) is a strict post-fixpoint of f]: f](x]β) @ x]β.

Hence, the approximation x]β can be refined by performing a decreasing iteration without

widening: y]0
def
= x]β, y]i+1

def
= f](y]i). This decreasing sequence can be infinite, so, Cousot

and Cousot introduced a narrowing operator M to limit the refinement while enforcing
termination (for example, by allowing each bound to be refined at most once).

The presentation of abstract interpretation using abstract domains D] and widenings
O has the benefit of clearly distinguishing the problem of abstracting a given concrete
operator f in D] and that of abstracting fixpoints in D]. The former problem is that of
expressiveness, and influences the choice of D], while the later is that of termination. As
demonstrated in [CC92b], computing in a domain with infinite chains using a widening
is strictly more powerful than computing in a finite-chain restriction of the same domain

15

CHAPTER 2. BACKGROUND

prog ::= ` stat `
′

(program)

` stat `
′

::= `X ← expr `
′

(assignment)

| `if expr ./ 0 then `1 stat `2 endif `
′

(conditional)

| `while `i expr ./ 0 do `1 stat `2 done`
′

(loop)

| ` stat ;`1 stat `
′

(sequence)

expr ::= X (variable X ∈ V)
| [c1, c2] (constant interval, c1, c2 ∈ R ∪ {±∞})
| ◦ω expr (unary operation)
| expr �ω expr (binary operation)

./ ::= = | 6= | < | > | ≤ | ≥ (relational operator)
◦ ::= − (unary arithmetic operator)
� ::= +| − | × | / (binary arithmetic operator)
` ∈ L (statement label)
ω ∈ Ω (error location)

Figure 2.1: Syntax of our sequential language.

(which does not require any widening). Intuitively, the widening adds a dynamic dimension
to the abstraction, which is more flexible than relying only on the static choice of an
abstract domain.

2.3 Sequential static analysis

We apply the previous notions to construct a simple static analysis. In order to present the
construction concisely but in full formal details, we study a very simple artificial language:
it is imperative, sequential, block-structured, procedure-less and with only global variables
and one data-type: reals in R. Later sections will introduce additional constructs (floating-
point numbers in Sec. 2.4.4, concurrency in Chap. 3, and arrays and pointers in Chap. 5)
while others (such as dynamic memory allocation, objects, recursive procedures, higher-
order constructs, etc.) are out of the scope of this work. Despite the remaining limitations,
the construction is nevertheless relevant to some real-life analysis problems (this is shown
in Chap. 6 on a subset of C for embedded critical software).

2.3.1 Language

Our simple language is presented in Fig. 2.1. Statements stat include assignments X ← e,
conditionals if · · · then · · · endif , loops while · · ·do · · ·done, and sequencing ;. A pro-
gram prog is simply a statement. Expressions expr are numeric and include (real-valued)
variables drawn from a fixed finite set V, constants (or, more precisely, intervals with con-
stant bounds [c1, c2]), unary and binary operators. Interval constants model the choice of

16

2.3. SEQUENTIAL STATIC ANALYSIS

EJ expr K ∈ E → (P(R)× P(Ω))

EJX Kρ def
= 〈{ ρ(X) }, ∅〉

EJ [c1, c2] Kρ def
= 〈{x ∈ R | c1 ≤ x ≤ c2 }, ∅〉

EJ ◦ω e Kρ
def
=

let 〈V, O〉 = EJ e K ρ in 〈{ ◦ v | v ∈ V }, O〉

EJ e1 �ω e2 Kρ
def
=

let 〈V1, O1〉 = EJ e1 K ρ in
let 〈V2, O2〉 = EJ e2 K ρ in
〈{ v1 � v2 | v1 ∈ V1, v2 ∈ V2, � 6= / ∨ v2 6= 0 },
O1 ∪O2 ∪ {ω if � = / ∧ 0 ∈ V2 }〉

Figure 2.2: Semantics of expressions.

a random value within the given bounds, which combines the modeling of classic constants
[c, c] and of non-deterministic inputs (such as sensors).

Statements are decorated with superscript labels `, which denote syntactic locations
and should be all distinct. There is a label at the beginning and the end of each statement,
as well as a label `i to denote the location where a loop condition is tested before each new
iteration. Additionally, expression operators are decorated with unique subscript labels
ω. These denote the location of possible run-time errors. We denote respectively as L(P)
and Ω(P) the (finite) sets of statement labels and error labels in a program P . Generally,
the program P is implicit and we shorten the notations as L and Ω.

2.3.2 Transition system

Following Cousot and Cousot [CC77], we model program semantics as a labelled transition
system (Σ,A, I, τ), given as:
− Σ: a set of states;
− A: a set of actions;
− I ⊆ Σ: a set of initial states;
− τ ⊆ Σ×A× Σ: a transition relation.
Transitions model execution steps: (σ, a, σ′) ∈ τ means that the program can transition
from state σ to state σ′ by executing the action a. We will use the notation σ

a→τ σ
′ for

(σ, a, σ′) ∈ τ .
Transition systems are a form of small-step semantics. They are independent from the

choice of programming language and allow expressing very general results, some of which
will be applied to our language in Sec. 2.3.3. Before this, we need to show how a program
prog

def
= `e stat `x in our language is effectively mapped to a transition system:

− As state space, we use Σ
def
= (L × E) ∪ Ω where E def

= V → R: a program execution is
either at some syntactic location ` ∈ L with environment ρ ∈ E mapping each variable

17

CHAPTER 2. BACKGROUND

τ [` stat `
′
] ∈ P(Σ× Σ)

let ∀e, ρ : 〈V e
ρ , O

e
ρ〉 = EJ e K ρ in

τ [`X ← e`
′
]

def
=

{ (〈`, ρ〉, 〈`′, ρ[X 7→ v]〉) | ρ ∈ E , v ∈ V e
ρ } ∪

{ (〈`, ρ〉, ω) | ρ ∈ E , ω ∈ Oeρ) }

τ [`if e ./ 0 then `1s`2 endif `
′
]

def
=

{ (〈`, ρ〉, 〈`1, ρ〉) | ρ ∈ E , ∃v ∈ V e
ρ : v ./ 0 } ∪

{ (〈`, ρ〉, 〈`′, ρ〉) | ρ ∈ E , ∃v ∈ V e
ρ : v 6./ 0 } ∪

{ (〈`, ρ〉, ω) | ρ ∈ E , ω ∈ Oeρ) } ∪
τ [`1s`2] ∪ { (〈`2, ρ〉, 〈`′, ρ〉) | ρ ∈ E }

τ [`while `ie ./ 0 do `1s`2 done`
′
]

def
=

{ (〈`, ρ〉, 〈`i, ρ〉) | ρ ∈ E } ∪
{ (〈`i, ρ〉, 〈`1, ρ〉) | ρ ∈ E , ∃v ∈ V e

ρ : v ./ 0 } ∪
{ (〈`i, ρ〉, 〈`′, ρ〉) | ρ ∈ E , ∃v ∈ V e

ρ : v 6./ 0 } ∪
{ (〈`i, ρ〉, ω) | ρ ∈ E , ω ∈ Oeρ) } ∪
τ [`1s`2] ∪ { (〈`2, ρ〉, 〈`i, ρ〉) | ρ ∈ E }

τ [`s1;`1 s2
`′]

def
= τ [`s1

`1] ∪ τ [`1s2
`′]

Figure 2.3: Transition system generated by a program.

V ∈ V to a real value ρ(V) ∈ R, or it is in an error state ω ∈ Ω.

− Programs start at the first location with all variables initialized to 0, hence, we have
I

def
= { 〈`e, λV ∈ V. 0〉 }.

− There is a single action A def
= { ∗ } that denotes an execution step.2 As a consequence,

we will assimilate τ to a subset of Σ× Σ and note (σ, ∗, σ′) ∈ τ as σ →τ σ
′.

− The transition relation τ is defined by induction on the syntax of statements. It is
shown in Fig. 2.3, where τ [` stat `

′
] is the set of transitions generated by the statement

` stat `
′
.

The semantics uses the auxiliary semantic function EJ e Kρ, defined in Fig. 2.2, to evalu-
ate an expression e in an environment ρ ∈ E . This function outputs a set of values and
a set of possible run-time errors. Expression semantics are also defined by induction on
the syntax, but in big-step form: their intermediate computation steps are not visible
at the level of program transitions. Note that value sets are necessary because, due
to non-deterministic constants [c1, c2], an expression can have several values. In our
simple real-based language, the only possible run-time errors are caused by divisions
by zero.

2Multiple actions will appear later, in the semantics of concurrent programs (Sec. 3.1).

18

2.3. SEQUENTIAL STATIC ANALYSIS

2.3.3 From traces to states

Maximal traces semantics. Transition systems (Σ,A, I, τ) are only static mathemat-
ical descriptions of programs. Information about their dynamic behaviors emerge when
considering sequences of transitions. The maximal traces semanticsM expresses the most
information about a program: it is the set of maximal finite or infinite traces, in Tr ∞(Σ,A),
starting in a state in I and obeying the transition relation. Defining the blocking states B

as the states without any successor B
def
= {σ | ∀σ′ ∈ Σ, a ∈ A : σ

a
6→τ σ

′ }, we can define
M as:

M def
= {σ0

a1→ · · · an→ σn | σ0 ∈ I ∧ σn ∈ B ∧ ∀i < n : σi
ai+1→ τ σi+1 }

∪ {σ0
a1→ · · · | σ0 ∈ I ∧ ∀i ∈ N : σi

ai+1→ τ σi+1 } .
(2.3)

An equally important fact is that interesting program properties can also be modeled as
sets of traces. Given a property P ⊆ Tr ∞(Σ,A), checking whether the program enjoys
this property is achieved by testing whether M⊆ P .

Example 2.3.1. In the simple case where A is a singleton, we assimilate traces to sequences
of states, in Σ∞, and define the following properties:

− choosing P
def
= S∞ checks that the program stays in a subset of states S ⊆ Σ (invari-

ance); checking for the absence of run-time error is achieved by setting S
def
= Σ \ Ω;

− choosing P
def
= Σ∗ checks that the program terminates;

− choosing P
def
= Σ∗ ·S ·Σ∞ checks that the program necessarily reaches a state in S ⊆ Σ

(inevitability).

End of example.

Remark. In the presence of non-determinism (e.g., due to interval constants), we actually
check that all executions spawning from any sequence of choices satisfy the target property.

End of remark.

Partial traces semantics. The maximal trace semantics is difficult to compute as
it involves infinite traces. A solution consists in observing the finite prefixes of finite
and infinite executions, called partial traces, which leads to the following semantics F ∈
Tr ∗(Σ,A):

F def
= {σ0

a1→ · · · an→ σn | σ0 ∈ I ∧ ∀i < n : σi
ai+1→ τ σi+1 } . (2.4)

F is an abstraction of M. Indeed, F = αpref (M), where:

αpref
def
= λT . { t ∈ Tr ∗(Σ,A) | t ∈ T ∨ ∃a, t′ : t a→ t′ ∈ T } . (2.5)

This abstraction is not complete: F can prove strictly fewer properties than M due to
the loss of information on infinite traces.

19

CHAPTER 2. BACKGROUND

Example 2.3.2. αpref collapses some sets containing infinite traces with sets not containing
any, e.g.:

αpref ({σ}ω) = αpref ({σ}∗) = {σ}∗ .

More generally, it is not possible with F to prove that programs with finite traces of
unbounded length always terminate (F is nevertheless complete for bounded termination
as ∀n : αpref (T) ⊆

⋃
i≤n Σi ⇐⇒ T ⊆

⋃
i≤n Σi).

End of example.

Nevertheless, F can express invariance exactly. Indeed:

∀T ⊆ Tr ∞(Σ,A), S ⊆ Σ : αpref (T) ⊆ Tr ∗(S,A) ⇐⇒ T ⊆ Tr ∞(S,A) .

Another important feature of this semantics is that it can be expressed in fixpoint form,
as F = lfpF where:

F
def
= λX. I ∪ {σ0

a1→ · · ·σi
ai+1→ σi+1 | σ0

a1→ · · ·σi ∈ X ∧ σi
ai+1→ τ σi+1 } . (2.6)

F is a join-morphism that includes initial states and extends traces by adding a new
transition at their end: it is a forward semantics.3 By Thm. 2.2.2, lfpF can then be
expressed as the limit of an iteration sequence, ∅, F (∅), F 2(∅), etc., which stabilizes at
∪i<ωF i(∅).

Reachable state semantics. Computing lfpF by iteration is equivalent to exhaustive
testing, i.e., running the program and observing all its executions, albeit in a non-standard
(i.e., breadth-first) order. It does not terminate when the program has infinite executions.
Thankfully, as we are interested in invariance properties, it is sufficient to observe the set
of reachable states R ⊆ Σ, which is an abstraction of F . We have R def

= αreach(F) where:

αreach
def
= λT . {σ | ∃σ0

a0→ · · ·σn ∈ T : ∃i ≤ n : σ = σi } . (2.7)

And the associated concretization is simply:

γreach
def
= λS. Tr ∗(S,A) .

The abstraction is complete for reachability as:

∀T ⊆ Tr ∗(Σ,A), S ⊆ Σ : αreach(T) ⊆ S ⇐⇒ T ⊆ Tr ∗(S,A) .

However, αreach forgets all information related to the ordering of states in executions.
A fixpoint characterisation of R can be constructed by fixpoint abstraction, using

Thm. 2.2.3. We define the function R ∈ P(Σ)→ P(Σ) as:

R
def
= λS. I ∪ {σ | ∃σ′ ∈ S, a ∈ A : σ′

a→τ σ } (2.8)

3There also exists a fixpoint characterization of the maximal trace semantics M [Cou02], but it is a
backward semantics that cannot enforce σ0 ∈ I. Unlike F , we are not aware of any forward fixpoint
characterization of M.

20

2.3. SEQUENTIAL STATIC ANALYSIS

eq [` stat `
′
] ∈ P(Equations[(X`)`∈L])

eq [`e stat `x]
def
= {X`e = {λV . 0 } } ∪ eqst [

`e stat `x]

eqst [
`X ← e`

′
]

def
= {X`′ = SEJX ← e KX` }

eqst [
`if e ./ 0 then `1s`2 endif `

′
]

def
=

{X`1 = SEJ e ./ 0 KX` } ∪ eqst [
`1s`2] ∪ {X`′ = X`2 ∪ SEJ e 6./ 0 KX` }

eqst [
`while `ie ./ 0 do `1s`2 done`

′
]

def
=

{X`i = X` ∪ X`2 } ∪ {X`1 = SEJ e ./ 0 KX`i } ∪ eqst [
`1s`2] ∪ {X`′ = SEJ e 6./ 0 KX`i }

eqst [
`s1;`1 s2

`′]
def
= eqst [

`s1
`1] ∪ eqst [

`1s2
`′]

where:
let ∀e, ρ : 〈V e

ρ , −〉 = EJ e K ρ in

SEJX ← e KR def
= { ρ[X 7→ v] | ρ ∈ R, v ∈ V e

ρ }
SEJ e ./ 0 KR def

= { ρ ∈ R | ∃v ∈ V e
ρ : v ./ 0 }

Figure 2.4: Equation system generated by a program.

and note that R ◦ αreach = αreach ◦ F , which implies that R = lfpR. Computing lfpR by
iteration corresponds to a breadth-first exploration of reachable sets. It terminates if Σ is
finite (even though F may be infinite). However, Σ is often infinite, or so large that the
reachable subset cannot be represented in extension in a computer. We will have to resort
to further abstractions.

2.3.4 Equational semantics

Before abstracting further, we apply the reachable set abstraction on the transition systems
generated by our language described in Sec. 2.3.1, and restate the semantics in a more
convenient, equation-based form. This classic form dates back from the beginning of
abstract interpretation [CC79b] and it is effectively used in academic and industrial tools
(such as Interproc [LAJ11] and Sparrow [Ya]).

The principle is to partition the set of reachable states R ⊆ Σ by their syntactic
program location in L. Given a program P

def
= `e stat `x, we associate a variable X` with

value in P(E) to each syntactic location ` ∈ L(P) (later abbreviated as L), such that

X`
def
= { ρ | 〈`, ρ〉 ∈ R}. As R = lfpR, (X`)`∈L is the least family, for the element-wise

subset ordering on L → P(E), satisfying: (ρ ∈ X` ∧ 〈`, ρ〉 →τ 〈`′, ρ′〉) ∨ 〈`′, ρ′〉 ∈ I =⇒
ρ′ ∈ X`′ . It is then a simple process to massage the definition of P ’s transition system
from Fig. 2.3 into a set of equations of the form X` = F`(X`1 , . . . ,X`n). This leads to the
set of equations eq [`e stat `x] presented in Fig. 2.4. This set contains an equation defining
the initial states X`e, as well as statement equations defined by induction on the program
syntax: the function eqst [

` stat `
′
] generates a set of equations binding the variables for all

21

CHAPTER 2. BACKGROUND

`1i← 2;
`2n← [−∞,+∞];
`3while `4 i < n do

`5if [0, 1] = 0 then
`6i← i+ 1

`7endif
`8done
`9

X`1 = { [i 7→ 0, n 7→ 0] }
X`2 = SEJ i← 2 KX`1
X`3 = SEJn← [−∞,+∞] KX`2
X`4 = X`3 ∪ X`8
X`5 = SEJ i < n KX`4
X`6 = X`5
X`7 = SEJ i← i+ 1 KX`6
X`8 = X`5 ∪ X`7
X`9 = SEJ i ≥ n KX`4

(a) (b)

X`1 = { 〈x, n〉 | i = 0 ∧ n = 0 }
X`2 = { 〈x, n〉 | i = 2 ∧ n = 0 }
X`3 = { 〈x, n〉 | i = 2 }
X`4 = { 〈x, n〉 | 2 ≤ i ≤ max(2, n) }
X`5 = { 〈x, n〉 | 2 ≤ i ≤ n− 1 ∧ n ≥ 3 }
X`6 = { 〈x, n〉 | 2 ≤ i ≤ n− 1 ∧ n ≥ 3 }
X`7 = { 〈x, n〉 | 3 ≤ i ≤ n ∧ n ≥ 3 }
X`8 = { 〈x, n〉 | 2 ≤ i ≤ n ∧ n ≥ 3 }
X`9 = { 〈x, n〉 | i = max(2, n) }

(c)

Figure 2.5: Example program (a), its equation system (b), and its smallest solution in
assertional form (c).

the locations in ` stat `
′

except `. Moreover, the translation uses two auxiliary semantic
functions, SEJX ← e K and SEJ e ./ 0 K, that respectively model the effect of assigning an
expression to a variable and filtering environments according to the outcome of a test.
These are defined, in turn, using the expression semantics EJ e K from Fig. 2.3. The family
(X`)`∈L we seek is then the least solution of this system, which is nothing more than a
least fixpoint. To lighten the presentation, the equation system does not track error states
in Ω.

Example 2.3.3. Figure 2.5.(a) presents an example program that increments i from 2 to
some user-input value n. Figure 2.5.(b) presents the associated equation system.

End of example.

The family (X`)`∈L defines program invariants: whenever a program execution passes
through location `, its environment ρ always satisfies ρ ∈ X`. There is a deep connection
between this presentation and Floyd–Hoare logic [Flo67, Hoa69]: Cousot and Cousot
[CC77] showed that any solution of X` = F`(X`1 , . . . ,X`n) is an inductive invariant , leading
to valid Hoare triples. Moreover, the least solution we compute corresponds to the most
precise invariant. We will present a similar connection for concurrent programs in Sec. 3.2.

22

2.3. SEQUENTIAL STATIC ANALYSIS

SJ stat K ∈ (P(E)× P(Ω))→ (P(E)× P(Ω))

let ∀e, ρ : 〈V e
ρ , O

e
ρ〉 = EJ e K ρ in

SJX ← e K〈R, O〉 def
= 〈∅, O〉 t

⊔
ρ∈R 〈{ ρ[X 7→ v] | v ∈ V e

ρ }, Oeρ〉

SJ e ./ 0 K〈R, O〉 def
= 〈∅, O〉 t

⊔
ρ∈R 〈{ ρ | ∃v ∈ V e

ρ : v ./ 0 }, Oeρ〉

SJ if e ./ 0 then s endif KX def
= (SJ s K ◦ SJ e ./ 0 K)X t SJ e 6./ 0 KX

SJwhile e ./ 0 do s done KX def
= SJ e 6./ 0 K (lfpλY.X t (SJ s K ◦ SJ e ./ 0 K)Y)

SJ s1; s2 K
def
= SJ s2 K ◦ SJ s1 K

Figure 2.6: Big-step semantics.

Example 2.3.4. Figure 2.5.(c) presents the least solution of the system in Fig. 2.5.(b). It is
presented as logical assertions on the variable pair 〈x, n〉 at each program location, which
makes the connection with Hoare logic more apparent.

End of example.

Remark. Equation system semantics are not limited to computing reachability, they can
also model partial traces: X` will then collect the partial traces that end in a state of
the form 〈`, ρ〉. This opens the way to history-sensitive static analyses, such as traces
partitioning [MR05].

End of remark.

2.3.5 Big-step semantics

Another popular way of presenting the reachability semantics, also used effectively in
tools (such as Astrée, Sec. 6.2) is as input-output functions on states (or, equivalently,
relations on states). We present such a semantics for our language in Fig. 2.6. Given a
set R of environments before a statement stat is executed, SJ stat K computes the set of
environments reached at the end of the statement. Moreover, given a set of error locations
O, it returns O enriched with the location of all the errors encountered while executing
the statement in an environment in R. The join t we use corresponds to the pair-wise set
union of environment sets and error location sets: 〈V1, O1〉t〈V2, O2〉

def
= 〈V1∪V2, O1∪O2〉.

The semantics of a program P ∈ stat is then:

P def
= SJP K 〈{λV . 0 }, ∅〉 . (2.9)

There are several points of note. Firstly, this is a big-step semantics: it does not record
the states at intermediate syntactic locations (although errors occurring at intermediate
statements are recorded and appear in the output). As a consequence, the presentation
in Fig. 2.6 completely dispenses from statement locations. Secondly, it involves a least
fixpoint for each program loop. Each such fixpoint computes a loop invariant, correspond-
ing to the syntactic location named `i in Fig. 2.1, which is then filtered by the loop exit

23

CHAPTER 2. BACKGROUND

condition to obtain the environments reachable at the end of the loop. For any statement,
SJ stat K is a join-morphism in the product of powerset complete lattices P(E) × P(Ω),
which justifies the existence of the fixpoint. Finally, P outputs the set of environments at
the end of the program, and the set of errors that can be encountered at any point during
the execution of the program. For instance, in case of non-termination, P will output an
empty set of environments but nevertheless includes all the errors that may occur in the
program.

The equivalence between the big-step semantics SJ stat K and the reachable state se-
mantics R is proved in [Min12d] and relies on a notion of control paths (we omit the proof
here but we will nevertheless introduce control paths in Sec. 3.3, as they are also useful
to study concurrent programs). As a last remark, note that the big-step semantics is
similar to Scott’s denotational semantics as both view program semantics as input-output
functions (although our semantics is far simpler as we only consider first-order programs).
The connection is stated formally by Cousot in [Cou02] and further explored by Schmidt
in [Sch09].

2.3.6 Environment abstraction

In order to construct a computable and efficient semantics able to reason about the reach-
able states, we now abstract the semantic domain P(Σ). More precisely, we abstract
the environment sets involved in the equational and big-step semantics; we do not ab-
stract the (finite) sets L, V, nor Ω, so that the resulting analysis remains flow-sensitive,
field-sensitive, and precise about the location of errors that can occur.

We first focus on inferring properties of environments (in E def
= V → R) and ignore

error inference for now. We thus start from a numeric abstract domain, which is a partially
ordered set (E],v]E) abstracting environment sets (P(E),⊆), and featuring a monotonic
concretization γE ∈ E] → P(E). In order to abstract both the equational and big-step
semantics, only a few abstract operators are actually needed:

− an assignment: S]EJX ← e K ∈ E] → E] abstracting the function SEJX ← e K from
Fig. 2.4;

− a filter: S]EJ e ./ 0 K ∈ E] → E] abstracting SEJ e ./ 0 K;
− a join: ∪]E ∈ E] × E] → E] abstracting ∪;
− a widening: OE ∈ E] × E] → E];
− an initial state: E]0 ∈ E] abstracting {λV . 0 }.
These abstract operators must obey the soundness condition f(γ(x])) ⊆ γ(f](x])) (2.1)
and, for the widening, the termination condition we presented in Def. 2.2.1. Moreover, in
order to construct an effective analyzer, we need to provide a data-structure to encode in
a computer the elements from E], and algorithms to implement the abstract operators.
Example numeric domains will be presented in Sec. 2.4; we assume for now that one is
given and work from the operators it provides to derive an analysis in a generic way.

To handle errors, we additionally ask for an abstract operator E]ΩJ e K ∈ E] → P(Ω)
that returns the errors encountered when evaluating the expression e in an abstract envi-

24

2.3. SEQUENTIAL STATIC ANALYSIS

ronment. The soundness condition is thus:

E]ΩJ e KR
] ⊇

⋃
ρ∈γE(R])

snd(EJ e Kρ) . (2.10)

Our abstraction of P(E) × P(Ω) is then D] def
= E] × P(Ω), with order 〈R]1, O1〉 v]

〈R]2, O2〉
def⇐⇒ R]1 v

]
E R

]
2 ∧ O1 ⊆ O2 and concretization γ

def
= λ〈R], O〉. 〈γE(R]), O〉.

Sound operators on D] are derived systematically from those on E]:
− assignment: S]JX ← e K〈R], O〉 def

= 〈S]EJX ← e KR], O ∪ E]ΩJ e KR
]〉;

− filter: S]J e ./ 0 K〈R], O〉 def
= 〈S]EJ e ./ 0 KR], O ∪ E]ΩJ e KR

]〉;
− join: 〈R]1, O1〉 t] 〈R]2, O2〉

def
= 〈R]1 ∪

]
E R

]
2, O1 ∪O2〉;

− widening: 〈R]1, O1〉 O 〈R]2, O2〉
def
= 〈R]1 OE R

]
2, O1 ∪O2〉;

− initial state: D]
0

def
= 〈E]0, ∅〉.

Abstract equational semantics. A static analyzer based on equation systems can
then be constructed in three steps. Firstly, we construct an abstract equation system,
featuring a family of variables (X]`)`∈L with value in E] and equations of the form X]` =

F]` (X]`1 , . . . ,X
]
`n

). This is easily done by replacing occurrences of concrete operators SEJ K
and ∪ in Fig. 2.4 with their abstract versions S]EJ K and ∪]E . Secondly, we insert widenings
in order ensure that the system is solvable with finite iterations. This is done by replacing
equations X]` = F]` (X]`1 , . . . ,X

]
`n

) with X]` = X]` O F
]
` (X]`1 , . . . ,X

]
`n

). Widenings need not
be inserted at all syntactic locations; it is sufficient to ensure that each dependency cycle
in the equation system traverses a widening point. Given the very structured nature of
our language, a natural choice is to widen at syntactic locations `i, corresponding to loop
invariants. Finally, we must devise an iteration scheme. A simple idea is to use a work-list
based algorithm. Other iteration schemes and choices of widening points exist. They may
have an impact on efficiency, but also on precision (we refer the reader to Bourdoncle
[Bou93] for an in-depth presentation).

This presentation of a static analyzer in equational form is reminiscent of forward
data-flow analyses [Kil73], but it is more powerful as it allows infinite-height abstract
domains.

Abstract big-step semantics. A big-step static analyzer is even simpler to construct.
It is sufficient to replace concrete operators with abstract ones in the semantics of Fig. 2.6
and insert a widening at each fixpoint computation, in the semantics of loops. The result-
ing semantics is shown in Fig. 2.7. The notation limλY].Y] O F](Y]) denotes the limit
reached (in finite time) by iterating F] with a widening.

The big-step presentation is appealing for two reasons. A first reason is that it stays
very close to the structure of the program, following its control flow. A big-step static
analyzer is an abstract interpretation in a literal way: it interprets the program, but
manipulates an abstract environment representing many concrete environments, instead
of a single one. A second reason is that it makes a parsimonious use of abstract elements:

25

CHAPTER 2. BACKGROUND

S]J stat K ∈ (E] × P(Ω))→ (E] × P(Ω))

S]J if e ./ 0 then s endif KX] def
=

(S]J s K ◦ S]J e ./ 0 K)X] t] S]J e 6./ 0 KX]

S]Jwhile e ./ 0 do s done KX] def
=

S]J e 6./ 0 K(limλY].Y] O (X] t] (S]J s K ◦ S]J e ./ 0 K)Y]))

S]J s1; s2 K
def
= S]J s2 K ◦ S]J s1 K

Figure 2.7: Abstract big-step semantics.

while the equational form maintains an abstract element for each syntactic location in L
at all time, the big-step semantics forgets all the intermediate steps. More precisely, as
the semantics is defined by induction on the program structure, the memory requirement
is linear in the depth of the syntax tree (the number of nested conditionals and loops)
instead of being linear in its size. The associated gain in memory is critical when analyzing
large programs with complex abstract domains.

There are, however, two associated drawbacks. Firstly, unlike equation-based seman-
tics, we do not have any freedom in the iteration scheme: it is fixed by the syntax of
the program. Secondly, it often performs superfluous computations. For instance, when
encountering nested loops, the inner loop is re-analyzed fully for each iteration of the outer
loop, even if the abstract elements have not changed. By comparison, an equation solver
based on a work-list algorithm would avoid such computations. These drawbacks can be
mitigated: there is experimental evidence [Bou93] that the iteration order fixed by the
program syntax is often optimal, and redundant computations can be avoided by caching
results, in particular loop invariants of inner loops, which trades memory for speed.

2.4 Numeric abstractions

In this section, we recall in some details two well-known numeric domains: intervals and
polyhedra. They are very classic, dating from the early days of abstract interpretation.
They are also the foundation upon which we develop new domains in Chaps. 4 and 5.
Additionally, we introduce here floating-point numbers, that will be considered in those
chapters.

Many numeric abstract domains have been proposed in the literature. We refer the
reader to [Min04b, §2.4.5] for an overview. They vary in their expressiveness as well as
their cost versus precision trade-off. For instance, intervals are very cheap but not very
precise, while polyhedra are more expressive, more precise, and more expensive. Figure 2.8
presents how intervals and polyhedra over-approximate, more or less tightly, the same star-
shaped concrete domain.

26

2.4. NUMERIC ABSTRACTIONS

cpi

Figure 2.8: Abstraction of a star-shaped concrete element c in the polyhedra p and
interval i domains.

D]i
def
= (V → I) ∪ {⊥]}

where I def
= { [a, b] | a ∈ R ∪ {−∞}, b ∈ R ∪ {+∞}, a ≤ b }

R]1 v
]
i R

]
2 ⇐⇒

{
R]1 = ⊥] or

∀V : R]1(V) ⊆ R]2(V) if R]1, R
]
2 6= ⊥]

αi(R)
def
=

{
⊥] if R = ∅
λV . [min{ρ(V) | ρ ∈ R}, max{ρ(V) | ρ ∈ R}] if R 6= ∅

γi(R
])

def
=

{
∅ if R] = ⊥]

{ ρ ∈ E | ∀V : ρ(V) ∈ R](V) } if R] 6= ⊥]

Figure 2.9: Interval abstract elements.

2.4.1 Intervals

The interval abstraction consists in inferring, for each variable, an upper and a lower
bound on its possible values. It was introduced early by Cousot and Cousot [CC76] and
it is still widely used as it is efficient and yet able to provide valuable information on
program executions. Bound properties are useful, for instance, to prove the absence of
arithmetic overflow or out-of-bound array access.

The domain of abstract elements D]i is formally presented in Fig. 2.9, with its order

v]i , its abstraction function αi, and its concretization γi (which forms a Galois injection).
It is simply a point-wise extension over V of the interval domain from Ex. 2.2.1 where least
elements ⊥], representing empty intervals, coalesce into a single least element representing
the empty set of environments.

We present in Fig. 2.10 the join abstraction ∪]i, which is optimal but not exact: joining

[1, 2] with [4, 5] yields [1, 5], which contains spurious values, such as 3. Note that D]i is

actually a complete lattice and ∪]i is its least upper bound. The interval widening Oi,
presented in Fig. 2.10, is similar to the join (which it over-approximates) but ensures

27

CHAPTER 2. BACKGROUND

R]1 ∪
]
i R

]
2

def
=


R]2 if R]1 = ⊥]

R]1 if R]2 = ⊥]

λV . [min(R]1(V), R]2(V)),

max(R]1(V), R]2(V))]

otherwise

R]1 Oi R
]
2

def
=


R]2 if R]1 = ⊥]

R]1 if R]2 = ⊥]

λV .R]1(V) OR]2(V) otherwise

where:

[a, b] O [c, d]
def
=

[{
a if a ≤ c
−∞ otherwise

,

{
b if b ≥ d
+∞ otherwise

]
Figure 2.10: Interval join and widening operators.

termination by replacing unstable upper bounds with +∞ and lower bounds with −∞, so
that intervals cannot grow indefinitely.

Finally, we define an abstract assignment operator. AsD]i enjoys a Galois connection, it

is possible to define semantically the best abstraction as S]iJX ← e K def
= αi◦SJX ← e K◦γi.

However, this does not provide an algorithm to compute it. Thus, we opt for an alternate
definition based on abstract expression evaluation. We modify the concrete semantics of
expressions from Fig. 2.2 so that it takes as argument a map from variables to intervals
and outputs a single interval as well as a set of run-time errors. Moreover, we replace
each concrete operator ◦ or � on reals with an abstract operator ◦]i or �]i on intervals, and
take care of detecting and propagating divisions by zero. The corresponding definitions
are given in Fig. 2.11.

Remark. The semantics of Fig. 2.2 is sound but not the best abstraction. The loss of
precision comes from handling different occurrences of the same variable as distinct vari-
ables. For instance, we have E]iJX −ω X K[X 7→ [−1, 1]] = 〈[−2, 2], ∅〉, while, in fact, this
expression evaluates to 0, which is exactly representable as an interval.
End of remark.

It is possible to design an abstract filter operator S]iJ e ./ 0 K along the same principles.
This is slightly complicated by the fact that we must evaluate expressions backward, in
order to infer intervals for variables at the leaves of the expression tree given the interval
of the intended result of the whole expression (i.e., at the root of the expression tree). We
do not present it here; we refer instead the reader to [Min04b] for an example algorithm
that combines forward and backward abstract evaluations in a way reminiscent to the
HC4-revise algorithm [BGGP99] used in constraint programming.

Example 2.4.1. On the program example of Fig. 2.5, an analysis based on the interval
domain will be able to prove that i ≥ 2 at the end of the program, at `9. In this case, we

28

2.4. NUMERIC ABSTRACTIONS

S]iJX ← e K〈R], O〉 def
=

let 〈I, O′〉 = E]iJ e KR] in

{
〈⊥], O ∪O′〉 if I = ⊥]

〈R][X 7→ I], O ∪O′〉 if I 6= ⊥]

where :

E]iJX KR] def
= 〈R](X), ∅〉

E]iJ [c1, c2] KR] def
= 〈[c1, c2], ∅〉

E]iJ ◦ω e KR]
def
= let 〈I, O〉 = E]iJ e KR] in 〈◦]iI, O〉

E]iJ e1 �ω e2 KR]
def
=

let 〈I1, O1〉 = E]iJ e1 KR] in

let 〈I2, O2〉 = E]iJ e2 KR] in

〈I1 �]i I2, O1 ∪O2 ∪ {ω | � = / ∧ 0 ∈ I2 }〉

where :

−]i [a, b]
def
= [−b,−a]

[a, b] +]
i [c, d]

def
= [a+ c, b+ d]

[a, b]−]i [c, d]
def
= [a− d, b− c]

[a, b]×]i [c, d]
def
= [min(ac, bc, ad, bd),max(ac, bc, ad, bd)]

[a, b]/]i [c, d]
def
=



⊥] if c = d = 0
[min(a/c, a/d, b/c, b/d), else if 0 ≤ c
max(a/c, a/d, b/c, b/d)]

[−b,−a]/]i [−d,−c] else if d ≤ 0

([a, b]/]i [c, 0]) ∪]i ([a, b]/]i [0, d]) otherwise

∀R] : ◦]i⊥]
def
= ⊥] �]i R]

def
= R] �]i ⊥]

def
= ⊥]

Figure 2.11: Interval assignment.

find the best interval abstraction of the concrete result i = max(2, n).

End of example.

Remark. Our intervals use real bounds, and so, do not directly provide an effective com-
puter representation nor algorithms. In practice, we use machine representable bounds,
which leads to a slightly weaker domain. For instance, intervals with rational bounds of
arbitrary precision (augmented with +∞ and −∞) lack the abstraction function αi.

4 An-
other solution, discussed in Sec. 2.4.4, consists in using floating-point bounds, which leads
to an efficient implementation but also to some precision degradation due to rounding
errors.

4Indeed, some subsets of Q have no least upper bound. This is the case for instance of A
def
= {x ∈

Q | x2 ≤ 2 }, and so αi(A)
def
= [minA,maxA] is not an interval with rational bounds.

29

CHAPTER 2. BACKGROUND

End of remark.

2.4.2 Polyhedra

The polyhedra domain was introduced by Cousot and Halbwachs in [CH78] to infer affine
inequalities on program variables.

Polyhedra are much more expressive than intervals; in particular, they are relational
(they can express relationships between variables). They are also more precise, even in the
context of inferring variable bounds, as they can compensate from a loss of precision in
the interval domain due to non-optimal combinations of operators, the need for relational
invariants locally, or the use of a widening.

Example 2.4.2. In order to infer invariants of a certain form at the end of a loop, it is often
necessary to infer loop invariants of a strictly more complex form. Consider the simple
loop:

while i < 5000 do
i← i+ 1;
if [0, 1] = 0 then x← x+ 1 endif

done

An interval analysis with widening (and a decreasing iteration) will infer that i = 5000
and x ≥ 0 when the loop terminates, but it will not find any upper bound on x because it
is never tested explicitly. An analysis with polyhedra will infer that x ≤ 5000 because it
is able to infer the loop invariant x ≤ i, and the loop exit condition on i will then refine
the value of x.

End of example.

Polyhedra are based on the theory of linear algebra. In the following, we assimilate
the set of environments V → R to a vector space Rn by fixing an order on the set of
variables V def

= {V1, . . . , Vn }. We thus denote an environment ρ ∈ V → R as a vector
~V

def
= (ρ(V1), . . . , ρ(Vn)).

Double description method

Representation. Semantically, the elements of the polyhedra abstract domain D]p are
closed, convex (and possibly unbounded) polyhedra of Rn. There exists two convenient
syntactic representations for polyhedra:

• as a finite set of affine constraints C = {
∑n

i=1A1iVi ≤ B1, . . . ,
∑n

i=1AmiVi ≤ Bm },
which we also denote as a pair 〈A, ~B〉 composed of a matrix A ∈ Rm×n and a vector
~B ∈ Rm;

• as a finite set of vector generators: points { ~P1, . . . , ~Pp} and rays { ~R1, . . . , ~Rr }, which
we denote as a pair [P, R] of matrices P ∈ Rn×p and R ∈ Rn×r.

30

2.4. NUMERIC ABSTRACTIONS

The concretization of a set of constraints is the set of vectors satisfying all the constraints,
while the concretization of a set of generators is the sum of a convex combination of its
points and a conical combination of its rays (allowing unbounded polyhedra):

γp(C)
def
= γp(〈A, ~B〉)

def
= { ~V | A× ~V ≤ ~B }

γp([P, R])
def
= { (

∑p
j=1 αj

~Pj) + (
∑r

j=1 βj
~Rj) | ∀j : αj ≥ 0, βj ≥ 0,

∑p
j=1 αj = 1 } .

(2.11)

Note that there is no abstraction function: some vector sets do not have a best over-
approximation as a convex closed polyhedron (such as the disk X2 +Y 2 ≤ 1 which can be
defined as the limit of infinitely many polyhedra, none of which is optimal). Additionally,
syntactic representations are not unique. For instance, the constraint sets {X − Y ≤
0, X ≤ 0, Y ≤ 0 } and {X − Y ≤ 0, Y ≤ 0 } represent the same polyhedron: the
constraint X ≤ 0 is redundant in the former polyhedron and can be removed. In order
to improve the efficiency in memory, it is desirable to remove redundant constraints.
Nevertheless, two minimal constraint sets (i.e., where no constraint is redundant) can
represent the same polyhedron: both {X ≤ 0,−X ≤ 0, Y ≤ 0,−Y ≤ 0 } and {X − Y ≤
0, X +Y ≤ 0,−X ≤ 0 } represent the point (0, 0). The algorithms defined below compute
on the syntactic representation of polyhedra. However, any such algorithm f] will satisfy
γp(P

]) = γp(Q
]) =⇒ γp(f

](P])) = γp(f
](Q])); hence, we argue that they have a semantic

meaning at the level of polyhedra in D]p, irrespective of the chosen representation.

Polyhedral abstract operators are often much easier to define on one representation
than on the other. Hence, the benefit of the double description method is to simplify the
design of the domain by reducing its complexity to a single operation: converting from
one representation to the another one when more convenient. The standard conversion
algorithm is due to Chernikova and later improved by LeVerge [LeV92]. In addition
to converting, it also minimizes the output representation. Modern versions are highly
optimized and quite complex; we do not discuss them here and refer instead the reader to
[LeV92].

Abstract operators. Assuming that both the constraint and the generator representa-
tions are available, we present the polyhedra abstract operators in Fig. 2.12. The partial
order v]p precisely models polyhedra inclusion: P] v]p Q] ⇐⇒ γp(P

]) ⊆ γp(Q
]). It

is thus possible to test for the semantic equality of syntactic representations, which we
denote as =]

p, by double inclusion with respect to v]p. The polyhedra join ∪]p joins gen-
erators to compute the topological closure of the convex hull of its arguments, which is
the smallest convex closed polyhedron containing both its arguments. An affine inequality
test ~A · ~V +b ≤ 0 is modeled directly by constraint addition, which is an exact abstraction.
Variants, such as ~A · ~V +[b, c] ≤ 0 and ~A · ~V +b = 0, can be reduced to the affine inequality
case. A non-deterministic assignment Vi ← [−∞,+∞] is modelled by adding, as rays, the
basis vectors ~ei and −~ei corresponding to the variable Vi and its opposite. Assignments
Vi ← e are handled in three steps: firstly, a fresh variable Vn+1 is used to hold the value of
the expression e, then the “old” value of Vi is forgotten by a non-deterministic assignment

31

CHAPTER 2. BACKGROUND

[P, R] v]p 〈A, ~B〉
def⇐⇒ ∀i : A× ~Pi ≤ ~B ∧ ∀i : A× ~Ri ≤ ~0

P] =]
p Q]

def⇐⇒ P] v]p Q] ∧Q] v]p P]

[P1, R1] ∪]p [P2, R2]
def
= [P1 P2, R1 R2]

S]pJ ~A · ~V + b ≤ 0 KC def
= C ∪ { ~A · ~V + b ≤ 0 }

S]pJ ~A · ~V + [b, c] ≤ 0 K def
= S]pJ ~A · ~V + b ≤ 0 K

S]pJ e = 0 K def
= S]pJ e ≤ 0 K ◦ S]pJ − e ≤ 0 K

when e is not affine: S]pJ e ./ 0 K def
= λP]. P]

S]pJVi ← [−∞,+∞] K[P, R]
def
= [P, R (~ei) (−~ei)]

S]pJVi ← e K def
= [Vn+1/Vi] ◦ S]pJVi ← [−∞,+∞] K ◦ S]pJVn+1 − e = 0 K

C1 Op C2
def
= { c ∈ C1 | C2 v]p {c} } ∪
{ c2 ∈ C2 | ∃c1 ∈ C1 : C1 =]

p (C1 \ {c1}) ∪ {c2} }

Figure 2.12: Double description polyhedral operators.

and, finally, the new variable Vn+1 is renamed into Vi by substitution in the constraint
set, which is denoted as [Vn+1/Vi].

5 This three-step operation is required in case Vi ap-
pears also in the assigned expression. When e is affine, all three operations are exact,
so the affine assignment is also exact. Abstracting precisely non-affine assignments and
tests is more challenging. In Fig. 2.12, we choose to model non-affine tests as the identity
and, as a consequence, non-affine assignments reduce to the non-deterministic assignment
Vi ← [−∞,+∞], which is sound but not very precise. An alternate solution would be
to use the interval domain locally, by converting the polyhedron to its bounding-box, ap-
plying the interval operation, and incorporating the range of the result into the original
polyhedron. Another solution is to abstract expressions themselves, as we will discuss in
Sec. 2.4.3. Finally, a simple solution to compute errors E]ΩJ e K in expressions is to also
rely on the interval domain, applied on the bounding box of the polyhedron.

The final operator, widening C1OC2, is defined intuitively by removing the constraints
in C1 that are not satisfied by C2. There are, however, two subtle issues [BHRZ05]. Firstly,
in order to terminate, the arguments must not contain redundant constraints. Secondly,
in order to be independent from the choice of constraint representation, we must add
constraints from C2 that are redundant with a constraint from C1, i.e., any c2 ∈ C2 such
that ∃c1 ∈ C1 : C1 =]

p (C1 \ {c1}) ∪ {c2}.

Remark. As for intervals, implementations of polyhedra do not use reals but computer-
representable numbers. Traditionally, exact rational arithmetic (requiring arbitrary preci-
sion numbers) is used. Achieving soundness with inexact data-types, such as floating-point

5After the non-deterministic assignment, Vi should not occur in the constraint set, so that all the
occurrences of Vi in the result only come from that of Vn+1.

32

2.4. NUMERIC ABSTRACTIONS

numbers is not straightforward; this is one of our contribution, discussed in Chap. 4.

End of remark.

Constraint-only method

A drawback of polyhedra is that their representation is unbounded: one can construct
(minimal) polyhedra consisting of arbitrary many constraints or generators. This is exac-
erbated by the fact that one representation can be exponentially larger than another. In
particular, a simple box ∧i ai ≤ Vi ≤ bi, expressed as only 2|V| constraints, requires 2|V|

generators (one for each corner of the box). To avoid such pathological cases, Simon and
King [SK05] suggest abandoning the double description method and construct a polyhedra
domain using solely constraints. In order to remove the need for generators, it is sufficient
to provide a way to perform the following four operators using constraints only:

1. compute v]p;
2. remove redundant constraints;
3. compute S]pJVi ← [−∞,+∞] K;
4. compute ∪]p.

The first two steps can be achieved using linear programming, and the last two using
projection.

Linear programming. Given a polyhedron C in constraint form and a vector ~A ∈ Rn,
the linear programming problem LP(C, ~V) consists in computing the minimum of ~A · ~V
when ~V ranges in the polyhedron:

LP(C, ~A)
def
= min { ~A · ~V | ~V ∈ γp(C) } . (2.12)

Efficient algorithms, such as the Simplex algorithm, exist to compute LP ; we refer the
reader to [Sch86] for more information on the algorithmic aspect. Linear programming

can be used to model constraint entailment, and so, to compute v]p:

C v]p { ~A · ~V ≤ b } ⇐⇒ LP(C,− ~A) + b ≥ 0

C1 v]p C2
def⇐⇒ ∀c ∈ C2 : C1 v]p {c} .

(2.13)

A constraint c = (~A · ~V ≤ b) ∈ C is redundant if and only if C \ {c} v]p {c}, i.e. if
LP(C \ {c},− ~A) + b ≥ 0. A simple algorithm to minimize constraint sets is to remove
redundant constraints one by one until no more can be removed6 ([SK05] proposes several
efficiency improvements, such as testing for syntactic redundancy and testing against a
bounding box, which are fast operations, before executing a linear programing check,
which is slower; we also refer the reader to [HLL92, Imb93] on related optimizations).

6It is not possible to remove all the redundant constraints at once because there can exist pairs of
mutually redundant constraints; in that case, we should avoid removing both.

33

CHAPTER 2. BACKGROUND

Projection. Forgetting the value of a variable Vi can be achieved by eliminating all
the occurrences of Vi in the constraint set C, i.e., it is a projection. Note, however, that
adding to C any conical combination (i.e., with positive coefficients) of constraints from C
does not change its concretization, and it is possible to find combinations where Vi does
not occur although Vi occurs in the constraints that are combined. To avoid losing any
information not related to Vi in the forget operation, we need to take such constraints into
account. This leads to Fourier–Motzkin’s elimination algorithm, which combines pairs of
constraints where the coefficients of Vi have opposite signs, in order to eliminate Vi, and
keeps constraints with a null coefficient for Vi:

FM (C, Vi)
def
= { (~A · ~V ≤ b) ∈ C | Ai = 0 } ∪
{A+

i c
− −A−i c+ | c+ = (~A+ · ~V ≤ b+) ∈ C,

c− = (~A− · ~V ≤ b−) ∈ C, A+
i > 0, A−i < 0 } .

(2.14)

This is actually an exact abstraction of SJVi ← [−∞,+∞] K.

Join. Benoy et al. proved in [BKM05] that computing the join ∪]p can be reduced to
the projection. Given two polyhedra 〈A1, ~B1〉 and 〈A2, ~B2〉, a first step is to construct a
polyhedron on the extended variable set {Vi, V 1

i , V
2
i | Vi ∈ V } ∪ {σ1, σ2 } combining all

these constraints as follows:

C def
= { ~V = ~V 1 + ~V 2, σ1 + σ2 = 1, σ1 ≥ 0, σ2 ≥ 0, A1

~V 1 ≤ ~B1σ1, A2
~V 2 ≤ ~B2σ2 } .

(2.15)
It expresses that ~V should be a convex combination, with coefficients σ1 and σ2, of a
point 1

σ1
~V 1 in the first polyhedron and a point 1

σ2
~V 2 in the second polyhedron. The

second step is to eliminate all the variables except ~V using FM . As for redundancy
removal, several techniques can be applied to improve the efficiency of the join operator,
for instance avoiding the generation of constraints that are known to be redundant. We
refer the reader to [SK05] for an in-depth presentation of the constraint-only domain and
its various optimizations.

2.4.3 Linearization

The construction of abstract assignments and tests on non-relational domains, such as the
interval domain (Fig. 2.11), is based on generic algorithms parametrized by abstractions
of the operators used in expressions; as a consequence, these domains can handle expres-
sions of any shape. This is not the case for relational domains. There, the shape of tests
and assignments is tightly tied to the properties exactly representable in the domain: as
polyhedra can only represent affine inequalities, the polyhedra domain naturally abstracts
affine assignments and tests, and reverts to coarse fall-back operators (respectively the
forget and the identity operators) in other cases. To go further, we proposed in [Min04b]
a notion of expression abstraction, whose main application is to transform non-affine ex-
pressions into affine (or near affine) ones. We recall this technique as it will be useful to
handle floating-point expressions in Sec. 2.4.4 and Chap. 4.

34

2.4. NUMERIC ABSTRACTIONS

The core idea is to put expressions into affine form where constant coefficients are
replaced with intervals, which we call interval affine forms:

e ::= [a0, b0] +
n∑
k=1

[ak, bk]Vk .

Our goal here is to benefit both from the algebraic properties of affine forms and from the
abstracting power of intervals.

Affine form algebra. We define the addition � and subtraction � of two affine forms,
and the multiplication � and division � of an affine form by an interval as follows, using
interval arithmetic operators from Fig. 2.11:

([a0, b0] +
∑

k[ak, bk]Vk)� ([a′0, b
′
0] +

∑
k[a
′
k, b
′
k]Vk)

def
=

([a0, b0] +]
i [a′0, b

′
0]) +

∑
k([ak, bk] +]

i [a′k, b
′
k])Vk

([a0, b0] +
∑

k[ak, bk]Vk)� ([a′0, b
′
0] +

∑
k[a
′
k, b
′
k]Vk)

def
=

([a0, b0]−]i [a′0, b
′
0]) +

∑
k([ak, bk]−

]
i [a′k, b

′
k])Vk

([a0, b0] +
∑

k[ak, bk]Vk)� [a′, b′]
def
= ([a0, b0]×]i [a′, b′]) +

∑
k([ak, bk]×

]
i [a′, b′])Vk

([a0, b0] +
∑

k[ak, bk]Vk) � [a′, b′]
def
= ([a0, b0]/]i[a

′, b′]) +
∑

k([ak, bk]/
]
i[a
′, b′])Vk .

(2.16)

Expression abstraction. We say that e′ abstracts e in an environment set R ⊆ E ,
which we denote as e vR e′, if ∀ρ ∈ R : EJ e Kρ v EJ e′ Kρ, i.e., e′ evaluates to more values
and errors. When e vR e′, then SJX ← e KR and SJ e ./ 0 KR can be safely replaced with
SJX ← e′ KR and SJ e′ ./ 0 KR. As a consequence, in the abstract, when e vγ(R]) e

′, we can

safely abstract SJX ← e Kγ(R]) and SJ e ./ 0 Kγ(R]) as S]JX ← e′ KR] and S]J e′ ./ 0 KR]

respectively. This is especially interesting when e′ is easier to abstract than e in our
abstract domain.

We now show how to abstract an arbitrary expression e into an affine form, which we
call linearization and denote by lin(e). We suppose that we can extract from the abstract
element R] a map I] ∈ V → I associating to each variable its bounds. We then define
lin(e) by induction on the syntax of the expression e as presented in Fig. 2.13. We have
the following property: e vγi(I]) lin(e). Note that lin tries to keep expressions symbolic
as much as possible, but resorts to abstracting affine forms into intervals (through eval)
when non-linear constructions are encountered (such as divisions and multiplications).
This abstraction is the reason why the transformation is parametrized by variable bounds
I] and it is sound only for abstract elements respecting these bounds.

Applications. We can feed an interval affine form directly to the interval domain, where
it may provide an increase of precision thanks to the symbolic simplification performed
by lin (e.g., lin(X −ω X) = 0). To further simplify the affine form l output by lin, it is

35

CHAPTER 2. BACKGROUND

lin(V)
def
= V

lin([c1, c2])
def
= [c1, c2]

lin(−ωe)
def
= � lin(e)

lin(e1 +ω e2)
def
= lin(e1)� lin(e2)

lin(e1 −ω e2)
def
= lin(e1)� lin(e2)

lin(e1 ×ω e2)
def
=

{
lin(e1)� eval(lin(e2))) or
lin(e2)� eval(lin(e1)))

lin(e1/ωe2)
def
= lin(e1)� eval(lin(e2))

where:

eval([a0, b0] +
∑

k[ak, bk]Vk)
def
= [a0, b0] +]

i

∑]
i
n
k=1[ak, bk]×]i I](Vk)

Figure 2.13: Expression linearization.

possible to ensure that the coefficients of all the variables are scalar, by distributing their
contribution over the constant coefficient which is allowed to be an interval; we note the
result slin(l):

slin([a0, b0] +
∑

k[ak, bk]Vk)
def
=∑

k
ak+bk

2 Vk +
(

[a0, b0] +]
i

∑]
i k[

ak−bk
2 , bk−ak2]×]i I](Vk)

)
.

(2.17)

The resulting interval affine form can be fed to the polyhedra domain, thus achieving a
sound abstraction of assignments and tests for arbitrary expressions. We have chosen here
to replace each interval with its midpoint, but other choices are equally possible (such as
rounding to a set of predefined thresholds).

2.4.4 Floating-point numbers

Computers cannot manipulate real numbers, which are uncountable: they use finite ap-
proximations instead. A popular approximation is floating-point numbers (or floats) which
can represent a wide range of values using a mantissa and an exponent of fixed bit-size.
The large majority of programming languages and compilers now support the IEEE 754
floating-point standard [IEE85]; it is also widely supported natively in modern processors,
making float computations very efficient. The algebra of floats differs significantly enough
from the real one that an analysis assuming one semantics is not sound with respect to the
other. A static analysis should support floats for two reasons: firstly, to analyze soundly
programs manipulating floats and, secondly, to benefit from the efficiency of hardware
float operations in order to improve the analysis time. The first aspect concerns the con-
crete semantics, while the second aspect concerns the implementation of abstract domains.
They can be combined to construct a float analyzer for float programs.

We briefly recall some existing works on these two topics. We limit ourselves here
to a real-based semantics of floats (a more precise semantics based on a bit-level repre-

36

2.4. NUMERIC ABSTRACTIONS

sentation of floats will be presented in Sec. 5.3). Moreover, we restrict the use of floats
in implementations to intervals (float implementations of polyhedra will be considered in
Sec. 4.1).

Floating-point arithmetic. Due to the limited precision of floats, not all reals can be
represented as floats; we assimilate the set of floats F to a finite subset of reals R. We
denote as R+∞ ∈ R→ F the operation rounding a real up to a representable float, i.e.:

R+∞(x)
def
= min { y ∈ F | x ≤ y } . (2.18)

Likewise R−∞ denotes rounding down, so that R−∞(x)
def
= −R+∞(−x). Float implemen-

tations support alternate rounding modes, such as rounding to nearest or towards 0 but,
for our purpose, it is sufficient to note that all implemented rounding functions Rr obey
the relation:

∀x : R−∞(x) ≤ Rr(x) ≤ R+∞(x) . (2.19)

Arithmetic operators require some form of rounding as the real result is generally not
representable in F. We use circled operators ⊕r, 	r, ⊗r, �r, tagged with a rounding
direction r, to distinguish them from the operators on reals +, −, ×, /. Following the
IEEE 754 standard, a floating-point operation with rounding mode r should be equivalent
to computing the exact real result followed by rounding, i.e.:

∀a, b,∈ F : ∀· ∈ {+,−,×, / } : a�r b
def
= Rr(a · b) . (2.20)

Such operations are not always defined: / can result in a division by zero, and any operation
can output a real result that cannot be rounded with Rr as it overflows F. In this section,
we consider such cases to be run-time errors.7 To construct a concrete semantics of
programs manipulating floating-point numbers, it is sufficient to replace +, −, ×, and
/ with ⊕r, 	r, ⊗r, and �r in EJ e1 �ω e2 K in Fig. 2.2. As neither the negation nor the
comparisons of floats incur any rounding, there is no need to change the semantics of −ωe
nor e ./ 0.

Floating-point intervals. It is straightforward to adapt the interval domain (Sec. 2.4.1)
to use float bounds instead of real ones. As F is bounded (unlike R), there is no need for
infinite interval bounds, and so, we use bounds in F instead of R ∪ {+∞,−∞}. Thanks
to (2.19), sound operators can be derived by always rounding upper bounds up and lower

bounds down. For instance, the operator +]
i in Fig. 2.11 is replaced with ⊕]i defined as:

[a, b]⊕]i [c, d]
def
= [a⊕−∞ c, b⊕+∞ d] (2.21)

and similarly for]i, ⊗
]
i, �

]
i . The result is an abstract static analysis implemented purely

in floats, and that can soundly analyze programs manipulating floats.

7The IEEE 754 standard makes provision for special numbers, such as +∞, −∞, and NaN , which can
be returned in these cases. Our simplified semantics assumes instead that the creation of a special number
is an error, which is often what is intended by the programmer.

37

CHAPTER 2. BACKGROUND

Floating-point linearization. Adapting the polyhedra domain (Sec. 2.4.2) from ab-
stracting real-valued variables and expressions to abstracting float-valued ones is not much
more complicated, as long as we keep representing polyhedra using arbitrary precision ra-
tionals and implementing the algorithms with exact arithmetic (replacing them with floats
is much harder and will be discussed in Sec. 4.1). We proposed in [Min04a] to reuse the lin-
earization and abstract the (highly non-linear) rounding function Rr as a non-deterministic
choice in an error interval. For instance, assuming 32-bit single precision numbers, the
rounding error can be bounded by |R(x)−x| ≤ max(2−23|x|, 2−159), denoting either a rela-
tive rounding error of magnitude 2−23, or an absolute error of magnitude 2−159 (caused by
computations on denormals, i.e., numbers close to zero). Given that the relative rounding
error on an affine form l can be also expressed as an affine form ε(l):

ε([a0, b0] +
∑

k[ak, bk]Vk)
def
=

2−23(max(|a0|, |b0|)[−1, 1] +
∑

k max(|ak|, |bk|)[−1, 1]Vk)
(2.22)

the linearization algorithm from Fig. 2.13 can be easily modified to add rounding errors
after each operation. For instance, we get:

lin(V)
def
= V

lin(r,ωe)
def
= � lin(e)

lin(e1 ⊕r,ω e2)
def
= lin(e1)� lin(e2)� ε(lin(e1)� lin(e2))� [−2−159, 2159]

lin(e1 ⊗r,ω e2)
def
= eval(lin(e1))� (lin(e2)� ε(lin(e2)))� [−2−159, 2159] .

When evaluated with a real semantics, the affine form returned by lin(e) safely over-
approximates the set of values computed by EJ e K with a float semantics. Hence, lin(e) or
slin(lin(e)) can be directly fed to a domain, such as polyhedra, that reasons on reals.

2.5 Conclusion

In this chapter, we have recalled well-known notions of abstract interpretation and used
them to construct a classic static analysis parametrized by a numeric abstract domain,
of which we gave two examples. Our work, detailed in the following chapters, extends
these results in several directions. More precisely, we will discuss: a generic extension to
concurrency (Chap. 3), a specific extension to data-structures in the C language (Chap. 5),
extended polyhedral domains (Chap. 4), and actual implementations and experimental
results (Chap. 6).

38

Chapter 3

Analysis of concurrent programs

My main current research topic is the analysis of concurrent programs by abstract in-
terpretation. This chapter presents the theoretical foundations of a practical analysis of
concurrent programs to infer invariants and report soundly all run-time errors. As concur-
rent programming models are diverse and exhibit widely different semantics, we narrow
our focus to a simple model using a fixed set of threads that communicate implicitly in a
shared memory. This model is far from the only one, but it is realistic and fits very well
an important application domain for program verification: embedded critical software. As
in Sec. 2.3, we work on a simple artificial language in order to present our construction
fully formally and focus on concurrency only, being understood that the method can be
applied in real-life contexts (as reported in Sec. 6.3).

Our threaded language is presented in Sec. 3.1. It is extended in Sec. 3.4 to support
explicit synchronization mechanisms: mutual exclusion locks, as well as priority-based
real-time scheduling which is pervasive in the realm of embedded software.

A first attempt at providing a semantics and deriving a static analysis for our lan-
guage is also described in Sec. 3.1. It follows the same principles as in Chap. 2, using
transition systems, trace semantics, and state abstractions. We show, however, that this
straightforward adaptation of sequential semantics to concurrent semantics comes at great
cost in efficiency. Although we can abstract environments, we suffer, on the control state,
from the combinatorial state explosion problem that plagues enumeration methods (such
as explicit-state model checking). Thus, we propose an abstraction that limits the control
state by reducing the analysis of a concurrent program to the analysis of its individual
threads, complemented with a notion of interferences that model thread interactions. We
take our inspiration from a thread-modular proof method, so-called rely-guarantee, intro-
duced by Jones [Jon81]. We first formalize rely-guarantee as abstract interpretation, in
Sec. 3.2, before applying abstractions to construct a static analysis in big-step form, in
Sec. 3.3. As the sequential static analysis from Sec. 2.3, this analysis is parametrized by
a choice of numeric abstract domains. In fact, we show that the concurrent analysis can
be constructed from a sequential one with only minor changes.

As last extension, in Sec. 3.5, we study the effect of weakly consistent memory models

39

CHAPTER 3. ANALYSIS OF CONCURRENT PROGRAMS

on the soundness of our analysis. Such models are now accepted as realistic semantics
of modern processors and are being included in the specification of most programming
languages.

The work presented in this chapter has been published in more details in [BCC+10a,
Min11, Min12d, Min12c]. In particular, we refer the reader to [Min12d, Min12c] for the
proof of the theorems (which are omitted here). The analysis described here has been
implemented within the AstréeA analyzer. We delay the discussion of the implementation
and the experimental results to Chap. 6.

3.1 Concurrent language

We consider here a simple multi-thread extension of our language from Sec. 2.3.1. We
presents its syntax, its semantics, and its abstraction into a static analyzer.

3.1.1 Syntax

The syntax of Fig. 2.1 is modified in a single but meaningful way: instead of being com-
posed of a single statement, programs are now parallel compositions of several statements,
called threads:

prog ::= `e1 stat1
`x1 || · · · || `eN statN

`xN . (3.1)

We identify threads by numbers and denote the set of all identifiers as T def
= { 1, . . . , N }.

Note that the parallel operator || can only appear at the top level, not inside statements,
preventing the dynamic creation of threads. We assume here a fixed finite number N
of threads, but Sec. 3.2.4 shows that some of our results can be adapted to the case
where threads have an unbounded number of concurrent instances. Furthermore, we do
not consider any concurrency-specific statement to control the scheduling or implement
synchronization yet; they will be added in Sec. 3.4.

3.1.2 Semantics

Our goal is to design a static analysis for our concurrent language. We start by applying
the method from Sec. 2.3 which was successful on sequential programs: we define a small-
step concrete semantics as a transition system, derive concrete trace and state semantics
making program properties apparent, and finally abstract them into an approximated but
computable semantics.

We will see, however, that constructing a static analysis by abstracting the state se-
mantics does not give acceptable performances. We will solve this problem in Sec. 3.2 by
returning to the trace semantics, and abstracting it in another way.

Transition system

The transition system (Σ,A, I, τ) modeling our program is defined as follows:

40

3.1. CONCURRENT LANGUAGE

− As state space, we use Σ
def
= ((T → L) × E) ∪ Ω. The program can be in a state

〈`, ρ〉 ∈ (T → L) × E , where each thread t ∈ T has its own control location `(t) ∈ L
and the environment ρ ∈ E is shared. Alternatively, it can be in an error state ω ∈ Ω.

− All the threads start at their first location and all the variables are initialized to 0:
I

def
= { 〈λt. `et, λV . 0〉 }.

− The actions are the thread identifiers: A def
= T .

− The transition relation τ of the whole program is derived from the transition relation of
its individual threads, each thread being seen as a sequential process. Given, for each
thread t ∈ T , the relation τ

[
`et stat t

`xt
]

defined by Fig. 2.3, we define τ as:

〈`, ρ〉 t→τ 〈`′, ρ′〉
def⇐⇒

〈`(t), ρ〉 →
τ[`et statt

`xt]
〈`′(t), ρ′〉 ∧ ∀t′ 6= t : `(t′) = `′(t′) .

(3.2)

This states that an execution step of the program is an execution step of any single
thread t, which updates its control state `(t) and the global memory ρ according to the
sequential semantics, but leaves the control location of other threads `(t′), t′ 6= t intact.

We note that the transition system of the program is much larger than that of its individual
threads: the control part of Σ has a larger size (T → L instead of L), while any single
transition in a thread yields |L|N−1 transitions in τ as it is duplicated for each possible
control state of the other threads.

3.1.3 Trace and state semantics

The benefit of modeling concurrent programs as transition systems is that the trace and
state semantics from Sec. 2.3.3 can be directly applied.

Maximal trace semantics. Recall that the maximal trace semantics M from (2.3) is
the set of maximal finite or infinite traces in Tr ∞(Σ,A) starting in an initial state and
obeying τ . It models effectively a program execution as the arbitrary interleaving of thread
executions, where each assignment X ← e or test e ./ 0 denotes an atomic operation. In
particular, a thread cannot be preempted during the evaluation of an expression (this
limitation will be addressed in Sec. 3.5). This simple and natural model of concurrent
executions corresponds to sequential consistency, as coined by Lamport [Lam79] (Sec. 3.5
will also consider more complex execution models). Additionally, the trace semantics keeps
track of which thread performs any given transition, using actions.

As stated before on sequential programs, the maximal trace semantics is very expres-
sive: M captures much program information, and many properties can be expressed as
a set of maximal traces P and simply checked by testing whether M ⊆ P . Examples
include: termination (M⊆ Tr ∗(Σ,A)) and invariance (M⊆ Tr ∞(S,A) for some S ⊆ Σ).

41

CHAPTER 3. ANALYSIS OF CONCURRENT PROGRAMS

On concurrent programs, it additionally allows proving properties under fairness condi-
tions. Fairness [Fra86] ensures that no thread is denied to run; it is a property enforced
by many schedulers. Formally, we define the notion of a thread t enabled in a state σ as
its ability to make a transition:

enblτ (σ, t)
def
= ∃σ′ ∈ Σ : σ

t→τ σ
′ . (3.3)

An infinite trace σ0
a0→ σ1

a1→ σ2 · · · is weakly fair for τ if no thread can be continuously
enabled without running infinitely often:

∀t ∈ T : (∃i : ∀j ≥ i : enblτ (σj , t)) =⇒ (∀i : ∃j ≥ i : aj = t)

while it is strongly fair if no thread can be infinitely often enabled (possibly intermittently)
without running infinitely often:

∀t ∈ T : (∀i : ∃j ≥ i : enblτ (σj , t)) =⇒ (∀i : ∃j ≥ i : aj = t) .

Given the set Fair of (weakly or strongly) fair infinite traces for τ and of finite traces, a
proof of a property P under fairness reduces to checking that M∩Fair ⊆ P .

Example 3.1.1. Consider the program :

prog
def
= while X ≥ 0 do X ← X + 1 done || X ← −1 .

Then, M contains an infinite trace where the second thread never runs. Thus, without
any fairness condition, M does not always terminate: M 6⊆ Tr ∗(Σ,A). However, unless
it makes a transition, the second thread is always enabled; hence this infinite trace is
neither strongly nor weakly fair. Moreover, it is sufficient that the second thread makes a
transition for the program to terminate. Thus, under both fairness conditions, prog always
terminates: M∩Fair ⊆ Tr ∗(Σ,A).
End of example.

Partial trace semantics. Recall that the partial trace semantics F (2.4) is the set of
finite prefixes of the maximal trace semanticsM. It is an abstraction F = αpref (M) (2.5)
of the maximal trace semantics. It is more convenient to compute as it dispenses with
infinite traces and it admits a characterization as the least fixpoint of a forward operator
F (2.6), but it looses some information.

We showed in Ex. 2.3.2 that the abstraction αpref makes it impossible to prove the
termination of programs with computations of finite but unbounded length. On concurrent
programs, it also makes proofs under fairness conditions impossible.

Example 3.1.2. Consider again the program from Ex. 3.1.1. We have αpref (M∩Fair) =
αpref (M). Indeed, M∩ Fair removes a single infinite trace from M, the one where the
second thread never runs, but it does not remove any strict partial trace: the prefix of
length n of the infinite trace is also the prefix of a finite trace in M (for instance a prefix
of the trace where the second thread runs only at the n+ 1-th step).
End of example.

42

3.1. CONCURRENT LANGUAGE

Reachable state semantics. As for sequential programs, we are interested in inferring
reachability to prove invariant properties. Liveness properties [LS85] (such as termination)
and proofs under fairness assumptions [Fra86] are thus out of the scope of our work. We
would like to consider them in future work and, for now, we refer the reader to Radhia
Cousot’s work for a discussion on these topics [Cou85]. As we focus on invariance, it is
natural to further abstract the partial traces to only compute the reachable state semantics
R = αreach(F) (2.7), which forgets the ordering of states. It can be expressed as a fixpoint
R = lfpR where the definition of R, introduced in (2.8), is recalled below:

R
def
= λS. I ∪ {σ | ∃a ∈ A, σ′ ∈ S : σ′

a→τ σ } .

On concurrent programs, this abstraction also forgets about actions, and so, about thread
identities. This suggests that we can remove actions from the original transition system to
get a semantics which is more similar to that of a sequential program, and derive equation-
based or big-step semantics that are convenient to turn into static analyzers. This is what
we attempt in the following two sections.

3.1.4 Equational semantics

Following Sec. 2.3.4, we construct an equational version of the concrete state semantics
by partitioning states by control locations ` (ignoring error states): we assign a variable
X` with value in the powerset of memory states P(E) to each location `, and generate
equations by induction on the syntax of programs. However, a control location ` is no
longer a single, global syntactic point, but rather a per-thread syntactic point: ` ∈ T → L.
To derive the equations, we consider the equations of each thread eq

[
`et stat t

`xt
]

seen as
a sequential process, as defined Fig. 2.4, and join them in a way similar to the way τ is
derived from τ

[
`et stat t

`xt
]

in (3.2). More precisely, the set eq of equations is:

eq
def
= {X`0 =

⋃
t∈T {F (X`1 , . . . ,X`n) |

∃(X`′ = F (X`′1 , . . . ,X`′n)) ∈ eq
[
`et stat t

`xt
]

:

∀i ≤ n : `i(t) = `′i ∧ ∀t′ 6= t : `i(t
′) = `0(t′) } | `0 ∈ T → L} .

(3.4)

Intuitively, for each concurrent control location `0 ∈ T → L, we are joining equations from
any thread t where the left-hand side X`′ matches `0(t).

Given the concrete equation system, an effective analysis can be constructed by re-
placing computations on the concrete environment domain P(E) with computations on
an abstract one E] and inserting widening points where needed, in a manner similar to
Sec. 2.3.6. However, a major issue is that the obtained system is much larger than that
of its individual threads. There are |L|N variables instead of |L|, and a single equation
from a thread is repeated |L|N−1 times in the system. This blow-up is illustrated by the
following example:

Example 3.1.3. Figure 3.1.(a) presents the parallel composition of two simple threads: t1
increments X until it reaches Y , while t2 concurrently increments Y until it reaches 10.
Figure 3.1.(b) presents the equation system derived from Fig. 2.4 and (3.4). We do not

43

CHAPTER 3. ANALYSIS OF CONCURRENT PROGRAMS

t1

while `10 = 0 do
`2if X < Y then
`3X ← X + 1

endif

t2

while `40 = 0 do
`5if Y < 10 then
`6Y ← Y + 1

endif

(a)

X`1,`4 = I ∪ SEJX ← X + 1 KX`3,`4 ∪ SEJX ≥ Y KX`2,`4 ∪
SEJY ← Y + 1 KX`1,`6 ∪ SEJY ≥ 10 KX`1,`5

X`2,`4 = X`1,`4 ∪ SEJY ← Y + 1 KX`2,`6 ∪ SEJY ≥ 10 KX`2,`5
X`3,`4 = SEJX < Y KX`2,`4 ∪ SEJY ← Y + 1 KX`3,`6 ∪ SEJY ≥ 10 KX`3,`5
X`1,`5 = SEJX ← X + 1 KX`3,`5 ∪ SEJX ≥ Y KX`2,`5 ∪ X`1,`4
X`2,`5 = X`1,`5 ∪ X`2,`4
X`3,`5 = SEJX < Y KX`2,`5 ∪ X`3,`4
X`1,`6 = SEJX ← X + 1 KX`3,`6 ∪ SEJX ≥ Y KX`2,`6 ∪ SEJY < 10 KX`1,`5
X`2,`6 = X`1,`6 ∪ SEJY < 10 KX`2,`5
X`3,`6 = SEJX < Y KX`2,`6 ∪ SEJY < 10 KX`3,`5

(b)

Figure 3.1: A concurrent program example (a) and its (simplified) equational semantics
(b).

expect the reader to read this system, but simply to appreciate its size and complexity,
compared to the simplicity of the program (in fact, we even simplified the system for the
sake of presentation by omitting some control locations and factoring some variables).

End of example.

Although this method is used in academic demonstration tools (such as Jeannet’s
ConcurInterproc [Jea11], an extension of the Interproc academic analyzer [LAJ11] to con-
current programs), it cannot scale up to realistic programs.

3.1.5 Big-step semantics

In order to stop the proliferation of equation variables, we turn towards big-step semantics,
which make a parsimonious use of abstract elements (Sec. 2.3.5). The main issue to solve
is the lack of syntactic structure to iterate on: there is no convenient inductive definition
of the interleaving of threads as these interleavings are combinatorial in nature.

In [Mon07], Monniaux proposes a solution adapted to two threads, for the specific prob-
lem of analyzing a USB device driver running concurrently with an intelligent controller
(modelled as a C program). The principle is to perform a big-step abstract interpretation
by induction on the syntax of the device driver but, at each instruction, run an abstract
interpretation of the complete model of the controller. The soundness of the approach

44

3.2. RELY-GUARANTEE REASONING AS ABSTRACT INTERPRETATION

relies on the fact that the controller is modeled as a non-deterministic choice of atomic
actions in an infinite loop. Despite some optimizations (such as only running the ab-
stract controller when the device reads or modifies a shared variable), the analysis for two
threads is already quadratic in the size of the program as each instruction from the second
thread is reanalyzed when analyzing (almost) each instruction of the first one. Thus, the
soundness conditions and the scalability of this method are not adapted to more complex
and general concurrent programs.

Summary. Following our failed attempts, we are now ready to state the desirable prop-
erties that a concurrent program analysis should possess:

1. keep information attached to syntactic program locations in L (and not to control
states in T → L);

2. avoid re-analyzing each thread instruction for each configuration of the other threads;
3. be defined by induction on the syntax of threads (big-step semantics);
4. abstract control-flow information (with controllable cost versus precision trade-off,

if possible);
5. reuse existing abstractions and abstract domains.

The equation-based analysis presented above only achieves 5, while [Mon07] addition-
ally achieves 1 and 3 in limited circumstances. Ideally, we would like the analysis of
a concurrent program to be reduced to the independent analysis of each thread. Com-
pletely ignoring thread interactions is of course not sound. Nevertheless, the following
sections show that we can construct a sound thread-modular analysis that almost reduces
to independent thread analyses.

3.2 Rely-guarantee reasoning as abstract interpretation

In order to reach our goal, we take a detour through program proof methods, which
already feature thread-modular methods. It will then only be a matter of formalizing them
as abstract interpretation, expressing them in constructive (fixpoint) form, and applying
abstractions.

3.2.1 Proof methods

Proof methods for sequential programs date back to the work of Floyd and Hoare [Flo67,
Hoa69]. They consist in annotating program statements stat with preconditions {P} and
post-conditions {Q}, that are logical assertions on the state of the program. A triple
{P} stat {Q} means that, if stat is executed in a program state satisfying {P}, then the
output state satisfies {Q}. Hoare [Hoa69] proposed a set of axioms and rules that can be
used to derive valid triples. These rules (which are well known and not repeated here)
deduce a triple on a statement based on triples on its components, so that a proof tree
naturally follows the syntactic structure of the program.

45

CHAPTER 3. ANALYSIS OF CONCURRENT PROGRAMS

Owickie–Gries–Lamport. On concurrent programs, proof methods were pioneered by
Owicki, Gries, and Lamport [OG76, Lam77, Lam80]. The core idea is to add to Hoare’s
rules a new rule for the parallel operator:

{P1} s1 {Q1} {P2 } s2 {Q2}
{P1 ∧ P2} s1 || s2 {Q1 ∧Q2}

.

This realizes two of our goals: assertions are attached to program locations and the proof
reflects the structure of the program. However, this rule has an important restriction:
it can only be applied if the proofs of {P1} s1 {Q1} and {P2} s2 {Q2} do not interfere.
Checking interference freedom requires proving that each assertion appearing in one of
the proofs is invariant by the statements of the other threads: for instance, if the assertion
Φ appears in the first proof tree, and the triple {P ′2} s′2 {Q′2} appears in the second one,
we must additionally prove that {Φ∧P ′2} s′2 {Φ}. Hence, the proof checking is not thread-
modular. We cannot hope to design a modular inference scheme on such bases.

Rely-Guarantee. Jones introduced rely-guarantee methods in [Jon81] as a way to ad-
dress the modularity issues of Owicki–Gries–Lamport proof methods. In Jones’ method,
thread interferences are explicitly provided as part of the annotation, instead of being
checked implicitly in the proof checking. Hoare triples {P} stat {Q} are replaced with
quintuples:

R,G ` {P} stat {Q} (3.5)

where P and Q are, as before, assertions on program states, while R (Rely) and G (Guar-
antee) are assertions on program transitions. Quintuples have the following intuitive
semantics: if P holds before stat is executed and the effect of all other threads is included
in R, then Q is true after stat has been executed and its effect is included in G. The rule
for parallel composition then becomes, without side-condition:

R ∪G2, G1 ` {P1} s1 {Q1} R ∪G1, G2 ` {P2} s2 {Q2}
R,G1 ∪G2 ` {P1 ∧ P2} s1 || s2 {Q1 ∧Q2}

.

Example 3.2.1. Figure 3.2 presents a rely-guarantee reasoning on the program example
from Fig. 3.1.(a). The presentation is simplified: although we show the invariant at each
control location `1, . . . , `6, each thread is checked in turn with respect to a global assertion
on the transitions of the other thread. Each thread guarantees exactly what the other one
relies on: R1 = G2 and R2 = G1.

End of example.

The rely-guarantee method is indeed modular: each thread can be checked without
looking at the syntax of the other threads, but only at the rely assertions. Intuitively, by
modeling the effects a thread has on others threads, rely and guarantee assertions form
an abstraction of the semantics of threads.

46

3.2. RELY-GUARANTEE REASONING AS ABSTRACT INTERPRETATION

checking t1 :
t1

while `10 = 0 do
`2if X < Y then
`3X ← X + 1

endif

R1 = G2

X is unchanged

Y is incremented
Y ≤ 10

checking t2 :
R2 = G1

Y is unchanged

t2

while `40 = 0 do
`5if Y < 10 then
`6Y ← Y + 1

endif

`1 : 0 ≤ X ≤ Y ≤ 10
`2 : 0 ≤ X ≤ Y ≤ 10
`3 : 0 ≤ X ≤ Y − 1 ≤ 10

`4 : 0 ≤ X ≤ Y ≤ 10
`5 : 0 ≤ X ≤ Y ≤ 10
`6 : 0 ≤ X ≤ Y ≤ 9

Figure 3.2: Rely-guarantee proof sketch for the program in Fig. 3.1.(a).

3.2.2 Interference semantics

As mentioned in Sec. 2.3.4, there exists a connection between the reachability semantics
R and Hoare’s proof method for sequential programs. This connection was exposed by
Cousot and Cousot in [CC77]. In [CC84], they showed a similar connection for the proof
methods of concurrent programs of Owicki, Gries, and Lamport. One of our contributions
[Min12c] is a similar connection for Jones’ rely-guarantee method. We develop formally
this result in this section.

We start from the partial trace semantics F , which we decompose into two comple-
mentary abstractions: thread-local reachable states and inter-thread interferences.

Local states. For each thread t ∈ T , we define its reachable local states Rl(t) as the
state abstraction R where the state control part is reduced to that of t only. The control
state of the other threads t′ 6= t is stored in auxiliary variables, called pct′ (as our language
only features real-valued variables, we assume, for the sake of simplicity, that the syntactic
locations L are real numbers). For each thread t ∈ T , the set Σt of local states is:

Σt
def
= (L × Et) ∪ Ω, where

Et
def
= Vt → R

Vt
def
= V ∪ { pct′ | t′ ∈ T , t′ 6= t }

(3.6)

47

CHAPTER 3. ANALYSIS OF CONCURRENT PROGRAMS

and we define the reachable local states Rl ∈ Πt:T .Σt as:

Rl(t)
def
= πt(R)

where πt(〈`, ρ〉)
def
= 〈`(t), ρ [∀t′ 6= t : pct′ 7→ `(t′)]〉

extended naturally from Σ→ Σt to P(Σ)→ P(Σt) .

(3.7)

Thanks to the auxiliary variables, the projection πt to the local state space is a bijec-
tion and no information is lost (see also Ex. 3.2.2 below on the importance of auxiliary
variables).

Interferences. For each thread t ∈ T , the interferences it causes I(t) ∈ P(Σ × Σ) is
the set of transitions produced by t in the partial trace semantics F :

I(t)
def
= αitf (F), where

αitf (X)
def
= λX. { 〈σi, σi+1〉 | ∃σ0

a0→ · · · an−1→ σn ∈ X : ai = t } .
(3.8)

Hence, it is a subset of the transition relation τ of the program reduced to transitions that
appear in actual executions.

Fixpoint characterization. We now propose a characterization of Rl and I directly in
terms of fixpoints of operators on the transition system, which do not require to compute
R nor F . We first express Rl in fixpoint form as a function of I:

Rl(t) = lfpRt(I), where

Rt ∈ (T → P(Σ× Σ))→ P(Σt)→ P(Σt)

Rt
def
= λY . λX.

πt(I) ∪ {πt(σ′) | ∃πt(σ) ∈ X : σ
t→τ σ

′ ∨ ∃t′ 6= t : 〈σ, σ′〉 ∈ Y (t′) } .

(3.9)

The function Rt(Y) is similar to R (2.8) used to compute classic reachability R, but it
explores the reachable states by interspersing two kinds of steps: firstly, steps from the
transition relation of the thread t and, secondly, interference steps from other threads,
which are provided in the argument Y .

We now express I as a function of Rl :

I(t) = B(Rl)(t), where

B ∈ Πt:T .P(Σt)→ T → P(Σ× Σ)

B
def
= λX. λt. { 〈σ, σ′〉 | πt(σ) ∈ X(t) ∧ σ t→τ σ

′ } .
(3.10)

B(X)(t) simply collects all the transitions in the transition relation of the thread t starting
from a local state in X(t).

There is a mutual dependency between equations (3.9) and (3.10), which we solve
using a fixpoint. The following theorem, which characterizes reachable local states Rl in
a nested fixpoint form, is proved in [Min12c]:

48

3.2. RELY-GUARANTEE REASONING AS ABSTRACT INTERPRETATION

Theorem 3.2.1.
Rl = lfpH, where

H ∈ (Πt:T .P(Σt))→ (Πt:T .P(Σt))

H
def
= λX. λt. lfpRt(B(X)) .

Compared to a rely-guarantee proof R,G ` {P} stat t {Q}, the reachable local states Rl(t)
correspond to state assertions P and Q, while the interferences I(t) correspond to rely
and guarantee assertions R and G. Proving that a given quintuple is valid amounts to
checking that ∀t ∈ T : Rl(t) ⊆ Rt(I)(Rl(t)) and B(Rl)(t) ⊆ I(t). Our fixpoints are,
however, constructive and can infer the optimal assertions instead of simply checking
user-provided assertions. Computing lfpRt(I) corresponds to inferring state assertions P
and Q given the interferences, while computing lfpH infers both interferences and state
assertions. Thread-modularity is achieved as each function Rt only explores the transition
relation generated by the thread t in isolation. It relies on its first argument to know the
transitions of the other threads without having to explore them.

Fixpoints can be computed by iteration. Indeed, we apply Thm. 2.2.2 by Cousot
and Cousot. In particular, lfpH =

⊔
n∈N Hn(λt. ∅). As noted above, Rt is similar to

R, and computing lfpRt(Y) used in the definition of H is similar to a classic reachability
computation. Hence, the computation ofRl = lfpH in Thm. 3.2.1 can be understood as an
iterative computation that re-analyzes all the threads until the interferences stabilize. The
analysis of a single thread is a sequential program analysis, slightly modified to incorporate
the effect of interferences.

3.2.3 Abstraction

Although it enjoys the required thread-modularity, the nested fixpoint characterization of
Rl in Thm. 3.2.1 is still very concrete. Indeed, the uncomputable state semantics R can be
recovered from it. To construct an effective static analysis, we need further abstractions.
We will abstract the local states and the interferences independently from each other.

Local state abstraction. A set of local states for a thread t lives in P(Σt) = P((L ×
Et) ∪ Ω) ' (L → P(Et)) × P(Ω). Hence, it can be abstracted by associating to each
control location in L a value in some numeric abstract domain E], and maintaining a set
of errors in extension. However, the number of variables is often a critical parameter in
the efficiency of a domain (especially for precise relational domains, such as polyhedra).
A faster analysis can be constructed by first removing the auxiliary variables from Vt with
the following abstraction:

αaux ∈ P(Vt → R)→ P(V → R)

αaux
def
= λR. { ρ|V | ρ ∈ R }

(3.11)

before using a numeric abstract domain. The resulting analysis is still flow-sensitive in
that a distinct local invariant is associated to each control location ` ∈ L of the thread.

49

CHAPTER 3. ANALYSIS OF CONCURRENT PROGRAMS

Removing auxiliary variables still allows us to infer a large class of properties (for instance,
the example of Fig. 3.2 has been precisely handled without the need for auxiliary variables).
However, they are necessary in some cases. In fact, early proof methods did not feature
them, and they were introduced subsequently in order to achieve completeness [OG76].

Example 3.2.2. Consider the program prog = `1X ← X + 1`2 || `3X ← X + 1`4 composed
of two identical threads incrementing X once. The reachable local states on thread 1 at
`2 with auxiliary variables are described by (pc2 = 3 ∧ X = 1) ∨ (pc2 = 4 ∧ X = 2),
which implies X ∈ [1, 2]. Its image by αaux simply gives X ∈ [1, 2], which is no longer
invariant by the transition set { 〈`3, [X 7→ x]〉 → 〈`4, [X 7→ x+ 1]〉 | x ∈ R } generated by
X ← X + 1 in the second thread. Hence, X ∈ [1, 2] cannot be proved to hold at `2 after
removing pc2.

End of example.

This example also shows that invariants involving auxiliary variables tend to be dis-
junctive, hence, non-convex. Classic numeric domains, such as polyhedra and intervals,
are not well equipped to handle non-convex sets. When keeping auxiliary variables, one
possible solution is to use value partitioning domains, such as decision trees [BCC+10a]
that are inspired by binary decision diagrams [Bry86] and mix a discrete, enumerative part
(for auxiliary variables) and a more conventional numeric one (for program variables).

Interference abstraction. An interference set I ∈ P(Σ × Σ) is a relation on states.
A pair 〈〈`, ρ〉, 〈`′, ρ′〉〉 ∈ I modeling a transition can be seen as a mapping r from the

variable set V def
= {V, V ′ | V ∈ V } ∪ { pc1, . . . , pcN , pc′1, . . . , pc′N } to values, where ∀V ∈

V : r(V) = ρ(V) ∧ r(V ′) = ρ′(V) and ∀t : r(pct) = `(t) ∧ r(pc′t) = `′(t). Hence I can
be abstracted as an abstract value in a numeric abstract domain (possibly using value
partitioning).

The example in Fig. 3.2 uses a single global interference, which shows that the control
flow information is not always useful. A more efficient analysis can thus be achieved using
the flow-insensitive abstraction αflow :

αflow ∈ P(Σ× Σ)→ P(E × E)

αflow
def
= λI. { 〈ρ, ρ′〉 | ∃`, `′ : 〈〈`, ρ〉, 〈`′, ρ′〉〉 ∈ I } .

(3.12)

Finally, we propose an abstraction of P(E × E) that only remembers which vari-
ables have changed and their new value. Hence, an abstract relation is an element X]

of D]chg
def
= V → P(R) and represents:

γchg(X])
def
= { 〈ρ, ρ′〉 ∈ E × E | ∀V ∈ V : ρ(V) = ρ′(V) ∨ ρ′(V) ∈ X](V) } (3.13)

and the associated abstraction is:

αchg(I)
def
= λV . {x ∈ R | ∃〈ρ, ρ′〉 ∈ I : ρ(V) 6= x ∧ ρ′(V) = x } . (3.14)

50

3.2. RELY-GUARANTEE REASONING AS ABSTRACT INTERPRETATION

A map V → P(R) can be further abstracted into V → R] for any numeric domain R]
abstracting the value of a single variable, such as the interval domain from Ex. 2.2.1.1

This is an efficient abstraction which, although coarse, can nevertheless infer important
information.

Example 3.2.3. Consider again the example from Fig. 3.2. Abstracting the interferences
with αflow and αchg yields the map [X 7→ [1, 10], Y 7→ ∅] for t1, and [X 7→ ∅, Y 7→ [1, 10]]
for t2. It successfully captures the fact that t1 does not modify Y , and that t2 stores values
from [1, 10] into Y and does not modify X, which is sufficient to prove that X and Y are
bounded in [1, 10] at all program locations. However, the abstract interference cannot
represent the fact that Y is only increased by t2. As a consequence, it is impossible to
infer the program invariant X ≤ Y , even when abstracting the local state in a relational
domain (such as polyhedra) that can represent this invariant.

End of example.

The abstraction αchg is non-relational in both the senses that it cannot represent rela-
tionships between program variables, and that it cannot represent relationships between
the state before and the state after a transition.

3.2.4 Unbounded number of threads

We have assumed, since Sec. 3.1.1, a fixed, finite set of threads T . However, this hypoth-
esis is never used in our derivations and all our formulas apply even if T is infinite. An
infinite number of threads is useful to model, in the absence of dynamic thread creation,
programs that exhibit an unbounded number of threads: at initialization, we choose non-
deterministically a finite subset in the infinite thread pool allowed to run. Our finiteness
restriction is only here to guarantee that the construction results in an effective static ana-
lyzer. Indeed, when considering an infinite number of threads, we encounter the following
issues: firstly, iterating over the threads in Thm. 3.2.1 may not terminate; secondly, the
number of reachable local state sets Rl(t) to abstract is infinite; thirdly, the number of
auxiliary variables is infinite and we cannot apply numeric abstractions defined in vector
spaces of finite dimensions.

Nevertheless, these issues can be side-step in a restricted but useful case. Firstly, we
assume that we have a finite set T of syntactic threads, but one of them, t∗ ∈ T , has
an infinite number of instances running concurrently (this can be extended easily to the
case of several infinite threads). Secondly, we assume that we remove auxiliary variables
in the abstraction of local states (using αaux) and that we abstract interferences in a
flow-insensitive way (using αflow). These conditions ensure that the local states and the
interferences have a finite number of variables, and can be abstracted in a numeric abstract
domain. They also ensure that, given two instances t∗1 and t∗2 of t∗, we have Rl(t∗1) ' Rl(t∗2)
and Rt∗1 ' Rt∗2 up to the abstractions αaux and αflow . Hence, it is sufficient to represent

1Note that the domain V → R]i is not equivalent to the interval domain D]i presented in Sec. 2.4.1. The
former abstracts V → P(R) while the latter abstracts P(V → R). As a consequence, least elements ⊥] are
coalescent in the later domain and not in the former one.

51

CHAPTER 3. ANALYSIS OF CONCURRENT PROGRAMS

only one instance of t∗ in Rl and iterate over one instance of Rt∗ in Thm. 3.2.1. However,
the definition of Rt∗ is changed slightly into:

Rt∗
def
= λY . λX.

πt∗(I) ∪ {πt∗(σ′) | ∃πt∗(σ) ∈ X : σ
t∗→τ σ

′ ∨ ∃t′ : 〈σ, σ′〉 ∈ Y (t′) }
(3.15)

which simply removes the condition t′ 6= t∗ to take into account “self-interferences,” i.e.,
interferences on an instance of t∗ caused by another instance of t∗ (note that Rt remains
unchanged when t 6= t∗).

We have thus reduced the analysis of a concurrent program with unbounded thread
instances to the analysis of a concurrent program with only a bounded number of threads.
This comes at some cost in precision. The resulting analysis cannot distinguish between the
different instances of the same thread nor express properties that depend on the number
of running threads: the analysis is uniform. Non-uniform analyses are quite rare (a main
example is Feret’s occurrence counting analysis for the π−calculus [Fer01]), and designing
a non-uniform analysis in our framework remains a challenging future work.

3.3 Big-step interference analysis

In this section, we apply the general principles and abstractions from the preceding section
to construct, on our concurrent language, a thread-modular static analysis in big-step form,
similar to the one we developed for sequential programs (Sec. 2.3.5). The construction is
described in more details in [Min11, Min12d].

3.3.1 Concrete interference semantics

We start by enriching the concrete semantics of expressions (Fig. 2.2) and statements
(Fig. 2.6) with a notion of interference. With in mind the abstractions from Sec. 3.2.3, we
model interferences as values written into variables, in a flow-insensitive and non-relational
way.

Formally, interferences live in Itf def
= T × V × R, where a triple 〈t, X, v〉 ∈ Itf means

that the thread t can write the value v into the variable X.

Expression semantics. We define EItf J expr Kt〈ρ, I〉, the semantics of expressions with
interferences, in Fig. 3.3. Compared to the original semantics of expression EJ expr Kρ
introduced in Fig. 2.2, it takes as argument, in addition to an environment ρ ∈ E , a set
I ⊆ Itf of interferences. Moreover, the semantics is parametrized by the identifier t ∈ T
of the thread that evaluates the expression. When reading the value of a variable X ∈ V,
all the interferences 〈t′, X, v〉 ∈ I from threads t′ 6= t are applied, i.e., evaluating X may
non-deterministically evaluate either to ρ(X) or to any value v written to X by another
thread. The semantics of operators and constants is not changed, apart from propagating
I to sub-expressions. Note that different occurrences of the same variable in an expression
may evaluate, in the same environment, to different values. Intuitively, evaluating an

52

3.3. BIG-STEP INTERFERENCE ANALYSIS

EItf J expr Kt ∈ (E × P(Itf))→ (P(R)× P(Ω))

EItf JX Kt〈ρ, I〉
def
= 〈{ ρ(X) } ∪ { v | ∃t′ 6= t : 〈t′, X, v〉 ∈ I }, ∅〉

EItf J [c1, c2] Kt〈ρ, I〉
def
= 〈{x ∈ R | c1 ≤ c ≤ c2 }, ∅〉

EItf J −ω e Kt〈ρ, I〉
def
= let 〈V, O〉 = EItf J e Kt 〈ρ, I〉 in 〈{−v | v ∈ V }, O〉

EItf J e1 �ω e2 Kt〈ρ, I〉
def
= let 〈V1, O1〉 = EItf J e1 Kt 〈ρ, I〉 in

let 〈V2, O2〉 = EItf J e2 Kt 〈ρ, I〉 in
〈{ v1 �ω v2 | v1 ∈ V1, v2 ∈ V2, � 6= / ∨ v2 6= 0 },
O1 ∪O2 ∪ {ω | � = / ∧ 0 ∈ V2 }〉

Figure 3.3: Semantics of expressions with interference.

SItf J stat Kt ∈ DItf −→ DItf

SItf JX ← e Kt〈R, O, I〉
def
=

〈∅, O, I〉 t
⊔
ρ∈R

let 〈V, O′〉 = EItf J e Kt 〈ρ, I〉 in
〈{ ρ[X 7→ v] | v ∈ V }, O′, { 〈t, X, v〉 | v ∈ V }〉

SItf J e ./ 0 Kt〈R, O, I〉
def
=

〈∅, O, I〉 t
⊔
ρ∈R

let 〈V, O′〉 = EItf J e Kt 〈ρ, I〉 in
〈{ ρ | ∃v ∈ V : v ./ 0 }, O′, ∅〉

SItf J if e ./ 0 then s KtX
def
= (SItf J s Kt ◦ SItf J e ./ 0 Kt)X t SItf J e 6./ 0 KtX

SItf Jwhile e ./ 0 do s KtX
def
= SItf J e 6./ 0 Kt (lfpλY.X t (SItf J s Kt ◦ SItf J e ./ 0 Kt)Y)

SItf J s1; s2 Kt
def
= SItf J s2 Kt ◦SItf J s1 Kt

Figure 3.4: Big-step semantics with interference.

expression is longer an atomic action: the value of a variable may change due to thread
interferences during the evaluation (we will formalize this remark in Sec. 3.5).

Statement semantics. The semantic domain of statements DItf is similar to that of

sequential programs from Fig. 2.6, but enriched with interferences. We use: DItf
def
= P(E)×

P(Ω) × P(Itf), which is a complete lattice ordered by element-wise set inclusion. Given
a statement stat executed by a thread t, its semantics is the join-morphism SItf J stat Kt
defined in Fig. 3.4. There, the join t denotes the element-wise set union. Compared to
SJ stat K from Fig. 2.6, SItf J stat Kt passes down the interference I to EItf J e Kt every time
an expression e needs to be evaluated. Moreover, it outputs its argument interference
set enriched with the interferences that are created in thread t by all the assignments it
performs.

53

CHAPTER 3. ANALYSIS OF CONCURRENT PROGRAMS

Program semantics. A first step in the analysis of a concurrent program is to collect
the interferences itf . The analysis of a single thread computes its interferences assuming
a priori knowledge of the interferences from the other threads. This circular dependency
is solved by computing interferences as a fixpoint:

itf
def
= lfpλI.

⋃
t∈T

[
SItf J stat t Kt〈λV . 0, ∅, I〉

]
Itf (3.16)

where [·]Itf restricts the triple output by SItf J stat t Kt to the component in P(Itf). The
set of run-time errors O in the concurrent program can then be extracted by running the
analysis again and gathering this time the component in P(Ω):

O
def
=

⋃
t∈T

[
SItf J stat t Kt〈λV . 0, ∅, itf 〉

]
Ω
. (3.17)

The following soundness theorem is proved in [Min12d]:

Theorem 3.3.1. R∩ Ω ⊆ O.

The converse inequality does not hold in general. Although it manipulates uncom-
putable concrete sets of environments and interferences, our semantics is a strict over-
approximation of the reachable state semantics because we use a non-relational and
flow-insensitive abstraction of interferences and do not use auxiliary variables (see also
Exs. 3.3.1 and 3.3.2).

Output environments. In addition to errors and interferences, SItf J stat t Kt outputs a
set of environments Rt. In the case of sequential programs (Sec. 2.3.5), these corresponded
to the program states reachable at the end of the program. However, this is not the case
for SItf J stat t Kt: the environments in Rt only take into account the values written by the
thread t. Writes from the other threads, that can nevertheless contribute to the program
state, are stored in the interference set itf . An overapproximation of the reachable state
set at the end of the program can be constructed by combining these two information:

Xt
def
= { ρ | ∃ρ′ ∈ Rt : ∀V ∈ V : ρ(V) = ρ′(V) ∨ ∃t′ 6= t : (t′, V, ρ(V)) ∈ itf } .

Note that each thread t ∈ T may give a different overapproximation Xt. It is possible to
combine them to gain more precision, which leads to ∩t∈T Xt.

The environments Rt computed by our big-step semantics are thus not actually local
invariants, which departs from our formalization of rely-guarantee in Sec. 3.2. The ratio-
nale is to avoid adding to the environment redundant information that is already available
in interferences. Clearly separating the effect of writes from the current thread and from
the other threads will also prove useful when considering mutual exclusion constraints, in
Sec. 3.4.

Example 3.3.1. We exemplify our semantics on the program of Fig. 3.1 by computing the
fixpoint itf (3.16) by iteration. To be concise, we only show the value of I at each iteration,

54

3.3. BIG-STEP INTERFERENCE ANALYSIS

and the environment set at `1 and `4 (corresponding to loop invariants). Starting from
I = ∅, t1 does not update X as X < Y is always false, while t2 increments Y up to 10,
which gives, after an iteration:

`1 : X = Y = 0
`4 : X = 0 ∧ Y ∈ [0, 10]
I = { 〈t2, Y, i〉 | i ∈ [1, 10] } .

As I has increased, we perform the analysis again and, this time, X < Y can be satisfied
in t1, which causes X to be incremented. We get:

`1 : X ∈ [0, 10] ∧ Y = 0
`4 : X = 0 ∧ Y ∈ [0, 10]
I = { 〈t1, X, i〉, 〈t2, Y, i〉 | i ∈ [1, 10] } .

Performing another analysis iteration returns the same I, and the analysis stops. Invariants
at `1 can be constructed by combining the local environments X ∈ [0, 10] ∧ Y = 0 with
the interferences from t2 in I to get: X ∈ [0, 10] ∧ Y ∈ [0, 10]. As expected, the invariant
X ≤ Y is not inferred, because interferences do not carry any relational information.

End of example.

Example 3.3.2. Consider again the program prog = `1X ← X + 1`2 || `3X ← X + 1`4 from
Ex. 3.2.2. The fixpoint iteration for itf (3.16) will compute an infinite increasing sequence,
even though the program features no loop: at step n, we get I = { 〈t1, X, i〉, 〈t2, X, i〉 | 0 ≤
i < n }. Due to the flow-insensitive abstraction of interferences, we are not able to infer
that each thread can increment X at most once.

End of example.

3.3.2 Abstract interference semantics

In order to construct an effective static analysis, it remains to abstract the semantic
domain DItf = P(E)×P(Ω)×P(Itf) into a computable abstract domain D]Itf with sound

abstractions S]Itf J stat K
t

of SItf J stat Kt. This is not very difficult as SItf J stat Kt is very

close to the semantics SJ stat K of sequential programs introduced in Fig. 2.6, and for
which we already designed abstractions S]J stat K in Sec. 2.3.6.

Firstly, any numeric domain E] can be used to abstract P(E). For interferences, we
note that P(Itf) = P(T × V × R) ' (T × V) → P(R). Abstracting P(Itf) can be
reduced to the problem of abstracting P(R). This situation is similar to the abstraction of
flow-insensitive interferences described in Sec. 3.2.3. We thus assume that we are given a
numeric domain R] for one variable, and denote by Itf] its point-wise lifting into functions
in Itf] def

= (T × V) → R]: an abstract interference I] ∈ Itf] maps each thread and each
variable to an abstract set of reals. Finally, we state:

D]Itf
def
= E] × P(Ω)× Itf] . (3.18)

55

CHAPTER 3. ANALYSIS OF CONCURRENT PROGRAMS

Secondly, we design S]Itf J stat K
t

for conditionals, loops, and sequences by induction, in-

dependently from the abstract domain, exactly as S]J stat K in Fig. 2.7. Only the base case
of assignments and tests needs some adaptation, which we describe informally (we refer the

interested reader to [Min12d] for a full formal presentation). Tests S]Itf J e ./ 0 K
t
〈R], O, I]〉

are reduced to the case of an interference-free abstraction with a slight change of expression
S]J e′ ./ 0 K〈R], O〉 as follows:
• for each variable V appearing in e, we collect its interferences from other threads
V] def

=
⋃]
t′ 6=t I

]〈t′, V 〉,
• if V] 6= ⊥], we then compute a range [aV , bV] that contains both γR(V]) and the

range of V in γE(R
]),

• finally, we construct e′ by replacing in e all the occurrences of V with [aV , bV] (if
V] = ⊥], V is left intact).

The case of assignments S]Itf JV ← e K
t

is similar, and only slightly complicated by the
need to enrich the abstract interferences with the effect of the assignment. This can be
achieved by replacing, in I], I]〈t, V 〉 with its join with an abstraction in R] of the value
of V after the assignment.

Finally, when abstracting the interference fixpoint itf , we must take care to ensure
the convergence of the iterates. We use an interference widening OItf , which is simply
the widening OR on R] applied element-wise to each pair 〈t, V 〉 ∈ T × V. The abstract
interferences itf] are then computed as in (3.16):

itf]
def
= limλI]. I] OItf

⋃]
t∈T

[
S]Itf J stat t Kt〈E

]
0, ∅, I]〉

]
Itf

. (3.19)

The result is an effective static analysis in big-step form which is thread-modular,
parametrized by a choice of numeric abstract domains, and can reuse existing big-step
static analyses of sequential domains with minimal change. Moreover, although thread
interferences are abstracted in a flow-insensitive and non-relational way, the analysis of
each thread is fully flow-sensitive and can use relational numeric domains E] to abstract
memory states.

Example 3.3.3. The analysis of the program in Fig. 3.1 using the interval abstraction
for both E] and R] gives the exact same result as the concrete interference semantics
(Ex. 3.3.1). In particular, the sequence of abstract interference iterates with widening
(3.19) gives (omitting mappings to ⊥]):

I1 = []
I2 = [〈t2, Y 〉 7→ [1, 10]]
I3 = [〈t1, X〉 7→ [1, 10], 〈t2, Y 〉 7→ [1, 10]]

at which point it is stable.

End of example.

56

3.4. SCHEDULING

Unbounded thread instances. The analysis assumes a finite, fixed number of threads,
but it is not difficult to adapt it to handle threads with an unbounded number of instances.
Following the remark in Sec. 3.2.4, we construct a uniform analysis where a thread t∗ has
an unbounded number of instances by taking into account self-interferences for t∗. This is
achieved by omitting the condition t′ 6= t in the definition of V] when applying interferences
to expressions; it becomes simply: V] def

=
⋃]
t′∈T I]〈t′, V 〉.

3.4 Scheduling

The model of executions considered up to now allows arbitrary interleavings. In practice,
however, the scheduling of threads can be controlled to some extent. This can be achieved
by executing synchronisation primitives offered in the language (such as locks) or by
controlling directly some parameters of the scheduler (such as thread priorities). Note
that our interference analysis considers non-deterministic scheduling, and so, is sound in
the context of restricted scheduling. We now show how scheduling restrictions can be
taken into account to achieve a more precise analysis.

As there exist numerous synchronization schemes and scheduling policies, we focus on
two simple but useful cases: mutual exclusion locks (Sec. 3.4.1) and real-time scheduling
with fixed priorities (Sec. 3.4.2). Moreover, for the sake of concision, we present our
semantics informally, and refer the reader to [Min12d] for the detailed formalization.

3.4.1 Mutexes

Mutual exclusion locks (thereby referred to as “mutexes”) are a standard low-level syn-
chronization primitive offered by most concurrent languages and concurrency libraries
(such as POSIX Threads [IT95]). The core property of mutexes is that each mutex cannot
be acquired by more than one thread at a time: a thread trying to lock a mutex already
locked by another thread will wait until the mutex is available; it will not resume its ex-
ecution before it can lock the mutex. Mutexes are useful to delimit critical sections, i.e.,
section of the program that only one thread can enter at a time. We assume the existence
of a fixed, finite set M of mutexes and add statements to lock and unlock them:

stat ::= lock(m) | unlock(m) m ∈M . (3.20)

In the context of an interference semantics, we can then take advantage of the mutual
exclusion property of mutexes to restrict the effect of interferences according to which
mutexes each thread holds.

Interferences. We illustrate how mutual exclusion restricts interferences in Fig. 3.5. We
denote respectively as R and W reads from and writes into a shared variable X; for the
sake of presentation, we model only the effect of thread 1 on thread 2. In Fig. 3.5.(a), all
the accesses are protected by the mutex m and thread 1 writes twice into X while holding
m. When thread 2 locks m and reads X, it can see the second value written by thread 1,

57

CHAPTER 3. ANALYSIS OF CONCURRENT PROGRAMS

(a)

unlock(m)lock(m)

unlock(m)lock(m)

W W

R W R

thread 1

thread 2

(b)

W W

lock(m) unlock(m)

lock(m) unlock(m)

RWRR

W

thread 2

thread 1

Figure 3.5: Synchronized (a) and non synchronized (b) interferences in the presence of
a mutex.

but never the first one, which is necessarily overwritten before m is acquired. Moreover,
after thread 2 locks m and overwrites X while holding m, it can only read back the value
it has written, unaffected by the interferences from thread 1. This kind of interferences,
that carries a small amount of flow-sensitivity, will be called “synchronized .”

Figure 3.5.(b) describes a case where the accesses are not all protected by the mutex.
In addition to the synchronized interference from Fig. 3.5.(a) (and not repeated here) any
write by thread 1 will influence all the reads by thread 2 occurring when thread 2 does not
hold m, and any write by thread 1 occurring when thread 1 does not hold m influences all
the reads by thread 2. These interferences, where the read / write pairs are not protected
by a common mutex, are called “non synchronized .”

Partitioning. To model these interferences, we track, in our concrete interference se-
mantics, the exact set of mutexes locked by the current thread, and associate interferences
with the mutexes locked when the corresponding write was performed. This is achieved
through partitioning : environments P(E) and interferences P(Itf) are replaced, respec-

tively, with maps S → P(E) and S → P(Itf), where S def
= P(M).

The semantics of expressions with interferences (Fig. 3.3) is changed as follows to take
into account non synchronized interferences:

EItf JX Kt〈M, ρ, I〉 def
=

〈{ ρ(X) } ∪ { v | ∃t′ 6= t,M ′ ∈ S : 〈t′, X, v〉 ∈ I(M ′) ∧M ∩M ′ = ∅ }, ∅〉

where 〈M, ρ〉 ∈ S ×E denotes the state in which the expression is evaluated, as a set M of

58

3.4. SCHEDULING

t1, t
′
1

while 0 = 0 do
`1lock(m);
if X > 0 then

X ← X − 1
endif ;
unlock(m)

done

t2, t
′
2

while 0 = 0 do
`2lock(m);
X ← X + 1;
if X > 10 then

X ← 10
endif ;
unlock(m)

done

Figure 3.6: Abstract consumers / producers.

mutexes held and an environment ρ. The new condition M ∩M ′ = ∅ models the absence
of mutual exclusion.

Synchronized interferences are handled by collecting, at each unlock(m) instruction,
the current value of all the variables modified since the last lock(m) instruction, which is
held in a special interference partition attached to m. Then, when another thread performs
a lock(m) instruction, the interferences are imported into the environment.

Example 3.4.1. Figure 3.6 presents a classic producer / consumer program, abstracted
away so that we only keep track, in X, of the number of resources available. The (identical)
threads t1 and t′1 consume resources (X ← X − 1), if available (X > 0), while threads
t2 and t′2 produce resources (X ← X + 1) up to a limit (X ≤ 10). All the accesses to
X are protected by a mutex m. As a consequence, the statement if X > 0 then X ←
X − 1 endif is free from non synchronized interference. In particular, it is free from
interferences from another consumer: it is not possible for any thread to modify X between
the test ensuring that X > 0 and its subsequent decrementation, which is key to prove that
X stays positive. Likewise, we can prove that X ≤ 10. The synchronized interferences
associate [X 7→ [0, 9]] to m in t1 and t′1, and [X 7→ [1, 10]] to m in t2 and t′2. These value
sets are imported in the environments when locking m, respectively at `2 and `1.

End of example.

We presented interference partitioning only at the level of the concrete interference
semantics. It is straightforward to derive a computable abstract semantics parametrized
by abstract domains, as in Sec. 3.3.2 (see also [Min12d]).

Data-race detection. Data-races occur when two threads can access the same variable,
one access at least is a write, and the accesses are not protected by some common mutex.
In our semantics, data-races correspond to non synchronized interferences. Hence, it is
straightforward to extent our interference static analysis to detect all data-races in a sound
way.

59

CHAPTER 3. ANALYSIS OF CONCURRENT PROGRAMS

Deadlock detection. A deadlock occurs when there exists a subset of threads such that
each thread in the subset is waiting for a lock held by another thread of the subset to be
unlocked. Hence, the threads in the subset are blocked indefinitely.

Example 3.4.2. The program:

prog
def
=

lock(m1); lock(m2); unlock(m2); unlock(m1) ||
lock(m2); lock(m1) ;unlock(m1); unlock(m2)

presents one of the simplest case of deadlock: if the first thread locks m1 and then the
second thread locks m2, then neither can advance further.
End of example.

Deadlocks can be easily detected in our semantics. It is sufficient to collect, for each
lock(m) instruction in each thread t, the set M of mutexes t already holds just before
issuing the instruction, which we denote as a triple 〈t, m, M〉. This information is readily
available in our concrete and abstract semantics. Then, we check for the existence of a set
of collected triples 〈t1, m1, M1〉, . . . , 〈tk, mk, Mk〉 such that: ∀i 6= j : ti 6= tj∧Mi∩Mj = ∅,
and ∀i : ∃j : mi ∈Mj .

2 This results in a sound over-approximation of the set of possible
deadlocks. In general, the over-approximation is strict and introduces spurious deadlocks,
as it can consider sets of triples that may never be reachable simultaneously in any program
execution.

3.4.2 Real-time scheduling

Real-time operating systems are a flavor of operating systems that offer more guarantees in
terms of determinism and execution times than general-purpose ones. They are thus used
in most embedded applications (in avionics, for instance, with the ARINC 653 standard
[Aer] considered by our analyzer AstréeA). We are not interested here in the timing guar-
antees (physical time is, after all, not tracked in our semantics), but in another property
of real-time systems: the strict interpretation of thread priorities by the scheduler. Each
thread is given a priority , and a lower level priority thread can never preempt a higher
level priority thread unless it is blocked.

The analysis presented so far is, of course, sound with respect to any scheduler, includ-
ing a real-time one. In this section, we show that a more precise analysis can be achieved
by using properties that are specific to real-time schedulers. More precisely, we assume
that each thread is given a distinct and fixed priority, and that a single thread executes
at a time (i.e., there is no true parallelism, but only time-sharing on a single execution
unit). Then, the scheduler ensures that the unblocked thread of highest priority is the only
one to run. Here, blocking means: either waiting for a mutex to be unlocked by another
thread, or waiting for an external event to occur. To account for this second case, we add
a new statement yeild which models waiting for a non-deterministic amount of time: by

2This check includes the case of a single thread locking the same mutex twice, which is considered here
to produce a deadlock.

60

3.5. WEAKLY CONSISTENT MEMORIES

th

L← islocked(m);

if L = 0 then
Y ← Y + 1;
yeild

endif

tl

lock(m);

Z ← Y ;
Y ← 0;
unlock(m)

Figure 3.7: Priority-based critical sections.

yielding, a high priority thread allows lower priority threads to run, but reserves the right
to interrupt them at any point and resume its own execution. Despite a strict policy on
thread priorities, a real-time scheduler still allows a large amount of non-determinism.

Motivation. Our study of real-time programs is motivated by the example in Fig. 3.7.
It implements a critical section protected by a mutex m, but without the need for the
high priority thread th to actually lock the mutex m. Instead, th tests, with the L ←
islocked(m) statement (which stores 1 into L if m is locked, and 0 otherwise), whether
the lower priority thread, tl, has locked m. If it has not, th can enter its critical section,
confident that tl cannot interrupt it and enter its own critical section. The critical section
ends when th performs a yeild to enable preemption by tl. This example cannot be
analyzed precisely without handling thread priorities.

Partitioning. In order to benefit from a real-time scheduler, we enrich the partitioning
mechanism introduced for locks in Sec. 3.4.1. Each statement L ← islocked(m) will
create two partitions: one where m is assumed to be locked by another thread and 1
is stored into L, and another where m is assumed to be unlocked and 0 is stored into
L. This partitioning allows representing relations between the value of variables and an
abstraction of the scheduling state. The partitions are merged when a yeild instruction
is encountered, as it becomes possible for the lower priority thread to run and invalidate
our assumption about the status of the mutex m. As for mutexes, we do not detail the
resulting concrete interference semantics nor its straightforward abstraction; these can be
found in [Min12d].

3.5 Weakly consistent memories

Up to now in this chapter, we have assumed a straightforward execution model for con-
current programs, stating that: a program execution is an interleaving of the execution
of instructions from the threads, that expression evaluations and assignments are atomic,
and that a value written by a thread into the memory is immediately available for the next
executing thread to read. This attractive model, based on Lamport’s notion of sequential
consistency [Lam79], is, unfortunately, no longer realistic. Concurrent programs running

61

CHAPTER 3. ANALYSIS OF CONCURRENT PROGRAMS

t1

flag1 ← 1;

if flag2 = 0 then
critical section

endif

t2

flag2 ← 1;

if flag1 = 0 then
critical section

endif

Figure 3.8: Mutual exclusion algorithm.

on current hardware may exhibit behaviors that are not sequentially consistent. This issue
is now widely recognized and many recent works in semantics and verification take relaxed
models into account; this includes the fields of language specification [MPA05], program
testing [AMSS11], model checking [ABBM10], theorem proving [ŠA08], and abstract in-
terpretation [Fer08].

In this section, we present the relaxed execution model that we introduced in [Min11,
Min12d], and study its static analysis. More precisely, we state that the interference-based
analysis we use in Secs. 3.3 and 3.4 is sound with respect to our relaxed model.

3.5.1 Non-consistent behaviors

We first present some example symptoms and causes of non-sequentially consistent behav-
iors that motivate our model.

Non-consistent memories. In modern architectures, read and write operations do not
act directly and instantaneously on the shared memory, but through a hierarchy of caches
and store buffers. As observed by Lamport already in the late 70s on the case of distributed
memories [Lam78], this can result in behaviors that are not sequentially consistent.

Example 3.5.1. Figure 3.8 presents a simple mutual exclusion algorithm. To ensure that
both threads cannot be simultaneously in their critical section, each thread signals its
intent to enter it by raising a flag, and then tests the other thread’s flag. This is an
extremely simplified version of Dekker’s algorithm [Dij68]. However, if the assignment
performed by a thread is propagated asynchronously and takes too long to be acknowl-
edged, it is possible for the other thread to read an outdated 0 flag value and enter its
critical section, although the first thread is still executing its own critical section.
End of example.

Optimizations. Another cause for the lack of consistency is the various program trans-
formations and optimizations (such as out of order execution) that are performed by
compilers and modern processors. Their validity is generally based only an analysis of a
single thread of execution and does not take concurrency issues into account.

Example 3.5.2. Consider again the program in Fig. 3.8. Then, a dependency analysis
on thread t1 in isolation shows that the assignment and the test are independent, so, a

62

3.5. WEAKLY CONSISTENT MEMORIES

t1

if flag2 = 0 then

flag1 ← 1;
critical section

endif

t2

if flag1 = 0 then

flag2 ← 1;
critical section

endif

Figure 3.9: Reordering independent statements in Fig. 3.8.

t1

R1 ← X;
Y ← R1

t2

R2 ← Y ;
X ← R2

→

t1

Y ← 42;

R1 ← X;
Y ← R1

t2

R2 ← Y ;
X ← R2

Figure 3.10: Illegal program transformation.

compiler can decide to switch their order. The same holds for t2. The program effectively
executed, shown in Fig. 3.9, no longer enforces mutual exclusion.
End of example.

Example 3.5.3. Figure 3.10 presents another transformation that inserts a spurious write
into Y , which seems innocuous as Y is not used by t1 until Y is assigned again. How-
ever, this spurious value can be observed by t2 and stored into X. As a result, when t1
terminates, Y holds the value 42. The chosen variable Y and value 42 are arbitrary, and
so, allowing arbitrary spurious writes makes the program completely unpredictable. This
kind of transformation is called “out-of-thin-air,” as it introduces unjustified values, and
we will not allow it in our model.
End of example.

Atomicity. Finally, we note that the granularity of atomic actions, i.e., the set of points
where a thread can be interrupted by the execution of another thread, matters. Consider,
for instance, the program prog = X ← X + 1 || X ← X + 1. Assuming (as we did) that
assignments of arbitrary expressions are atomic, X = 2 always holds at the end of the
program. However, if they are not, then each thread may read the same value 0 from X
before storing 1 into X, so that the program can also end with X equal to 1.

Variable protection. Protecting all the accesses to shared variables by using mutual
exclusion locks (Sec. 3.4) avoids these issues by enforcing memory barriers and locally dis-
abling compiler optimisations: the (highly desirable) “data-race-freedom” property states
that, in the absence of data-race, the semantics follows strictly sequential consistency.
Additionally, Reynolds [Rey04] suggests that all unprotected accesses should be consid-
ered as fatal errors, so that a valid program only exhibits sequential consistent executions.

63

CHAPTER 3. ANALYSIS OF CONCURRENT PROGRAMS

These rules on the compiler and the program are attractive as they reduce the verification
problem to checking that programs are correct in the sequentially consistent model plus
checking that they do not have any data-race. However, we aim at checking programs
with “benign” data-daces so that, in addition to detecting data-races, we must continue
the analysis with a realistic semantics for them.

3.5.2 Formal model

We now propose a formal model of executions that takes into account a large class of non
sequentially consistent behaviors.

Weakly-consistent models. Extensions of Lamport’s sequentially consistent execu-
tion model, so called weakly-consistent memory models, have been studied originally for
hardware. We refer the reader to [AG96] for a tutorial. Precise formal models of popular
architectures are now available (for instance, the x86-TSO model by Sewell et al. [SSO+10]
formalizing Intel architectures). The use of weakly consistent memory models in program-
ming language semantics, that additionally model the effect of optimizing compilation,
were pioneered by Pugh [Pug99] and culminated in the Java memory model of Manson
et al. [MPA05, GJSB05]. Models in this family are defined implicitly, as the solution of a
complex process where each value read must be justified by a series of transformed execu-
tion traces. We choose instead a generative model based on an explicit set of local control
path transformations, which is reminiscent of the approach by Saraswat et al. [SJMvP07].
It makes it easy to check whether a given compiler or processor obeys this model.

Control paths. To account for transformations that alter program block-structures,
we start by converting programs into sets of linear control paths, which are sequences of
assignments X ← e and tests e ./ 0. The set of control paths path(stat) in a statement
stat is defined by structural induction as:

path(X ← e)
def
= {X ← e }

path(s1; s2)
def
= path(s1) · path(s2)

path(if e ./ 0 then s endif)
def
= ({e ./ 0} · path(s)) ∪ {e 6./ 0}

path(while e ./ 0 do s done)
def
= ({e ./ 0} · path(s))∗ · {e 6./ 0} .

(3.21)

Paths are all finite but, when stat contains a loop, path(stat) is an infinite set. Note that,
because SItf J stat Kt is a join-morphism, it is equal to the join over all control paths in
stat :

SItf J stat KtX = �Itf J path(stat) KtX
where �Itf JΠ Kt X

def
=

⊔
s1·...·sn∈Π

SItf J s1; . . . ; sn KtX . (3.22)

This fact, which is well-known for distributive data-flow analyses [Kil73], was proved for
big-step semantics in [Min12d].

64

3.5. WEAKLY CONSISTENT MEMORIES

Path transformations. We now propose an example set of local path transformations,
which we denote as p p′:

1. reordering assignments: X1 ← e1 ·X2 ← e2 X2 ← e2 ·X1 ← e1;

2. reordering tests: e1 ./1 0 · e2 ./2 0 e2 ./2 0 · e1 ./1 0;

3. reordering tests before assignments: X1 ← e1 · e2 ./ 0 e2 ./ 0 ·X1 ← e1;

4. reordering assignments before tests: e1 ./ 0 ·X2 ← e2 X2 ← e2 · e1 ./ 0, when
X2 is local to the thread;

5. propagating assignments: X ← e · s X ← e · s[e/X], when variables in e are
local to the thread and e is deterministic;

6. eliminating common sub-expressions: s1 · . . . · sn X ← e · s1[X/e] · . . . · sn[X/e],
when X does not occur in the program.

These transformations are only valid under some conditions: assigned variables should
not appear in other expressions, expressions must not block nor evaluate to an error,
and modified statements should only involve assignments and tests (not synchronization
statements).

These simple rules allow modeling large classes of classic program transformations
as well as distributed memories. Store latency can be simulated using rules 5 and 1.
Changing the atomicity of operations by breaking a statement into several ones is possible
with rules 5 and 6. Rules 1–4 allow peephole optimization. Transformations that do not
change the set of control paths, such as loop unrolling, are naturally supported. As a
concrete example, the realistic x86-TSO model [SSO+10] can be entirely simulated with
these transformations, and so, an analysis sound for our model will also be sound for
x86-TSO (but it may include behaviors not allowed by x86-TSO, which results in a loss of
precision). The rules, however, do not allow “out-of-thin air” transformations (Fig. 3.10).
This list is not exhaustive; we refer the reader to [Min11] for more examples.

Program semantics. We then close the relation by context (p p′ =⇒ a·p·b
a · p′ · b), transitivity (p1 p2 ∧ p2 p3 =⇒ p1 p3), and reflexivity (p p),
and state that the set of paths Π′ is a valid transformation of stat if it contains all its
path, possibly transformed: ∀p ∈ path(stat) : ∃p′ ∈ Π′ : p p′. The semantics of the
transformed program is then simply the join over all paths in Π′: �Itf JΠ′ Kt.

We proved in [Min12d] that transformed programs do not exhibit more errors nor
interferences than the original one:

Theorem 3.5.1.
∀X :

[
�Itf JΠ′ KtX

]
Ω,Itf v

[
�Itf J path(stat) KtX

]
Ω,Itf .

Hence, our interference analysis is sound with respect to transformed programs. A result
similar to Thm. 3.5.1 was found simultaneously by Alglave et al. [AKL+11].

65

CHAPTER 3. ANALYSIS OF CONCURRENT PROGRAMS

t1

while 0 = 0 do

lock(m);
if X > 0 then

X ← X − 1;
Y ← Y − 1

endif ;
unlock(m)

done

t2

while 0 = 0 do

lock(m);
if X < 10 then

X ← X + 1;
Y ← Y + 1

endif ;
unlock(m)

done

Figure 3.11: Imprecisely analyzed program due to the lack of relational interferences.

Limitations. Our set of allowed transformations is not exhaustive; it would be interest-
ing to characterize more precisely under which transformations Thm. 3.5.1 holds. More-
over, it is also possible to change our interference-semantics so that it holds under more
transformations. For instance, our framework imposes atomic memory writes, but this
restriction can be lifted by generating interferences that expose partially assigned values.
Dually, it would be interesting to restrict our model to a less permissive one (such as
x86-TSO [SSO+10]), and then define a more precise interference semantics that benefits
from the restricted set of possible transformations. Note that our choice of an interference
semantics was not initially motivated by the modeling of weakly consistent memories (al-
though this is an important side effect), but rather by the construction of an effective and
efficient static analyzer.

3.6 Discussion

In this chapter, we have constructed a big-step interference-based thread-modular static
analysis by abstracting a semantics expressed in rely-guarantee form. Although the orig-
inal rely-guarantee semantics is complete, one of our first step to construct an effective
analysis was, in Sec. 3.3, to abstract interferences in an incomplete flow-insensitive and
non-relational way. Our experimental results, which we will detail in Sec. 6.3, show that
such an analysis has nevertheless a good precision; yet, it is not sufficient to prove com-
pletely the absence of run-time error in the analyzed codes. We now show, on small
program fragments, examples of imprecise analyses due to our initial abstraction of inter-
ferences.

Example 3.6.1. Consider the program in Fig. 3.11. It is similar to the producer/consumer
example of Fig. 3.6, but additionally maintains a copy of the resource count in Y . Our
analysis finds, as in Ex. 3.4.1, that X ∈ [0, 10]. However, it finds no bound on Y . In order
to prove that Y ∈ [0, 10], we would need to infer that X = Y holds at lock boundaries,
which would thus require a relational abstraction of well synchronized interferences. This
example is also related to Ex. 2.4.2 which motivated the need for relational domains in

66

3.6. DISCUSSION

t1

while 0 = 0 do

lock(m);
`1X ← X + 1;
unlock(m);
lock(m);
`2X ← X − 1;
unlock(m)

done

t2

while 0 = 0 do

lock(m);
`3X ← X + 1;
unlock(m);
lock(m);
`4X ← X − 1;
unlock(m)

done

Figure 3.12: Imprecisely analyzed program due to the lack of flow-sensitive interferences.

(sequential) program analyses.

End of example.

Example 3.6.2. Figure 3.12 presents a slightly more complex variant of Ex. 3.2.2. Here,
each thread increments and decrements X in a loop, once per loop iteration. As no more
than two incrementations occur without a decrementation in any interleaving of thread
instructions, and no more than two decrementations without an incrementation, we have
X ∈ [−2, 2]. Our analysis cannot infer such a complex property and finds no bound on X.
One solution would be to refine the analysis with flow-sensitive information by exploiting
auxiliary variables. Indeed, we could express that, when the thread t1 is at location `1
and the thread t2 is at location `3, then a thread interference can only increment X from 0
to 1, and similarly at other locations. This example shows the importance of limiting the
interferences to only the transitions appearing in actual program traces; the full transition
system of the program would instead state that X can be incremented from c to c+ 1 for
any value c.

End of example.

Chronologically, we first proposed, in [Min11], the analysis with flow-insensitive and
non-relational interferences described in Sec. 3.3, and only later [Min12c] re-formalized it
as an abstraction of a complete rely-guarantee semantics (Sec. 3.2). A natural future work
consists in developing further the connection with rely-guarantee, developing interference
abstractions that are, at least partially, flow-sensitive and relational, and incorporating
them into our generic big-step analyzer construction.

Related work. There exists a large literature on the use of formal methods to verify
parallel programs; we can only present here a shallow overview and present mainly recent
results. For further information, we refer the reader to the comprehensive, if dated, survey
by Rinard [Rin01].

We already mentioned proof methods, as our method is inspired from Jones’ popular
rely-guarantee method [Jon81]. We refer the reader to [dRdBH+01] for a survey of such

67

CHAPTER 3. ANALYSIS OF CONCURRENT PROGRAMS

techniques. The connection between proof methods and abstract interpretation has not
been much investigated since the work by Cousot and Cousot in [CC84, Cou85], with
the notable exception of Malkis [Mal10]; all these works focus on Owicki–Gries–Lamport
methods.

Model checking also has a long history of verifying parallel systems, including recently
on weak memory models (for instance in [ABBM10]). The state explosion problem, that
plagues explicit-state model checking methods, is particularly acute on concurrent pro-
grams due to the larger amount of states and interleavings to consider. Some solutions
have been proposed, such as symbolic model checking [McM93], which is a general model
checking method, or partial order reduction methods [God94], which target specifically
concurrent programs. Due to the emphasis on completeness, these methods remain costly.
Another way to address the state explosion problem, bounded model checking [BCCZ99],
consists in performing a partial exploration. A variant proposed in the context of con-
current programing is context-bounded model checking [QR05]. These methods are not
sound as they may miss errors. By contrast, we abstract the problem sufficiently so that
no interleaving needs to be considered, at the cost of completeness, while never sacrificing
soundness.

We now focus on related work in static analysis. Fully flow-insensitive analyses (such as
Steensgaard’s popular points-to analysis [Ste96]) can be used as-is on concurrent programs,
as they consider arbitrary interleavings of all program instructions, but their precision is
not sufficient for program verification. We are aware of a few static analyses that treat
threads in a flow-sensitive way, as we do. They use, similarly to us, a notion of interference
and achieve thread-modularity. One example is the pointer and escape analysis for Java
by Sălcianu and Rinard [SR01], where interferences also model method calls. Another one
is the recent static analysis of C programs with POSIX Threads by Carré and Hymans
[CH09], with a slightly different focus as it includes dynamic thread creation but not syn-
chronization mechanisms. Static analysis in weak consistency models has also gathered
recent attention: we can cite Ferrara’s work [Fer08] on the Java memory model, and the
“repair-loop” technique by Alglave and al. [AMSS11] which resembles our interference
fixpoint. Although these methods handle each thread in a flow-sensitive way, their inter-
actions are abstracted, similarly to our analysis, in a flow-insensitive way. Goubault et
al. propose a different kind of analysis [GH05] based on geometric principles in order to
abstract thread interactions in a flow-sensitive way. This abstraction focuses on locks and
synchronization properties (deadlocks and mutual exclusion); it is not thread-modular and
considers only a finite number of program steps.

68

Chapter 4

Affine abstractions

By construction, static analyses by abstract interpretation are parametrized by a choice
of abstract domains and, in particular, numeric domains able to abstract the numeric
computations that are pervasive in computer programs. There exists a growing library
of numeric abstract domains, but the need exists always to design new ones: either to
infer new classes of properties, or to explore new trade-offs between cost and precision, or
even to propose new algorithms to handle well-known classes of abstract properties. We
present, in this chapter and the next, a few novel domains. These domains are not specific
to the analysis of concurrent programs and, while they can indeed be used as parameters in
the analysis construction from Chap. 3 and some of them are effectively integrated in our
AstréeA prototype analyzer (Sec. 6.2), they are of general use. The present chapter focuses
on variations of the polyhedra domain and presents more fundamental constructions, while
the next chapter constructs more pragmatic domains geared towards specific applications,
namely the analysis of C data-types as considered in the Astrée and AstréeA analyzers.

Since its introduction by Cousot and Halbwachs in the late 1970s [CH78], the poly-
hedra abstract domain has been widely used in static analysis. However, its underlying
algorithmic, based on the double description method and Chernikova’s algorithm on arbi-
trary precision rational coefficients, has remained largely unchanged, until the mid 2000s
when Simon and King proposed to switch to a constraint-only representation [SK05].

Together with Patrick Cousot, we suggested to Liqian Chen, then a PhD student of Ji
Wang at the National University of Defense Technology (Changsha, China) visiting the
ENS, to further advance the design of polyhedral domains. This chapter reports on the
results we achieved; it is a collaborative work with Liqian Chen, Patrick Cousot, and Ji
Wang.

On the semantic level, our work consists in changing the nature of the coefficients
appearing in the affine constraints: we replace arbitrary precision rationals with floating-
point numbers (Sec. 4.1) and with intervals with rational or float bounds (Sec. 4.2). We
thus study restrictions and extensions of the expressiveness of polyhedra. On the algorith-
mic level, changing the nature of coefficients radically changes the way abstract operations
are performed. These changes require us to enrich the classic polyhedra algorithms with

69

CHAPTER 4. AFFINE ABSTRACTIONS

new ones, often borrowing from recent results in constraint programming and mathemat-
ical programming: we use in particular guaranteed linear programming [NS04], interval
linear programming [CR00], and solvers for linear complementary problems [MP95].

Our results have been published as conference articles, as well as in Liqian Chen’s
PhD [CMC08, CMWC09, CMWC10, CMWC11, Che10]. Moreover, the domains have
been implemented as prototypes and tested in the Apron library, a general framework for
numeric abstract domains, which we describe in Sec. 6.1.

4.1 Floating-point polyhedra

Our first work consists in exploring the use of floating-point numbers in order to improve
the scalability of polyhedra.

4.1.1 Motivation

Classic polyhedra libraries following the early work by Cousot and Halbwachs [CH78] (such
as Apron [JM09]) scale up to only a few variables: an experimental study conducted by
Duong in his PhD [NQ10] reports a significant number of time outs and out of memory
errors on polyhedra, starting from as few as seven dimensions. A first issue, the explosion
of the number of generators output by Chernikova’s algorithm, can be avoided by aban-
doning the double description method and using only constraints [SK05]. Another cause
of inefficiency is the use of exact rational arithmetic: this may cause coefficients to grow
up to an unbounded size in theory. In practice, exponential blow-ups are not uncommon,
even for programs featuring only variables with a small range, as observed in [NQ10].

A simple and practical solution consists in discarding constraints when their coefficients
grow too large (e.g., when a numerator or denominator cannot be represented in a machine
integer), thus trading precision for efficiency. It is always sound to discard constraints,
but may result in missed properties. As machine integers, floating-point numbers benefit
from a constant memory and fast, hardware-assisted operations, but additionally allow
representing a much larger range of values. Rounding errors will result in a gradual loss
of precision in constraints, which is more gentle than abruptly removing them. The main
challenge is to ensure that, despite rounding errors, the domain stays sound, i.e., rounding
can only enlarge polyhedra. We stress on the fact that simply replacing rationals with
floats in existing algorithms does not result in a sound outcome.

4.1.2 Representation

We build on the constraint-only presentation of polyhedra from Simon et al. [SK05]
recalled in Sec. 2.4.2, but use floating-point coefficients in F (Sec. 2.4.4). Hence, a floating-
point polyhedron on n variables is represented as a pair 〈A, ~B〉 composed of a matrix A ∈
Fm×n and a vector ~B ∈ Fm. The polyhedron still represents a set of real points in the vector
space Rn, and its concretization γp is unchanged: γp(〈A, ~B〉)

def
= { ~V ∈ Rn | A× ~V ≤ ~B },

where A × ~V is evaluated using real arithmetic. As before, we also denote polyhedra

70

4.1. FLOATING-POINT POLYHEDRA

as sets of affine constraints C = {
∑n

i=1A1iVi ≤ B1, . . . ,
∑n

i=1AmiVi ≤ Bm } when more
convenient.

Arithmetic. Following Sec. 2.4.4, we distinguish exact operations on reals from float
operations with rounding by using plain operators +, −, ×, / for the former and circled
ones ⊕r, 	r, ⊗r, �r for the letter, tagged with a rounding direction r ∈ {+∞,−∞}. We

also use interval arithmetic with float bounds: ⊕]i, 	
]
i, ⊗

]
i , �

]
i (2.21), which we extend to

operations on vectors, matrices, affine expressions, and affine constraints whose coefficients
are intervals with float bounds. Likewise, �]i denotes the dot product of two vectors of float
intervals. As float arithmetic and, by extension, float interval arithmetic, does not enjoy
the distributivity and associativity of reals, the ordering of additions and multiplications
matters. In our case, we do not impose any order and note simply that the results obtained
with different orders, while possibly different, are all sound.

4.1.3 Core algorithms

Recall from Sec. 2.4.2 that the constraint-only presentation of the polyhedra domain relies
on two main algorithms: linear programming and projection. We show how to adapt
soundly these two algorithms using float operations only.

Linear programming. Recall that solving the linear programming problem LP (2.12)
given a polyhedron 〈A, ~B〉 and a vector ~C consists in computing:

LP(〈A, ~B〉, ~C)
def
= min { ~C · ~V | A× ~V ≤ ~B } .

Generally LP(〈A, ~B〉, ~C) is not representable as a float, even if both 〈A, ~B〉 and ~C are,
and we will settle for upper and lower bounds. We consider here only the problem of
computing a lower bound in F, denoted as LPF(〈A, ~B〉, ~C), i.e. we require:

∀~V : A× ~V ≤ ~B =⇒ ~C · ~V ≥ LPF(〈A, ~B〉, ~C)

being understood that computing an upper bound is similar.

It is interesting to note that most linear programming implementations compute with
floats, for the sake of efficiency, and thus output an approximation of the result. This in-
cludes modern interior point methods [Kar84] which proceed by successive approximations,
but also many implementations of the Simplex algorithm [Sch86] (although an exact Sim-
plex implementations based on arbitrary precision rational arithmetic is possible). There
is no guarantee that the computed approximate result is a lower bound. When an exact
result is required, a “purification scheme” is often employed to construct it from an ap-
proximate one. For instance, in the case of Simplex, the algorithm explores bases of the
constraint system (i.e., subsets of n constraints) to find an optimal feasible solution. Thus,
one method (used for instance in [SSM05]) is to perform most of the search using floats,
which outputs a basis that may not be optimal nor feasible, and then bootstrap an exact

71

CHAPTER 4. AFFINE ABSTRACTIONS

Simplex solver using arbitrary precision rationals with this basis, in the hope that only a
few extra exploration steps are necessary.

Purification methods are not adequate for us as we are more interested in efficiency
than in exactness, and we wish to perform the entire algorithm using solely floats. We
thus use recent advances in the field of rigorous linear programming : we use a method
by Neumaier and Shcherbina [NS04] that consists in post-processing the approximate
result into a lower approximation. More precisely, the method starts with an approximate
solution of the dual problem:

LP∗(〈A, ~B〉, ~C)
def
= max { ~B · ~W | At × ~W = ~C ∧ ~W ≤ ~0 } (4.1)

given as a vector ~W that approximates the optimum. We consider now the vector ~r that
evaluates “how far” ~W is from actually satisfying the dual constraint system At× ~W = ~C:

~r
def
= At × ~W − ~C .

Sound bounds for ~r can be computed using interval arithmetic:

[~r, ~r]
def
= At ⊗]i ~W 	

]
i
~C .

Finally, we assume that we are given a bounding box [~V , ~V] of the polyhedron in the form of
a lower and an upper bound vector, so that we know that the (exact) optimal solution ~V of

the primal linear programming problem satisfies: ~V ≤ ~V ≤ ~V . As ~W ≤ ~0 and A× ~V ≤ ~B,
we have ~W t×A×~V ≥ ~W · ~B. Thus, ~V · ~C = ~V ·(At× ~W−~r) = ~W t×A×~V−~r·~V ≥ ~W · ~B−~r·~V .
Hence, a lower bound of LP(〈A, ~B〉, ~C) can be computed by interval arithmetic, using

our interval approximations of ~r and the bounding box [~V , ~V]:

LPF(〈A, ~B〉, ~C)
def
= min(~W �]i ~B 	

]
i [~r, ~r]�]i [~V , ~V]). (4.2)

Note that our interval computations are performed using the float intervals domain from
Sec. 2.4.4, hence the computation is performed using solely floats.

Fourier–Motzkin’s elimination. Projecting (or eliminating) a variable Vk on a set
of constraints C can be performed by Fourier–Motzkin’s elimination algorithm FM (C, Vk)
(2.14). It consists in combining all possible pairs of constraints where the coefficients of Vk
have opposite signs (and keeping constraints where Vk does not appear). More precisely,

given c+ def
= (~A+ · ~V ≤ b+) ∈ C and c−

def
= (~A− · ~V ≤ b−) ∈ C such that A+

k > 0 and

A−k < 0, we add the constraint: c
def
= A+

k c
− + (−A−k)c+. Unfortunately, c is generally not

representable in floats. Our solution is to combine c+ and c− using float interval arithmetic.
Note however that, when computing (A+

k ⊗
]
i c
−) ⊕]i ((−A−k) ⊗]i c+), the coefficient of Vk

may be an interval not reduced to zero in the result, due to rounding errors; hence, Vk is
not eliminated. Instead of combining c+ and c− by weighted addition, we combine them
by simple addition after normalizing the coefficient of Vk to 1 by division:

c
def
= (c+ �]i A

+
k)⊕]i (c− �]i (]iA

−
k)) . (4.3)

72

4.1. FLOATING-POINT POLYHEDRA

We note that the (interval) coefficient of Vk in c is given by the formula: (A+
k �

]
i A

+
k) ⊕]i

(A−k �
]
i (]iA

−
k)), which evaluates to [0, 0] as self-divisions as well as adding 1 to −1 are

all exact operations in float. We have effectively eliminated Vk. Finally, we use the scalar
linearization slin (2.17) to replace the interval coefficients of variables with scalar ones,
yielding a constraint of the form

∑
j 6=k AjVj ≤ [b, c], which is equivalent to

∑
j 6=k AjVj ≤ c.

The resulting constraint is affine, does not feature Vk, and is sound in the sense that it is
implied by c+ and c−.

We denote as FM F(C, Vk) the outcome after applying this method to each pair of
original constraints c+ and c− in C. Then, FM F(C, Vk) over-approximates FM (C, Vk), and
can be computed using only floats.

4.1.4 Abstract operators

We now review the polyhedra abstract operators from Sec. 2.4.2 and show that, despite
the approximations in FM F and LPF, they are sound.

Comparison. Firstly, float linear programming can be used to check for polyhedra
inclusion v]p. Indeed, substituting LPF for LP in (2.13) gives:

C v]p { ~A · ~V ≤ b } ⇐= LPF(C,− ~A) + b ≥ 0

C1 v]p C2
def⇐⇒ ∀c ∈ C2 : C1 v]p {c}

Note that, because LPF only computes a lower bound, we do not have the equivalence:
it can be used to prove that a polyhedron definitively entails a constraint (and so, that a
polyhedron is definitely included in another), but not that it does not entail it, making

our abstract inclusion a sound semi-test for v]p. Likewise, entailment can be used to
remove redundant constraints, whereby the approximation causes only constraints that
are actually redundant to be removed but may fail to remove some redundant ones.

Tests and assignments. Tests and assignments are handled as in the case of ratio-
nal polyhedra (Sec. 2.4.2). Affine tests S]pJ ~A · ~V + b ≤ 0 KC are handled by simply adding
a constraint to C, which remains an exact abstraction. The non-deterministic assign-
ment S]pJVk ← [−∞,+∞] K is modeled by a projection FM F(C, Vk) which, unlike the ra-
tional projection FM (C, Vk), may incur a slight loss of precision. Then, arbitrary affine
assignments can be reduced, as before, to tests and projections using a temporary vari-
able S]pJVk ← ~A · ~V + b K def

= [Vn+1/Vk]◦S]pJVk ← [−∞,+∞] K◦S]pJVn+1 − ~A · ~V − b = 0 K.
This operator is no longer exact because the projection is not exact.

Join and widening. As shown in (2.15), computing a convex hull C1 ∪]p C2 can be
reduced to projecting some variables; we can thus approximate it through FM F. We ob-
served in [CMC08] that, due to over-approximations, the result sometimes fails to include
some constraints from one polyhedron which are entailed by the other one, and are thus

73

CHAPTER 4. AFFINE ABSTRACTIONS

obviously satisfied by the join. To solve this imprecision, we tighten the resulting polyhe-
dron by adding any constraint c ∈ C1 ∪ C2 such that C1 v]p {c} ∧ C2 v]p {c} can be proved
using LPF. Our widening C1 Op C2 simply keeps the constraints in C1 that are entailed by
C2.1

Bounding box. Note that our definition of LPF implicitly assumes that a bounding
box of the polyhedron is available. This is actually also the case for FM F (it is needed for
the scalar linearization slin that gets rids of interval coefficients). In practice, it is useful
to maintain such a bounding box at all time. Sometimes, the bounding box of the result
of an operation can be computed solely based on the bounding boxes of the arguments
(this is the case for the convex hull, for instance). When this is not the case, the bounding
box can be recovered by applying LPF on the basis vectors ~ei.

4.1.5 Experimental results

A proof-of-concept implementation was designed by L. Chen and interfaced with Apron,
a general library of numeric abstract domains (Sec. 6.1). The implementation uses the
GLPK floating-point simplex library [Mak00], on top of which the rigorous linear pro-
gramming algorithm LPF is constructed.

The domain was tested on a few simple examples and compared to NewPolka, Apron’s
built-in polyhedra library that uses the double description method and arbitrary-precision
rationals. Experiments were conducted using the Interproc static analyzer [LAJ11] bun-
dled with Apron; it analyzes simple programs in a toy numeric language. We refer the
interested reader to [CMC08] for the detailed experiments and only reproduce here a syn-
thesis of the results. A first test considered the analysis of the integer program examples
from Apron (such as: factorial, bubble sort, heap sort, Ackermann’s function); our domain
inferred the exact same invariants as NewPolka but performed less efficiently (up to five
times slower, with an average analysis time of 38ms). However, a second test based on
small floating-point programs showed that our domain performed more efficiently (up to
ten times faster, with an average analysis time of 195ms) and found similar invariants (up
to rounding of coefficients). These analyses use the floating-point linearization of Sec. 2.4.4
to soundly model float operations in the program. An example of such analysis is given
below:

Example 4.1.1. Consider the program in Fig. 4.1, which is extracted from [Min06b, CMC08]
and inspired from an actual program. It implements a rate limiter: at each loop iteration,
it fetches an input X in [−128, 128] from a sensor and a maximal slope D in [1, 16], and
computes an output value in Y that tries to follow X but is limited to change at maximal
rate D (i.e., |S − Y | ≤ D where S is the last value output). Our analysis finds, as output
bound: |Y | ≤ 128.000047684, which is actually optimal assuming a worse-case rounding.

1The refined widening from Fig. 2.12, which also considers constraints in C2, cannot be used as it is well-
defined only for completely non-redundant polyhedra, and this cannot be ensured using our approximate
LPF.

74

4.1. FLOATING-POINT POLYHEDRA

while 0 = 0 do
X ← [−128, 128];
D ← [1, 16];
S ← Y ;
R← X 	r S;
Y ← X;
if R⊕r D ≤ 0 then Y ← S 	r D endif ;
if D 	r R ≤ 0 then Y ← S ⊕r D endif

done

Figure 4.1: Floating-point rate limiter.

This example requires relational information and is thus out of the reach of the interval
domain.

End of example.

The results are encouraging for an early implementation. In particular, the domain
really shines when it comes to analyzing programs featuring floating point numbers. The
reason is that modeling float operations with exact rationals quickly results in large coef-
ficients and becomes impractical, while float polyhedra are immune to this problem.

4.1.6 Discussion

This section has presented a polyhedra abstract domain programmed purely in floats,
with an emphasis on ensuring its soundness, which is a prime requirement for program
validation. It also has an interesting theoretical significance: it provides the first sound
implementation of a relational analysis for float programs implemented fully with floats.

We now discuss briefly two other aspects: efficiency and precision.

As a result of rounding errors, most operations that were exact or optimal on polyhedra
with rational arithmetic are no longer exact nor optimal. In practice, our domain includes
several heuristics to limit the precision loss, including: bound tightening using propagation
algorithms, a reduced product with intervals (which are less prone to rounding errors as
they use simpler algorithms), and a careful implementation of the slin operator (e.g., by
replacing an interval with a suitably rounded value instead of its midpoint); we refer the
interested reader to [CMC08] for more information. An important remark, however, is that
programmers expect float programs to suffer from computation drift due to rounding, and
generally include bound checks as a safety measure. Such checks are abstracted exactly
and tremendously help the analysis, compensating for the drift in the abstract semantics
as well as in the concrete one. We believe that, when analyzing programs written in such
a defensive way, rounding errors in the analyzer do not significantly degrade the result of
the analysis.

75

CHAPTER 4. AFFINE ABSTRACTIONS

The main bottleneck in efficiency is the large number of calls to the linear program-
ming algorithm, in particular triggered by the need to remove the large amount of re-
dundant constraints generated by Fourier–Motzkin’s eliminations in joins. This prob-
lem was already observed for rational polyhedra based on constraints [SK05]. While
[SK05, HLL92, Imb93] propose some solutions, which can be directly applied to our float
domain, they are not sufficient to scale up. We believe that more work on constraint-only
polyhedra is required in this direction to improve the scalability.

4.2 Interval polyhedra

Our second work stemmed from the first one, by observing the importance of intervals
when abstracting floats or abstracting with floats. For instance, the value of a real ex-
pression cannot always be represented as a float, but it can always be enclosed in a
float interval. Moreover, affine forms with interval coefficients play an important role in
modeling float expressions (Sec. 2.4.4). They also appear internally in our floating-point
Fourier–Motzkin’s elimination (Sec. 4.1.3), only to be removed by slin. This leads natu-
rally to the design of polyhedra domains where coefficients can also be intervals. A first
construction, in Sec. 4.2.1, arises naturally from that of the preceding section by allowing
intervals with float bounds as coefficients instead of plain float coefficients. A second one,
in Sec. 4.2.2, returns to exact rationals and a double description method, while keeping
interval coefficients. A third one, in Sec. 4.2.3, consists in restricting the expressiveness of
interval polyhedra to interval affine equalities.

4.2.1 Float interval polyhedra

Representation. We extend polyhedra to represent affine interval constraints, of the
form:

∑
j [aj , aj]Vj ≤ bj . A constraint is satisfied by a vector ~V if

∑
j ajVj ≤ bj holds

for some choice of aj ∈ [aj , aj]. A float interval polyhedron is then defined by a matrix
of intervals with float bounds, conveniently represented as a matrix A ∈ Fm×n of lower
bounds and a matrix A ∈ Fm×n of upper bounds, and by a vector of floats ~B ∈ Fm. Then
〈[A,A], ~B〉 represents (extending ≤ element-wise):

γip(〈[A,A], ~B〉) def
=
⋃
{ γp(〈A, ~B〉) | A ≤ A ≤ A }

= { ~V ∈ Rn | ∃A ∈ Rm×n : A ≤ A ≤ A ∧A× ~V ≤ ~B } .
(4.4)

Interval polyhedra can represent all the classic (float) polyhedra, and are actually much
more expressive. In particular, they can represent non-convex and even unconnected sets,
as illustrated in Fig. 4.2 and the example below.

Example 4.2.1. Figure 4.2.(a) shows the set of points satisfying the constraint [−1, 1]x+
2y ≤ 2. When x ≥ 0, the constraint reduces to −x + 2y ≤ 2 while, when x ≤ 0, it
reduces to x + 2y ≤ 2; hence, the result is not convex. Figure 4.2.(b) is defined by:
[−1, 1]x + 2y = [−2, 2] ∧ 2x + [−2, 1]y = [−2, 2], i.e., the conjunction of four constraints

76

4.2. INTERVAL POLYHEDRA

(a) (b) (c)

Figure 4.2: Interval polyhedra examples.

similar to that of Fig. 4.2.(a). Finally, 4.2.(c) is generated by: [−1, 1]x = [−1, 1]y =
1 ∧ x, y ∈ [−2, 2] ∧ x+ y ∈ [−1, 1] and is unconnected.
End of example.

An important remark is that, when the sign of each variable is fixed, an interval affine
constraint

∑
j [aj , aj]Vj ≤ bj can be reduced to an affine constraint using one bound from

each interval, i.e.,
∑

j ajVj ≤ bj where ∀j : aj ∈ {aj , aj}. As a consequence, in each orthan,
an interval polyhedron gives a regular convex polyhedron. However, unlike disjunctive
completions [CC79b], not all finite disjunctions of polyhedra are interval polyhedra. As
we show shortly, the special form of interval polyhedra allows deriving more efficient
algorithms than for arbitrary disjunctions.

Interval linear programming. Given an interval polyhedron 〈[A,A], ~B〉 and a vector
~C, the interval linear programming problem generalizes linear programming (2.12) as
follows:

ILP(〈[A,A], ~B〉, ~C)
def
= min { ~C · ~V | A ≤ A ≤ A ∧A× ~V ≤ ~B } . (4.5)

From a theoretical point of view, interval linear programming is much harder than linear
programming (the former is NP-complete [Roh06] while the later is polynomial). How-
ever, techniques that perform well in practice have been proposed recently, including smart
orthan enumeration methods avoiding the need to solve exponentially many linear pro-
graming problems [CR00], or iterative methods [Jan04]. These methods can be adapted
to compute a lower bound of the optimum (4.5) using only floats. We refer the reader to
[CR00, Jan04, Roh06] for more information on the relevant algorithms and will not discuss
them here.

Given such a lower approximation, it becomes possible to check constraint entailment,
polyhedra inclusion, and remove redundant constraints in a sound way, as in Sec. 4.1.4.

Projection. To implement variable elimination, used in the semantics of assignments,
a simple idea is to adapt Fourier–Motzkin’s algorithm to affine interval constraints. It is
sufficient to explain how, given a variable Vk and two constraints c+ def

= (
∑

j [a
+
j , a

+
j]Vj ≤

b+) and c−
def
= (

∑
j [a
−
j , a

−
j]Vj ≤ b−), we can combine c+ and c− to derive a new constraint

implied by them where Vk does not occur. As in Fourier–Motzkin, we only consider pairs

77

CHAPTER 4. AFFINE ABSTRACTIONS

of constraints where the coefficient of Vk has a different sign: a+
k > 0 and a−k < 0. An

important remark is that it is possible to ensure that the coefficient of Vk is exactly 1 in
c+ and −1 in c−, by dividing, with interval arithmetic, the constraints by, respectively,
[a+
k , a

+
k] and [−a−k ,−a

−
k]. Indeed, we have for c+ (the result is similar for c−):∑

j [a
+
j , a

+
j]Vj ≤ b+

⇐⇒ ∃a ∈ [a+
k , a

+
k] : aVk +

∑
j 6=k[a

+
j , a

+
j]Vj ≤ b+

⇐⇒ ∃a ∈ [a+
k , a

+
k] : Vk +

∑
j 6=k([a

+
j , a

+
j]/a)Vj ≤ b+/a

=⇒ Vk +
∑

j 6=k([a
+
j , a

+
j]/]i[a

+
k , a

+
k])Vj ≤ b+/]i [a

+
k , a

+
k] .

(4.6)

We can then add the normalized constraints which gives, similarly to (4.3):

c
def
= (c+ �]i [a+

k , a
+
k])⊕]i (c− �]i [−a−k ,−a

−
k]) . (4.7)

This operation is then performed for each pair of constraints 〈c+, c−〉 with opposed sign.
We note that (4.6) is not an equivalence, so, our operator over-approximates the exact
projection. Moreover, our operator can be performed soundly using floats only, which
induces an extra loss of precision due to rounding. However, unlike Fourier–Motzkin’s
algorithm for float polyhedra, we do not need to apply slin to remove interval coefficients,
which removes one cause of imprecision.

Join. The optimal abstraction of the join of two polyhedra can be modeled as their
convex hull; it can be implemented exactly in rationals using Benoy et al.’s algorithm
[BKM05] and easily approximated in float polyhedra (Sec. 4.1.4). However, this algorithm
does not extend to interval polyhedra. Thus, in [CMWC09], we suggested a simple join

∪]ip that combines constraints pairwise, exploiting the ability of interval coefficients to

be joined using the classic interval join ∪]i. More precisely, for each pair of constraints

(
∑

j [a
1
j , a

1
j]Vj ≤ b1) ∈ C1 and (

∑
j [a

2
j , a

2
j]Vj ≤ b2) ∈ C2, we add in C1∪]ip C2 the constraint:∑

j

([a1
j , a

1
j] ∪

]
i [a2

j , a
2
j])Vj ≤ max(b1, b2) . (4.8)

As for the float join of Sec. 4.1.4, it is worthwhile to refine the result of the join by adding
the constraints from C1 ∪ C2 that are satisfied by both C1 and C2. This algorithm safely
over-approximates the join, but is not guaranteed to be optimal (this problem will be
addressed in Sec. 4.2.2).

Abstract operations. With the exception of the join, which is handled as above, all the
other abstract operations are handled as the operations in the rational and float constraint-
based polyhedra: tests correspond to adding a constraint, assignments can be reduced to
tests and projections, and inclusion checking and widening can be reduced to entailment
checking. We refer the reader to [CMWC09] for a verbose presentation of these operators.

78

4.2. INTERVAL POLYHEDRA

Application. The float interval polyhedra domain was implemented by Liqian Chen
in Apron as a proof-of-concept and compared with the float polyhedra domain from the
previous section on the same benchmark (see Sec. 4.1.5). We refer again the reader to
[CMWC09] for the detailed experimental results and present here only a qualitative syn-
thesis: while interval float polyhedra and float polyhedra give similar results in terms of
precision and cost, which one is more precise or more efficient varies with the analyzed
program.

On the one hand, interval polyhedra are more expressive and employ more complex
algorithms (such as interval linear programming), which would imply that they are more
precise and more costly. On the other hand, they use a weak join, unlike float polyhedra
which try to over-approximate the exact join; hence, interval polyhedra may be less precise
in some circumstances. Moreover, the weak join is less dependant on linear programming;
as linear programming accounts, in both domains, for a large part of the cost, the weak
join may improve the domain efficiency in some cases. As an example, in the analysis of
the float rate limiter of Ex. 4.1.1, interval polyhedra managed to be more precise (inferring
non-convex invariants) while being twice faster.

4.2.2 Exact interval polyhedra

While practical, the interval polyhedra domain presented in the last section suffers from
imprecise projection and join operators; this is not only due to the use of floats, but
also to fundamental algorithmic issues: even when computed with exact arithmetic, our
algorithms do not compute optimal abstractions. In this section, we show that optimal
operators can be constructed for interval polyhedra by returning to the original double
description method, the rationale being that joins and projections are straightforward
to compute on the generator representation. As we now seek optimality at the expense
of efficiency, we consider rational bounds and exact arithmetic (avoiding soundness and
precision issues due to rounding).

Constraint representation. As in Sec. 4.2.1, a rational interval polyhedron is then
defined by an interval matrix [A,A] and a vector ~B, but now A,A ∈ Qm×n and ~B ∈ Qm.
The concretization γip remains the same.

As stated before, an interval affine constraint reduces to a regular affine constraint
when the sign of each variable is fixed. This leads to an equivalent formulation of an
interval polyhedron using only affine constraints but twice as many variables. For each
variable Vk, we denote respectively as V +

k and V −k its positive and its negative parts:

V +
k

def
= max(Vk, 0) and V −k

def
= max(−Vk, 0), so that V +

k , V
−
k ≥ 0 and Vk = V +

k − V
−
k .

Additionally, for each k, only one of V +
k and V −k is non-zero, which we note as: ~V +·~V − = 0.

This non-linear constraint is called the complementary condition. Hence, we represent an
interval polyhedra in Rn as a set of complementary vectors in R2n obeying constraints

79

CHAPTER 4. AFFINE ABSTRACTIONS

encoded in a matrix A ∈ Qm×2n and a vector ~B ∈ Qm. We have:

γx(〈A, ~B〉) def
=

{ 〈~V +, ~V −〉 ∈ R2n | A×

[
~V +

~V −

]
≤ ~B, ~V +, ~V − ≥ ~0, ~V + · ~V − = 0 } .

(4.9)

The use of interval coefficients, which was justified on floats by the imprecision caused
by rounding errors, might not seem as useful when considering exact computations. How-
ever, we note that |Vk| = V +

k + V −k ; hence, γx(〈A, ~B〉) can also represent constraints
involving the absolute value of the variables. Such relations occur in many programs,
and inferring them is useful. Due to this change of focus, this domain is also called the
linear absolute value relation domain [CMWC11] (although its expressiveness is the same
as interval polyhedra).

Example 4.2.2. The constraints x+ 2|x| ≥ 10 and [−1, 3]x ≥ 10 are equivalent. Both can
be represented as 3x+ + x− ≥ 10 with the extra conditions: x+, x− ≥ 0, x+x− = 0.

End of example.

We refer the reader to [CPS92, MP95] for more information on complementary linear
constraint systems, which are well-studied in the literature, and to [Roh06, CMWC11] for
more information on the links between these systems, affine interval constraints, and affine
constraints with absolute values.

A generator representation. The main result underlying the construction of our do-
main is that we can derive a generator representation for a polyhedron with complementary
conditions γx(〈A, ~B〉) from the generator representation of the polyhedron γp(〈A, ~B〉)
considered without complementary condition (this result is proved in [CMWC11]). More
precisely, assume that we are given such a generator representation: P and R such that
γp([P,R]) = γp(〈A, ~B〉) (2.11). Then, to represent γx(〈A, ~B〉), it is sufficient to consider
the complementary generators, i.e., the sub-matrices P′ and R′ of columns of P and R
that obey the complementary condition (i.e., columns [~C+t ~C−t]t such that ~C+ · ~C− = 0).
We then consider all the maximal subfamilies 〈P′′, R′′〉 of generators from 〈P′, R′〉 that
satisfy:

∀

[
~V +

~V −

]
∈ γp(〈P′′, R′′〉) : ~V + · ~V − = 0

i.e., each family corresponds to a polyhedron of vectors satisfying the complementary
condition, which we call a complimentary polyhedron. Recall that an interval polyhedron
is, in general, composed of several convex polyhedra (at most one per orthan). Intuitively,
each complementary polyhedron in R2n corresponds to a convex polyhedron in Rn in this
decomposition.

Representation conversion. The previous result suggests a simple algorithm to con-
vert constraints to generators: first, apply Chernikova’s algorithm as in the classic double

80

4.2. INTERVAL POLYHEDRA

description method, and then filter out generators that do not obey the complementary
condition, and finally group them into families corresponding to a complementary poly-
hedron each. This last step is very costly: it can be reduced to the problem of finding
maximal subgraphs of a directed graph, which is NP-complete [GJ79]. Moreover, it makes
the decomposition of an interval polyhedron into its convex parts explicit. Fortunately, this
is not necessary: none of the abstract operations explicitly require this decomposition; it is
sufficient to manipulate unordered lists of complementary generators and leave the decom-
position into convex parts implicit. Thus, from an algorithmic point of view, the operators
are not equivalent to that of a disjunctive completion [CC79b], that would manipulate ex-
plicit lists of convex polyhedra. We note additionally that the polyhedron 〈A, ~B〉 may
contain many non-complementary generators, and that it is wasteful to enumerate them
all before filtering them. To improve the efficiency, we can exploit the incremental nature
of Chernikova’s algorithm to filter them as early as possible during the construction of
the generator set, the same way redundant generators are removed as soon as possible by
LeVerge’s modification to Chernikova’s algorithm [LeV92]. Our algorithm is detailed fully
in [CMWC11].

Abstract operations. The operators used on regular rational polyhedra in the double
description representation, presented in Sec. 2.4.2, can be reused as is, assuming that the
relevant representation is always available: tests consist in adding constraints, projections
and joins in adding generators, assignments are reduced to projections and tests, entail-
ment (and so inclusion checking and widening) is reduced to checking that generators
satisfy a constraint. A point of note is that the projection is no longer exact. Indeed,
interval polyhedra are not closed under projection, and so, no exact abstraction can be
devised; the same is also true of assignments. However, the projection, the assignment of
affine expressions, and the join operators are all optimal: they always output the smallest
interval polyhedron encompassing the concrete result of the operation. We refer the reader
to [CMWC11] for a more detailed presentation of these operators.

Application. The domain was implemented and tested in the Apron library, and com-
pared to both regular rational polyhedra based on the double description method, and float
interval polyhedra from the preceding section. As expected, the domain is less efficient but
more precise than the two others: it can discover invariants out of their reach. In addition
to its ability to infer relations involving absolute values, the domain surprised us by in-
ferring exactly, in some cases, disjunctive invariants after joining program branches. This
suggests that the domain can be an alternative to generic techniques, such as disjunctive
completion [CC79b] and trace partitioning [RM07], to infer disjunctive properties.

In addition to its potential applications, this domain is interesting from a theoretical
point of view as all its operators are optimal. Similarly to classic polyhedra (and unlike
float polyhedra and float interval polyhedra) it is a perfectly semantic domain, where
the approximation is only caused by the choice of abstract properties and by not the
algorithms implementing the abstract operators.

81

CHAPTER 4. AFFINE ABSTRACTIONS

4.2.3 Interval affine equalities

In the last two sections, we discussed extensions of the polyhedra domain to interval co-
efficients. We now discuss the extension of another domain: the affine equality domain,
initially proposed by Karr [Kar76]. Affine equalities are less expressive than affine in-
equalities, but they are also much more efficient: the domain is based on a quadratic
memory representation and a cubic-time Gauss elimination algorithm (while polyhedra
are unbounded in theory and exponential in practice [NQ10]). Our goal is to try and ex-
tend affine equalities to interval coefficients, thereby achieving an expressiveness between
regular affine equalities and interval polyhedra, while not sacrificing performance.

Our construction is presented on exact rationals, but can be easily adapted to float
arithmetic.

Representation. An abstract element in the interval affine equality domain is composed
of an interval matrix represented as an upper bound matrix A in (Q ∪ {+∞})m×n and a
lower bound matrix A in (Q∪{−∞})m×n, and an interval vector represented as an upper

bound vector ~B in (Q∪{+∞})m and a lower bound vector ~B in (Q∪{−∞})m. Similarly
to (4.4), the concretization is:

γil(〈[A,A], [~B, ~B]〉) def
=

{ ~V ∈ Rn | ∃A ∈ Rm×n : A ≤ A ≤ A, ∃ ~B ∈ Rm : ~B ≤ ~B ≤ ~B, A× ~V = ~B } .
(4.10)

Note that we allow bounded as well as unbounded intervals. Unbounded intervals in the
constant part allow representing inequalities: for instance, x = [1,+∞] simply means
x ≥ 1. Bounded interval coefficients for variables allow representing non-convex and
unconnected sets, similarly to interval polyhedra: in each orthan, the system is equivalent

to a regular affine inequality system of the form ~B ≤ A × ~V ≤ ~B. Unbounded interval
coefficients for variables extend the expressiveness to allow strict sign constraints: for
instance, [−∞,+∞]x = 1 is equivalent to x 6= 0.

An arbitrary interval affine inequality can be encoded as an interval affine equality.
Thus, allowing arbitrary interval matrices [A,A] would result in a domain slightly more
expressive (due to the extension to unbounded intervals) than interval polyhedra, and so,
at least as costly. To ensure that our algorithms are cubic in the worst case, we restrict
[A,A] to be in row echelon form:

∀i : ∃j : [Aij , Aij] 6= [0, 0]∧∀j′ < j : [Aij′ , Aij′] = [0, 0] ∧ ∀i′ > i : [Ai′j , Ai′j] = [0, 0]

i.e., each row of [A,A] contains a unique leading variable (first column with non-zero co-
efficient), which does not appear in subsequent rows. From an efficiency point of view, the
choice of a row echelon form is motivated by noting that a matrix in row echelon form has
at most n = |V| rows, which ensures that abstract elements have a quadratic worst-case
memory cost (compare this to the unbounded size of interval polyhedra). Concerning ex-
pressiveness, the rationale is that arbitrary conjunctions of (non-interval) affine equalities

82

4.2. INTERVAL POLYHEDRA

can always be put into an equivalent row echelon form, without loss of precision, and so,
we ensure that our domain is at least as expressive as the affine equality domain.

Constraint addition. Adding a constraint in a polyhedral domain is a simple syntactic
operation, because a polyhedron can maintain an arbitrary number of constraints. The
operation is more complex in the interval affine domain as we must ensure that the system
remains in row echelon form. Assuming that we are given a system in row echelon form
and an interval constraint to add c

def
= (

∑
j≥k[aj , aj]Vj = [b, b]), with leading variable Vk,

we proceed as follows:
• if the system has no constraint where Vk appears in leading position, we add c to the

system and stop;
• if the system has a constraint c′ where Vk appears in leading position, then:
− if c is more “precise than” c′ (for a notion of precision presented below), we replace
c′ with c in the system;

− we combine c and c′ to get a constraint c′′ with leading variable Vl with l > k;
− and we recursively add c′′ to the system.

This algorithm terminates because the index of the leading variable of the constraint to
add increases strictly. It remains to explain what is meant by “c is more precise than
c′” and by “combine c and c′”. Generally, the sets of points defined by two different
constraints are incomparable. Thus, we rely on synthetic heuristics to assess the relative
precision of constraints. An example of such heuristic consists in choosing the constraint
with the smallest width, where the width of a constraint

∑
j [aj , aj]Vj = [b, b] with respect

to a bounding box Vj ∈ [V j , V j] is defined as the constraint evaluated on the bounding box

using interval arithmetic:
∑

j [aj , aj]×
]
i [V j , V j]−]i [b, b]. We refer the reader to [CMWC11]

for more details on this heuristic and several alternate ones. Likewise, there are several
ways to combine two constraints c and c′ that lead to the elimination of Vk. For instance,
when the coefficient [ak, ak] and [a′k, a

′
k] of Vk in c and c′ have a different sign (i.e., ak > 0

and a′k < 0), we can apply the same technique we used in the interval version of Fourier–
Motzkin’s elimination (4.7) and compute:

(c�]i [ak, ak])⊕
]
i (c′ �]i [−a′k,−a′k]) . (4.11)

This technique and other ones, as well as their respective merit, are also discussed in
[CMWC11]. Note that constraint addition is an approximate operation, which is in con-
trast to the large majority of abstract domains (including all the polyhedral domains we
presented before; a notable exception in the literature is the zonotope domain [GGP10],
which is a restriction of polyhedra).

An important point of note is that, when the constraints in the system and the con-
straint to add are all affine without interval, our algorithm reduces to adding the constraint
and applying Gaussian elimination to re-normalize the system: constraint addition is thus
exact in this case.

Given an arbitrary set of constraints, it is possible to construct a system in row echelon
form by adding the constraints one by one with this algorithm. While in the case of affine

83

CHAPTER 4. AFFINE ABSTRACTIONS

equality constraints the construction of the row echelon form is a normalization process
keeping the semantic intact, for interval affine equalities this process incurs an actual
abstraction.

Projection. Eliminating a variable Vk in the regular affine equality domain consists in
using a row where Vk appears to eliminate the occurrences of Vk in other rows. After this
process, there remains at most one constraint where Vk occurs, which is removed. We
extend this algorithm to interval affine constraints, and eliminate Vk using the constraint
combination technique introduced for constraint addition. Note that this projection is gen-
erally not exact nor optimal; however, as before, if the constraint system is actually affine,
it reduces to the projection on the affine equality domain, which is exact. Assignments
are then modeled using projections and tests, as usual.

Comparison. Exact entailment checking, and so exact comparison of abstract elements,
can be achieved by interval linear programming (4.5), similarly to the case of the interval
polyhedra from Sec. 4.2.1. However, this is a costly operation. In order to be consistent
with our goal to construct a less precise but cheaper abstract domain, we propose a coarser
comparison algorithm.

Given two constraints c
def
= (

∑
j≥k[aj , aj]Vj = [b, b]) and c′

def
= (

∑
j≥k[a

′
j , a
′
j]Vj =

[b′, b
′
]), we denote as c v]il c

′ the element-wise inclusion of coefficients:

∀j : [aj , aj] ⊆ [a′j , a
′
j] ∧ [b, b] ⊆ [b′, b

′
] . (4.12)

Then, if c v]il c
′, any point satisfying c also satisfies c′. This is extended to sets of

constraints as:

C1 v]il C2 ⇐⇒ ∀c2 ∈ C2 : ∃c1 ∈ C1 : c1 v]il c2 (4.13)

which leads to a cubic-time algorithm. Then v]il implies the inclusion of the concretizations
of abstract elements. The converse implication, however, does not hold.

Join. Similarly to the weak join of float interval polyhedra (4.8), we can model the join
by element-wise interval joins. For each pair of constraints c ∈ C and c′ ∈ C′ with the
same leading variable, we generate the constraint:∑

j

([aj , aj] ∪
]
i [a′j , a

′
j])Vj = [b, b] ∪]i [b′, b

′
]

which is implied by both C and C′ (constraints with leading variable appearing in only
one system are discarded). The conjunction of all these constraints is in row echelon form
and over-approximates the join. More precise joins are possible, such as adapting the join
by Benoy et al. [BKM05] used in float polyhedra (Sec. 4.1.3). We refer the reader to
[CMWC11] for a description of more advanced joins.

84

4.2. INTERVAL POLYHEDRA

Widening. On all the domains presented before, the widening always proceeds by fil-
tering constraints in order to keep only the stable ones. This requires an entailment check,
which is a precise or even exact operation in those domains, but is rather coarsely ap-
proximated on interval affine equalities. Instead of relying on entailment checking, we
construct a widening based on the point-wise extension of an interval widening. More
precisely, given any interval widening Oi (such as the classic widening from Fig. 2.10),
each pair of constraints c ∈ C and c′ ∈ C′ with the same leading variable is replaced with:∑

j

([aj , aj] Oi [a′j , a
′
j])Vj = [b, b] Oi [b′, b

′
]

which indeed over-approximates the join and ensures the convergence in finite time. More
refined widenings are proposed in [CMWC11], such as a widening that tries to keep affine
constraints intact when they can be proved to be stable, in the hope of discovering affine
invariants as precise as the (non-interval) affine equality domain.

Application. As the previous domains, the interval affine equality domain has been
implemented in Apron and tested on some small programs. The domain is actually im-
plemented using float bounds instead of exact rationals; the soundness is guaranteed by
simply rounding upper bounds towards +∞ and lower bounds towards −∞, as in the in-
terval domain. When compared to an implementation of the affine equality domain with
exact rationals, our domain was shown to be consistently more precise, and similar in
cost (from twice slower to twice faster). The precision improvement is explained by the
improved expressiveness (in particular, the ability to represent inequalities). When com-
pared to NewPolka (Apron’s built-in polyhedra domain using exact rationals) our domain
proved to have a similar speed for programs with few variables, but additionally scaled
up to programs with 32 or more variables with a reasonable analysis time (less than 30s)
while NewPolka consistently timed-out after 1h. Concerning the precision, our domain
sometimes fails to discover constraints inferred by polyhedra, but it is often able to infer
more; this can be explained by a combination of extended expressiveness (in particular,
the ability to represent non-convex sets) and non-optimal abstract operations. Comparing
our domain to the float interval polyhedra domain shows similar results, although the
differences are less stressed because float interval polyhedra scale up better and are more
expressive than exact rational polyhedra. Because both float interval affine equalities and
float interval polyhedra use their own, incomparable, approximated abstract operators,
each one can generally infer constraints not inferred by the other. We refer the reader to
[CMWC11] for a more detailed analysis of the experimental results.

4.2.4 Discussion

In this section, we have proposed several new numeric abstract domains that extend the
expressiveness of polyhedra and affine equalities by using interval coefficients. They enrich
the ever growing library of available domains. Our work remains, for the moment, mostly
fundamental. Future work includes the construction of more robust implementations to

85

CHAPTER 4. AFFINE ABSTRACTIONS

test them in the large, analyzing actual programs in realistic programming languages.
Some of our domains make deliberate choices to sacrifice precision and improve efficiency
and, in the absence of a best abstraction, rely on local heuristics to make decisions. This
is the case in particular for interval affine equalities, which are sensitive to the chosen
ordering of variables and measure of constraint precision. This is also the case for all the
domains that use the slin linearization function. New heuristics should be developed once
the limits of the existing ones in actual analyses become apparent. Concerning optimal
and costly domains, such as exact interval polyhedra, analyzing actual programs will also
be useful to develop restrictions that scale better while maintaining a high precision where
it matters in practice (for instance, using packing techniques [BCC+10a]).

Related work. The search for new numeric domains is a very active field of abstract
interpretation. We now compare the abstract domains we presented to other, related
proposals.

Domains based on interval affine constraints can represent natively non-convex and
unconnected sets, which is quite rare. Representing non-convex invariants is generally
achieved using a generic domain lifting, such as arbitrary disjunctive completions [CC79b]
or disjunctions guided by the history of computations as in trace partitioning [RM07]. Ar-
bitrary disjunctions often suffer from scalability issues, triggering the need for heuristics
(such as periodically replacing elements with their approximate join). Moreover, widen-
ings for disjunctive completions are difficult to design [BHZ04]. Instead of representing
disjunctions of conjunctions of convex constraints, our domains achieve non-convexity by
a direct conjunction of non-convex constraints. Another example of such domain is the
max-plus polyhedra domain by Allamigeon et al. [AGG08].

As the interval domain is often too imprecise and polyhedra are not scalable, much
effort has been devoted to the design of domains in-between those two in terms of cost
and precision. During my PhD, I participated in the design of some weakly-relational
domains, such as octagons [Min06b] that restrict polyhedra to constraints of the form
±Vi ± Vj ≤ c. Other proposals include: Two-Variable-Per-Inequality by Simon et al.
[SKH02], octahedra by Clarisó [CC04], pentagons [LF10]. Our interval affine equality
domain is in-between the affine equality domain by Karr [Kar76] and polyhedra; another
instance of such domain is the sub-polyhedra domain proposed by Laviron [LL09], which is
less expressive as intervals are only allowed in the constant term. Another, less expressive
proposal to add bound information to affine equalities is to construct a partially reduced
product (Sec. 2.2) between intervals and affine equalities, as proposed by Feret [Fer01].

We were inspired to use linear programming by the work by Simon et al. on polyhedra
[SK05]. Linear programming is also used by Sankaranarayanan et al. to construct tem-
plate polyhedra [SSM05], a flexible restriction of polyhedra that generalizes octagons and
octahedra.

We advocate the use of float coefficients to analyze programs using float. The float
domains we proposed are based on constraints only, lacking a generator representation.
Dually, Ghorbal et al. propose to analyze float programs with zonotopes [GGP09], a
restriction of polyhedra based on a generator-only representation. Zonotopes do not enjoy

86

4.2. INTERVAL POLYHEDRA

a simple and exact modeling of tests; similarly to our interval affine equalities, constraint
addition must be over-approximated [GGP10]. It remains, in future work, to bridge the
gap between those domains and construct a float double description method, complete
with a sound float version of Chernikova’s algorithm.

87

Chapter 5

Abstracting C data-types

The idealized programming language that we introduced in Sec. 2.3.1, then extended
to parallel software in Chap. 3, and analyzed using classic or novel abstract domains
(Chap. 4), offers only one data-type: mathematical reals in R. Even when we extended
the language to floating-point numbers, in Sec. 2.4.4, we considered them as a subset of
reals and abstracted their operations using real operators. Considering a real semantics
allowed us to view invariants as subsets of a vector space Rn and exploit classic results
in linear arithmetic to construct our abstract domains (for instance, Chap. 4 used many
results from linear programming). However, actual programming languages feature more
complex and numerous data-types, which we must handle to construct a sound and useful
static value analysis.

In this chapter, we consider more realistic data-types, inspired from the C programming
language, with their associated expressions and operator semantics. Firstly, we consider
machine integers with wrap-around, in Sec. 5.1. Secondly, we discuss, in Sec. 5.2, the
abstraction of structured types, such as arrays or structures, but also union types and
pointer operations that allow navigating within structured objects. Finally, we go back to
floating-point numbers in Sec. 5.3 with a more detailed handling than in Sec. 2.4.4. In each
case, we start by defining a very precise concrete semantics of the considered data-type
and its operations. These semantics go beyond viewing a type as a set of values, and also
take into account their binary encoding in memory. We are then able to give a proper
semantics to operations that rely on it. For instance, the binary representation of integers
is useful to model bit-wise operations in C, while the binary representation of structures
gives a semantics to “type-punning” constructions. Finally, we provide abstractions able
to exploit the knowledge of this encoding. Our motivation is the precise static analysis of
C programs that rely on such knowledge for their correctness.

The work presented here has been published in [Min12a] and [Min06a]. It stemmed
from our experience developing the Astrée C static analyzer (Sec. 6.2) and its extension
AstréeA (Sec. 6.3). While initial versions of Astrée [BCC+03] used a straightforward
modeling of data-types, it became obvious when trying to extend the class of programs
it supported that many C programs are not portable and feature operations dependent

89

CHAPTER 5. ABSTRACTING C DATA-TYPES

on the machine representation of data-types, hence the need for the semantics and the
abstractions presented here.

5.1 Machine integers

We start here by extending our language with machine integer data-types and their asso-
ciated operations.

5.1.1 Extended language

Syntax. To support machine integers, we slightly modify the language syntax of Fig. 2.1.
Firstly, we introduce machine integer types, with the following grammar:

int-type ::= (signed | unsigned)
(char | short | int | long)

(5.1)

Types can vary in size (from char to long) and can be signed or unsigned. In expressions,
unary ◦ and binary � operators are changed to match the C ones:

◦ ::= - |~ | (int-type)
� ::= + | - | * | / | % | & | | | ^ | >> | <<

(5.2)

In addition to the operators based on classic mathematical integers (+, -, *, /, and the
remainder %), there exists bit-level operations: bit-wise negation ~, and &, or |, and
exclusive or ^, as well as bit shifts >> and <<. Finally, we add a cast operator (int-type),
which converts an expression to a given integer type.

Type representation. Each type denotes a set of possible values, but also a represen-
tation for these values as bit strings in the memory. The actual size of each integer type
depends on the architecture and the compiler, so, we assume that we are given a function
sizeof ∈ int-type → N providing the size of types in units of 8-bit bytes. Unsigned inte-
gers are represented using a pure binary representation: bn−1 · · · b0 ∈ {0, 1}n represents∑n−1

i=0 2ibi. Signed integers use a two’s complement representation: bn−1 · · · b0 ∈ {0, 1}n
represents −2n−1bn−1 +

∑n−2
i=0 2ibi, which reduces to the unsigned representation for posi-

tive numbers (bn−1 = 0), and to the complement to 2n for negative numbers (bn−1 = 1).1

The range of a type is then:

range(t)
def
=

{
[0, 28×sizeof (t) − 1] if t is unsigned

[−28×sizeof (t)−1, 28×sizeof (t)−1 − 1] if t is signed .
(5.3)

1In theory, the C standard [ISO07] allows other representations, but our choice corresponds to the vast
majority of architectures.

90

5.1. MACHINE INTEGERS

Typing. We assume that each variable V ∈ V has a user-provided type type(V) ∈
int-type. Then, expressions can be given a type type(expr) ∈ int-type by structural induc-
tion. The C typing rules are somewhat complex, in order to account for binary operations
with arguments of heterogeneous types and the preference towards a native integer type
(denoted as int). As a consequence, the value of a sub-expression is often converted to
another type when used as argument to an operator. In the following, we assume that all
these implicit conversions have been materialized explicitly by cast operators (int-type).
Without detailing these rules (see [ISO07]), we illustrate their subtlety on one often over-
looked rule: integer promotion. It states that values of a type smaller than int are
converted to int. This rule causes values with the same binary representation but differ-
ent types to behave differently. For instance, the unsigned byte 255 and the signed byte
-1 have the same representation; however, 255 >> 1 = 127 while (−1) >> 1 = −1. Integer
promotion is in fact value preserving [AI99], as opposed to representation preserving.

Concrete semantics. At the hardware level, integers are bit strings of fixed length.
One way to define the semantics is thus at the bit level (so called “bit blasting” [BK11]).
This works well when representing value sets explicitly, for instance with binary decision
diagrams [Bry86], but it is not adapted to abstraction in numeric domains. We provide,
instead, a semantics expressed using classic integer arithmetic. The choice of using integers
in Z rather than bit strings is justified when the intent of the programmer is to use modular
integers as mathematical integers most of the time. Hence, arithmetic operators, such as
+ and * can be modeled easily as long as no overflow occurs, while we accept that overflow
behaviors and less frequently used operators, such as << and &, are more complex to model,
at the risk of being less precisely abstracted. We oppose this to binary decision diagram
representations that can model easily & but do not scale up well for some arithmetic
operators such as *. At the language level, it is also justified by the value preserving
property of integer promotion.

The effect of a machine integer operation can be modeled in two steps, similarly to
the way floating-point operations are performed (Sec. 2.4.4): it first computes an exact
integer in Z, and then maps it to the range of the result type by modular wrap-around.
For instance, we get, for binary operators:

EJ e1 �ω e2 Kρ
def
=

let 〈V1, O1〉 = EJ e1 K ρ in
let 〈V2, O2〉 = EJ e2 K ρ in
〈{wrap(v1 � v2, [l, h]) | vi ∈ Vi, � /∈ {/, %} ∨ v2 6= 0 },
O1 ∪O2 ∪ {ω if � ∈ {/, %} ∧ 0 ∈ V2 } ∪
{ω if ∃v1 ∈ V1, v2 ∈ V2 : v1 � v2 /∈ [l, h] }〉

where [l, h]
def
= range(type(e1 �ω e2))

where the wrap function models wrap-around :

wrap(v, [l, h])
def
= min { v′ | v′ ≥ l ∧ ∃k ∈ Z : v = v′ + k(h− l + 1) } . (5.4)

91

CHAPTER 5. ABSTRACTING C DATA-TYPES

~x
def
= p−1(¬p(x)) = −x− 1

x & y
def
= p−1(p(x) ∧ p(y))

x | y
def
= p−1(p(x) ∨ p(y))

x ^ y
def
= p−1(p(x)⊕ p(y))

x << y
def
= bx× 2yc

x >> y
def
= bx× 2−yc

Figure 5.1: Definition of bit-wise operators.

In case of an overflow, our semantics generates an error ω and outputs the modular result,
so that we can alert the user of the wrap-around behavior while continuing the analysis
in case the wrap-around is intended.

It remains to define the semantics of the operators. The arithmetic operators +, -, *,
/, % have their usual meaning in Z (with / rounding towards 0 and a % b

def
= a− (a/b)*b).

To provide a semantics for bit-level operators on Z, independently from the machine
representation of a given type, we use 2−adic integers, i.e., infinite strings of 0 and 1. The
2−adic representation p(x) ∈ {0, 1}ω of an integer x ∈ Z generalizes the two’s complement
representation:

(p(x))i
def
=

{
bx/2ic mod 2 if x ≥ 0

¬(p(−x− 1))i if x < 0 .
(5.5)

Note that p is one-to-one on its image { p(z) | z ∈ Z }, which is exactly the set of infinite
strings that are stable, i.e., either always 0 or always 1 after a certain index. The semantics
of operators can then be defined as shown in Fig. 5.1, using the element-wise and operator
∧, or ∨, exclusive or ⊕, and complement ¬. Note that the operations defined in Fig. 5.1 are
directly available in existing arbitrary precision integer libraries (such as GMP [GNUa]).

5.1.2 Adapting classic domains

Our machine integer semantics is completely defined in terms of mathematical integers.
Thus, we consider abstract domains abstracting integer-valued environments, with con-
crete domain D def

= P(V → Z). We first present existing techniques to adapt the intervals
and polyhedra domains to integers, and show their shortcomings.

Intervals. The interval domain from Sec. 2.4.1 abstracting P(V → R) can be easily
adapted to machine integers. As intervals enjoy a Galois connection (Fig. 2.9), we can
construct optimal abstractions of operators. We will not present them in detail (in partic-

ular, +]i, -
]
i, *

]
i are defined as in Fig. 2.11) but focus on the wrap-around effect. The best

92

5.1. MACHINE INTEGERS

abstraction of wrap is then:

wrap]i([l, h], [l′, h′]) =


[wrap(l, [l′, h′]),wrap(h, [l′, h′])]

if (l′ + (h′ − l′ + 1)Z) ∩ [l + 1, h] = ∅
[l′, h′] otherwise

(5.6)

which returns the full interval [l′, h′] when [l, h] crosses a boundary in l′ + (h′ − l′ + 1)Z.
This is the case when the set {wrap(v, [l′, h′]) | v ∈ [l, h] } is not convex. This case results
in a great a loss of precision, as shown below.

Example 5.1.1. Consider computing:

X ← (signed char)((unsigned char) X + (unsigned char) Y)

where X and Y have type signed char and range in [−1, 1].
Firstly, the cast to unsigned char computes, in the concrete, the set { 0, 1, 255 }. The

interval abstraction of this set is computed as wrap]i([−1, 1], [0, 255]) = [0, 255], which is
optimal but not exact. Secondly, an addition is performed to give an int result (due to

integer promotion), which gives [0, 255] +]
i [0, 255] = [0, 510]. Thirdly, the result is cast

back to signed char, which gives wrap]i([0, 510], [−128, 127]), that is, [−128, 127]. By
comparison, the concrete result would be [−2, 2]. We note that the concrete result is
exactly representable as an interval, and that each interval operation is optimal but, as
the combination of optimal abstractions is not optimal, the accumulation of imprecision
gives a very coarse interval result.

This example might seem unrealistic, and yet such code patterns are used in actual
industrial code generators, such as TargetLink [dSp] where they are known as “compute-
through-overflow .”
End of example.

Polyhedra. The polyhedra domain (Sec. 2.4.2) and, more generally, most relational do-
mains, are based on field properties of reals that are not true of integers. However, with
a little care, polyhedra can be used to soundly abstract sets of points with integer coordi-
nates, in P(Zn). The principle is to keep a syntactic representation based on constraints
or generators with coefficients in Q, but change its meaning: the concretization γp (2.11)
is replaced with γZp that keeps only integer points:

γZp(P)
def
= γ(P) ∩ Zn . (5.7)

Then, all the operators described in Sec. 2.4.2 implemented in rationals are also sound
with respect to γZp. However, some of them that were exact or optimal for γp are no
longer exact or optimal for γZp.

Example 5.1.2. Consider the polyhedron P in R2 defined by the constraint x = 2y. In
integers, it represents γZp(P) = { (x, y) ∈ Z2 | x = 2y }. Then, projecting y in the concrete
gives: SJ y ← [−∞,+∞] K(γZp(P)) = (2Z) × Z, which cannot be represented exactly as a

93

CHAPTER 5. ABSTRACTING C DATA-TYPES

polyhedron. Applying the polyhedron projection, we get γZp(S]pJ y ← [−∞,+∞] K(P)) =
Z2. Hence, the projection, which is exact with respect to γp, is no longer exact with
respect to γZp.
End of example.

Note that various methods exist to exploit the restriction to integer coordinates in
order to improve the precision. They range from simple low-cost integer tightening of
constraints, as used for instance in Apron [JM09], to costly integer linear programming
methods, as in the Omega test [Pug92], but we will not discuss them further.

We now discuss the problem of modeling machine integer operations. Most polyhedra
libraries only feature abstract operators to model affine assignments and tests, as these
enjoy exact abstractions (on rational at least). Nevertheless, we proposed in Sec. 2.4.3 a
technique to abstract non-affine expressions into (interval) affine ones, which can be ex-
tended to support bit-level operators as well: any application of~, &, |, ^, >>, << is replaced
with an interval obtained by evaluating the sub-expression using interval arithmetic.

For the cast operation, one simple solution is to test whether the argument overflows
the range of the type. If it does not, then the semantics of the cast is the identity, and
the cast can be safely ignored. If it does overflow, a wrap-around occurs, and we use the
interval domain to compute its result. Simon and King proposed a more precise wrap-
around operator for polyhedra in [SK07]. It works by cutting polyhedra into pieces at
wrap-around thresholds, folding each piece, and joining them. This method is able to
infer affine relations preserved or induced by wrap-around. However, neither using the
interval domain nor Simon and King’s solution is precise enough to handle Ex. 5.1.1.
Indeed, that example requires representing (at least locally) a non-convex set, which is
not possible with polyhedra, whatever abstraction of wrap-around is used.

5.1.3 Modular intervals

We now propose a very simple variation on intervals in order to model wrap]i more pre-
cisely and handle Ex. 5.1.1. Following the ideas of Masdupuy [Mas93], we add a modular
component to intervals. The modular interval domain is defined as:

D]m
def
= { [l, h] + kZ | l, h ∈ Z ∪ {±∞}, k ∈ N }

γm([l, h] + kZ)
def
= {x+ ky | l ≤ x ≤ h, y ∈ Z } .

(5.8)

Unlike intervals, this domain does not feature a best abstraction function αm. We con-
struct our abstract operators ◦]m as in Fig. 5.2, by mixing standard interval operations ◦]i
and simple coset identities [Gra89]. For the arithmetic operators +

]
m, -]m, and *

]
m as well

as the join ∪]m and the widening Om, it is possible to derive a meaningful modular compo-
nent form the component of the arguments. For other operators (such as /]m), we revert to
classic interval arithmetic with no modular component (i.e., k = 0). The most interesting

operator is wrap]m([l, h]+kZ, [l′, h′]). When the modular interval folded by wrap-around to
[l′, h′] is an interval, it is directly returned. Otherwise, we return the argument [l, h] + kZ
with an extra modular component (h′ − l′ + 1)Z modeling the possible wrap-around. The

94

5.1. MACHINE INTEGERS

-
]
m([l, h] + kZ)

def
= [−h,−l] + kZ

~
]
m

([l, h] + kZ)
def
= [−h− 1,−l − 1] + kZ

([l1, h1] + k1Z) ◦]m ([l2, h2] + k2Z)
def
=

([l1, h1] ◦]i [l2, h2]) + gcd(k1, k2)Z if ◦ ∈ { +, -, *,∪,O }
([l1, h1] ◦]i [l2, h2]) + 0Z if k1 = k2 = 0 and ◦ ∈ { /, %, &, |,^, >>, << }
[−∞,+∞] + 0Z otherwise

wrap]m([l, h] + kZ, [l′, h′]) def
=

let k′ = gcd(k, h′ − l′ + 1) in{
[wrap(l, [l′, h′]), wrap(h, [l′, h′])] + 0Z if (l′ + k′Z) ∩ [l + 1, h] = ∅
[l, h] + k′Z otherwise

where gcd is the greatest common divisor, extended to gcd(0, x) = gcd(x, 0) = x.

Figure 5.2: Abstract operators in the modular interval domain.

ability, in the later case, to keep the bounds l and h of the original argument intact is key
to precisely analyze “compute-through-overflow” programs, as shown below:

Example 5.1.3. We analyze Ex. 5.1.1 again, using modular intervals. Firstly, casting [−1, 1]
to unsigned char gives:

wrap]m([−1, 1], [0, 255]) = [−1, 1] + 256Z .

Hence, we represent exactly the fact that the result equals [−1, 1] wrapped-around. Unlike
intervals, we cannot represent the fact that it is bounded in [0, 255], but, as it will turn out,
this is not necessary. Then, adding twice this abstract element simply gives [−2, 2]+256Z.
Finally, the cast back to signed char gives:

wrap]m([−2, 2] + 256Z, [−128, 127]) = [−2, 2]

which is the exact concrete result. It is sufficient to know that the final result is bounded
in [−128, 127], due to the last cast, to recover the interval [−2, 2] from the modular interval
[−2, 2] + 256Z.

End of example.

Compared to the domain proposed originally by Masdupuy [Mas93], our domain is
slightly less expressive. Indeed, the former infers interval congruences of the form θ ·
[l, u]〈m〉 while, in our case, θ is fixed to 1. The main difference lies in the intended use
and the design of abstract operators. Masdupuy’s domain is designed to infer sets of
array indexes encountered in loops, while our domain focuses on abstracting precisely
wrap-around, and so, revolves around the definition of wrap]m.

95

CHAPTER 5. ABSTRACTING C DATA-TYPES

[c1, c2]]b
def
= (~c1, c1) (when c1 = c2)

~
]
b(z, o)

def
= (o, z)

(z1, o1) &]b (z2, o2)
def
= (z1 | z2, o1 & o2)

(z1, o1) |]b (z2, o2)
def
= (z1 & z2, o1 | o2)

(z1, o1) ^
]
b (z2, o2)

def
= ((z1 & z2) | (o1 & o2), (z1 & o2) | (o1 & z2))

(z1, o1) <<]b (z2, o2)
def
= ((z1 << n) | ((1 << n)− 1), o1 << n),

when ∃n ≥ 0 : (z2, o2) = [n, n]]b
(z1, o1) >>]b (z2, o2)

def
= (z1 >> n, o1 >> n), when ∃n ≥ 0 : (z2, o2) = [n, n]]b

(z1, o1) ∪]b (z2, o2)
def
= (z1 | z2, o1 | o2)

(z1, o1) O]b (z2, o2)
def
= (z1 O z2, o1 O o2),

with x O y
def
= if x = x | y then x else − 1

wrap]b((z, o), [0, 2
n − 1])

def
= (z | (−2n), o & (2n − 1))

wrap]b((z, o), [−2n, 2n − 1])
def
= ((z & (2n − 1)) | (−2n(p(z))n),

(o & (2n − 1)) | (−2n(p(o))n))

Figure 5.3: Abstract operators in the bit-field domain.

5.1.4 Bit-field domain

While it is precise on wrap-around, the modular interval domain is not well-adapted to
bit-level operations, such as masking bits. For instance, V & 5 always gives a result in
{0, 1, 4, 5}, which cannot be represented as an interval nor a modular interval. (We will
see in Sec. 5.3.3 more realistic examples using bit masks, in the context of bit-level float
manipulations.) A very natural solution is to complement interval domains with a domain
that tracks the value of each bit independently. Such a non-relational bit-field domain has
been proposed by Monniaux [Mon07] and Regehr et al. [RD06]. These domains abstract
a concrete semantics of integers viewed as bit strings of fixed length. We now show that
a bit-field domain can be constructed on a Z−based semantics, lifting the restriction to
fixed-length bit strings.

The bit-field domain D]b
def
= Z × Z associates to each variable two integers, z and o,

that represent the bit masks for bits that can be set respectively to 0 and to 1:

γb(z, o)
def
= { b | ∀i ≥ 0 : (¬p(b)i) ∧ p(z)i or p(b)i ∧ p(o)i }

αb(S)
def
= (∨{¬p(b) | b ∈ S }, ∨{ p(b) | b ∈ S }) .

(5.9)

We have a Galois connection which allows defining optimal abstract operators. The most
interesting ones are presented in Fig. 5.3. Note that we only handle the case of constants
when they are singletons, and limit shifts to the case where the right argument is a
positive singleton. In other cases, we can return the greatest element >]b

def
= (−1,−1) that

represents P(Z). Wrapping around an unsigned interval [0, 2n− 1] is modeled by masking
high bits, while wrapping around a signed interval [−2n, 2n − 1] additionally performs a

96

5.2. STRUCTURED TYPES

sign extension. As widening, we simply set all the bits in a bit mask (setting its value
to −1) if it is not stable. Note that this domain is extremely easy to implement as the
abstract operations can always be expressed in terms of concrete operations in Z (Fig. 5.1).

5.1.5 Discussion

The modular interval and bit-field domains were described in [Min12a], and developed as
part of our work extending the Astrée static analyzer to larger classes of programs. Our
goal was to analyze low-level programs that manipulate individual bits in integers, as well
as automatically generated code (in the spirit of Ex. 5.1.3). The proposed domains are
not intended to replace existing ones (such as plain intervals or relational domains), but
to supplement them, through a reduced product, to gain some precision in very specific
cases. Moreover, each domain is effectively tailored to specific coding practices. This fits
very well the design by refinement of a specialized static analyzer, such as Astrée and
AstréeA, which will be discussed in Chap. 6. The added domains are lightweight; indeed,
they are non-relational and have a linear time cost. Our experience [Min12a] shows that
adding them does not degrade the performance of the analysis. They are moreover easy to
design and to implement. This justifies the use of many specialized small domains instead
of fewer large all-purpose ones. Future work includes the design of new support domains
adapted to other programming idioms, should the need arise to improve the analysis on
newly considered programs.

5.2 Structured types

Additionally to numeric types (such as machine integers and floats), the C language sup-
ports aggregate types (such as arrays and structures) as well as pointers. In this section, we
assume that we are given abstract domains that support machine integers and floats (based
on Secs. 5.1 and 2.4.4), and show how to extend them to a C-like type system (Sec. 5.2.1).
After presenting a classic semantics for well-structured variable accesses (Sec. 5.2.2), we
show its limitations and introduce a new, lower-level semantics (Sec. 5.2.3). That se-
mantics models in precise details the memory representation of types in order to analyze
precisely programs that rely on it.

5.2.1 Extended types

We extend our integer types (5.1) with the following type algebra, accounting for the main
features of C:

type ::= scalar -type
| type [n] (arrays, n ∈ N)
| struct {type1, . . . , typen} (structures)
| union {type1, . . . , typen} (unions)

scalar -type ::= int-type | float-type | ptr
float-type ::= float | double

(5.10)

97

CHAPTER 5. ABSTRACTING C DATA-TYPES

Integers, floats, and pointers are collectively referred to as scalar types. Note that we
use a single type, ptr, to represent all pointers, disregarding the kind of objects they are
pointing to (it can be assimilated to C’s void* type). Our language also allows structured
types: arrays of fixed size, structures, and unions. Structures are aggregates storing a
fixed collection of fields of heterogeneous types. Unions are also collections of fields, but
all the fields occupy the same place in memory, so that only one of them can be stored at
a given time (this results in a gain in memory, but can also be used for special effects as
detailed in Sec. 5.2.3).

Machine integers and floats are both subsets of R. Given a set of variables V of scalar
type, we thus use as concrete domain DV

def
= P(V → R). We assume that we are given a

family of abstract domains D]V abstracting DV for each V, and we will lift this family to
aggregate and pointer types.

5.2.2 Well-structured semantics

We first consider the simple case where only arrays and structures are used, but not
pointers nor unions, which leads to a straightforward memory model. Most field-sensitive
analyses follow this model, and this was also the case of early versions of the Astrée
analyzer [BCC+03]. We present briefly this model mainly to show its limitations and
motivate for the lower-level model we present next.

Cells. In order to retrieve a purely numeric semantics, we decompose recursively and
statically aggregate variables into collections of scalar-typed fields. To distinguish between
the original set of variables of type in type and the derived variables of type in scalar -type,
we call the latter “cells.” Given a variable V ∈ V, each cell is a sequence of the form V · p
where p ∈ N∗ is a sequence of integers denoting structure field and array element selectors;
p ranges in sel(type(V)) defined as follows, based on the type type(V) of V :

sel(t)
def
= ε if t ∈ scalar -type

sel(t[n])
def
= { i · c | c ∈ sel(t), i ∈ [0, n− 1] }

sel(struct {t1, . . . , tn})
def
= { i · c | c ∈ sel(ti), i ∈ [1, n] } .

(5.11)

We denote by cell the set of all cells in V:

cell
def
=
⋃
{V · p | V ∈ V, p ∈ sel(type(V)) } . (5.12)

A set of memory states is then abstracted in a numeric domain D]cell abstracting P(cell →
R).

Operators. The syntax of expressions is enriched in order to gain access to aggregate
objects: plain variable accesses are replaced with accesses to lvalues lval (short for “left-
value” as these also appear on the left of assignments) that are sequences of array and
structure field accesses and denote assignable memory parts. The new syntax is shown in

98

5.2. STRUCTURED TYPES

expr ::= lval (left-value)
| [c1, c2] (constant)
| ◦ω expr (unary operator)
| expr �ω expr (binary operator)

lval ::= V (variable access, V ∈ V)
| lval .n (field access, n ∈ N)
| lval [expr]ω (array access)

stat ::= lval ← expr (assignment)

Figure 5.4: Syntax of expressions with structured types.

Fig. 5.4. The concrete semantics of assignments SJ lval ← expr K and tests SJ expr ./ 0 K is
modeled in two steps: lvalues are first replaced with cell sets (dynamic cell resolution), and

then lvalue-less expressions are fed to the numeric domain D]cell . The first step involves
evaluating (possibly recursively) expressions that appear as array indexes into value sets.
The second step involves a slight generalization of expressions and statements semantics
(Figs. 2.2, 2.6) to cell sets. Formally, we have:

EJ {X1, . . . , Xn } Kρ
def
= 〈{ ρ(Xi) | i ∈ [1, n] }, ∅〉

SJ {X1, . . . , Xn } ← e K〈R, O〉 def
=
⊔
i SJXi ← e K〈R, O〉 .

(5.13)

An abstract semantics can be derived easily. The first step, index expression evaluation,
can be performed, for instance, in the interval domain D]i , which additionally allows de-
tecting array overflows. The second step involves extending the semantics of expressions
and statements from Fig. 2.11 as follows:

E]iJ {X1, . . . , Xn } KR]
def
= 〈

⋃]
i R

](Xi), ∅〉
S]iJ {X1, . . . , Xn } ← e K〈R, O〉 def

=

let 〈I, O′〉 = E]iJ e KR] in

{
〈R][X1 7→ I], O ∪O′〉 if n = 1

〈R][∀i : Xi 7→ R](Xi) ∪]i I], O ∪O′〉 otherwise .

(5.14)
This definition resorts to weak updates when assigning into a non-singleton set of cells.
The case of relational domains, such as polyhedra and octagons, is only slightly more
complicated. We refer the reader to the work of Gopal et al. on array summarization
[GDD+04], which provides example implementations for weak updates.

Extensions. The C standard [ISO07] defines the semantics of union types only in the
case where a single field is active in a given environment: the program can only read
back from a union using the same field used for the preceding write. Other accesses
are undefined. It is possible to extend the previous semantics to support unions if we
limit ourselves to the usage allowed by the standard. A union is modeled as a structure,

99

CHAPTER 5. ABSTRACTING C DATA-TYPES

typedef unsigned char uint8;

typedef unsigned short uint16;

union {
struct { uint8 al, ah, bl, bh; } b;

struct { uint16 ax, bx; } w;

} regs;
`1

regs.w.ax = 0x1234;`2

if (!regs.b.ah) `3 regs.b.bl = regs.b.al; `4

else regs.b.bh = regs.b.al;`5

`6regs.b.al = 0xab;`7

// here regs.w.ax == 0x12ab

Figure 5.5: Non-portable use of C unions.

plus an extra information tracking which field is active. We can then abstract a set of
environments as a numeric abstract element, plus a map from unions to the set of possible
active elements.

Moreover, the only well-defined use of pointers in the C standard corresponds to nav-
igating within arrays. Such pointer uses can be modeled in our semantics by associating
to each pointer a numeric variable tracking its index, and keeping a map from pointers to
the sets of arrays they can point to.

Remark. Another standard way to support pointers in analyses is to resolve all pointer
dereferences in a separate pass before the numeric analysis, using one of the many existing
points-to analyses (we refer the reader to the survey by Hind [Hin01] for more information
on points-to analyses). However, there is experimental evidence [PH99] that combined
points-to and numeric analyses are more precise than separate ones. In abstract interpre-
tation, this is related to the well-known fact that a reduced product of abstract domains
is more precise than their product without reduction (Sec. 2.2). Additionally, an analy-
sis expressed as a combined pointer and numeric analysis benefits directly from numeric
domains to abstract pointer arithmetic.
End of remark.

Limitations. While attractive due to their simplicity, these extensions are of limited
use in practice as many C programs abuse unions and pointers. Such programs rely on
behaviors that are unspecified or undefined by the standard, but nevertheless ensured
by a specific compiler on a given architecture, and yet, cannot be handled easily in a
well-structured memory abstraction. Figure 5.5 presents a simple C program that mixes
accesses to different fields of a union. It relies on the fact that, when run on the correct
architecture (here, an ia32 architecture), after writing 0x1234 into the field ax, the high
order byte of its representation, 0x12, can be retrieved from ah. Figure 5.6 achieves a
similar result, but uses pointer casts. By converting a pointer on 16-bit integers to a

100

5.2. STRUCTURED TYPES

uint16 ax, bx;

ax = 0x1234;

if (*(((uint8*)&ax)+1))

((uint8)&bx) = *((uint8*)&ax);

else

(((uint8)&bx)+1) = *((uint8*)&ax);

((uint8)&ax) = 0xab;

Figure 5.6: Non-portable use of pointer casts in C.

pointer on 8-bit integers and dereferencing it, the individual bytes of its representation
can be accessed. This bypassing of the language type system is often referred to as “type
punning .” These two examples show that statically decomposing the memory into disjoint
parts assigned to independent cells is not always possible: one must consider possibly
overlapping views of the memory. In the first example, the set of possible views can be
derived from the static type information, i.e., from the type of the union fields. In the
second example, the type of the variable does not give any insight on the possible ways it
may be used: it is intricately tied to the dynamic value of the pointers when the cast is
executed.

5.2.3 Low-level semantics

We now present a semantics that supports union types and pointers, and is able to model
precisely the examples in Figs. 5.5 and 5.6. Our concrete semantics is based on a low-level
byte-based representation of C variables.

Layout. A first step is to make explicit all the assumptions on the layout of data in
memory that a program may rely on:
• the byte size sizeof (t) of each type t ∈ type;
• the offset offset(t, i) of the i−th field of a structure of type t, i.e., the position in bytes

of the first byte of the field relative to the first byte of the structure;
• the alignment alignof (t) of a type, which imposes constraints on the offset of structure

fields with this type; alignment is enforced by inserting padding bytes between fields
and at the end of structures;

• the ordering of bytes in scalar types (either least significant or most significant first).

Hence, the analysis is parametrized by these choices, and will only be sound for the chosen
parameter instance. These choices are generally documented in an ABI (Application
Binary Interfaces). Figure 5.7 provides an example definition: it uses a general algorithm
defined in the System V ABI [ATSCOI97] to derive the sizes, alignments, and offsets in
a systematic way by induction on types, based on the size and alignment of scalar types.
The example definition in Fig. 5.7 matches a standard 32-bit architecture.

101

CHAPTER 5. ABSTRACTING C DATA-TYPES

sizeof (int)
def
= sizeof (long)

def
= sizeof (ptr)

def
= 4

sizeof (char)
def
= 1 sizeof (short)

def
= 2

sizeof (float)
def
= 4 sizeof (double)

def
= 8

if t ∈ scalar -type, then alignof (t)
def
= sizeof (t)

if t = t′[n], then

alignof (t)
def
= alignof (t′)

sizeof (t)
def
= n× sizeof (t′)

if t = struct { t1, . . . tn}, then

alignof (t)
def
= lcm { alignof (ti) | i ∈ [1, n] }

offset(t, 1)
def
= 0

offset(t, i+ 1)
def
= align(offset(t, i) + sizeof (ti), ti+1)

sizeof (t)
def
= align(offset(t, n) + sizeof (tn), t)

if t = union { t1, . . . tn}, then

alignof (t)
def
= lcm { alignof (ti) | i ∈ [1, n] }

offset(t, i)
def
= 0

sizeof (t)
def
= align(max { sizeof(ti) | i ∈ [1, n] }, t)

where align(o, t)
def
= min {x ∈ (alignof (t))Z | x ≥ o }

and lcm is the least common multiple.

Figure 5.7: System V ABI for a 32-bit architecture.

expr ::= lval (left-value)
| &V (variable address, V ∈ V)
| [c1, c2] (constant)
| ◦ω expr (unary operator)
| expr �ω expr (binary operator)

lval ::= ∗scalar -type,ω expr (dereference)

stat ::= lval ← expr (expression assignment)

Figure 5.8: Syntax of low-level expressions.

Expressions. Our expressions, presented in Fig. 5.8, now support pointers and pointer
arithmetic (overloading the operators +, - ∈ �). Most of the syntax of lvalues has dis-
appeared. Indeed, they can be encoded in terms of pointer arithmetic and dereferences.
More precisely, an lvalue l of type t appearing in an expression is replaced with ∗t,ω(&l),
and the & operator is “pushed inside” using the following rules:

&(l.f) &l + offset(t, f)
&(l[e]ω) &l + sizeof (t′)× e where t = t′[n] .

102

5.2. STRUCTURED TYPES

Note that pointer arithmetic is expressed as offset arithmetic, at the byte level. Note also
that our expressions can only return a scalar value, and we support only assignments of
scalars. The only operation supported on non-scalar objects in C is the copy assignment,
which we can statically convert into a set of scalar assignments (either field by field or
byte by byte).

Pointers. In our language, valid pointers can only be constructed by taking the address
of a variable and performing pointer arithmetic. We restrict our analysis to the case of flat
memory models, in which addresses, and thus pointers, are plain integers.2 However, no
assumption can be made on the base address of variables, which can change each time the
variable is recreated (for local variables) or the program is run again. Hence, we model
pointer values as (semi-)symbolic addresses of the form 〈V, i〉 ∈ V ×Z, which indicates an
offset of i bytes from the first byte of V . This choice is quite standard for C analyses that
take pointer arithmetic into account (see for instance [WL95] for an early example). We
must add a special pointer value, NULL, to model C’s NULL pointer. Moreover, we add
a special value, invalid, denoting pointers that are not obtained by taking the address
of any variable (e.g., constructed by converting from an integer or a float value) and can
thus point anywhere. The set of pointer values is then:

Ptr def
= (V × Z) ∪ {NULL, invalid} . (5.15)

An important subset of Ptr is the subset Addr of pointers to addressable memory
bytes:

Addr def
=
⋃
{ 〈V, o〉 | V ∈ V ∧ o ∈ [0, sizeof (type(V))− 1] }

⊆ Ptr
(5.16)

where type(V) denotes the type of the variable V ∈ V. Depending on the actual base
address of variables, dereferencing a pointer outside Addr may actually access a valid
memory region (inside another variable) or cause a non-deterministic error. In order to
enforce the (desirable) property that the program semantics does not depend on the base
addresses and to always consider the worst possible scenario, we consider that it is a
run-time error to access bytes outside Addr. However, we allow constructing pointers
pointing outside Addr, as long as they are not dereferenced. It also becomes possible, in
our semantics, to start from a pointer to a field of a structure or union and construct,
by pointer arithmetic, a pointer to another field of the same variable and dereference it.
Note that all these operations are undefined in the C standard [ISO07]; our semantics is
thus laxer. While this means that more programs can be given a semantics, it also means
that the analysis will report fewer kinds of errors than the well-structured semantics (i.e.,
violations of the standard that we now accept). In our experience, the choice of the
concrete semantics is a trade-off and can vary depending on the kind of programs and
properties one wishes to analyze.

2We thus ignore here the case of segmented architectures.

103

CHAPTER 5. ABSTRACTING C DATA-TYPES

Pointer arithmetic is straightforward and reduces to integer arithmetic on offsets. For
instance, adding an integer i to a pointer p gives:

p+p i
def
=


〈V, o+ i〉 if p = 〈V, o〉 ∈ V × Z
NULL if p = NULL ∧ i = 0

invalid otherwise .

(5.17)

We must however be careful that physically distinct symbolic pointers may represent the
same address and compare equal. In fact, only distinct pointers to addressable bytes as
well as NULL are guaranteed to be distinct. For instance, if V and W are 4-byte integers,
then the pointers 〈V, 4〉 and 〈W, 0〉 may be equal if V and W are allocated at contiguous
addresses. This leads to the following definition of equality =p:

p =p p
′ def

= { true | p = p′ ∨ {p, p′} 6⊆ Addr ∪ {NULL} } ∪
{ false | p 6= p′ ∨ {p, p′} 6⊆ Addr ∪ {NULL} }

(5.18)

which returns {true, false} when comparing 〈V, 4〉 and 〈W, 0〉 as, depending on the ad-
dresses chosen by the compiler, they may compare equal or not.

Byte-based memory model

Our modeling of memory accesses as performing a byte-based address computation and
then dereferencing some data at this location suggests modeling also the contents of the
memory at the byte level. In the computer, each byte has a value in [0, 255] but, to account
for our symbolic pointers, we enrich byte values with pairs 〈p, i〉 ∈ Ptr × N denoting the
i−th byte in the memory representation of the pointer value p. Hence byte values are:

B def
= [0, 255] ∪ (Ptr × N) . (5.19)

An environment is now an element of E def
= Addr → B.

Expressions manipulate scalar values, which may be numeric (machine integers or
floats) or pointer values. We denote the set of values as V:

V def
= R ∪ Ptr . (5.20)

The final component required to define our most concrete semantics is a representation
function benct that converts a scalar value of a given type t into a sequence of sizeof (t) byte
values, and the conversion back bdect. The conversion is parametrized by the type, which
defines a binary representation of scalars (for instance, the scalar 1 has a different byte
encoding when seen as an integer and as a float). An example definition, corresponding
to a 32-bit Intel (i.e., little endian) architecture, is presented in Fig. 5.9 (the case of floats
is omitted here; it will be handled in Sec. 5.3). Note that the mapping between byte
and scalar values is not unique; hence, the functions benct and bdect are non-deterministic
(they output a set of possible values). For instance, when decoding with integer type some
bytes representing symbolic pointers, the whole range of integers is returned.

104

5.2. STRUCTURED TYPES

bencscalar -type ∈ V→ P(B∗)

if t ∈ int-type and t is unsigned, then:

benct(v)
def
= { (b0, . . . , bn−1) } where ∀i < n : bi ∈ [0, 255] ∧

∑n−1
i=0 28×ibi = v

if t ∈ int-type and t is signed, then:

benct(v)
def
= { (b0, . . . , bn−1) } where ∀i < n : bi ∈ [0, 255]∧∑n−1

i=0 28×ibi =

{
v if v ≥ 0

v + 28×n if v < 0

bencptr(v)
def
= { (〈v, 0〉, . . . , 〈v, n− 1〉) }

bdecscalar -type ∈ B∗ → P(V)

if t ∈ int-type and t is unsigned, then:

bdect(b0, . . . , bn−1)
def
=

{
{x } if ∀i < n : bi ∈ [0, 255] ∧ x =

∑n−1
i=0 28×ibi

range(t) otherwise

if t ∈ int-type and t is signed, then:

bdect(b0, . . . , bn−1)
def
=



{x } if ∀i < n : bi ∈ [0, 255]∧
x =

∑n−1
i=0 28×ibi < 28×n−1

{x− 28×n } if ∀i < n : bi ∈ [0, 255]∧
x =

∑n−1
i=0 28×ibi ≥ 28×n−1

range(t) otherwise

bdecptr(b0, . . . , bn−1)
def
=

{
{p} if ∀i < n : bi = 〈p, i〉
{invalid} otherwise

where n = sizeof (t)

Figure 5.9: Byte-encoding and decoding of scalars.

The functions benct and bdect are used in Fig. 5.10 to give a meaning to pointer
dereferences: bytes are fetched and decoded with bdect when reading from the memory in
an expression EJ ∗t,ω e K, while values computed by expressions are encoded to bytes with
benct when written into the memory in an assignment SJ ∗t,ω e1 ← e2 K. The semantics
also reports illegal memory accesses (i.e., dereferencing non-addressable bytes) as errors
at location ω.

Example 5.2.1. The semantics gives its intended meaning to our examples from Figs. 5.5
and 5.6. As another example, consider a variable V of type unsigned int. Then, writing
a value v into V and then reading it back with ∗signed int &V reduces to evaluating
(bdecsigned int ◦ bencunsigned int)(v). Given our definitions of benct and bdect, it turns out
to have the exact same semantics as a regular integer cast: (signed int)v.

End of example.

105

CHAPTER 5. ABSTRACTING C DATA-TYPES

EJ ∗t,ω e1 Kρ
def
=

〈
⋃
{ bdect(ρ(v), . . . , ρ(v +p (n− 1))) | v ∈ V ρ

1 , ∀i < n : v +p i ∈ Addr },
Oρ1 ∪ {ω | ∃v ∈ V

ρ
1 , i < n : v +p i /∈ Addr }〉

SJ ∗t,ωe1 ← e2 K〈R, O〉
def
=

〈∅, O〉 t
⊔
ρ∈R 〈{ ρ[∀i < n : v1 +p i 7→ bi] |

v1 ∈ V ρ
1 , v2 ∈ V ρ

2 , (b0, . . . , bn−1) ∈ benct(v2) },
Oρ1 ∪O

ρ
2 ∪ {ω | ∃v ∈ V

ρ
1 , i < n : v +p i /∈ Addr }〉

where 〈V ρ
1 , O

ρ
1〉

def
= EJ e1 Kρ, 〈V ρ

2 , O
ρ
2〉

def
= EJ e2 Kρ, and n = sizeof (t)

Figure 5.10: Memory reads and write in the byte-based semantics.

5.2.4 Cell-based memory model

The byte-based concrete semantics is quite attractive as it can precisely model the memory
and yet all the computations actually performed by expressions are expressed using only
scalars in V, i.e., mathematical integers and reals (as opposed to bit blasting). However,
abstracting this semantics directly in a numeric domain is not advisable. Firstly, it requires
domains to abstract two kinds of values: bytes in B (to model environments) and scalars
in V (to model expression values). A more severe problem is that the concrete operators
(Fig. 5.10) rely heavily on systematic conversions between the two kinds of values, and
so, the conversions must be precisely approximated in the abstract domain. At the very
least, we would expect that reading a value with the same type as it was written last
in the memory gives back the exact same value, i.e., that benc]t ◦ bdec]t = λX.X. This
would require relational domains able to reason precisely on the linear equalities and the
disjunctions appearing in bdect and benct. This imposes a heavy burden on the abstract
domain and prevents the use of the most scalable ones, such as intervals.

Concrete semantics

We propose instead to abstract a slightly less concrete semantics, that reasons at the
level of cells and scalars only (and not byte values). The gist of the method, which we
introduced first in [Min06a], is to decompose the memory into a set of possibly overlapping
cells, that evolves dynamically during the analysis.

We first consider the (finite) universe Cell of cells that may be dereferenced. Each cell
is denoted, similarly to pointers, as a variable V and an offset o, to which we add a scalar
type t indicating an encoding of values:

Cell def
= { 〈V, o, t〉 | V ∈ V, t ∈ scalar -type, 0 ≤ o ≤ sizeof (type(V))− sizeof (t) } .

(5.21)
By construction, all the bytes in a cell are addressable: we have 〈V, o〉, . . . 〈V, o+sizeof (t)−
1〉 ∈ Addr. Our domain of environments, denoted as E[, is modeled as a choice of a cell

106

5.2. STRUCTURED TYPES

φ〈V, o, t〉(C)
def
=

〈V, o, t〉
if 〈V, o, t〉 ∈ C

wrap(〈V, o, t′〉, range(t))
else if 〈V, o, t′〉 ∈ C ∧ t, t′ ∈ int-type ∧ sizeof (t) = sizeof (t′)

(〈V, o− b, t′〉/28b) mod 256
else if 〈V, o− b, t′〉 ∈ C ∧ t = unsigned char ∧ t′ ∈ int-type ∧b < sizeof (t′)

wrap(
∑n−1

i=0 28i × 〈V, o+ i, t′〉, range(t))
else if n = sizeof (t) ∧ ∀i < n : 〈V, o+ i, t′〉 ∈ C∧
t ∈ int-type ∧t′ = unsigned char

range(t)
else if t ∈ scalar -type

invalid
else if t = ptr

Figure 5.11: Cell synthesize function.

set C ⊆ Cell and a set of scalar environments on C:

E[def
=

⋃
C⊆Cell

{ 〈C, R〉 | R ∈ P(C → V) } . (5.22)

Note that an address in Addr may be covered by several cells, or none at all. To give
a meaning to such environments, we use a conjunctive semantics: if a concrete element
provides several information on a given byte, then they must be simultaneously true.
Hence, a concrete element 〈C, R〉 ∈ E[represents the following set γCell〈C, R〉 ∈ P(Addr →
V) of byte-level memories:

γCell〈C, R〉
def
= { ρ ∈ Addr → V | ∃r ∈ R : ∀〈V, o, t〉 ∈ C :
∃(b0, . . . , bn−1) ∈ benct(r〈V, o, t〉) :
∀i < sizeof (t) : ρ〈V, o+ i〉 = bi } .

(5.23)

The use of a conjunctive semantics matches the intuition that union types and type pun-
ning may give access to several typed views of the same underlying sequences of bytes,
and that all these views are valid simultaneously.

Two key operations in our domain are cell addition and cell removal. Due to our inter-
section semantics, it is sound to remove any cell: it corresponds to removing information.
Formally, we have: γCell〈C, R〉 ⊆ γCell〈C \D, R|C\D〉. It is also possible to add new cells, as
long as we are careful to initialize their value according to the constraints imposed by exist-
ing cells overlapping them. We use a value synthesize function φ ∈ Cell→ P(Cell)→ expr
such that φ(c)(C) returns a syntactic expression denoting (an abstraction of) the value of
the cell c as a function of cells in C. An example implementation is proposed in Fig. 5.11.

107

CHAPTER 5. ABSTRACTING C DATA-TYPES

Firstly, if the cell already exists (c ∈ C), it is directly returned. Secondly, it converts
between integers of the same size and different signedness using the wrap function from
(5.4). Thirdly, it extracts unsigned bytes from integers, and aggregates unsigned bytes
into integers. When all fails, it returns the full range of the type (or invalid, for a pointer).
Cell addition, add -cell : Cell→ E[→ E[, then simply adds the cell and initializes its value
using the φ function:

add -cell(c)〈C, R〉 def
= 〈C ∪ {c}, { ρ[c 7→ v] | ρ ∈ R, v ∈ fst(EJφ(c)(C) Kρ) }〉 . (5.24)

A cell can sometimes be synthesized in several ways (for instance, when synthesizing a
byte which is overlapped by several integer cells); in this case, we consider all the possible
choices and intersect their result. There is much freedom in designing φ, and it is possible
to refine it by adding more cases (for instance, Sec. 5.3 will add float synthesis). The only
requirement is to obey the following simple soundness condition, stating that add -cell
over-approximates the identity function:

∀〈C, R〉 ∈ E[, c ∈ Cell : γCell(add -cell(c)〈C, R〉) ⊇ γCell〈C, R〉 . (5.25)

The converse inclusion naturally holds as add -cell(c)〈C, R〉 has more cells than 〈C, R〉,
and so, more constraints; in practice, we thus have an equality in (5.25).

We are now ready to present our concrete cell-based assignments and tests. Similarly
to the well-structured semantics, expressions are first transformed into purely scalar ex-
pressions by resolving lvalues bottom up. More precisely, any lvalue ∗t,ω e where e does
not contain any dereference is transformed into a cell set by:
• evaluating e into a set of values V and of errors O;
• gathering the cells L corresponding to valid pointers in V : L

def
= { 〈V, o, t〉 | 〈V, o〉 ∈

V ∧ ∀i < sizeof (t) : 〈V, o+ i〉 ∈ Addr };
• realizing all the cells in L using add -cell .

The returned cell set is L, while the returned error set is O with the possible addition of ω
in case some value in V does not correspond to a valid pointer to a cell. The semantics of
cell sets EJ {X1, . . . , Xn } K appearing in expressions is straightforward: it is the same as in
(5.13). The semantics of assignments SJ {X1, . . . , Xn } ← e K is slightly more complicated.
Because of our conjunctive semantics, it is not sufficient to update the value of X1, . . . , Xn

as in (5.13); it is also necessary to update the value of all the cells that overlap X1, . . . , Xn,
which may be complex and costly. We propose an efficient alternate solution: we simply
remove all the cells that overlap X1, . . . , Xn (these cells can always be created again when
needed, i.e., when they are the target of a read or a write).

In addition to assignments and tests, we require a final concrete operator: the join. It
must now merge environment sets defined on heterogeneous cell sets. Given two concrete
elements, 〈C1, R1〉 and 〈C2, R2〉, we first unify the cell sets into C

def
= C1 ∪C2 by adding,

with add -cell , in R1 and R2, the missing cells (respectively C \ C1 and C \ C2) to obtain
the elements 〈C, R′1〉 and 〈C, R′2〉. The result of the join is then 〈C, R′1 ∪R′2〉.

108

5.2. STRUCTURED TYPES

Abstract semantics

As for the well-structured semantics, it is straightforward to abstract our concrete cell-
based semantics using an arbitrary numeric abstract domain. We assume that we are
given, for each possible cell set C ⊆ Cell, an abstract domain D]C , with concretization γC ;

it abstracts P(C → R) ' P(R|C|), i.e., sets of points in a |C|−dimensional vector space.
A cell of integer or float type naturally corresponds to a dimension in an abstract element.
We also associate a distinct dimension to each cell with pointer type; it corresponds to
the offset o of a symbolic pointer 〈V, o〉 ∈ Ptr. In order to abstract fully pointer values,
we enrich abstract environments with a map P associating to each pointer cell the set of
variables it may point to (i.e., the V components in 〈V, o〉) which we call the pointer base.
The base additionally expresses whether the pointer may be NULL or invalid. Hence,
the abstract domain becomes:3

D]mem
def
=

{ 〈C, R], P 〉 | C ⊆ Cell, R] ∈ D]C ,
P ∈ { 〈c, o, ptr〉 ∈ C } → (V ∪ {NULL, invalid }) }

(5.26)

and the concretization is:

γmem〈C, R], P 〉
def
=

〈C, { ρ′ | ∃ρ ∈ γC(R]) : ∀c = 〈V, o, t〉 ∈ C :
ρ′(c) = ρ(c) if t 6= ptr

ρ′(c) = 〈p, ρ(c)〉 if t = ptr ∧ p ∈ P (c) ∩ V
ρ′(c) = p if t = ptr ∧ p ∈ P (c) \ V

}〉 .

(5.27)

Recall that the cell-based concrete semantics reused the classic numeric concrete semantics
of Sec. 2.3; likewise, the cell-based abstract operators can be derived from the classic
numeric ones we presented in Sec. 2.3.6. In particular, cell addition can be expressed as
adding a new variable and initializing it with an abstract assignment, as: S]J c← φ(c)(C) K,
and lvalue resolution methods can reduce the expressions occurring in any assignment or
test to expressions without dereference (in some cases, leading to weak updates, as in
(5.14)). Pointer expressions are handled by firstly computing the set of possible bases
(which is straightforward as the bases are stored in extension in the P component of
abstract elements), and constructing a numeric expression expressing the pointer offset,
which can be fed to the underlying numeric domain. The join ∪] reduces, after unifying
the cell sets of both arguments, to a join in the numeric abstract domain and an element-
wise join of sets of pointer bases. The widening O is constructed the same way, but
uses the underlying numeric widening instead of the join (while pointer base sets are
still joined with unions). This is indeed sufficient to enforce the termination because the

3This is a slight over-simplification. In practice, when a pointer cell admits only values in
{NULL, invalid }, its offset dimension is omitted.

109

CHAPTER 5. ABSTRACTING C DATA-TYPES

0 1 2 3

3210

0 1 2

3

3

210

0 1 2 3

3210

(5)

(6)

(7)

(2)

(4)

(3)

ax

ax

ah

blah

ax

al

ax

al ah bh

al

ax

ah bl bh

bhblahal

Figure 5.12: Cell sets during the analysis of Fig. 5.5.

cell sets are subsets of the cell universe Cell which is finite, and the set of pointer bases
V ∪ {NULL, invalid} is also finite.

We do not present formally all these operators here, as they are straightforward; we
only illustrate some of them on an example and refer the reader to [Min06a] for more
information.

Example 5.2.2. Consider the program in Fig. 5.5 using a union type. We present in
Fig. 5.12 the dynamic evolution of the cell set during an abstract analysis:

1. when the program starts, the cell set is empty;
2. the assignment regs.w.ax = 0x1234 creates a new cell c1

def
= 〈regs, 0, uint16〉

initialized to [0, 65535], and issues an assignment S]J c1 ← 0x1234 K;
3. the test on regs.b.ah then creates another cell, c2

def
= 〈regs, 1, uint8〉, which is

initialized by φ by the assignment S]J c2 ← (c1/256) mod 256 K; the cell c2 is then
used in the abstract tests S]J c2 = 0 K and S]J c2 6= 0 K;

4–5. both the then and else branches create the cell c3
def
= 〈regs, 0, uint8〉 for regs.b.al;

the then branch creates the cell c4
def
= 〈regs, 2, uint8〉 for regs.b.bl, and the else

branch creates the cell c5
def
= 〈regs, 3, uint8〉 for regs.b.bh;

6. the join after the branches unifies the cell sets by ensuring that both arguments have
the cell set { c1, c2, c3, c4, c5 }.

110

5.2. STRUCTURED TYPES

7. the assignment into regs.b.al is translated into the assignment S]J c3 ← 0xab K; the
cell c1, which overlaps c3, is removed as it contents is no longer valid after updating
c3.

In this simple example, all the cells take constant values, so that an analysis with the
interval domain gives a precise result. The example from Fig. 5.6, containing pointer
casts, would similarly be precisely analyzed.

End of example.

Implementation and experimentation

From the point of view of the analyzer’s programmer, the cell-based abstract semantics is
a functor that lifts any numeric abstract domain to an abstract domain reasoning on arbi-
trary C types. While the underlying numeric domain assumes (wrongly) that cells denote
independent quantities, the functor corrects this assumption dynamically by maintaining
the correspondence between cells (i.e., their overlapping) and issuing cell creation and
destruction orders when necessary. A practical benefit is that it makes it easy to convert
an abstract interpreter supporting only a well-structured semantics into one supporting a
low-level semantics, while reusing all existing numeric abstract domains. This technique
was used to adapt the Astrée C analyzer (Sec. 6.2), as reported in [Min06a]. In addition to
enabling Astrée to analyze a larger class of software, our experiments showed that switch-
ing to a cell-based semantics did not degrade the analysis of software that were analyzed
previously with the well-structured semantics: it does not change the precision and only
slightly increases the analysis time and memory usage, due to the need to maintain cell
maps in addition to abstract invariants. We refer the reader to [Min06a, BCC+10a] for a
detailed description of the implementation and experimental results.

5.2.5 Discussion

Precision. Our concrete cell semantics is not complete with respect to the byte-based
one, and this can cause some imprecision in the static analysis, whatever numeric abstract
domain is chosen. A main source of incompleteness is the cell synthesis function φ, which
is not exhaustive. Note, however, that φ is a parameter of the analysis and it can be
refined at will, at the cost of efficiency. Hence, it fits well the design by refinement of
static analyzers such as Astrée (Sec. 6.2). For instance, Sec. 5.3 will present a refinement
of φ to expose the binary encoding of floats. Another source of incompleteness is the
choice to remove invalidated overlapping cells after an assignment. More precision could
be achieved by keeping and updating overlapping cells. Maintaining more cells results in
numeric abstract elements with more dimensions, and comes at a greater cost.

Compared to the byte-level semantics, there is no systematic conversion between scalars
and bytes at each memory access. Instead, conversions only occur when trying to read a
cell that does not exist, either because no value of the cell’s type has been written at this
location, or because it was removed by a latter assignment into an overlapping location.
Most of the time, φ(c)(C) simply returns c as the cell already exists; this is always the

111

CHAPTER 5. ABSTRACTING C DATA-TYPES

case if the program refrains from exploiting type punning. Hence, our low-level static
analysis is a strict extension of the well-structured analysis and gives the same results for
programs obeying strictly the C standard; and it can additionally analyze non-conforming
programs.

A final, structural cause of imprecision in the analysis is that pointer bases are ab-
stracted in a non-relational way. Nevertheless, when the underlying numeric domain is
relational, the analysis can infer relations between pointer offsets. It can also infer rela-
tions between pointer offsets and numeric cells, which shows the benefit of performing a
single, combined pointer–numeric analysis instead of trying to resolve all pointer values
before performing a purely numeric analysis.

Example 5.2.3. If p points to { 〈V, o〉 | V ∈ {X,Y }, o ∈ [0, 10] }, after the assignment
q ← p using the polyhedra domain, we can deduce that p and q have the same offset, but
not that they point to the same variable.

End of example.

Moreover, using a relational numeric domain also allows retaining and exploiting the
relations imposed by φ on the different views of the same portion of memory.

Example 5.2.4. Consider a variable A covered with cells ci
def
= 〈A, i, unsigned char〉 for

0 ≤ i < n. Then ∗unsigned short &A creates a cell c initialized with c0 +256×c1. If the nu-
meric domain can represent the relation c = c0+256×c1, then the test ∗unsigned short &A ≤
1000 will not only refine the value of c, but also the value of c1.

End of example.

Offset domains. Due to the use of numeric abstract domains to abstract byte-level
offsets, we may need to represent new kinds of numeric properties. In particular, pointers
are frequently aligned, which means that the offsets are multiple of alignof (t) for some
type t (on some processors, dereferencing non-aligned pointers generates a run-time er-
ror). These can be represented using the non-relational congruence domain introduced by
Granger [Gra89]. In more complex cases, such as traversals of multi-dimensional arrays in
nested loops, it might be necessary to infer relational congruence properties, for instance
by using the linear congruence equality domain, also proposed by Granger [Gra91].

Related work. There is a relative lack of support in existing literature for analyses that
handle type-punning and creative uses of union types and pointer operations. These uses
are generally frowned upon, and more research has been devoted to remove them than
to analyze them. This includes the design of static analyzers employing a well-structured
model (such as the analysis by Whaley and Lam [WL02]) or the construction of safer
dialects of C forbidding them (such as CCured [NMW02]). These methods would reject
constructs that are found legitimate by end-users and force them to rewrite their software.
Our approach, on the contrary, is to understand these constructs and provide a precise
concrete semantics defining their correct and incorrect use, before constructing a static
analyzer.

112

5.3. BIT-AWARE FLOAT ABSTRACTIONS

Nevertheless, some existing analyses do support low-level memory operations. This
is the case in particular of all field-insensitive analyses. Yong et al. [YHR99] and Venet
[Ven04] propose mixed approaches, where only the part of the memory accessed in accor-
dance to the well-structured semantics is abstracted in a field-sensitive way (where the
partitioning of the memory can be performed either prior to or during the value anal-
ysis). Balakrishnan et al. [BR04] and Wilson et al. [WL95] choose, instead, to use a
field-sensitive analysis that returns an imprecise value (e.g., the whole range of the type)
for reads that do not match the declared C type. Our analysis is more precise in that it
allows the whole memory to be analyzed in a field-sensitive way and tries to synthesise a
precise value for accesses that do not obey the well-structured semantics.

There is a large body of work [Hin01] on pointer analysis. Many analyses are intended
to be used in optimizing compilers, for instance to check pointer aliasing. They naturally
have a large emphasis on scalability over precision. This is the case, for instance, of the
popular unification-based analyses pioneered by Steensgaard [Ste96]. Our context, value
analysis, is quite different: on the one hand we wish for very precise pointer information
in order to limit the amount of weak updates (that degrade the precision of the analysis);
on the other hand, our numeric analysis already uses a field-sensitive, flow-sensitive (and,
in the case of Astrée, context-sensitive) engine. It is thus natural to include pointers as
regular values inferred by a combined pointer and numeric analyzer. In future work, we
wish however to evaluate the benefit of performing a fast pointer pre-analysis using one
of the existing techniques, with the hope of simplifying the subsequent combined pointer
and numeric analysis.

5.3 Bit-aware float abstractions

In Sec. 2.4.4, we showed how to abstract floating-point computations using standard
numeric abstract domains originally designed for real arithmetic: we represented floats
as reals, and modeled float computations as real computations and rounding as a non-
deterministic choice in an interval. This model is already an abstraction of actual float
computations: it loses some information, but it is sufficient to analyze most programs; it
matches the programmer’s expectation that floats compute as reals up to some rounding
error. In this section, we discuss a refined concrete model, first introduced in [Min12a],
designed to analyze some programming idioms where this abstraction is insufficient. This
new model includes the special floats: infinities and Not-a-Numbers (NaN), which were not
represented in the semantics before. Moreover, it takes into account the bit-level encoding
of floats, which can be exposed by type-punning through the cell-based memory semantics
of Sec. 5.2.3. We then propose a parametric abstract domain based on a well-chosen set
of predicates. Similarly to our work on machine integers (Sec. 5.1) this abstraction is
quite simple and tied to specific programming patterns; it acts as a complement, not as a
replacement, for more generic domains (such as intervals and polyhedra).

113

CHAPTER 5. ABSTRACTING C DATA-TYPES

double validate(double d) {
unsigned* p = (unsigned*)&d;

if (((*p & 0x7ff00000) >> 20) == 2047)

d = 0.;

return d;

}

Figure 5.13: Floating-point validation.

union u { int i[2]; double d; };
double cast(int i) {

union u x,y;

x.i[0] = 0x43300000;

y.i[0] = x.i[0];

x.i[1] = 0x80000000;

y.i[1] = i ^ x.i[1];

return y.d - x.d;

}

Figure 5.14: Integer to floating-point conversion.

5.3.1 Examples

Our main motivation comes from the example programs in Figs. 5.13, 5.14, and 5.15.

Example 5.3.1. Figure 5.13 presents a validation function that examines the bit-pattern of
the double-precision float d in order to filter out all special numbers (which are replaced
with 0). It always returns a non-special float.

End of example.

Example 5.3.2. Figure 5.14 presents a function that converts a 32-bit signed integer i to
a 64-bit float, using only integer arithmetic and a float subtraction. It first constructs
the float representation for x.d = 252 + 231 and y.d = 252 + 231 + i using integers, and
then computes y.d− x.d = i in float. As all 32-bit integers can be represented in a double
precision float, this conversion is exact (there is no rounding error). This program example
is a C version of the assembly code generated by compilers for PowerPC processors (this
is necessary because these processors lack a native instruction to perform the cast). It is
common practice for critical software to use a hand-written C function instead of relying
on compiler-generated code.

End of example.

Example 5.3.3. Figure 5.15 presents (a simplified version of) a function to compute the
square root of a 64-bit float. It first decomposes the argument d into a mantissa in [1, 4]
and an even exponent. Then, it computes the square root of the mantissa through a

114

5.3. BIT-AWARE FLOAT ABSTRACTIONS

double sqrt(double d) {
double r;

unsigned* p = (unsigned*)&d;

int e = (*p & 0x7fe00000) >> 20;

*p = (*p & 0x801fffff) | 0x3fe00000;

r = ((c1*d+c2)*d+c3)*d+c4;

*p = (e/2 + 511) << 20;

p[1] = 0;

return d * r;

}

Figure 5.15: Square root computation.

dbl ∈ {0, 1}64 → V

dbl(s, e10, . . . e0,m0 . . . ,m51)
def
=

(−1)s × (1 +
∑51

i=0 2−i−1mi)× 2(
∑10
i=0 2iei−1023) if

∑10
i=0 2iei /∈ { 0, 2047 }

(−1)s × (
∑51

i=0 2−i−1mi)× 2−1022 if ∀i : ei = 0

(−1)s ×∞ if ∀i : ei = 1 ∧ ∀j : mj = 0

NaN if ∀i : ei = 1 ∧ ∃j : mj = 1

Figure 5.16: Bit-encoding of 64-bit floats.

polynomial (for the sake of concision, we omit the value of the coefficients c1,. . . ,c4) and
divides the exponent by two (with truncation).

End of example.

5.3.2 Concrete semantics

For the sake of presentation, we focus solely on 64-bit double-precision numbers as defined
by the widespread IEEE 754 standard [IEE85], and assume a big-endian architecture. A
64-bit float 〈s, e, m〉 is composed, from the most significant bit to the least significant bit,
of:

• a 1-bit sign s;
• a 11-bit exponent e = e10 · · · e0;
• a 52-bit mantissa m = m0 · · ·m51;

which can be described graphically as:

052

52−bit ms

63

11−bit e

115

CHAPTER 5. ABSTRACTING C DATA-TYPES

Float values F now include, in addition to a finite subset of reals F, three special numbers:
NaN (Not-a-Number), +∞, and −∞. Hence, we state:

F ⊆ V def
= R ∪ {+∞,−∞,NaN } . (5.28)

The mapping between the bit-encoding of a float and its value is described by the dbl
function in Fig. 5.16. Note that dbl is not one-to-one as several representations for NaN
exist. Moreover, the IEEE 754 standard distinguishes between positive zero and negative
zero, while F has a single, unsigned zero. These simplifications are justified by the lack of
realistic programs where these differences matter (for instance, +0 and −0 compare equal
with the C operator ==).

5.3.3 Abstract semantics

Abstracting float values. We first consider the problem of abstracting, using a numeric
abstract domain, environments X ∈ P(V → V) that may include special float values. A
straightforward solution is to decompose X into environments R containing only reals
(e.g., replacing special values with zero) and a map M from variables to the set of special
values they can hold, i.e.:

R
def
= { ρ ∈ V → R | ∃ρ′ ∈ X : ∀V ∈ V : ρ(V) = ρ(V ′) ∈ R ∨ (ρ(V) = 0 ∧ ρ′(V) /∈ R) }

M
def
= λV . { v ∈ {+∞,−∞,NaN } | ∃ρ ∈ X : ρ(V) = v } .

(5.29)
Then R can be abstracted using any numeric domain (such as intervals and polyhedra),
while M is represented in extension. Note that this is an abstraction: special values are
maintained in a non-relational way, which we justify below.

Special values appear for ill-defined operations (e.g., 1/0 = +∞, 0/0 = NaN) and
obey simple algebraic rules (e.g., −2 × +∞ = −∞, +∞ + −∞ = NaN). Hence, it is
easy to enrich abstract domain operations to maintain M soundly. Few programs exploit
the algebra of special values; generally, floats are often meant as an approximation of
reals and the occurrence of a special value is a non-recoverable error. We can model
this in the semantics of expressions by returning a run-time error ω ∈ Ω instead of an
environment at the location of the offending operator. It is nevertheless useful to represent
special floats in our abstract domain as, although they can no longer be created as a
result of an operation, they can still appear as program inputs. We wish to analyze
programs that input arbitrary (possibly special) values and validate them before use, as
in Fig. 5.13. Thus, our analyzer must handle specials, if only to prove that they are
successfully removed. In this context, where special values are not propagated, a non-
relational information on specials is sufficient.

Bit-level expressions. The bit-level structure of floats cannot be exposed using only
float operations. The examples in Figs. 5.13 to 5.15 resort to type punning (using pointer
casts and union types). We naturally exploit the low-level memory model of Sec. 5.2.3
to detect such manipulations, but then rely on specific numeric domains to model their

116

5.3. BIT-AWARE FLOAT ABSTRACTIONS

φ〈V, o, t〉(C)
def
=

hi -word -of -dbl(c) if c = 〈V, o, t′〉 ∈ C ∧ t ∈ int-type ∧
t′ = double ∧ sizeof (t) = 4

dbl -of -word(c1, c2) if c1 = 〈V, o, t′〉 ∈ C ∧ c2 = 〈V, o+ 4, t′〉 ∈ C ∧
t = double ∧ t′ ∈ int-type ∧ sizeof (t′) = 4

Figure 5.17: Cell synthesize function for floats.

EJ hi -word -of -dbl(e1) Kρ def
=

〈{
∑31

i=0 2ibi+32 | ∃b0, . . . , b31 : dbl(b63, . . . , b0) ∈ V ρ
1 }, O

ρ
1〉

EJ dbl -of -word(e1, e2) Kρ def
=

〈{ dbl(b131, . . . , b
1
0, b

2
31, . . . , b

2
0) | ∀j ∈ {1, 2} :

∑31
i=0 2ibji ∈ wrap(V ρ

j , [0, 2
32 − 1]) },

Oρ1 ∪O
ρ
2〉

where 〈V ρ
1 , O

ρ
1〉

def
= EJ e1 K ρ and 〈V ρ

2 , O
ρ
2〉

def
= EJ e2 K ρ

Figure 5.18: Concrete semantics of bit-level conversions between floats and integers.

effect. To enable some communication between memory and numeric semantics, we enrich
the language of numeric expressions with operators that convert values based on their
bit-representation:

expr ::= dbl -of -word(expr , expr)
| hi -word -of -dbl(expr)

(5.30)

where dbl -of -word converts two 32-bit integers into a 64-bit float, and hi -word -of -dbl
extracts the hi-order 32 bits of a 64-bit float as an unsigned integer. Their semantics
is defined formally in Fig. 5.18. The operators are not intended to be used directly in
programs; they are introduced by the cell synthesis function to express a float cell as a
function of existing integer cells, and the other way round. This is achieved by enriching
the φ function from Fig. 5.11 as shown in Fig. 5.17.

Example 5.3.4. In the program of Fig. 5.13, the expression ((*p & 0x7ff00000) >> 20)

== 2047 first triggers the creation of a cell c = 〈d, 0, unsigned int〉 which is initialized
in the numeric domain by S]J c← hi -word -of -dbl(〈d, 0, double〉) K. Then, the test is
evaluated as: S]J ((c & 0x7ff00000) >> 20) == 2047 K.
End of example.

Predicate abstract domain. It is difficult to envision a general domain able to reason
about arbitrary binary float manipulations. On the other hand, the programs in Figs. 5.13
to 5.15 are rather idiomatic. Hence, we suggest using a domain based on pattern matching
of expressions to detect selected predefined uses. It is not sufficient to match each expres-
sion independently as computations are generally spread across sequences of statements.
We need, in addition, to maintain some state that retains and propagates information

117

CHAPTER 5. ABSTRACTING C DATA-TYPES

S]PredJV ← e K〈X]
p, X

]
i 〉

def
=

let Y]
i = S]iJV ← combine(e,X]

p, X
]
i) KX

]
i in

let Y]
p = λW. if W = V or V ∈ var(X]

p(W)) then > else X]
p(W) in

if ∃e1,W : e = W ^ e1 ∧ E]iJ e1 KX
]
i ∈ {{231}, {−231}} then

〈Y]
p [V 7→W ^ 0x80000000], Y]

i 〉
else if ∃e1,W : e = dbl -of -word(e1,W) ∧ E]iJ e1 KX

]
i = {1127219200} then

〈Y]
p [V 7→ dbl -of -word(0x43300000,W)], Y]

i 〉
otherwise

〈Y]
p , Y

]
i 〉

S]PredJ e ./ 0 K〈X]
p, X

]
i 〉

def
= 〈X]

p, S]iJ combine(e,X]
p, X

]
i) ./ 0 KX]

i 〉

X]
p ∪]Pred Y

]
p

def
= λV . if X]

p(V) = Y]
p (V) then X]

p(V) else >

where combine(e,X]
p, X

]
i) replaces sub-expressions of the form V1 - V2 in e

with (double)I when:

∃V ′1 , V ′2 : ∀j ∈ {1, 2} : X]
p(Vj) = dbl -of -word(0x43300000, V ′j) ∧

X]
p(V ′1) = I ^ 0x80000000 ∧X

]
i (V

′
2) = [−231,−231]

and var(p) denotes the set of cells appearing in the predicate p.

Figure 5.19: Abstract operator examples in the partially reduced product D]Pred×D
]
i of

the predicate and interval domains.

between statements. We maintain this state in a predicate domain D]Pred, which maps
each cell in C to a syntactic predicate in a language Pred. The exact language of predi-
cates depends on the idioms to be analyzed. For instance, to analyze Fig. 5.14, we need
to express symbolically the reinterpretation of integers as floats and the flipping of the
high-order bit of an integer, so, we choose:

D]Pred
def
= C → Pred

Pred ::= >
| c ^ 0x80000000 (c ∈ C)
| dbl -of -word(0x43300000, c) (c ∈ C)

(5.31)

where > denotes the absence of information. The ordering is a flat one based on syntactic
predicate equality:

X] v]Pred Y
] def⇐⇒ ∀c ∈ C : X](c) = Y](c) ∨ Y](c) = > . (5.32)

An abstract element X] ∈ D]Pred denotes the set of environments that satisfy all the
predicates in X], where predicates are evaluated as expressions using EJ K:

γPred(X
])

def
= { ρ ∈ C → V | ∀c ∈ C : X](c) = > ∨ ρ(c) ∈ fst(EJX](c) Kρ) } . (5.33)

118

5.3. BIT-AWARE FLOAT ABSTRACTIONS

We present the abstract operators in Fig. 5.19. They actually operate on a pair of a
predicate and an interval map, i.e., in a partially reduced product of D]Pred and the interval

domain D]i (Sec. 2.4.1). This is necessary because, on the one hand, pattern matching of
constants requires evaluating expressions (this way, we are able to match complex constant
expressions, not reduced to syntactic constants) and, on the other hand, the identities
discovered using predicates can lead to identities expressed with intervals (for instance,
when we discover that a code is equivalent to an exact conversion from integers to floats,
we can safely state that the float bounds are equal to the integer ones). Assignments c← e
and tests e ./ 0 are handled in several steps. Firstly, the predicate abstract information
is used by the combine function to perform some symbolic computation on the argument
expression e. Secondly, this new expression is used in the interval assignment or test.
Additionally, the assignment c← e removes the binding for c in the predicate map, as well
as all the bindings where c occurs. If the assigned expression matches that of a predicate in
Pred, a new binding is created. The abstract join filters predicates to keep only bindings
that are equivalent in both arguments. There is no need for a widening in D]Pred as the
domain is flat.

As for the choice of predicates in (5.31), the abstract operators we have chosen were
especially tailored for the analysis of the conversion example from Fig. 5.14.

Example 5.3.5. Consider the analysis of Fig. 5.14 and, more precisely, the evaluation of y.d
- x.d. Just before this expression, the interval domain states that x.i[0] and y.i[0]

equal 0x43300000, while x.i[1] equals 0x80000000. Moreover, the predicate domain
states (symbolically) that y.i[1] equals i ^ x.i[1]. The first step of the evaluation of
y.d - x.d is performed by the memory domain: it creates two cells c1 (for x.d) and c2

(for y.d) initialized respectively as:

S]PredJ c1 ← dbl -of -word(x.i[0], x.i[1]) K
S]PredJ c2 ← dbl -of -word(y.i[0], y.i[1]) K .

These synthetic assignments induce the predicates:

c1 = dbl -of -word(0x43300000, x.i[1])
c2 = dbl -of -word(0x43300000, y.i[1]) .

Finally, the memory domain passes the expression c2 − c1 to the predicate domain, which
transforms it into (double)x.i[1] by the pattern matching in combine, and passes it to the
interval domain. Hence, the interval domain only sees a regular conversion from integers
to floats.
End of example.

Due to the lack of space, we describe only very concisely how our two other examples,
in Figs. 5.13 and 5.15, can be handled. To handle them, it is necessary to extend the
predicate language and the abstract functions. As our examples extract the high-order
word of their float argument, we enrich Pred with the predicate hi -word -of -dbl(c), where
the parameter c denotes a float cell. Secondly, as these examples use bit-wise operations

119

CHAPTER 5. ABSTRACTING C DATA-TYPES

to apply bit-masks, we perform a reduced product between our predicate domain and
the bit-field domain from Sec. 5.1.4, in addition to the interval domain. The validation
example of Fig. 5.13, additionally uses a reduction with the maps P storing the set of
special values contained in a cell (5.29). In all cases, the domain is straightforward and all
the subtlety lies in the reduction: it must transfer information between the various numeric
abstractions, based on equivalences of the form c1 = hi -word -of -dbl(c2) discovered by the
predicate domain.

Experiments. We have implemented the predicate domain in the Astrée analyzer (de-
scribed in Sec. 6.2) in order analyze programs featuring some idiomatic manipulations of
floats at the bit level, similar to the examples in Figs. 5.13 to 5.15. Our experience shows
that the predicate domain is scalable and its added cost is negligible with respect to the
domains already included in Astrée. This comes as no surprise as the predicate domain
maintains a single, small information per variable and the abstract operators only perform
simple reductions with non-relational domains. By design, it is precise enough to analyze
the idioms embedded in its predicate language. We refer the reader to [Min12a] for the
detailed experimental results.

The domain is parametrised, but adapting it to new idioms requires developing new
abstract functions, which is a costly, non-automated process. So, a natural question is
whether the design by refinement scales up. In our experience, refining the predicate
domain was never a bottleneck: a fixed set of a dozen predicates is sufficient to analyze
our code base of several millions of lines. We attribute this to the facts that the predicates
are sufficiently generic and the reduction with the numeric domains provide sufficient
semantic information to balance the syntactic nature of the predicates.

5.3.4 Future work

A natural continuation of this work is to keep enriching the domain when needed by novel
idioms encountered in newly analyzed programs, with the hope of building a library of
predicates covering most analysis needs. Future work include alleviating the burden on the
analysis designer when the domain needs to be refined. We could envision more general
predicates and more powerful propagation methods (possibly at the expense of scalability).
An attractive solution consists in transferring some burden to the end-user by allowing
him to add predicates and rules using a dedicated language (a source of inspiration for
this is the TVLA system [LAMS04], which defines such a language for parametric shape
analysis).

5.4 Conclusion

In this chapter, we have proposed an heterogeneous set of domains, with the common
purpose of switching from the static analysis of an idealized language (whether it is a
pure numeric language, as introduced for the sake of formal exposition in Sec. 2.3.1,
or the abstract, fully-portable C language described by the C specification) to a static

120

5.4. CONCLUSION

analysis of a real language (the C language as it is used most often in practice). This
chapter shows, in particular, the importance of providing an adequate concrete semantics,
capturing precisely the complex effects of actual languages (such as two’s complement
arithmetic or type punning) in a clear, mathematical way. Once the concrete semantics is
defined, the solutions to abstract it often follow without effort.

These domains found an application in our static analyzers for C programs, Astrée and
AstréeA. In fact, applications often came first, bringing the need to refine the analysis by
the construction of new, adapted domains. Language implementations are pragmatic, as
they must take into account the limitations of hardware. Our domains are pragmatic as
well. The classic domains discussed in Chap. 2 and the domains we introduced in Chap. 4
were constructed on an ideal semantics, and the domains we introduced here sometimes
lack their formal perfection. Faced with a lack of Galois connections and optimal operators,
we rely on practical use-cases and experiments to guide the design of our abstractions.

121

Chapter 6

Applications

One of the expected results of our work is the development of new static analysis methods
that have practical usefulness and positively impact the quality of software. We thus spend
significant efforts to implement the proposed techniques and validate them by experiments.
While the soundness of the methods is guaranteed by our careful application of the abstract
interpretation methodology, its actual usefulness is not. Firstly, it is important to assess
the efficiency of the methods and their capacity to scale up to realistic programs (that
now count in millions of lines of code). Secondly, it is necessary to assess their precision
as they are, by necessity, incomplete. The use of non-exact and non-monotonic abstract
operators (in particular widenings) makes the theoretical prediction of the precision on
actual analyses quite difficult. Thirdly, experiments become an integral part of the analysis
development when considering specialized analyzers aiming at proving a specific class of
properties on a specified class of programs with few or no false alarm. In this context,
the classes of programs and properties are set first, and the abstractions developed later,
so that only experimentation provides a measure of the success of those abstractions.
Moreover, experimental failures provide a positive feedback as they uncover the need for
more complex abstractions, trigger a refinement of the specialized analyzer, and drive
further the research on static analysis by abstract interpretation, until the precision goal
is reached.

For these reasons, we have implemented and tested all the static analysis techniques
introduced in this report. This is a time-consuming task, that can only be envisioned as
a team effort. We participated in two kinds of implementations. Firstly, we developed
research tools, intended for academic use. They provide reusable components that can be
easily perused by academic peers, integrated into a variety of academic tools, thus encour-
aging further researches. The core example is the Apron library of numeric abstractions,
described in Sec. 6.1. Secondly, we developed analysis tools intended for industrial use.
They can be directly applied to real programs with minimal knowledge of abstract in-
terpretation. A first example is the Astrée analyzer, dedicated to proving the absence of
run-time error in embedded synchronous C programs (Sec. 6.2). Astrée is now industrial-
ized by AbsInt [Abs]. A second example is the AstréeA analyzer, that extends Astrée to

123

CHAPTER 6. APPLICATIONS

analyze concurrent programs (Sec. 6.3). AstréeA is still a prototype in heavy development,
but nevertheless targets realistic programs and is intended to be industrialized.

6.1 Apron: numeric abstract domain library

Apron is a library of numeric abstract domains. It was developed mainly by Bertrand
Jeannet and myself. Its development started in 2006, following the theoretical work during
a French project, also named Apron, coordinated by François Irigoin. The Apron library
is described in the publication [JM09] and available on-line [JM06].

Motivation. Apron has three main goals.

Firstly, it provides a robust and versatile implementation of classic abstract domains
under a common API. We wish to facilitate the work of analysis implementers by providing
ready-to-use building blocks. The common API makes it possible to switch between and
experiment with the various domains with minimal effort. Moreover, bindings are available
for a variety of popular languages: C, C++, OCaml, and Java.

Secondly, it encourages the research in numeric abstract domains. Apron provides a
platform allowing the integration of new domains with minimal efforts. Domain imple-
menters benefit from a ready-to-use toolbox facilitating domain development: scalar and
interval arithmetic in many types (machine integers and floats, but also arbitrary pre-
cision integers and rationals through the GMP library [GNUa], and extended precision
floats through the MPFR library [GNUb]), operations on affine expressions, interval affine
expressions, as well as arbitrary expression trees. Domain implementers are required to
provide only a core set of operators, as many operations benefit from generic fallback im-
plementations (these can be overloaded with custom ones if the domain implementer sees
a benefit in it, such as improved efficiency).

Thirdly, it provides a teaching and demonstration tool to disseminate knowledge on
abstract interpretation. Apron is freely available on-line under the LGPL license [JM06]. It
is accompanied with a sample static analyzer, Interproc [LAJ11], developed by Gaël Lalire,
Mathias Argoud, and Bertrand Jeannet. It performs a forward and backward analysis to
infer invariants on a toy inter-procedural numeric language. Interproc is intuitive and can
be used on-line from a Web browser without installation.

Principles. A distinguishing feature of Apron is that its API is not tied to a specific
abstract domain, but rather to a concrete semantics. This in unlike many other libraries,
which only provide exact or best abstractions for operations matching the expressive power
of one domain, ignoring other operations, and give access to the internal representation
of abstract elements (examples include the Parma Polyehdra Library [BHZ08], as well
as the NewPolka and octagon library precursors to Apron). By contrast, a domain in
Apron is only required to implement a sound abstraction of the concrete semantics, using
best effort to ensure a good precision despite the limited expressiveness of the domain
and its implementation details (for instance, in case float arithmetic is used internally).

124

6.2. ASTRÉE: PROVING THE ABSENCE OF RUN-TIME ERROR IN
SYNCHRONOUS EMBEDDED C SOFTWARE

This enables Apron to expose a rich set of semantic operations, which are supported by
all domains. These include: assignments, tests, and substitutions of affine and non-affine
expressions, including the support for integer and floating-point expressions and non-
deterministic expressions, joins, meets, widenings, narrowings, projections, as well as a
host of less standard operations such as: n-ary joins, parallel assignments, dimension folds
and expands [GDD+04], etc. Hence, many kinds of program semantics can be directly
mapped to Apron operators.

Included abstractions. In addition to its well-defined API, Apron is useful for the
abstractions it already contains. Apron includes an implementation of the polyhedra
domain based on the double description method and exact rational arithmetic [CH78] and
its restriction to affine equalities [Kar76]; it also includes an implementation of the octagon
domain [Min06b] and the interval domain [CC76] with bounds of arbitrary type. More
recently, the Zonotope domain [GGP09] was added to Apron. On relational domains,
non-linear and floating-point expressions are handled using linearization [Min04a]. These
domains also support integer tightening to model more precisely integer-valued variables.
The library currently consists of 130,000 lines of C, C++, OCaml, and Java.

Applications. The Apron library has been used in several research projects, includ-
ing the construction and experimentation of real-life analyzers [OHL+12]), the inference
of non-numeric invariants [BDES12], the inference of properties beyond invariants such
as termination [BCC+07], and novel uses of abstract interpretation such as solving con-
straint programming problems [PMTB13]. We also used Apron in our research work
described here: all the abstract domains developed in Chap. 4 were implemented as proofs-
of-concepts by Liqian Chen in the Apron library and tested using Interproc.

Apron is now a stable platform for research. In the future, we wish to enrich Apron
with new domains, in particular: robust versions of the domains developed in Chap. 4, and
the most popular domains proposed in the recent literature (such as template polyhedra
[SSM05]).

6.2 Astrée: proving the absence of run-time error in syn-
chronous embedded C software

Astrée is a static analyzer by abstract interpretation checking for the absence of run-
time error in embedded C programs. It has been developed since 2001 at ENS by the
Abstraction team: Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, David Monniaux, Xavier Rival, and myself. Astrée is industrialized and made
commercially available since 2009 by AbsInt [Abs]. Astrée stands for Analyseur statique
de logiciels temps-réel embarqués, i.e., real-time embedded software static analyzer.

This section only briefly describes Astrée. We refer the reader to [BCC+10a] for
more information, as it is the most comprehensive and up-to-date publication on Astrée.

125

CHAPTER 6. APPLICATIONS

Several additional articles describe the scientific aspects of Astrée [BCC+02, BCC+03,
CCF+06, CCF+07, CCF+09, BCC+10b], while others focus on its industrial use [DS07,
SD07, BCC+09, KFW+09, KWN+10, BCC+11]. More information on Astrée is also avail-
able on its web-site [BCC+].

I started working on Astrée from its beginning, in 2001. My early contributions are
reported in my PhD [Min04b]. I continued working on Astrée after my PhD, in partic-
ular by developing the abstractions described in Chap. 5 and by extending it to parallel
programs (Sec. 6.3).

6.2.1 Scope and limitations

Language. Astrée accepts programs written in a large subset of C 99 [ISO07]. However,
it does not support dynamic memory allocation nor recursivity. Given that Astrée targets
embedded software, this is not a strong limitation: these features are generally forbidden
in such software. Astrée does not support parallel nor concurrent software (this imitation
is addressed by AstréeA, in Sec. 6.3). Astrée performs a monolithic analysis of whole
programs, which must not contain undefined symbols. The source code of all libraries or,
alternatively, stubs modeling their effect, must be provided. The range of input values
(such as memory-mapped registers of input devices) must also be specified. The analysis
is sound only with respect to these model stubs and input specifications.

Semantics. The semantics of Astrée is based on the C99 standard [ISO07] (including
stubs modeling the standard C library), supplemented by the IEEE 754 standard [IEE85]
defining floating-point computations.

Given the low-level nature of most C programs, the C language standard is surpris-
ingly high-level and abstract: many features are not specified concretely in order to allow
different interpretations by compiler designers. The actual effect of under-defined features
can range from producing a well-defined and documented outcome on a given implemen-
tation to producing a completely non-deterministic effect, possibly causing the program
to exhibit erratic behaviors at some later point (for instance, when silently corrupting the
memory). The large majority of C programs are not portable and make specific hypotheses
about some of these behaviors. This is especially the case in embedded programs, which
are designed to run on a single platform and often require a low-level access to the system.
Thus, it is important when analyzing them to take this refined semantics into account.

As a consequence, the semantics used by Astrée is actually slightly stricter and much
lower-level than that of the C standard. It assumes two’s complement integer arithmetic,
a flat memory model (pointers as integers), and it models precisely the layout of vari-
able fields in memory. It is also more permissive, allowing type-punning as described in
Sec. 5.2.3. Finally, it is parametrized by platform-specific choices, such as the bit-size and
alignment of types, the byte ordering (endianess), etc. Once the platform parameters are
fixed, an analysis is only sound with respect to the program executions on this platform.

126

6.2. ASTRÉE: PROVING THE ABSENCE OF RUN-TIME ERROR IN
SYNCHRONOUS EMBEDDED C SOFTWARE

Run-time errors. Astrée performs a value analysis in order to check for run-time errors.
Such errors include:

− overflows in signed and unsigned arithmetic,
− division and modulo by zero,
− bit shifts exceeding the bit-size of arguments,
− invalid values for enumerated types,
− overflows and invalid operations in float (generating infinities or NaN),
− out-of-bound array accesses,
− invalid, NULL, dangling, or unaligned pointer dereferences,
− invalid pointer arithmetic or comparison,
− violated user assertions (arbitrary boolean C expressions).

Most errors correspond to a lack of conformance with respect to the definition of the
language (such as: no division by zero) or good programming practices (such as: no wrap-
around). However, assertions allow the user to specify its own safety requirements and
introduce a slight amount of functional property checking. The analysis is sound in that it
reports all run-time errors in the above list. Due to abstractions, it is incomplete and may
report false alarms but, if the analysis reports no alarm, then the program is effectively
free of errors.

In addition to defining which behaviors cause run-time errors, the semantics must also
specify the behavior of the program after a run-time error. Three choices are possible.
Firstly, the program can have a well-defined behavior; for instance, an integer overflow
silently results in a modular wrap-around. Despite its benign nature, this class of errors is
useful to warn the programmer that the actual semantics may differ from the intended or
natural one, such as the semantics in perfect integers Z. Secondly, the program can have
a range of specified behaviors; for instance, an invalid arithmetic operation may result in
any value in the type of the expression to be returned. Thirdly, the program can halt.
This last case is used to model actual program termination (such as an uncaught signal
caused by a division by zero), but also cases where the outcome is truly unpredictable
(such as a memory corruption caused by writing through an invalid pointer) and there
is no meaningful way to analyze the program after the error occurs. The semantics af-
ter each kind of run-time errors can be parametrized to suit the intended platform and
programming rules.

An important point is that Astrée tries as much as possible to continue analyzing
program executions, even those that exhibit errors. This requires more complex concrete
semantics and abstractions (e.g., taking wrap-around into account, as in Sec. 5.1), but
rewards us with a more powerful analyzer, able to precisely analyze low-level programs
that exhibit these behaviors on purpose. By contrast, an analyzer stopping at each benign
error would leave large parts of such programs unanalyzed.

6.2.2 Architecture

Front-end. As shown in Fig. 6.1, the analysis starts by pre-processing and parsing the
C sources. Each C file is converted into an abstract syntax tree; they are then merged by

127

CHAPTER 6. APPLICATIONS

C parser
↓

syntax tree linker
↓

constant propagation
↓

automatic parametrization
↓

abstract interpreter (Fig. 6.2)

Figure 6.1: Architecture of Astrée.

iterator
↓

trace domain
↓

memory domain
↓

pointer domain
↓

reduced product of numeric domains

×

octagons ×

filters ×

decision
trees

��

intervals

intervals

Figure 6.2: Abstract domain hierarchy in Astrée.

a linker to resolve symbols and incomplete definitions. A simple and fast intra-procedural
constant analysis is then performed, in order to remove constant variables and simplify the
program before more costly analyses are performed. An automatic parametrization phase
then occurs. It consists in examining the program to determine which variables and which
parts of the code would benefit from an improved precision, such as inferring relational
or disjunctive properties. The automatic parametrization is based on simple syntactic

128

6.2. ASTRÉE: PROVING THE ABSENCE OF RUN-TIME ERROR IN
SYNCHRONOUS EMBEDDED C SOFTWARE

pattern matching algorithms. For instance, we identify loop counters, array search loops,
and boolean variables encoding control information. The result serves to parametrize the
subsequent abstract analysis.

Iterator. The abstract analysis itself is performed as an abstract interpretation by in-
duction on the program syntax, in the spirit of the big-step semantics of Sec. 2.3.5, but
extended to the more complex control structures offered by the C language. When en-
countering a function call, the interpreter calls itself recursively to analyze it. Hence the
analysis is both fully flow-sensitive and context-sensitive (this also explains the lack of
support for recursive functions in the language). Jumps, such as gotos, breaks from loops,
and early returns from functions, disrupt the normal flow of a structured program; they are
integrated into the big-step semantics by using continuations (i.e., we maintain a table of
abstract environments for jump instructions the target of which has not been encountered
yet). Backward gotos, which are equivalent to loops, are handled by extra function-level
iterations with widening.

Abstract domains. Astrée has a modular design: instead of using a single abstraction,
it uses a combination of many abstract domains. This is illustrated in Fig. 6.2.

Firstly, Astrée employs trace partitioning [MR05], a technique to improve the precision
of abstract analyses by imbuing them with a small degree of path-sensitivity: at a given
program point, we distinguish environments coming from different classes of execution
paths, which are abstracted separately, enabling a limited form of disjunctive invariants.
This is implemented in Astrée as a generic functor that lifts any (trace-unaware) state
abstraction into a trace abstraction. Trace partitioning can be costly, and so, it is only
applied to the parts of the programs that have been selected by the automatic parametriza-
tion.

The pointer and the memory domains add the support for pointer data-types and
structured C data-types (arrays, structures, unions) to plain numeric abstractions. They
follow the technique described in details in Sec. 5.2.4.

Finally, numeric environments (composed of only machine integers and floats) are
abstracted using a reduced product of numeric domains. We find there the interval domain,
which is quite important as it is scalable and infers the bounds required to express the
absence of run-time error. Figure 6.2 shows a few other example domains used in Astrée:
octagons [Min06b] to infer a limited subset of affine relations, a domain specialized for the
analysis of digital filters [Fer04], and a domain to partition numeric invariants with respect
to boolean variables based on decision diagrams [Bry86]. In total, Astrée, features over 30
numeric domains, many of which are described in [BCC+10a]. More costly domains, such
as octagons and boolean partitioning, are only applied to the variables selected by the
automatic parametrization. Astrée performs a partial reduced product of these domains
and it is very parsimonious in the amount of information exchanged between them (given
the large number of domains, propagating each invariant to every domain would not scale
up). We use a modular framework for domain communication, including the ability for

129

CHAPTER 6. APPLICATIONS

domains to request invariants of a specific shape and to broadcast a portion of their
invariants; it is described in details in [CCF+06].

6.2.3 Specialization

Principle. The main difference between Astrée and other sound static analyzers for C
based on abstract interpretation (such as [Ya, The]) is that it is specialized: Astrée is
designed to perform with a high precision (few or no false alarm) and efficiency on a
specific class of programs, while other programs are analyzed soundly but possibly im-
precisely or less efficiently. Astrée has thus been specialized towards embedded control-
command avionic software, and later extended to embedded space control-command soft-
ware. The specialization corresponds to choosing a specific set of abstract domains and
control/precision trade-offs. The specialization is achieved by considering a set of repre-
sentative programs in the class of interest and iteratively refining the abstractions until
no false alarm remains on this set. We describe this process below and refer the reader to
[CCF+07] for a more detailed comparison between Astrée and other static analyzers.

Target codes. Control-command embedded software, targeted by Astrée, generally have
a simple form, described by the following pseudo-code:
• initialize state variables;
• loop for the duration of the mission (e.g., 10h):
− read input variables from sensors;
− update state variables and compute output variables;
− output variables to actuators;
− wait for next clock tick (e.g., every 10ms).

Thus, programs are composed of a large synchronous loop, driven by a clock, that computes
a flow of outputs based on a flow of inputs. (This is, of course, a simplified view; in
practice, the body of the loop is broken into functions; the input, compute, and output
steps may be intertwined; some computations may be triggered only at some multiple of
clock ticks.) The computation performed at each iteration step is numeric intensive (using
mostly floating-point arithmetic). Moreover, boolean state variables are used to store and
propagate control information from one iteration to the following ones.

Programs are generally quite large, from 100 Klines to more than 1 Mlines (most of
which are effectively executed at each loop iteration), and have a large state (around 10 K
global variables, the value of which must be tracked from one loop iteration to the other).

Another feature of these programs is that they are automatically generated from graph-
ical block-languages, such as Scade [Est]. One benefit is that the programs are very regular:
they are composed of many instances of a small set of hand-written macro-instructions.
The disadvantage is that code generators often group unrelated computation arbitrarily
and flatten any high-level structure the original program may have.

Abstraction refinement. We started in 2001 with a simple interval analyzer, which
is fast but quite coarse. We then iteratively refined the analyzer based on its result

130

6.2. ASTRÉE: PROVING THE ABSENCE OF RUN-TIME ERROR IN
SYNCHRONOUS EMBEDDED C SOFTWARE

on our target programs. By examining by hand the alarms it raised, we were able to
determine that some properties required to prove the absence of error were not inferred by
the analyzer. We proceeded to construct the relevant abstract domains and add them to
Astrée. In some cases, this consisted in implementing in Astrée an existing domain. For
instance, the need for simple relational loop invariants (Ex. 2.4.2) triggered the addition
of the octagon domain [Min06b]. We also encountered the case where no domain existed
to infer the required invariants, and new domains had to be designed. An example is the
digital filter domain developed by Feret [Fer04]. The need for this domain is closely tied
to our target application domain, avionic control-command software, where such digital
filtering is commonplace, while it may not occur in other kinds of embedded software.
Hence, Astrée is specialized to an application domain by the choice of its abstractions.
Note that this refinement process is greatly facilitated by the modular design of Astrée,
allowing us to easily add a new domain or modify a domain independently from the others.

As we start from an efficient analyzer and only add precision when actually needed,
the result remains an efficient analyzer. This is in contrast to methods that reduce the
problem at hand to a class of well-studied but very costly problems (such as the inference
of arbitrary affine relations with polyhedra, that do not scale up well, while octagons may
be sufficient to solve the problem at hand and are more efficient).

We stress on the fact that the refinement process cannot be achieved by automatic
means as it is done, for instance, in counter example guided abstract refinement [CGJ+00]
(CEGAR). Indeed, refinement in CEGAR consists in automatically selecting a finite subset
of potential invariants in an fixed infinite domain (such as Vi − Vj ≤ c for a finite set of
c) which is not needed in our case as we employ infinite domains with widening [CC92b]
(such as octagons, that represent directly the infinite family Vi − Vj ≤ c). In the context
of Astrée, by refinement we mean switching to another infinite family of properties (e.g.,
to analyze digital filters), which requires the design of a new domain; it is an intellectual
process out of the reach of current automatic refinement methods.

In some circumstances, adding a new abstract domain is not actually necessary and
Astrée already posses a domain able to represent the required invariant. It is thus suf-
ficient to enable the domain where needed, which is achieved by refining the automatic
parametrization that selects the degree of relationality and path-sensitivity (for instance,
we can consider more variables in octagons). Additionally, we may need to refine the
communications between the sdomains so that the invariants inferred by one domain can
be effectively exploited by the other ones (for instance, propagating bounds from octagons
to intervals).

Semantic specialization. In addition to improving the precision of the analysis by
refining its abstractions, it was also sometimes necessary to refine the concrete semantics.
Indeed, we started in 2001 with a high-level semantics that was very close to the C spec-
ification and left undefined many aspects of the language. They were modeled either as
errors that stop the program or errors that return a large set of possible values. Later, we
encountered programs that made very precise hypotheses on the semantics of some opera-
tions that are undefined by the C standard but perfectly well defined and documented on

131

CHAPTER 6. APPLICATIONS

their particular platforms. This triggered the work described in Chap. 5. More precisely,
our initial semantics of signed and unsigned integer overflow was non-deterministic, and
later refined to wrap-around (Sec. 5.1). Likewise, we first assumed that no infinity nor
NaN float could be constructed as these cause run-time errors, before modeling them pre-
cisely in our semantics in order to analyze programs that manipulate them (Sec. 5.3). The
largest change consisted in switching from a well-structured semantics of memory to a low-
level one allowing unrestricted pointer arithmetic, casts, union types, and type-punning
(Sec. 5.2).

Throughout the changes in semantics, we could reuse all of the abstract domains
included in Astrée with minimal change. This can be explained by two reasons. Firstly,
in many cases, the new semantics is a refinement of the former one, so that domains
that are sound with respect to the former are also sound with respect to the newer (for
instance, modeling wrap-around as a non-deterministic choice is still sound). The change
simply allows new domains to be included, that would not be sound with respect to the
former semantics (such as the modular intervals from Sec. 5.1.3). Secondly, in many cases,
the new concrete semantics is expressed as a function or reuses parts of the former one.
For instance, our machine integer semantics is expressed using mathematical integers.
Likewise, our low-level memory semantics reduces to a semantics on independent cells,
which can be abstracted using classic pointer and numeric domains that are not aware of
type-punning. Nevertheless, these changes of semantics triggered the need for new abstract
domains to maintain an acceptable level of precision; for instance, it was necessary to add
a congruence domain [Gra89] to precisely abstract pointer offsets and avoid mis-aligned
dereference alarms (which could not occur in the former, structured memory semantics).
Experimental results show that changing the semantic model and adding the required
abstract domains did not impact the performance much, while greatly widening the range
of C programs that can be analyzed by Astrée (precise figures are reported in [Min06a,
Min12a]).

Parametrization. Astrée has many user-visible configuration options and analysis di-
rectives that allow changing the cost/precision tradeoff. In particular, the parametrization
algorithms can be configured (and even overridden) by the user. Unlike the addition of
new domains and reductions, which requires an intervention from the analysis developers,
tuning these options can be performed by a knowledgeable end-user.

6.2.4 Interface

Astrée outputs its results as a set of alarms at positions where run-time errors could not be
ruled-out by the value analysis, with some context information (such as the full call stack,
as the analysis is context-sensitive). It is however quite important to present to the user, in
addition to the list of locations, the inferred invariants. Firstly, it helps the user determine
if an alarm is justified or spurious and, in this case, the origin of the imprecision causing
the alarm (which must sometimes be traced to one or several computations occurring much
earlier). Secondly, these invariants provide valuable information to validate the analyzed

132

6.2. ASTRÉE: PROVING THE ABSENCE OF RUN-TIME ERROR IN
SYNCHRONOUS EMBEDDED C SOFTWARE

Figure 6.3: Academic graphical user interface for Astrée

software beyond the simple absence of run-time error (for instance, by checking the range
of outputs against those provided by functional specification documents). Thirdly, it
improves the confidence of the end-user in the result of the analysis by allowing him to
reconstruct the reasoning made by the analyzer.

The main challenge, when analyzing large programs, is to store invariants and present
them to the user. We have developed methods to filter invariants and compress them
at analysis time, and store them to the disk. We then developed a graphical interface
to interactively navigate the invariants after the analysis has completed. A screenshot of
this interface is presented in Fig. 6.3. The invariant storage mechanism and the graphical
interface was used as a starting point by AbsInt to develop an industrial-strength interface
for the industrial version of Astrée.

6.2.5 Industrial applications

We describe succinctly our experience adapting Astrée to industrial programs. More
information on the analyzed programs is also available on Astrée’s Web page [BCC+].

A first application of Astrée was the analysis of two families of avionic embedded
control-command applications. We present in Fig. 6.4 benchmark analyses on programs
of increasing size in each family. The analyses are performed on our 64-bit 2.66 GHz Intel
server. We started from small representative program fragments and ended analyzing

133

CHAPTER 6. APPLICATIONS

lines time memory alarms

370 5s 205 MB 0
70,000 2h 10mn 740 MB 2

166,000 6h 14mn 1.2 GB 10

82,000 41mn 588 MB 2
290,000 7h 2mn 1.2 GB 3
492,000 13h 21mn 2.2 GB 2
647,000 22h 40mn 2.2 GB 13
808 800 50h 13mn 2.7 GB 1

Figure 6.4: Analysis with Astrée of two families of avionic applications.

several revisions of the complete program. The initial development of Astrée and its
specialization to the first family was performed from 2001 to 2003, while the specialization
for the second family was performed from 2003 to 2004. Compared to the first family,
software in the second family are much larger and perform more complex computations;
they use a different code generator and different macro-instructions. Nevertheless, it was
possible to reuse all the abstractions developed for the first family, which considerably
sped up the analysis refinement. We feel that the analysis times reported in Fig. 6.4,
a few tens of hours, are sufficiently low to enable the use of Astrée in production: it is
only a fraction of the time devoted to testing. More importantly, industrial users report
zero alarm when analyzing production versions of the software [DS07], thereby achieving
a proof of absence of run-time error in a realistic, industrial context.

A second application of Astrée was the analysis of space software. From 2006 to
2008, we specialized Astrée to analyze a C version of the Monitoring and Safing Unit
software of the Automated Transfer Vehicle built by the European Space Agency (the
original version is written in Ada, which is not supported by Astrée). Most of the domains
developed for avionic applications were useful, which is natural as both applications are
synchronous embedded control-command software with float computations. Additionally,
a new domain was developed by Feret in order to analyze quaternions [BCC+10a], which
are a specificity of space software which we never encountered when analyzing avionic
code. After specialization, the absence of run-time error could be proved by Astrée in
under 1h of analysis time. This experiment provides some information on the cost, in
term of research effort, required to adapt Astrée to a new application domain.

Finally, the industrialization of Astrée by AbsInt [Abs] in 2009 considerably broadened
the set of analyzed programs, triggering a new round of refinements. For instance, we de-
veloped the integer domains described in Sec. 5.1 to improve the precision when analyzing
code generated by TargetLink [dSp], a popular back-end for Simulink heavily used in the
automotive industry.

Even after specializing Astrée to a family of programs, the analysis can be easily
adapted to handle new software in the same family (such as new versions or corrections).
Ideally, this adaptation should only require fine-tuning by the end-user of the user-visible

134

6.3. ASTRÉEA: DETECTING RUN-TIME ERRORS IN CONCURRENT
EMBEDDED C SOFTWARE

configuration options, and not any modification by the analyzer developers to the core of
the analyzer or its domains. This is indeed the case, according to some of our end-users
[DS07, SD07]. This validates the claim that the specialization by abstraction refinement
does not targets a single program, but a whole family of similar programs, and that
specialized analyzers can be a useful tool to help the production of verified programs in
an industrial context.

6.3 AstréeA: detecting run-time errors in concurrent em-
bedded C software

AstréeA is an extension of Astrée that focuses on the static analysis of concurrent embed-
ded C software. It is based on the theoretical results described in Chap. 3. Similarly to
Astrée, it is also an analyzer designed by specialization which aims towards high precision
and efficiency on a given class of applications. Unlike Astrée, however, AstréeA is still a
prototype in heavy development: it is being refined on our target software as the precision
goal (zero false alarm) has not been reached yet.

The first results on AstréeA were published in [BCC+10a]. We refer the reader to
[Min12d] and AstréeA’s Web site [CCF+] for the most up-to-date description of AstréeA.1

6.3.1 Architecture

AstréeA directly benefits from Astrée’s front-end, iterator, and multiple abstract domains.
While the global architecture from Fig. 6.1 is still valid, the domain hierarchy presented
in Fig. 6.2 is now enriched to give that of Fig. 6.5 (where modifications are shown in
boldface).

Firstly, we added a new parallel iterator. It iterates individual thread analyses until
the inferred interferences are stable. Astrée’s classic iterator that iterates by induction
on the syntax is still present: it is used, without modification, to perform each thread
analysis. The analysis is thus effectively thread-modular.

Secondly, we added a scheduler partitioning domain. It tracks an abstraction of the
scheduler state (such as the set of mutexes currently held by the analyzed thread) and
ensures that program states and interferences coming from different scheduler states are
abstracted separately, as advocated in Sec. 3.4.1 to analyze precisely critical sections. The
scheduler domain also intercepts all the instructions related to synchronization (such as
mutex locking) so that all the other domains can completely ignore this aspect of the
semantics.

Thirdly, we added a new hierarchy of domains to model thread interferences, which is
parallel to the hierarchy modeling local environments. It is actually built by combining
existing non-relational domains from Astrée (including non-relational numeric domains,

1Some publications still refer to AstréeA using its former name, “Thésée.” The name was changed to
better reflect the lineage to Astrée, and a final “A” was added to mean “asynchronous” and emphasize the
difference with the synchronous programs targeted by Astrée.

135

CHAPTER 6. APPLICATIONS

parallel iterator
↓

iterator
↓

trace domain
↓

scheduler partitioning domain
↓

memory domain
↓ ↓

pointer domain interference domain
↓ ↓

numeric domains pointer domain

×

octagons intervals

↓
non-relational

numeric domains

×

intervals . . .

Figure 6.5: Abstract domain hierarchy in AstréeA. Added domains with respect to Astrée
(Fig. 6.2) are shown in boldface.

such as intervals, and the pointer domain to abstract sets of pointed-to variables). The
memory domain was also modified to drive the interference domain: it feeds it the values
written to variables (extracted from the abstraction of the local environments) and queries
the interferences on variables that are read. The memory domain takes care of integrating
interferences from other threads into each expression before passing them to the underlying
pointer and numeric domains, which are completely unaware of interferences. This scheme
allowed us to reuse all the numeric and pointer domains from Astrée without any change.

In total, all the changes and additions amounted to only 10% of the size of Astrée and
did not require any significant structural modification.

6.3.2 Target code

AstréeA targets embedded avionic concurrent C applications. These are increasingly
prevalent since the adoption of Integrated Modular Avionics [WW07], which transitions
from the use of a network of mono-application processors communicating on a bus to a sin-
gle processor running concurrent applications communicating in a shared memory. These
applications obey the restrictions imposed on Astrée which are related to the embedded

136

6.3. ASTRÉEA: DETECTING RUN-TIME ERRORS IN CONCURRENT
EMBEDDED C SOFTWARE

critical nature of the target software: there is no dynamic memory allocation nor recursive
call. Additionally, there is no dynamic creation of thread nor of synchronization object.

Analyzed code. The particular software we currently focus on is a large industrial
application provided by our industrial partner. It consists of 1.7 Mlines of C code and
15 threads,2 corresponding to different services that run concurrently and communicate
implicitly through the shared memory and explicitly through synchronization objects of-
fered by the system. It runs under an operating system based on ARINC 653 [Aer], an
avionic specification describing a real-time operating system. The analyzed program is
quite complex and heterogeneous. While some services contain code generated automati-
cally from a block-diagram specification, similar to the software targeted by Astrée, other
services are hand-written and exhibit a large variety of programming styles and C idioms.
In particular, some services implement string formatting, manipulations of arrays (such as
sorting), messages to implement network protocols, and even linked lists (where individual
cells are allocated from static array pools using custom allocators due to the lack of actual
dynamic memory allocation service).

Operating system modeling. The ARINC 653 specification [Aer] supports a set of
concurrency-related objects, which includes: threads, synchronisation objects (semaphores
and events), and communication objects (blackboards and message queues). They are
manipulated through a well-documented API. In order to analyze our program, we wrote
a set of stubs implementing the ARINC 653 API. To simplify the design of the analyzer,
AstréeA implements only a restricted set of low-level synchronization objects, which are
moreover identified by simple integers. The stubs must then map high-level ARINC objects
to these low-level AstréeA objects; it maintains maps storing the properties of objects
and implements the necessary look-up mechanisms. Moreover, the stubs must map the
semantics of the rich set of ARINC operations to sequences of lower-level ones understood
by AstréeA. For instance, AstréeA models only simple mutexes that block forever, as
described in Sec. 3.4.1. Nevertheless, an ARINC lock with a timeout can be modeled as a
non-deterministic choice that either successfully locks the mutex or returns with a failure.
The system model is approximately 2,500-line long.

Our stubs do not define a concrete implementation of an operating system, but rather
an abstract modeling that soundly includes all the behaviors documented in the ARINC
653 specification and may also exhibit extra behaviors. For instance, as AstréeA does
not model the physical time, any time-related property is modeled abstractly as a non-
deterministic wait (i.e., a yield). Moreover, ARINC 653 features concurrency primitives
that are not yet supported by AstréeA. The main example is that of events, which can be
set, reset, or waited on by threads to perform a form of synchronization. As events only
restrict the set of thread interleavings, it is sound to ignore them, which is what AstréeA

2Individual execution units in a shared memory are called “processes” in the ARINC 653 terminology.
Most other operating systems call these “threads” and reserve the word “process” to denote execution
units with their own memory space. To avoid any confusion, we use the term “threads” here.

137

CHAPTER 6. APPLICATIONS

currently does. This naturally results in a loss of precision that we wish to address in
future work.

We found it is more convenient to specify the operating system in the target language
of the analyzer, C, as much as possible, rather than in the analyzer itself. Such a model
can be easily inspected by the end-user and modified to suit a particular instance of an
ARINC 653 implementation. We also hope to build models of other systems while reusing
AstréeA’s low-level primitives for concurrency.

Execution model. The execution model enforced by the ARINC 653 specification en-
sures that all the concurrency objects (including threads and mutexes) are created during
a mono-thread initialization phase, prior to the multi-thread phase, where they are used.
Our analysis also works in two phases: the first one analyzes the initialization code and
collects the set of concurrency objects it creates. Then, the actual multi-thread analysis
proceeds from the entry-points of the collected threads. Hence, there is no real dynamic
creation of threads.

ARINC 653 specifies a real-time operating system, where threads have fixed and dis-
tinct priorities and these are obeyed strictly by the scheduler. Moreover, our target ap-
plication schedules all its threads by time-sharing on a single execution unit. Hence, only
the unblocked thread with highest priority actually runs and there is no true parallelism.
AstréeA uses the scheduling semantics described in Sec. 3.4.2, which is more precise than
a semantics assuming arbitrary preemption and true parallelism.

As we do not have any information on the memory consistency model in case of data-
races, we err on the safe side and use the model proposed in Sec. 3.5, which is quite general
and justifies the flow-insensitive abstraction of non synchronized interferences.

Run-time errors. AstréeA reports the same set of run-time errors as Astrée. AstréeA
also reports data-races, i.e., variables that can be accessed by two threads, one access at
least being a write, while the threads do not lock a common mutex. After a data-race, the
analysis continues assuming a weakly consistent memory semantics: the value written to
the variable may be visible by any read that forms a data-race with the write. Additionally,
AstréeA reports any violation of the ARINC 653 API (such as creating a thread while
in multi-thread mode) through the use of assertions in the ARINC 653 stub. Our target
application never issues blocking calls and systematically uses timeouts. Hence, there is
no dead-lock by construction.

6.3.3 Results

Following the design by refinement that made the success of Astrée, we focused on a single
program in a well defined family of applications, and started refining our analysis in order
to approach the zero false alarm goal. We performed all our analyses on a 64-bit 2.66 GHz
Intel server.

In order to test our idea, we first considered, in 2009, a lightweight version of our
target software, reduced to a functional fraction composed of 100 Klines and 5 threads.

138

6.3. ASTRÉEA: DETECTING RUN-TIME ERRORS IN CONCURRENT
EMBEDDED C SOFTWARE

After some initial refinements, we could analyze this slice in 1h and find 64 alarms. In
2010, we turned our attention to the full code, consisting of 1.7 Mlines and 15 threads.
Initial analyses exhibited around 12,000 alarms. This number could be reduced to around
7,000 in early 2011, and then to 2,000 in early 2012. Our latest analyses now exhibit
1,208 alarms, for an analysis time of 43h. An important remark on efficiency is that
only six iterations of the parallel iterator are required into order to stabilize the abstract
interferences. Intuitively, it means that the analysis of the concurrent software is not much
more costly (around six times) than an analysis of a synchronous program of the same
size and complexity. The analyzer is not very efficient in memory as 32 GB of memory are
needed for the analysis to proceed. This is due in part to the scheduler partitioning, which
duplicates abstract elements (in average, we manipulate four partitions in the abstract
environments and 52 in the abstract interferences; note however that abstract interference
partitions are inexpensive as they are flow-insensitive and non-relational).

The improvement in precision could be achieved by an iterative refinement of our
abstraction. A significant improvement in precision was brought by the addition of the
scheduler partitioning domain and the ability for the analysis to exploit the real-time
features of the system. This is naturally explained by the fact that the program exploits
heavily these features (in particular to avoid locking when priorities are sufficient to ensure
mutual exclusion). We note, however, that the large majority of alarms could be removed
by improving the abstract domains inherited from Astrée and by adding new domains,
unrelated to the issue of concurrency. In particular, we brought some improvements to
the memory and pointer domains, as well as the integer numeric domains used to model
pointer offsets and the trace partitioning domain (helping to model disjunctions); this
helped improving the precision when analyzing strings, large arrays, message buffers, and
linked lists.

We refer the reader to [Min12d] for more information on our experiments.

6.3.4 Future work

The design of AstréeA is much a work in progress, as is our research on the analysis of
concurrent programs by abstract interpretation described in Chap. 3 on which it is based.

A first avenue of future work is a theoretical one. Chapter 3 ends with a set of
examples that we cannot precisely analyze as they require relational or flow-sensitive
abstract interferences. Some examples are inspired by current false alarms in our target
program. Our framework needs to be extended before new abstractions can be defined.

Secondly, we wish to reduce the number of alarms on our target program. Developing
new interference abstractions will surely be necessary, but not sufficient. Many remaining
alarms are caused by imprecisions that are not related to concurrency, but rather to
the use of strings, lists, and buffers in the target program. We believe that we have
reached the limit precision that can be achieved on these data-structures with the generic
memory abstraction used in AstréeA (Sec. 5.2). In order to improve the analysis further,
it seems necessary to develop specialized memory abstractions, with a built-in knowledge
of the data-structures that are abstracted. This echoes our work on Astrée, where generic

139

CHAPTER 6. APPLICATIONS

numeric abstractions were supplemented with specific numeric abstractions tied to each
application domain. For instance, the precise analysis of lists might be achieved by a
dedicated shape abstract domain, that would supplement our current memory domain
through a reduced product. A mid-term goal consists in achieving by specialization a
similar result as Astrée did: the proof of absence of run-time error of an actual industrial
(concurrent) program.

Finally, we would like to extend AstréeA to support the analysis of programs running
under alternate operating systems, such as POSIX Threads [IT95] or Autosar (a popular
automotive standard). This requires defining the concrete semantics of their scheduler and
their synchronization primitives, and modeling all the system calls as we did for ARINC
653. Supporting a variety of widespread operating systems in a sound way is a natural
requirement before AstréeA can be industrialized.

140

Chapter 7

Conclusion and perspectives

Ensuring the correctness of software has been a constant concern since the birth of com-
puters and programming languages, starting with the early program proofs by Alan Turing
[Tur49] and the development of the first fully formal systems to reason about programs
[Flo67, Hoa69]. Formal verification, once the province of theoreticians, has slowly entered
the industry in the last one and half decade, with the realisation that software errors have
an important economic impact [Lio96, NIS02]. Industrial semantic-based static analy-
sis tools and, in particular, verification tools based on abstract interpretation, have been
made available starting in the early 2000s with the introduction of the Polyspace static
analyzer [The], after which other tools followed, including Sparrow [Ya], Code Contracts
[LF], Astrée [BCC+], etc.

Our aim is to advance the research in static analysis by abstract interpretation to
ensure the safety of software. Our contributions concern the development of new analysis
methods, with two focuses: the analysis of concurrent programs (reported in Chap. 3)
and the design of abstract domains (reported in Chaps. 4 and 5). These contributions
are both theoretical and applied. All the methods we propose are not only proved correct
(sound) mathematically, but also implemented and validated experimentally. One part of
our research is motivated by more fundamental concerns. This is the case for our work
on the links between abstract interpretation and proof methods for concurrent programs
(Sec. 3.2). This is also the case when designing new abstract domains extending poly-
hedra and affine equalities, with a focus on semantic expressiveness and algorithms, and
not (yet) on application in existing tools (Chap. 4). Finally, in an attempt to ease the
fundamental research on numeric abstract domain, we designed with Bertrand Jeannet
the Apron library (Sec. 6.1).

However, another part of our research is motivated by more practical concerns. This
is the case when adapting existing domains to handle the semantics of realistic program-
ming data-types: machine integers, floating-point arithmetic, and C-like data-structures
(Chap. 5). As we escape the ideal case of mathematical numbers and the Galois connection
based abstract interpretation framework, we use pragmatic methods to guide the choice
of abstract properties and the design of abstract operators: we design ad-hoc domains for

141

CHAPTER 7. CONCLUSION AND PERSPECTIVES

specific use-cases and rely on experimental evaluations on actual programs to validate their
usefulness. Finally, we participated in the design of specialized static analyzers: Astrée
(Sec. 6.2) and AstréeA (Sec. 6.3). In order to achieve a good precision and performance,
these analyzers target specific classes of programs and properties, namely: proving the
absence of run-time error in embedded critical synchronous control-command C software
and embedded critical concurrent C software (with a predilection for aerospace software).
These are also pragmatic tools as they target actual industrial programs and must com-
pose with existing programming practices and semantic irregularities. Moreover, they are
designed by refinement of their abstractions on instances of software in the target family.
Their design is thus guided by experimentation.

We end this report with some perspectives for future research, in the short and in the
long term.

7.1 Concurrency analysis

Our main research topic has been, for the last few years, and still remains the analysis
of concurrent software. Chapter 3 described our early results. It the future, we would
like to extend our analysis and improve its precision while keeping its main attractive fea-
tures: thread-modularity, scalability, parametrization by numeric abstract domains, and
the ability to reuse existing analysis methods and implementations available for sequential
programs.

Interference abstraction. Chapter 3 concludes with a list of concurrent program ex-
amples that our analysis cannot handle precisely. The cause of these imprecisions can
be traced back to our flow-insensitive and non-relational modeling of thread interactions.
In fact, our latest results (Sec. 3.2) present formally this modeling as an incomplete ab-
straction of a complete semantics based on rely–guarantee proof methods. We thus wish
to explore this connection further and derive new classes of interference abstractions that
embed some amount of flow-sensitivity and relationality. We now describe two classes of
properties that seem promising to us.

Firstly, we would like to infer lock invariants, i.e., properties that are true outside
critical sections. These properties may be invalidated locally by a thread while in a critical
section but, as long as all the variables involved are protected by a common lock in all
the threads, these modifications are invisible for the other threads, which can thus assume
the properties to be uniformly true (i.e., in a flow-insensitive way). Such properties play,
on concurrent programs, the same role as class invariants in object-oriented languages, or
contracts in procedural languages [LF]; they are key to proving complex properties in a
(thread-)modular way. Note that our well synchronized interferences are a very imprecise,
non-relational version of lock invariants. We wish to extend them to more expressive
invariants by exploiting relational numeric domains. As always when relational domains
are concerned, a main challenge consists in ensuring the scalability. One solution would

142

7.1. CONCURRENCY ANALYSIS

consist in using packing techniques inspired from Astrée [BCC+10a] to limit the degree of
relationality and replace a single large relational abstract element with many small ones.

Secondly, we wish to infer properties that depend on the inter-thread flow of execution.
A first example consists in proving that an event in a thread always precedes another event
in another thread, which is useful to prove well-initialization properties. A more complex
example consists in inferring quantitative properties, relating for instance the number of
events generated by different threads using numeric abstractions. Such properties appear
naturally in producer/consumer concurrent programming patterns, which are found in
many applications. The main challenge consists in describing an abstraction of the inter-
thread control flow while keeping a thread-modular analysis and avoiding constructing
explicitly all the thread interleavings. A possible solution is to introduce auxiliary and
history variables, as used classically in proof methods for concurrent programs. This would
allow us to express, in the abstraction of the local thread state, properties related to the
current location of the other threads or to the history of thread interleavings. The main
problem to solve is then to design adequate abstractions to discuss about these properties
(for instance, it is necessary to determine precisely the required amount of disjunctive
information as we want to avoid using a too expressive, and so, too costly, domain). We
would also like to bridge the gap between our interference-based analysis and the fully
flow-sensitive but not thread-modular method by Goubault et al. [GH05]. This may allow
us to incorporate, in our analysis, their geometric semantics and the abstractions they
developed.

Scheduling models. A scheduler controls the execution of concurrent programs by de-
ciding which thread gets to run. Our experience with AstréeA showed us that actual
programs rely on the guarantees provided by most schedulers and are not correct when
assuming a completely non-deterministic scheduling. This is in particular the case for em-
bedded applications running under real-time operating systems, where schedulers enforce
strict policies on the ordering of thread executions.

Our current analysis can only exploit very few properties of schedulers. Indeed, such
properties cannot be expressed in our flow-insensitive abstraction of thread interactions.
Once flow-sensitive inter-thread abstractions are in place, it will become possible to exploit
more information on the ordering of thread executions.

A second concern is that our current analysis can only exploit the case of threads of
fixed distinct priorities scheduled on a single execution unit (preventing true parallelism).
We revert to non-deterministic scheduling if these hypotheses do not hold. We thus need
to extend our analysis to handle more cases. For instance, we wish to support dynamic
priority policies, such as priority ceiling and priority inheritance, which are widespread in
embedded systems.

A last extension consists in supporting more synchronization objects, such as events,
conditional variables, and fences. Indeed, we currently only support mutual exclusion
locks and soundly ignore other objects. As scheduler properties, the properties enforced
by synchronization mechanisms are related to the inter-thread control flow, and so, will
benefit from and motivate the design of flow-sensitive inter-thread abstractions.

143

CHAPTER 7. CONCLUSION AND PERSPECTIVES

Fairness and liveness. In all our work, we restrict ourselves to inferring invariance
properties, ignoring liveness properties [LS85]. This limitation comes from the initial ab-
straction of the maximal trace semantics into the partial finite trace semantics. Intuitively,
while invariant properties state that nothing bad ever happens (such as a run-time error),
liveness properties state that something good eventually happens (such as terminating
with a result). On concurrent programs, liveness can express highly desirable properties,
such as the absence of starvation or livelock. One of our long-term goals is the automatic
inference of such properties. They have been mainly studied (by model checking) in the
case of finite-state models, but seldom in the case of infinite abstract domains which are
the norm in abstract interpretation. A possible inspiration comes from existing proof
methods for liveness properties. The connections between these proof methods and ab-
stract interpretation have been extensively studied by Radhia Cousot [Cou85]. We still
need to design computable abstractions adapted to properties of interest. Another source
of inspiration comes from the recent work by Cousot and Cousot [CC12] on proving pro-
gram termination (a special case of liveness property) using abstract interpretation. It
will be necessary to extend the proposed abstractions to the case of concurrent programs.

Once the inference of liveness properties is established, it will become possible to
consider proofs under fairness conditions. These conditions restrict the set of program
executions by ensuring that threads are not denied indefinitely the right to run. Hence,
they correspond to idealized models of schedulers.

Time properties. Another long-term goal consists in inferring properties related to the
physical time. Indeed, our analysis currently ignores time, which is not modeled in the
program semantics. However, time-related properties are often desirable, in particular
in the realm of real-time embedded critical software. While successful methods exist to
infer execution time [HF04], these are limited to sequential programs. Hence, we wish
to develop time-related abstractions for concurrent programs. We will naturally exploit
the numeric abstract domains we developed and design new ones adapted to time-related
invariants.

Time-related properties are more precise than liveness ones as, in addition to stating
that some expected event will occur, they can also bound the time it will take for it
to occur. In particular, liveness alone is not sufficient to verify programs that feature
intermittent starvation and livelock phenomenons. However, a timing analysis may bound
the duration of a starvation or a livelock, and prove that they are acceptable.

Applications. Our analysis of concurrent programs was initially motivated by the suc-
cess of the Astrée analyzer on synchronous embedded C software, and the desire to extend
this success to the ever growing set of concurrent embedded C software. Hence the de-
sign of the AstréeA analyzer. As reported in Sec. 6.3, AstréeA still exhibits more that a
thousand alarms on our main target program. Hence, a natural future work consists in
improving our prototype and, in the mid-term, get closer to the zero false alarm goal. This
will require in particular more precise abstractions of thread interferences and schedulers.

144

7.2. NUMERIC ABSTRACTIONS

The analysis with AstréeA of our target code will thus serve as an incentive, guide, and
validation for these abstractions. However, it will surely also trigger the design of ab-
stractions that are not related to concurrency and will enrich the ever growing library of
abstract domains that are motivated by practical uses-cases and validated experimentally.

In the mid-term, we also wish to industrialize AstréeA, as it was done for Astrée. For
this, it is not only necessary to prove that the analyzer can reach a high precision by
specialization on a selected code family, but also to extend its scope. In particular, we
need to extend it to support new concurrency models, scheduler policies, and synchroniza-
tion primitives from a large set of operating systems (for instance, POSIX Threads and
Autosar).

7.2 Numeric abstractions

The design of numeric abstract domains was the main subject of my PhD [Min04b], and I
continued working on this topic on a fundamental level with the design of affine domains
(Chap. 4) and, on the practical level, with the design of domains for machine integers and
floats (Chap. 5).

In future work, however, we wish to explore two different and novel applications of
numeric abstract domains: the design of abstract under-approximations, and the connec-
tion between abstract interpretation and constraint programming. Our research on these
two subjects started very recently and we did not care to report here the very preliminary
results we obtained, preferring instead to present them as perspectives for future work.

Under-approximations. The large majority of abstractions considered in abstract in-
terpretation correspond to over-approximations. This is in particular the case of all the
abstractions presented in this report. Existing methods to achieve under-approximations
either employ actually exact numeric abstractions (as in disjunctive completions, which
are costly) or are restricted to deterministic programs (which makes it difficult to handle
program inputs or floating-point rounding errors).

In [Min12b], we introduced under-approximating backward operators for the polyhedra
domain that solve both problems: they permit an abstraction to a given class of proper-
ties (here, affine inequality constraints) and an effective approximation to achieve a cost
versus precision trade-off. In the presence of loops, it is necessary to under-approximate
greatest fixpoints, and we designed an effective lower widening operator (theorized by
Cousot [Cou78] but never effectively constructed before) to compute such an approxima-
tion in finite time. Applications include the inference of sufficient pre-conditions ensuring
program correctness (e.g., function or class contracts), or the derivation of definite counter-
examples. However, our construction is very preliminary and mostly untried. Much work
is still required to refine our design, construct new polyhedral abstract operators, and
consider under-approximations in other numeric abstract domains.

A main theoretical issue is that, while most abstract domains enjoy a simple notion
of best over-approximations (at least on the semantic level), such a notion seldom exists

145

CHAPTER 7. CONCLUSION AND PERSPECTIVES

for under-approximations. Several solutions for this problem have been proposed, such
as the construction by Schmidt [Sch06]; while these are aesthetically pleasing on a the-
oretical level, they do not seem very practical to us as they incur a change in domain
expressiveness and algorithms, which may degrade scalability (such as powerset or lower
closure constructions). Our pragmatic solution consists in designing non-optimal under-
approximating operators guided by the properties we need to prove on selected examples.
Much more work is required in that direction, including a systematic experimentation on
a realistic code base. In addition to the design of new operators in existing domains,
we also wish to uncover new classes of properties that may better match those that ap-
pear naturally when inferring pre-conditions or counter-examples, and then design the
corresponding abstract domains.

Constraint programming. In a collaboration with Marie Pelleau, Charlotte Truchet,
and Frédéric Benhamou, we studied the connections between constraint programming
and abstract interpretation. In particular, we exhibited in [PMTB13] a few semantic and
algorithmic correspondences between these two fields, and used them to design a constraint
solving algorithm based on abstract interpretation principles. It is parametrized by the
choice of a numeric abstract domain and, unlike classic solving algorithms, enables the use
of relational domains, as well as reduced products of domains to handle mixed integer-real
constraint programming problems.

The connection between the two fields seems deep and we wish to pursue our collab-
oration in order explore it further. On the theoretical side, we wish to understand more
precisely how fixpoint solving with iteration compares in both fields. An open question
is whether there exists a constraint programming analogue to widenings. On the practi-
cal side, a possible future work consists in improving abstract interpretation techniques
by using methods from constraint programming. In particular, constraint programming
features techniques for precise post-fixpoint refinement by decreasing iterations, which are
much more advanced than the narrowings used in abstract interpretation. Moreover, the
split operators used in constraint programming could be useful to refine partitioning and
disjunctive completion domains used in abstract interpretation.

146

BIBLIOGRAPHY

Bibliography

[ABBM10] M. F. Atig, A. Bouajjani, S. Burckhardt, and M. Musuvathi. On the
verification problem for weak memory models. In Proc. of the 37th ACM
SIGACT/SIGPLAN Symp. on Principles of Programming Languages (POPL’10),
pages 7–18. ACM, Jan. 2010.

[Abs] AbsInt, Angewandte Informatik. Astrée run-time error analyzer. http://www.ab

sint.com/astree.

[Aer] Aeronautical Radio Inc. ARINC 653. http://www.arinc.com.

[AG96] S. V. Adve and K. Gharachorloo. Shared memory consistency models: A tutorial.
IEEE Comp., 29(12):66–76, 1996.

[AGG08] X. Allamigeon, S. Gaubert, and E. Goubault. Inferring min and max invariants
using max-plus polyhedra. In Proc. of the 15th Int. Static Analysis Symp. (SAS’08),
volume 5079 of LNCS, pages 189–204. Springer, 2008.

[AI99] ANSI Technical Committee and ISO/IEC JTC 1 Working Group. Rationale for
international standard, Programming languages, C. Technical Report 897, rev. 2,
ANSI, ISO/IEC, Oct. 1999.

[AKL+11] J. Alglave, D. Kroening, J. Lugton, V. Nimal, and M. Tautschnig. Soundness
of data flow analyses for weak memory models. In Proc. of the 9th Asian Symp. on
Programming Languages and Systems (APLAS’2011), volume 7078 of LNCS, pages
272–288, Dec. 2011.

[AMSS11] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. Litmus: Running tests
against hardware. In Proc. of 17th Int. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’11), volume 6605 of LNCS, pages
41–44. Springer, Mar. 2011.

[ATSCOI97] AT & T and The Santa Cruz Operation Inc. System V application binary
interface, 1997.

[BC04] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Develop-
ment. Springer, 2004.

147

http://www.absint.com/astree
http://www.absint.com/astree
http://www.arinc.com

BIBLIOGRAPHY

[BCC+] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monni-
aux, and X. Rival. The Astrée static analyzer. http://www.astree.ens.fr.

[BCC+02] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Mon-
niaux, and X. Rival. Design and implementation of a special-purpose static program
analyzer for safety-critical real-time embedded software. In The Essence of Compu-
tation: Complexity, Analysis, Transformation. Essays Dedicated to Neil D. Jones,
volume 2566 of LNCS, pages 85–108. Springer, Oct. 2002.

[BCC+03] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Mon-
niaux, and X. Rival. A static analyzer for large safety-critical software. In Proc. of
the ACM SIGPLAN Conf. on Programming Languages Design and Implementation
(PLDI’03), pages 196–207. ACM, June 2003.

[BCC+07] J. Berdine, A. Chawdhary, B. Cook, D. Distefano, and P. O’Hearn. Variance
analyses from invariance analyses. In Proc. of the 34th annual ACM SIGPLAN-
SIGACT symposium on Principles of Programming Languages (POPL’07), pages
211–224. ACM, 2007.

[BCC+09] O. Bouissou, E. Conquet, P. Cousot, R. Cousot, J. Feret, K. Ghorbal, E.
Goubault, D. Lesens, L. Mauborgne, A. Miné, S. Putot, X. Rival, and M. Turin.
Space software validation using abstract interpretation. In Proc. of the Int. Space
System Engineering Conf., Data Systems in Aerospace (DASIA’09), volume SP-669,
pages 1–7. ESA, May 2009.

[BCC+10a] J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and X.
Rival. Static analysis and verification of aerospace software by abstract interpreta-
tion. In AIAA Infotech@Aerospace, number 2010-3385 in AIAA, pages 1–38. AIAA
(American Institute of Aeronautics and Astronautics), Apr. 2010.

[BCC+10b] J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and
X. Rival. Static analysis by abstract interpretation of embedded critical software.
Proc. of the 3rd IEEE Int. Workshop on UML and Formal Methods (UML&FM’10),
36(1):1–8, Nov. 2010.

[BCC+11] J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and
X. Rival. L’analyseur statique Astrée. In Utilisation industrielles des techniques
formelles : interprétation abstraite, pages 67–114. Hermes Science, Jun. 2011.

[BCCZ99] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Proc. of the Workshop on Tools and Algorithms for the Construction and
Analysis of System (TACAS’99), volume 1579 of LNCS, pages 193–207. Springer,
1999.

[BDES12] A. Bouajjani, C. Dragoi, C. Enea, and M. Sighireanu. Accurate invariant
checking for programs manipulating lists and arrays with infinite data. In Proc. of the

148

http://www.astree.ens.fr

BIBLIOGRAPHY

10th Int. Symp. on Automated Technology for Verification and Analysis (ATVA’12),
volume 7561 of LNCS, pages 167–182. Springer, 2012.

[BGGP99] F. Benhamou, F. Goualard, L. Granvilliers, and J.-F. Puget. Revisiting hull
and box consistency. In Proc. of the 16th Int. Conf. on Logic Programming, pages
230–244, 1999.

[BHRZ05] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators
for convex polyhedra. Science of Computer Programming, 58(1–2):28–56, Oct. 2005.

[BHZ04] R. Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for powerset
domains. In Proc. of the 5h Int. Conf. on Verification, Model Checking, and Abstract
Interpretation (VMCAI’04), volume 2477 of LNCS, pages 135–148. Springer, 2004.

[BHZ08] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward
a complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Science of Computer Programming, 72(1–2):3–21, 2008.

[BK11] J. Brauer and A. King. Transfer function synthesis without quantifier elimination.
In Proc. of the 20th European Symp. on Prog. (ESOP’11), volume 6602 of LNCS,
pages 97–115. Springer, Mar. 2011.

[BKM05] F. Benoy, A. King, and F. Mesnard. Computing convex hulls with a linear
solver. Theory and Practice of Logic Programming, 5(1–2):259–271, 2005.

[Bou93] F. Bourdoncle. Efficient chaotic iteration strategies with widenings. In Proc. of the
Int. Conf. on Formal Methods in Programming and their Applications (FMPA’93),
volume 735 of LNCS, pages 128–141. Springer, June 1993.

[BR04] G. Balakrishnan and T. Reps. Analyzing memory accesses in x86 executables. In
Proc. of the Int. Conf. on Compiler Construction (CC’04), number 2985 in LNCS,
pages 5–23. Springer, 2004.

[Bry86] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Trans. on Computers, 35:677–691, 1986.

[CC76] P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
In Proc. of the 2d Int. Symp. on Programming, pages 106–130. Dunod, Paris, France,
1976.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Proc.
of the 4th ACM Symp. on Principles of Programming Languages (POPL’77), pages
238–252. ACM, Jan. 1977.

[CC79a] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems.
Pacific Journal of Mathematics, 81(1):43–57, 1979.

149

BIBLIOGRAPHY

[CC79b] P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
In Conf. Rec. of the 6th Annual ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages (POPL’79), pages 269–282. ACM Press, New York, NY,
1979.

[CC84] P. Cousot and R. Cousot. Invariance proof methods and analysis techniques
for parallel programs. In Automatic Program Construction Techniques, chapter 12,
pages 243–271. Macmillan, New York, NY, USA, 1984.

[CC92a] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic
and Computation, 2(4):511–547, Aug. 1992.

[CC92b] P. Cousot and R. Cousot. Comparing the Galois connection and widen-
ing/narrowing approaches to abstract interpretation, invited paper. In Proc. of the
Int. Workshop on Programming Language Implementation and Logic Programming
(PLILP’92), volume 631 of LNCS, pages 269–295. Springer, 1992.

[CC04] R. Clarisó and J. Cortadella. The octahedron abstract domain. In Proc. of the
11th Int. Symp. on Static Analysis (SAS’04), volume 3148 of LNCS, pages 312–327.
Springer, 2004.

[CC10] P. Cousot and R. Cousot. A gentle introduction to formal verification of computer
systems by abstract interpretation, pages 1–29. NATO Science Series III: Computer
and Systems Sciences. IOS Press, 2010.

[CC12] P. Cousot and R. Cousot. An abstract interpretation framework for termination.
In Conf. Rec. of the 39th Annual ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages (POPL’12), pages 245–258. ACM Press, 2012.

[CCF+] P. Cousot, R. Cousot, J. Feret, A. Miné, and X. Rival. The AstréeA static
analyzer. http://www.astreea.ens.fr.

[CCF+06] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X.
Rival. Combination of abstractions in the Astrée static analyzer. In Proc. of the
11th Annual Asian Computing Science Conf. (ASIAN’06), volume 4435 of LNCS,
pages 272–300. Springer, Dec. 2006.

[CCF+07] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and
X. Rival. Varieties of static analyzers: A comparison with Astrée, invited paper.
In Proc. of the First IEEE & IFIP Int. Symp. on Theoretical Aspects of Software
Engineering (TASE’07), pages 3–17. IEEE CS Press, June 2007.

[CCF+09] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and X. Rival. Why
does astrée scale up? Formal Methods in System Design, 35(3):229–264, December
2009.

150

http://www.astreea.ens.fr

BIBLIOGRAPHY

[CCM10] P. Cousot, R. Cousot, and L. Mauborgne. A scalable segmented decision tree
abstract domain. In Pnueli Festschrift, volume 6200 of LNCS, pages 72–95. Springer,
2010.

[CES86] E. Clarke, E. Emerson, and A. Sistla. Automatic verification of finite-state con-
current systems using temporal logic specifications. ACM Trans. on Programming
Languages and Systems, 8:244–263, 1986.

[CGJ+00] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement. In Proc 12th Int. Conf. on Computer Aided Verifi-
catoin (CAV’00), volume 1855 of LNCS, pages 154–169. Springer, Jul. 2000.

[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Conf. Rec. of the 5th Annual ACM SIGPLAN/SIGACT
Symp. on Principles of Programming Languages (POPL’78), pages 84–97. ACM,
1978.

[CH09] J.-L. Carré and C. Hymans. From single-thread to multithreaded: An efficient
static analysis algorithm. Technical Report arXiv:0910.5833v1, EADS, Oct. 2009.

[Che10] L. Chen. Sound floating-point and non-convex static analysis using interval linear
abstract domains. PhD thesis, National University of Defense Technology, Changsha,
China, Apr. 2010.

[CMC08] L. Chen, A. Miné, and P. Cousot. A sound floating-point polyhedra abstract
domain. In Proc. of the Sixth Asian Symp. on Programming Languages and Systems
(APLAS’08), volume 5356 of LNCS, pages 3–18. Springer, Dec. 2008.

[CMWC09] L. Chen, A. Miné, J. Wang, and P. Cousot. Interval polyhedra: An abstract
domain to infer interval linear relationships. In Proc. of the 16th Int. Symp. on Static
Analysis (SAS’09), volume 5673 of LNCS, pages 309–325. Springer, Aug. 2009.

[CMWC10] L. Chen, A. Miné, J. Wang, and P. Cousot. An abstract domain to discover
interval linear equalities. In Proc. of the 11th Int. Conf. on Verification, Model
Checking, and Abstract Interpretation (VMCAI’10), volume 5944 of LNCS, pages
112–128. Springer, Jan. 2010.

[CMWC11] L. Chen, A. Miné, J. Wang, and P. Cousot. Linear absolute value relation
analysis. In Proc. of the 20th European Symp. on Programming (ESOP’11), volume
6602 of LNCS, pages 156–175. Springer, Mar. 2011.

[Cou78] P. Cousot. Méthodes itératives de construction et d’approximation de points fixes
d’opérateurs monotones sur un treillis, analyse sémantique de programmes. Thè-
se d’État ès sciences mathématiques, Université Joseph Fourier, Grenoble, France,
Mar. 1978.

151

BIBLIOGRAPHY

[Cou85] R. Cousot. Fondements des méthodes de preuve d’invariance et de fatalité de
programmes parallèles. Thèse d’État ès sciences mathématiques, Institut National
Polytechnique de Lorraine, Nancy, France, Nov. 1985.

[Cou02] P. Cousot. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. Theoretical Computer Science, 277(1–2):47–103, 2002.

[CPS92] R. W. Cottle, J.-S. Pang, and R. E. Stone. The Linear Complementarity Problem.
Academic Press, 1992.

[CR00] J. W. Chineck and K. Ramadan. Linear programming with interval coefficients.
Journal of the Operational Research Society, 51(2):209–220, 2000.

[Dij65] E. W. Dijkstra. Solution of a problem in concurrent programming control. Com-
mun. ACM, 8:569, 1965.

[Dij68] E. W. Dijkstra. Cooperating sequential processes. In Programming Languages:
NATO Advanced Study Institute, pages 43–112. Academic Press, 1968.

[dRdBH+01] W.-P. de Roever, F. de Boer, U. Hanneman, J. Hooman, Y. Lakhnech, M.
Poel, and J. Zwiers. Concurrency Verification: Introduction to Compositional and
Noncompositional Methods. Cambridge University Press, 2001.

[DS07] D. Delmas and J. Souyris. Astrée: from research to industry. In Proc. of the
14th Int. Symp. on Static Analysis (SAS’07), volume 4634 of LNCS, pages 437–451.
Springer, Aug. 2007.

[dSp] dSpace. TargetLink code generator. http://www.dspaceinc.com.

[Est] Esterel Technologies. Scade suiteTM, the standard for the development of safety-
critical embedded software in the avionics industry. http://www.esterel-techno

logies.com.

[Fer01] J. Feret. Occurrence counting analysis for the pi-calculus. Electronic Notes in
Theoretical Computer Science, 39(2), 2001.

[Fer04] J. Feret. Static analysis of digital filters. In Proc. of the 13th European Symp. on
Programming (ESOP’04), volume 2986 of LNCS, pages 33–48. Springer, Mar. 2004.

[Fer08] P. Ferrara. Static analysis via abstract interpretation of the happens-before mem-
ory model. In Proc. of the 2nd Int. Conf. on Tests and Proofs (TAP’08), volume
4966 of LNCS, pages 116–133. Springer, 2008.

[Flo67] R. W. Floyd. Assigning meanings to programs. In Proc. of the American Mathe-
matical Society Symposia on Applied Mathematics, volume 19, pages 19–32, Provi-
dence, USA, 1967.

[Fra86] N. Francez. Fairness. Springer, 1986.

152

http://www.dspaceinc.com
http://www.esterel-technologies.com
http://www.esterel-technologies.com

BIBLIOGRAPHY

[GDD+04] D. Gopan, F. DiMaio, N. Dor, T. Reps, and M. Sagiv. Numeric domains with
summarized dimensions. In Proc. of the 10h Int. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’04), volume 2988 of LNCS,
pages 512–529. Springer, Mar. 2004.

[GGP09] K. Ghorbal, E. Goubault, and S. Putot. The zonotope abstract domain Tay-
lor1+. In Proc. of the 21st Int. Conf. on Computer Aided Verification (CAV’09),
volume 5643 of LNCS, pages 627–633. Springer, June 2009.

[GGP10] K. Ghorbal, E. Goubault, and S. Putot. A logical product approach to zono-
tope intersection. In Proc. on the Conf. on Computer Aided Verification (CAV’10),
volume 6174 of LNCS, pages 212–226. Springer, 2010.

[GH05] E. Goubault and E. Haucourt. A practical application of geometric semantics
to static analysis of concurrent programs. In Proc. of the 16th Int. Conf. on Con-
currency Theory (CONCUR’05), volume 3653 of LNCS, pages 503–517. Springer,
2005.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., 1979.

[GJSB05] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification.
Addison Wesley, 3rd edition, June 2005.

[GNUa] GNU. GMP: The GNU multiple precision arithmetic library. http://gmplib.o

rg/.

[GNUb] GNU. MPFR: The GNU MPFR library. http://www.mpfr.org/.

[God94] P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems
– An Approach to the State-Explosion Problem. PhD thesis, University of Liege,
Computer Science Department, 1994.

[Gra89] P. Granger. Static analysis of arithmetic congruences. Int. Journal of Computer
Mathematics, 30:165–199, 1989.

[Gra91] P. Granger. Static analysis of linear congruence equalities among variables of a
program. In Proc. of the Int. Joint Conf. on Theory and Practice of Soft. Develop-
ment (TAPSOFT’91), volume 493 of LNCS, pages 169–192. Springer, 1991.

[GRS98] R. Giacobazzi, F. Ranzato, and F. Scozzari. Complete abstract interpretations
made constructive. In Proc. of the 23rd Int. Symp. on Mathematical Foundations
of Computer Science (MFCS’98), volume 1450 of LNCS, pages 366–377. Springer,
1998.

[HF04] R. Heckmann and C. Ferdinand. Worst-case execution time prediction by static
program analysis. In Proc. of the 18th Int. Parallel and Distributed Processing Symp.
(IPDPS’04), pages 26–30. IEEE Computer Society, 2004.

153

http://gmplib.org/
http://gmplib.org/
http://www.mpfr.org/

BIBLIOGRAPHY

[Hin01] M. Hind. Pointer analysis: Haven’t we solved this problem yet? In Proc. of the
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis For Software Tools and
Engineering (PASTE’01), pages 54–61. ACM Press, 2001.

[HLL92] T. Huynh, C. Lassez, and J.-L. Lassez. Practical issues on the projection of
polyhedral sets. Annals of Mathematics and Artificial Intelligence, 6(4):295–315,
1992.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, Oct. 1969.

[Hoa03] C. A. R. Hoare. The verifying compiler: A grand challenge for computing research.
J. ACM, 50(1):63–69, Jan, 2003.

[IEE85] IEEE Computer Society. Standard for binary floating-point arithmetic. Technical
report, ANSI/IEEE Std. 745-1985, 1985.

[Imb93] J.-L. Imbert. Fourier’s elimination: Which to choose? In PCPP’93, pages 117–
129, 1993.

[ISO07] ISO/IEC JTC1/SC22/WG14 working group. C standard. Technical Report 1124,
ISO & IEC, 2007.

[IT95] IEEE Computer Society and The Open Group. Portable operating system interface
(POSIX) – Application program interface (API) amendment 2: Threads extension
(C language). Technical report, ANSI/IEEE Std. 1003.1c-1995, 1995.

[Jan04] C. Jansson. Rigorous lower and upper bounds in linear programming. SIAM
Journal on Optimization, 14(3):914–935, 2004.

[Jea11] B. Jeannet. Concurinterproc static analyzer, 2011. http://pop-art.inrialpes.
fr/interproc/concurinterprocweb.cgi.

[JM06] B. Jeannet and A. Miné. Apron numerical abstract domain library, 2006. http:

//apron.cri.ensmp.fr/library/.

[JM09] B. Jeannet and A. Miné. Apron: A library of numerical abstract domains for static
analysis. In Proc. of the 21th Int. Conf. on Computer Aided Verification (CAV’09),
volume 5643 of LNCS, pages 661–667. Springer, June 2009.

[Jon81] C. B. Jones. Development Methods for Computer Programs including a Notion of
Interference. PhD thesis, Oxford University, Jun. 1981.

[Kar76] M. Karr. Affine relationships among variables of a program. Acta Inf., 6:133–151,
1976.

[Kar84] N. Karmarkar. A new polynomial-time algorithm for linear programming. In
Proc. of the 16th annual ACM Symp. on Theory of Computing (STOC’84), pages
302–311. ACM, 1984.

154

http://pop-art.inrialpes.fr/interproc/concurinterprocweb.cgi
http://pop-art.inrialpes.fr/interproc/concurinterprocweb.cgi
http://apron.cri.ensmp.fr/library/
http://apron.cri.ensmp.fr/library/

BIBLIOGRAPHY

[KFW+09] D. Kästner, C. Ferdinand, S. Wilhelm, S. Nenova, O. Honcharova, P. Cousot,
R. Cousot, J. Feret, L. Mauborgne, A. Miné, X. Rival, and É.-J. Sims. Astrée:
Nachweis der Abwesenheit von Laufzeitfehlern. In Proc. of Workshop Entwicklung
zuverlässiger Software-Systeme (ESS’09), page 6, Jun. 2009.

[Kil73] G. Kildall. A unified approach to global program optimization. In Proc. of the 1st
Annual ACM SIGACT-SIGPLAN Symp. on Principles of Programming Languages
(POPL’73), pages 194–206. ACM, 1973.

[Kin76] J. C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–
394, 1976.

[KWN+10] D. Kästner, S. Wilhelm, S. Nenova, P. Cousot, R. Cousot, J. Feret, L.
Mauborgne, A. Miné, and X. Rival. Astrée: Proving the absence of runtime er-
rors. In Proc. of Embedded Real Time Software and Systems (ERTS2 2010), page 9,
May 2010.

[LAJ11] G. Lalire, M. Argoud, and B. Jeannet. Interproc static analyzer, 2011. http:

//pop-art.inrialpes.fr/interproc/interprocweb.cgi.

[Lam77] L. Lamport. Proving the correctness of multiprocess programs. IEEE Trans. on
Software Engineering, 3(2):125–143, Mar. 1977.

[Lam78] L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565, July 1978.

[Lam79] L. Lamport. How to make a multiprocessor computer that correctly executes
multiprocess programs. In IEEE Trans. on Computers, volume 28, pages 690–691.
IEEE Comp. Soc., Sep. 1979.

[Lam80] L. Lamport. The “Hoare logic” of concurrent programs. Acta Informatica,
14(1):21–37, June 1980.

[LAMS04] T. Lev-Ami, R. Manevich, and M. Sagiv. TVLA: A system for generating
abstract interpreters. In Proc. of the 18th IFIP Congress Topical, pages 367–376.
Kluwer Academic Publishers, 2004.

[LeV92] H. LeVerge. A note on Chernikova’s algorithm. Technical Report 635, IRISA,
1992.

[LF] F. Logozzo and M. Fähndrich. Code contracts. http://research.microsoft.com

/en-us/projects/contracts/.

[LF10] F. Logozzo and M. Fähndrich. Pentagons: A weakly relational abstract domain
for the efficient validation of array accesses. Science of Computer Programming,
75(9):796–807, 2010.

[Lio96] J. L. Lions. ARIANE 5, flight 501 failure, report by the inquiry board, 1996.

155

http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/

BIBLIOGRAPHY

[LL09] V. Laviron and F. Logozzo. SubPolyhedra: A (more) scalable approach to infer
linear inequalities. In Proc. of the 10th Int. Conf. on Verification, Model Checking,
and Abstract Interpretation (VMCAI’09), volume 5403 of LNCS, pages 229–244.
Springer, 2009.

[LS85] L. Lamport and F. B. Schneider. Formal foundation for specification and veri-
fication. In Distributed Systems, volume 190 of LNCS, chapter 5, pages 203–285.
Springer, 1985.

[Mak00] A. Makhorin. The GNU Linear Programming Kit, 2000.
http://www.gnu.org/software/glpk/.

[Mal10] A. Malkis. Cartesian Abstraction and Verification of Multithreaded Programs.
PhD thesis, University of Freiburg, 2010.

[Mas93] F. Masdupuy. Semantic analysis of interval congruences. In Proc. of the Int.
Conf on Formal Methods in Prog. and Their Applications (FMPTA’93), volume 735
of LNCS, pages 142–155. Springer, 1993.

[Mas02] D. Massé. Semantics for abstract interpretation-based static analyses of temporal
properties. In Proc. of the 9th Symp. on Static Analysis (SAS’02), volume 2477 of
LNCS, pages 428–443. Springer, Sep. 2002.

[McM93] K. McMillan. Symbolic Model Checking. Kluwer, 1993.

[Min04a] A. Miné. Relational abstract domains for the detection of floating-point run-
time errors. In Proc. of the European Symp. on Programming (ESOP’04), volume
2986 of LNCS, pages 3–17. Springer, Mar. 2004.

[Min04b] A. Miné. Weakly relational numerical abstract domains. PhD thesis, École
Polytechnique, Dec. 2004.

[Min06a] A. Miné. Field-sensitive value analysis of embedded C programs with union
types and pointer arithmetics. In Proc. of the ACM SIGPLAN/SIGBED Conf. on
Languages, Compilers, and Tools for Embedded Systems (LCTES’06), pages 54–63.
ACM, June 2006.

[Min06b] A. Miné. The octagon abstract domain. Higher-Order and Symbolic Computa-
tion, 19(1):31–100, 2006.

[Min11] A. Miné. Static analysis of run-time errors in embedded critical parallel C pro-
grams. In Proc. of the 20th European Symp. on Programming (ESOP’11), volume
6602 of LNCS, pages 398–418. Springer, Mar. 2011.

[Min12a] A. Miné. Abstract domains for bit-level machine integer and floating-point op-
erations. In Proc. of the 4th Int. Workshop on Invariant Generation (WING’12),
number HW-MACS-TR-0097, page 16. Computer Science, School of Mathematical
and Computer Science, Heriot-Watt University, UK, Jun. 2012.

156

BIBLIOGRAPHY

[Min12b] A. Miné. Inferring sufficient conditions with backward polyhedral under-
approximations. In Proc. of the 4th International Workshop on Numerical and
Symbolic Abstract Domains (NSAD’12), ENTCS, page 12. Elsevier, 2012.

[Min12c] A. Miné. Static analysis by abstract interpretation of sequential and multi-thread
programs. In Proc. of the 10th School of Modelling and Verifying Parallel Processes
(MOVEP 2012), pages 35–48, Dec. 2012.

[Min12d] A. Miné. Static analysis of run-time errors in embedded real-time parallel C
programs. Logical Methods in Computer Science (LMCS), 8(26):63, Mar. 2012.

[MJ84] F. L. Morris and C. B. Jones. An early program proof by Alan Turing. Annals of
the History of Computing, 6:139–143, apr. 1984.

[Mon07] David Monniaux. Verification of device drivers and intelligent controllers: A
case study. In Proc. of the 7th ACM & IEEE International conference on Embedded
software (EMSOFT’07), pages 30–36. ACM, Oct. 2007.

[MP95] O. L. Mangasarian and J. S. Pang. The extended linear complementarity problem.
SIAM J. Matrix Anal. Appl., 16(2):359–368, 1995.

[MPA05] J. Manson, B. Pugh, and S. V. Adve. The Java memory model. In Proc. of the
32nd ACM SIGPLAN/SIGACT Symp. on Principles of Programming Languages
(POPL’05), pages 378–391. ACM, Jan. 2005.

[MR05] L. Mauborgne and X. Rival. Trace partitioning in abstract interpretation based
static analyzer. In Proc. of the 14th European Symp. on Programming (ESOP’05),
volume 3444 of LNCS, pages 5–20. Springer, Apr. 2005.

[NIS02] NIST. Software errors cost U.S. economy $59.5 billion annually. Technical report,
NIST Planning Report, 2002.

[NMW02] G. C. Necula, S. McPeak, and W. Weimer. CCured: Type-safe retrofitting of
legacy code. In Proc. of the Int. Conf. on Principles of Programming Languages
(POPL’02), pages 128–139. ACM Press, 2002.

[NQ10] D. Nguyen Que. Robust and generic abstract domain for static program analysis:
The polyhedral case. PhD thesis, École des Mines de Paris, 2010.

[NS04] A. Neumaier and O. Shcherbina. Safe bounds in linear and mixed-integer linear
programming. Math. Program., 99(2):283–296, 2004.

[NS07] N. Nethercote and J. Seward. Valgrind: A framework for heavyweight dynamic
binary instrumentation. In Proc. of ACM SIGPLAN 2007 Conf. on Programming
Language Design and Implementation (PLDI 2007), volume 42, pages 89–100. ACM,
Jun. 2007.

157

BIBLIOGRAPHY

[OG76] S. Owicki and D. Gries. An axiomatic proof technique for parallel programs I.
Acta Informatica, 6(4):319–340, Dec. 1976.

[OHL+12] H. Oh, K. Heo, W. Lee, W. Lee, and K. Yi. Design and implementation of
sparse global analyses for C-like languages. In Proc. of 33rd ACM Conf. on Pro-
gramming Language Design and Implementation (PLDI’12), pages 229–238. ACM,
2012.

[ORS92] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system.
In Proc. of the 11th Int. Conf. on Automated Deduction (CADE’92), volume 607 of
LNAI, pages 748–752. Springer, jun 1992.

[PH99] A. Pioli and M. Hind. Combining interprocedural pointer analysis and conditional
constant propagation. Technical Report 99-103, IBM, 1999.

[PMTB13] M. Pelleau, A. Miné, C. Truchet, and F. Benhamou. A constraint solver based
on abstract domains. In Proc. of the 14th Int. Conf. on Verification, Model Checking,
and Abstract Interpretation (VMCAI’13), LNCS, page 17. Springer, Jan. 2013.

[Pug92] W. Pugh. The Omega test: A fast and practical integer programming algorithm
for dependence analysis. Commun. of the ACM, 8:4–13, Aug. 1992.

[Pug99] B. Pugh. Fixing the Java memory model. In Proc. of the ACM Conf. on Java
Grande, pages 89–98. ACM, 1999.

[QR05] S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software.
In Proc. of the 11th Int. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’05), volume 3440 of LNCS, pages 93–107. Springer,
2005.

[RD06] J. Regehr and U. Duongsaa. Deriving abstract transfer functions for analyzing
embedded software. In Proc. of the ACM Conf. on Lang., Compilers, and Tools for
Embedded Syst. (LCTES’06), pages 34–43. ACM, June 2006.

[Rey04] J. C. Reynolds. Toward a grainless semantics for shared-variable concurrency. In
Proc. of the Annual Conf. on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS’04), volume 3328 of LNCS, pages 35–48. Springer, Dec.
2004.

[Ric53] H. G. Rice. Classes of recursively enumerable sets and their decision problems.
Trans. Amer. Math. Soc., 74:358–366, 1953.

[Rin01] M. C. Rinard. Analysis of multithreaded programs. In Proc. of the 8th Int. Symp.
on Static Analysis (SAS’01), volume 2126 of LNCS, pages 1–19. Springer, Jul 2001.

[RM07] X. Rival and L. Mauborgne. The trace partitioning abstract domain. ACM Trans.
on Programming Languages and Systems (TOPLAS), 29(5), 2007.

158

BIBLIOGRAPHY

[Roh06] J. Rohn. Solvability of systems of interval linear equations and inequalities. In
Linear Optimization Problems with Inexact Data, pages 35–77. Springer, 2006.

[ŠA08] J. Ševč́ık and D. Aspinall. On validity of program transformations in the Java
memory model. In Proc. of the 22nd European Conf. on Object-Oriented Program-
ming (ECOOP’08), volume 5142 of LNCS, pages 27–51. Springer, July 2008.

[Sch86] A. Schrijver. Theory of linear and integer programming. John Wiley & Sons, Inc.,
1986.

[Sch06] D. A. Schmidt. Underapproximating predicate transformers. In Proc. of 13th
Int. Static Analysis Symposium (SAS’06), volume 4134 of LNCS, pages 127–143.
Springer, 2006.

[Sch09] D. A. Schmidt. Abstract interpretation from a denotational semantics perspec-
tive. In Proc. 25th Conf. Mathematical Foundations of Programming Semantics
(MFPS’09), volume 249 of ENTCS, pages 19–37. Elsevier, Aug. 2009.

[SD07] J. Souyris and D. Delmas. Experimental assessment of Astrée on safety-critical
avionics software. In Proc. Int. Conf. Computer Safety, Reliability, and Security
(SAFECOMP’07), volume 4680 of LNCS, pages 479–490. Springer, Sep. 2007.

[SJMvP07] V. A. Saraswat, R. Jagadeesan, M. M. Michael, and C. von Praun. A theory
of memory models. In Proc. of the 12th ACM SIGPLAN Symp. on Principles and
Practice of Parallel Programs (PPoPP’07), pages 161–172. ACM, Mar. 2007.

[SK05] A. Simon and A. King. Exploiting sparsity in polyhedral analysis. In Proc. of the
12th Int. Symp. on Static Analysis (SAS’05), volume 3672 of LNCS, pages 336–351.
Springer, Sep. 2005.

[SK07] A. Simon and A. King. Taming the wrapping of integer arithmetic. In Proc. of the
14th Int. Symp. on Static Analysis (SAS’07), volume 4634 of LNCS, pages 121–136.
Springer, Aug. 2007.

[SKH02] A. Simon, A. King, and J. M. Howe. Two variables per linear inequality as an
abstract domain. In Proc. of the 12th Int. Conf. on Logic based program synthesis
and transformation (LOPSTR’02), volume 2664 of LNCS, pages 71–89. Springer,
2002.

[SR01] A. Sălcianu and M. Rinard. Pointer and escape analysis for multithreaded pro-
grams. In Proc. the 8th ACM SIGPLAN Symp. on Principles and Practices of
Parallel Programming (PPoPP’01), pages 12–23. ACM, 2001.

[SSM05] S. Sankaranarayanan, H. Sipma, and Z. Manna. Scalable analysis of linear sys-
tems using mathematical programming. In Proc. of the 6th Int. Conf. on Verification,
Model Checking, and Abstract Interpretation (VMCAI’05), volume 3385 of LNCS,
pages 21–47. Springer, 2005.

159

BIBLIOGRAPHY

[SSO+10] P. Sewell, S. Sarkar, S. Owens, F. Zappa Nardelli, and M. Myreen. x86-TSO: A
rigorous and usable programmer’s model for x86 multiprocessors. Commun. ACM,
53, 2010.

[Ste96] B. Steensgaard. Points-to analysis in almost linear time. In Proc. of the 23rd ACM
SIGPLAN/SIGACT Symp. on Principles of Programming Languages (POPL’96),
pages 32–41. ACM, 1996.

[Sut05] H. Sutter. The free lunch is over: A fundamental turn toward concurrency in
software. Dr. Dobb’s Journal, 30, Mar. 2005.

[Tar55] A. Tarski. A lattice theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5:285–310, 1955.

[The] The Mathworks. Polyspace static analyzer. http://www.mathworks.fr/product

s/polyspace/.

[Tur49] A. Turing. Checking a large routine. In Report of a Conference on High Speed
Automatic Calculating Machines, pages 67–69. University Mathematical Laboratory,
1949.

[Ven04] A. Venet. A scalable nonuniform pointer analysis for embedded programs. In
Proc. of the Int. Symp. on Static Analysis (SAS’04), number 3148 in LNCS, pages
149–164. Springer, 2004.

[WL95] R. P. Wilson and M. S. Lam. Efficient context-sensitive pointer analysis for C
programs. In Proc. of the Int. Conf. on Programming Language Design and Imple-
mentation (PLDI’95), pages 1–12. ACM Press, 1995.

[WL02] J. Whaley and M. Lam. An efficient inclusion-based points-to analysis for strictly-
typed languages. In Proc. of the Int. Symp. on Static Analysis (SAS’02), volume
2477 of LNCS, pages 180–195. Springer, 2002.

[WM11] G. Whyte and D. L. Mulder. Mitigating the impact of software test constraints on
software testing effectiveness. Electronic Journal of Information Systems Evaluation,
14:254–270, sep 2011.

[WW07] C. B. Watkins and R. Walter. Transitioning from federated avionics architectures
to integrated modular avionics. In Proc. of the 26th IEEE/AIAA Digital Avionics
Systems Conf. (DASC’07), volume 2.A.1, pages 1–10. IEEE, Oct. 2007.

[Ya] K. Yi and al. Sparrow. http://ropas.snu.ac.kr/sparrow/.

[YHR99] S. Yong, S. Horwitz, and T. Reps. Pointer analysis for programs with struc-
tures and casting. In Proc. of the Int. Conf. on Programming Language Design and
Implementation (PLDI’99), pages 91–103. ACM Press, 1999.

160

http://www.mathworks.fr/products/polyspace/
http://www.mathworks.fr/products/polyspace/
http://ropas.snu.ac.kr/sparrow/

INDEX OF NOTATIONS

Index of notations

Order theory
@ partial order §2.1, p. 9

⊥ least element §2.1, p. 9

> greatest element §2.1, p. 9

t least upper bound §2.1, p. 9

u greatest lower bound §2.1, p. 9

lfp f least fixpoint of f §2.1, p. 9

lfpa f least fixpoint greater than a §2.1, p. 9

lim f limit of an iteration §2.3.6, p. 24

Functions
A→ B functions from A to B §2.1, p. 9

f [x 7→ y] function update §2.1, p. 9

Πa:A.Ba dependent type §2.1, p. 9

Sequences, traces
Σn sequences of length n §2.1, p. 9

Σ∗ finite sequences §2.1, p. 9

Σω infinite sequences §2.1, p. 9

Σ∞ finite or infinite sequences §2.1, p. 9

Tr n(Σ,A) traces of length n §2.1, p. 9

Tr ∗(Σ,A) finite traces §2.1, p. 9

Tr ω(Σ,A) infinite (countable) traces §2.1, p. 9

Tr ∞(Σ,A) finite or infinite traces §2.1, p. 9

ε empty sequence §2.1, p. 9

· sequence concatenation §2.1, p. 9

t
a→ t′ trace concatenation §2.1, p. 9

161

INDEX OF NOTATIONS

Arithmetic
R set of reals

N set of natural integers

Z set of integers

F set of floats §2.4.4, p. 36

F — with specials (5.28), p. 116

gcd greatest common divisor F. 5.2, p. 95

lcm least common multiple F. 5.7, p. 102

· dot product §2.1, p. 9
~V (column) vector §2.1, p. 9
~V t transpose (row vector) §2.1, p. 9
~0 null vector §2.1, p. 9

M matrix §2.1, p. 9

Mt matrix transpose §2.1, p. 9

~ei basis vector §2.1, p. 9

× matrix multiplication §2.1, p. 9

+]
i , −

]
i, ×

]
i, /

]
i interval operators F. 5.2, p. 95

+]
m, −]m, modular interval operators F. 2.11, p. 29

×]m, ~
]
m

⊕r, 	r, ⊗r, �r float arithmetic (2.20), p. 37

⊕]i, 	
]
i, ⊗

]
i, �

]
i interval float arithmetic (2.21), p. 37

⊕]i, 	
]
i, ⊗

]
i, �

]
i interval float vector and matrix operations §4.1.2, p. 70

�, �, �, � affine form operators (2.16), p. 35

+, -, *, /, % machine integer arithmetic (5.2), p. 90

~, &, |, ^ bitwise operations (5.2), p. 90

>>, << bit-shift (5.2), p. 90

~
]
b, &

]
b, |

]
b, ^

]
b. >>

]
b,

<<
]
b

bit-field operators F. 5.3, p. 96

(int-type) cast (5.2), p. 90

lin linearization F. 2.13, p. 36

slin scalar linearization (2.17), p. 36

eval affine form evaluation F. 2.13, p. 36

LP linear programming (2.12), p. 33

LP∗ dual linear programming (4.1), p. 72

LPF float linear programming (4.2), p. 72

ILP interval linear programming (4.5), p. 77

FM Fourier-Motzkin elimination (2.14), p. 34

162

INDEX OF NOTATIONS

FM F float Fourier-Motzkin elim. §4.1.3, p. 71

R+∞ float rounding up (2.18), p. 37

R−∞ float rounding down (2.18), p. 37

ε rounding error (2.22), p. 38

C set of constraints §2.4.2, p. 30

〈A, ~B〉 constraint representation §2.4.2, p. 30

[P,R] generator representation §2.4.2, p. 30

wrap integer wrap-around (5.4), p. 91

wrap]i interval wrap-around (5.6), p. 93

wrap]m modular int. wrap-around F. 5.2, p. 95

wrap]b bit-field wrap-around F. 5.3, p. 96

p 2-adic encoding (5.5), p. 92

benc byte encoding of scalars F. 5.9, p. 105

bdec byte decoding of scalars F. 5.9, p. 105

φ cell synthesis F. 5.11, p. 107

Language
V program variables §2.3.1, p. 16

Vt — w. auxiliary variables (3.6), p. 47

T threads §3.1.1, p. 40

M mutexes (3.20), p. 57

` statement location F. 2.1, p. 16

L, L(P) set of statement locations F. 2.1, p. 16

ω error location F. 2.1, p. 16

Ω, Ω(P) set of error locations F. 2.1, p. 16

[e1/e2] substituting e1 with e2 §2.1, p. 9

� unary operator F. 2.1, p. 16

◦ binary operator F. 2.1, p. 16

./ comparison operator F. 2.1, p. 16

X ← e assignment F. 2.1, p. 16

e ./ 0 guard F. 2.1, p. 16

lock mutex lock (3.20), p. 57

unlock mutex unlock (3.20), p. 57

islocked mutex test §3.4.2, p. 60

yeild thread yield §3.4.2, p. 60

dbl -of -word float composition (5.30), p. 117

hi -word -of -dbl float decomposition (5.30), p. 117

prog sequential program F. 2.1, p. 16

163

INDEX OF NOTATIONS

prog concurrent program (3.1), p. 40

stat statement F. 2.1, p. 16

expr expression F. 2.1, p. 16

lval left-value F. 5.4, p. 99

int-type machine integers (5.1), p. 90

scalar -type scalar type (5.10), p. 97

float-type float type (5.10), p. 97

sizeof byte-size of type §5.1.1, p. 90

alignof byte-alignment of type F. 5.7, p. 102

offset byte-position of field F. 5.7, p. 102

range range of type (5.3), p. 90

type(expr) type of an expression §5.1, p. 90

lval .n field access F. 5.4, p. 99

lval [expr]ω array access F. 5.4, p. 99

&V variable address F. 5.8, p. 102

∗type,ω pointer dereference F. 5.8, p. 102

sel field and array selectors (5.11), p. 98

cell well-structured cells (5.12), p. 98

Cell low-level cell universe (5.21), p. 106

Pred float predicates (5.31), p. 118

var variables in predicate F. 5.19, p. 118

path control paths (3.21), p. 64

 path transformation §3.5.2, p. 64

Semantic domains
Σ program states §2.3.2, p. 17

Σ concurrent program states §3.1.2, p. 40

Σt local states (3.6), p. 47

A action set §2.3.2, p. 17

A concurrent action set §3.1.2, p. 40

τ transition relation §2.3.2, p. 17

τ concurrent — §3.1.2, p. 40

I concrete initial states §2.3.2, p. 17

I concurrent initial states §3.1.2, p. 40
a→τ transition §2.3.2, p. 17
a→τ concurrent transition (3.2), p. 41

E environments §2.3.2, p. 17

Et local environments (3.6), p. 47

164

INDEX OF NOTATIONS

E[cell-based environments §5.22, p. 107

E]0 abstract initial states §2.3.6, p. 24

enbl enabled transitions (3.3), p. 42

M maximal trace semantics (2.3), p. 19

F partial trace semantics (2.4), p. 19

R state semantics (2.7), p. 20

Rl local state semantics (3.7), p. 48

I interference semantics (3.8), p. 48

Fair fair traces §3.1.3, p. 41

X concrete environment §2.3.4, p. 21

X] abstract environment §2.3.4, p. 21

D concrete domain §2.2, p. 11

DV — on a set of variables §5.2.1, p. 97

D] abstract domain §2.2, p. 11

D]V — on a set of variables §5.2.1, p. 97

D]i interval domain §2.4.1, p. 27

D]p polyhedra domain §2.4.2, p. 30

D]m modular interval domain (5.8), p. 94

D]C abstraction of P(C → R) §5.2.4, p. 109

D]Pred float predicate domain (5.31), p. 118

D]mem low-level memory domain (5.26), p. 109

D]chg value change domain §3.2.3, p. 49

DItf domain with interference (3.3.1), p. 52

D]Itf abstract — (3.18), p. 55

Itf interference domain (3.3.1), p. 52

Itf] abstract — §3.18, p. 55

α abstraction function §2.2, p. 11

αpref partial trace abstraction (2.5), p. 19

αreach reachability abstraction (2.7), p. 20

αi interval abstraction F. 2.9, p. 27

αitf interference abstraction (3.8), p. 48

αaux auxiliary variables abs. (3.11), p. 49

αflow flow-insensitive abstraction (3.12), p. 50

αchg variable change abstraction (3.14), p. 50

γ concretization function §2.2, p. 11

γreach reachability concretization (2.7), p. 20

165

INDEX OF NOTATIONS

γi interval concretization F. 2.9, p. 27

γp polyhedra concretization (2.11), p. 31

γZp integer polyhedra conc. (5.7), p. 93

γip interval polyhedra conc. (4.4), p. 76

γx complementary conc. (4.9), p. 80

γil interval affine equality conc. (4.10), p. 82

γm modular interval conc. (5.8), p. 94

γCell cell-set concretization (5.23), p. 107

γC numeric conc. on P(C → R) §5.2.4, p. 109

γmem low-level memory conc. (5.27), p. 109

γPred float predicate conc. (5.33), p. 118

γchg variable change conc. (3.13), p. 50

πt local state projection (3.7), p. 48

Ptr pointer values (5.15), p. 103

Addr valid addresses (5.16), p. 103

NULL null pointer (5.15), p. 103

invalid invalid pointer (5.15), p. 103

B byte values (5.19), p. 104

V scalar values (5.20), p. 104

Semantic operators
{P} stat {Q} Hoare triple §2.3.4, p. 21

{P} stat {Q} Owicki–Gries triple §3.2.1, p. 45

R,G ` Rely-Guarantee quintuple (3.5), p. 46

{P} stat {Q}
τ [] program transition system F. 2.3, p. 18

eq [], eqst [] program equation system F. 2.4, p. 21

eq [], eqst [] concurrent — (3.4), p. 43

F partial trace operator (2.6), p. 20

R reachability operator (2.8), p. 20

Rt local reachability operator (3.9), p. 48

Rt∗ — for unbounded instances (3.15), p. 52

B interference extraction op. (3.10), p. 48

H thread reachability operator T. 3.2.1, p. 49

itf interference operator (3.16), p. 54

itf] abstract interference op. (3.19), p. 56

v]i interval inclusion F. 2.9, p. 27

166

INDEX OF NOTATIONS

v]p polyhedra inclusion F. 2.12, p. 32

vR expression abstraction §2.4.3, p. 34

v]il interval affine eq. inclusion (4.12), p. 84

v]Pred predicate inclusion (5.32), p. 118

+p pointer addition (5.17), p. 104

=p pointer equality (5.18), p. 104

=]
p polyhedra equality F. 2.12, p. 32

∪] abstract join §2.3.6, p. 24

∪]E abstract join without error §2.3.6, p. 24

∪]i interval join F. 2.10, p. 28

∪]p convex hull of polyhedra F. 2.12, p. 32

∪]ip interval polyhedra join (4.8), p. 78

∪]m modular interval join F. 5.2, p. 95

∪]b bit-field join F. 5.3, p. 96

O widening (2.2.1), p. 15

OE widening without error §2.3.6, p. 24

Oi interval widening F. 2.10, p. 28

Op polyhedra widening F. 2.12, p. 32

O]m modular interval widening F. 5.2, p. 95

O]b bit-field widening F. 5.3, p. 96

EJ K concrete sem. of expressions F. 2.2, p. 17

E]ΩJ K abstract errors in expression (2.10), p. 25

E]iJ K interval expression sem. F. 2.11, p. 29

EItf J Kt expr. with interferences F. 3.3, p. 53

SJ K concrete sem. of statements F. 2.6, p. 23

SEJ K — without errors F. 2.4, p. 21

S]J K abstract sem. of statements F. 2.7, p. 26

S]EJ K — without errors §2.3.6, p. 24

S]iJ K interval statement sem. F. 2.11, p. 29

S]pJ K polyhedra statement sem. F. 2.12, p. 32

S]PredJ K predicate statement sem. F. 5.19, p. 118

SItf J Kt statements w/ interferences F. 3.4, p. 53

S]Itf J Kt abstract — §3.3.2, p. 55

S]PredJ K float predicate sem. F. 5.19, p. 118

167

INDEX OF NOTATIONS

�Itf J Kt path-based semantics (3.22), p. 64

P concrete sem. of programs (2.9), p. 23

add -cell cell addition (5.24), p. 108

combine predicate combination F. 5.19, p. 118

168

INDEX

Index

2−adic representation, 92

abstract domain, 11
abstract equational semantics, 25
abstraction function, 12
addressable memory, 103
affine constraints, 30
affine equality domain, 82
affine interval constraints, 76
auxiliary variables, 47

basis vector, 11
best abstraction, 13
big-step semantics, 23
big-step static analyzer, 25
binary decision diagrams, 91
binary representation, 90
bit-field domain, 96
blocking states, 19
byte values, 104

cast operator, 90
cells, 98
codomain, 10
complementary condition, 79
complete lattice, 9
complete partial order, 10
complimentary polyhedron, 80
compute-through-overflow, 93
concrete domain, 11
concretization function, 11
conical combination, 31
conjunctive semantics, 107
control paths, 64
convex combination, 31
critical sections, 57

data-race, 59
data-race-freedom, 63
deadlock, 60
dependent type, 10
domain, 10

equational semantics, 21
exact abstraction, 12
exponent, 115
expression abstraction, 34

fairness conditions, 42
fixpoint, 10
float interval polyhedron, 76
floating-point numbers, 36
floating-point polyhedron, 70
flow-insensitive abstraction, 50
Fourier–Motzkin’s elimination, 34

Galois connection, 12
Galois injection, 12
generators, 30
greatest element, 9
greatest lower bound, 9

Hoare triples, 22

IEEE 754 floating-point standard, 36
inductive invariant, 22
integer promotion, 91
interferences, 48, 52
interval abstraction, 27
interval affine equality domain, 82
interval affine forms, 35
interval linear programming, 77
invariants, 22

169

INDEX

iteration, 14

join, 9
join-morphism, 10

labelled transition system, 17
lambda notation, 10
lattice, 9
least element, 9
least fixpoint, 10
least upper bound, 9
linear absolute value relation domain, 80
linear programming, 33
linearization, 35
local states, 47

machine integer types, 90
mantissa, 115
maximal traces, 19
meet, 9
modular interval domain, 94
monotonic, 10
Moore family, 12
mutexes, 57

narrowing, 15
non synchronized interferences, 58
non-relational, 51

orthan, 77

partial traces, 19
partially ordered set, 9
partitioning, 58
path transformations, 65
pointer arithmetic, 102
pointer base, 109
pointer values, 103
polyhedra domain, 30
post-fixpoint, 10
pre-fixpoint, 10
predicate domain, 118
priority, 60
purification scheme, 71

rational interval polyhedron, 79
rays, 30
reachable states, 20
real-time, 60
reduced product, 13
relational domain, 30
rely-guarantee, 46
representation function, 104
rigorous linear programming, 72
row echelon form, 82

scalar types, 98
scalar values, 104
semantic domain, 11
semantic functions, 10
sequences, 10
sequential consistency, 61
Simplex algorithm, 33
soundness condition, 12
special floats, 113
synchronized interferences, 58

thread-modular, 45
threads, 40
traces, 11
two’s complement representation, 90
type punning, 101

unbounded number of threads, 51

value synthesize function, 107

weak updates, 99
weakly-consistent memory models, 64
widening, 14
wrap-around, 91

170

	Overview
	Résumé
	Introduction
	Program verification
	Abstract interpretation
	Concurrent programs

	Background
	Notations
	Elements of abstract interpretation
	Sequential static analysis
	Language
	Transition system
	From traces to states
	Equational semantics
	Big-step semantics
	Environment abstraction

	Numeric abstractions
	Intervals
	Polyhedra
	Linearization
	Floating-point numbers

	Conclusion

	Analysis of concurrent programs
	Concurrent language
	Syntax
	Semantics
	Trace and state semantics
	Equational semantics
	Big-step semantics

	Rely-guarantee reasoning as abstract interpretation
	Proof methods
	Interference semantics
	Abstraction
	Unbounded number of threads

	Big-step interference analysis
	Concrete interference semantics
	Abstract interference semantics

	Scheduling
	Mutexes
	Real-time scheduling

	Weakly consistent memories
	Non-consistent behaviors
	Formal model

	Discussion

	Affine abstractions
	Floating-point polyhedra
	Motivation
	Representation
	Core algorithms
	Abstract operators
	Experimental results
	Discussion

	Interval polyhedra
	Float interval polyhedra
	Exact interval polyhedra
	Interval affine equalities
	Discussion

	Abstracting C data-types
	Machine integers
	Extended language
	Adapting classic domains
	Modular intervals
	Bit-field domain
	Discussion

	Structured types
	Extended types
	Well-structured semantics
	Low-level semantics
	Cell-based memory model
	Discussion

	Bit-aware float abstractions
	Examples
	Concrete semantics
	Abstract semantics
	Future work

	Conclusion

	Applications
	Apron: numeric abstract domain library
	Astrée: proving the absence of run-time error in synchronous embedded C software
	Scope and limitations
	Architecture
	Specialization
	Interface
	Industrial applications

	AstréeA: detecting run-time errors in concurrent embedded C software
	Architecture
	Target code
	Results
	Future work

	Conclusion and perspectives
	Concurrency analysis
	Numeric abstractions

	Bibliography
	Index of notations
	Index

