
Form Methods Syst Des (2018) 53:221–258
https://doi.org/10.1007/s10703-017-0311-x

Inferring functional properties of matrix manipulating
programs by abstract interpretation

Matthieu Journault1 · Antoine Miné1

Published online: 12 February 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2017

Abstract We present a new static analysis by abstract interpretation to prove automatically
the functional correctness of algorithms implementing matrix operations, such as matrix
addition, multiplication, general matrix multiplication, inversion, or more generally Basic
Linear Algebra Subprograms. In order to do so, we introduce a family of abstract domains
parameterized by a set of matrix predicates as well as a numerical domain. We show that our
analysis is robust enough to prove the functional correctness of several versions of the same
matrix operations, resulting from loop reordering, loop tiling, inverting the iteration order,
line swapping, and expression decomposition. We extend our method to enable modular
analysis on code fragments manipulating matrices by reference, and show that it results in a
significant analysis speedup.

Keywords Abstract interpretation · Static analysis · Matrix manipulating programs ·
Functional correctness

1 Introduction

Static analysis by abstract interpretation [1] allows discovering automatically properties about
program behaviors. In order to scale up, it employs abstractions, which induce approxi-
mations. However, the approximation is sound, as it considers a super-set of all program
behaviors; hence, any property proved in the abstract (such as the absence of run-time error,

This work is partially supported by the European Research Council under Consolidator Grant Agreement
681393—MOPSA.

B Matthieu Journault
matthieu.journault@lip6.com

Antoine Miné
antoine.mine@lip6.com

1 Laboratoire d’informatique de Paris 6 (LIP6), Sorbonnes Universités,
UPMC Univ Paris 6, 4, place Jussieu, 75252 Paris Cedex 05, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-017-0311-x&domain=pdf

222 Form Methods Syst Des (2018) 53:221–258

or the validation of some specification) also holds in all actual program executions. Static
analysis by abstract interpretation has been applied with some success to the analysis of
run-time errors [2]. More recently, it has been extended to proving functional properties,
including array properties [3–5], such as proving that a sorting algorithm indeed outputs a
sorted array. In this work, we consider functional properties of a different kind, rarely tackled
before (see related works in Sect. 8): properties on matrices. Consider as example Program 1
(see Sect. 4.4 for a presentation of the results of our analyzer on this program) starting with
the assumption N ≥ 5. Our analyzer will automatically infer the following postcondition
for the program: ∀u, v ∈ [0, N − 1]2, C[u][v] = ∑N−1

w=0 A[u][w] × B[w][v], i.e., the pro-
gram indeed computes the product of matrices A and B into C . Consider now Program 2
where multiplication(C,A,B) is Program 1. It computes the sequence A = Bm

using function calls to a matrix manipulating function. Iterative constructions such as this
one are useful in the field of matrix analysis (eigenvalues, eigenvectors, matrix inversion
computation), therefore it is important to infer and prove automatically that such programs
are indeed computing the expected sequence.

1 /* N >= 5 */
2 for (i=0; i<N; i++)
3 for (j=0; j<N; j++) {
4 C[i][j] = 0;
5 for (k=0; k<N; k++)
6 C[i][j] += A[i][k] * B[k][j];

Program 1 Matrix multiplication C = A × B

1 /* m >= 1 */
2 l=0;
3 while (l<m) {
4 multiplication(A,A,B);
5 i++
6 }

Program 2 Computing the sequence A = Bm

1.1 Introductory example

To explain how our method works in more details, we focus on a simpler introductory
example, the matrix addition from Program 3 (see Sect. 4.4 for a presentation of the results of
our analyzer on this program). Note that we will show later that our method is also successful
on the multiplication from Program 1, as well as more complex, optimized variants of these
algorithms, such as the tiled addition in Program 12.

We wish to design a sound analyzer capable of inferring that, at the end of line 10,
the addition of B and A has been stored into C. Note that the program is parametric in
the size N of the matrix, and we want our analysis to be able to prove that it is correct
independently from the precise value of N. Therefore, we would like to infer that the formula

φ
Δ= ∀a, ∀b, (0 ≤ a < N ∧ 0 ≤ b < N) ⇒ C[a][b] = A[a][b] + B[a][b] holds for all the

memory states reachable at line 10.
In order to do so, the static analyzer needs to infer loop invariants for each of the while

loops. For the outermost loop (line 3), we would infer: φi
Δ= ∀a, ∀b, (0 ≤ a < i ∧

0 ≤ b < N) ⇒ C[a][b] = A[a][b] + B[a][b], and, for the innermost loop (line 5):

123

Form Methods Syst Des (2018) 53:221–258 223

φ j
Δ= (∀a, ∀b, (0 ≤ a < i ∧ 0 ≤ b < N) ⇒ C[a][b] = A[a][b] + B[a][b]) ∧ (∀b, 0 ≤

b < j ⇒ C[i][b] = A[i][b] + B[i][b]). Note that the loop invariants are far more complex
than the formula we expect at the end of the program. In particular, they depend on the local
variables i and j . They express the fact that the addition has been performed only for some
lines (up to i) and, for φ j , only on one part of the last line (up to j). Every formula we
need can be seen as a conjunction of one or several sub-formulas, where each sub-formula
expresses that the addition has been performed on some rectangular sub-part of the matrix.
Therefore, we introduce the following formula Add(A, B,C, x, y, z, t) with which we will
describe our matrices in the rest of the introductory example:

Add(A, B,C, x, y, z, t)
Δ= ∀a, ∀b, (x ≤ a < z ∧ y ≤ b < t)

⇒ C[a][b] = A[a][b] + B[a][b]
The formulasφi ,φ j andφ can all be described as a conjunction of one ormore instances of the
fixed predicate Add , as well as numeric constraints relating only scalar variables, including
program variables (i , j) and predicate variables (x , y, z, t). Abstract interpretation provides
numerical domains, such as polyhedra [6], to reason on numeric relations. We will design a
family of abstract domains combining existing numerical domains with predicates such as
Add and show how, ultimately, abstract operations modeling assignments, tests, joins, etc.
can be expressed as numeric operations to soundly reason about matrix contents. While the
technique is similar to existing analyses of array operations [3–5], the application to matrices
poses specific challenges: firstly, as matrices are bi-dimensional, it is less obvious how to
update matrix predicates after assignments; secondly, matrix programs feature deep levels of
loop nesting, which may pose scalability issues.

1.2 Contribution

The article presents new abstract domains for the static analysis of matrix-manipulating
programs. Those abstract domains are based on a combination of parametric predicates and
numerical domains and can be used on small programs (e.g.computing a matrix addition) as
well as on more complicated programs calling matrix-manipulating functions. The analysis
has been proved sound and implemented in a prototype (supporting a small pseudo-code
language enablingmatrix operations).We provide experimental results proving the functional
correctness of a few basic matrix-manipulating programs, including more complex variants
obtained by the Pluto source to source loop optimizer [7,8]. We show that our analysis is
robust against code modifications that leave the semantic of the program unchanged, such as
loop tiling performed by Pluto. In the context of full source to binary program certification,
analyzing programs after optimization can free us from having to verify the soundness of the

1 /* N >= 5 */
2 i=0;
3 while (i<N) {
4 j=0;
5 while (j<N) {
6 C[i][j] = A[i][j] + B[i][j];
7 j++;
8 };
9 i++;

10 }

Program 3 Matrix addition C = A + B

123

224 Form Methods Syst Des (2018) 53:221–258

optimizer; therefore, our method could be used in combination with certified compilers, such
as CompCert [9], while avoiding the need to certify optimization passes in Coq. Indeed, at
the time of writing it is not yet possible to perform loop tiling optimizations using CompCert.
The analysis we propose ismodular: it is defined overmatrix predicates that can be combined,
and is furthermore parameterized by the choice of a numerical domain. Moreover we added
to our analyzer the ability to use some helper domains, making the process of defining new
predicates and adding them to the analyzer more developer-friendly. Finally, the performance
of our analyzer is quite encouraging.

The rest of the paper is organized as follows: Sect. 2 describes the programming language
we aim to analyze; Sect. 3 formally defines the family of abstractions we are constructing.
In Sect. 4, we introduce specific instances to handle matrix addition and multiplication.
In Sect. 5, we briefly present a modular inter-procedural version of our analysis and Sect. 6
exposes a small abstract domain that enables us to analyze iterative processes onmatrices.This
section concludeswith Sect. 6.2 that presents the analysis of an example program that exploits
the combination of all the abstract domains presented in this article. Sect. 7 presents our
implementation and our experimental results. Section 8 discusses related works, while Sect. 9
concludes. The appendix contains proofs of the soundness of our analyzer (“Appendix B”)
and the source code of some programs mentioned in the article (“Appendix C”).

This article is an extended version of a paper published at SAS ’16 (see [10]). Sections 3
and 4 have been extended with examples and explanations. Section 6 presents newmaterials.
The soundness proof (in “Appendix B”) is also a new addition.

2 Syntax and concrete semantics

2.1 Programming language syntax

We consider a small imperative language, in Fig. 1, based on variables X ∈ X, (bi-
dimensional) array names A ∈ A, and size variables denoting the width and height of
arrays S = {A.n | A ∈ A} ∪ {A.m | A ∈ A}, with arithmetic expressions E ∈ E, boolean
expressions B ∈ B, and commands C ∈ C. The command Array A of E1 E2 denotes the
definition of a matrix A of size E1 × E2.

2.2 Concrete reachability

We define the concrete semantic of our programming language. It is the most precise math-
ematical expression describing the possible executions of the program and it will be given
in terms of postconditions for commands. This concrete semantic is not computable; there-

E ::= v ∈ R | X ∈ X | E1 + E2 | E1 × E2 | A[X1][X2] | A.n | A.m

B ::= E1 < E2 | E1 ≤ E2 | E1 = E2 | ¬B | B1 ∨ B2 | B1 ∧ B2

C ::= skip | X := E | A[X1][X2] ← E | C1 ; C2 |
If B then C1 else C2 | while B do C done | Array A of E1 E2

of a matrix A of size E1 × E2.

Fig. 1 Syntax of the language

123

Form Methods Syst Des (2018) 53:221–258 225

fore, in the rest of the document we will try to propose a computable approximation. The
soundness property of Sect. 4.1 holds with respect to this concrete semantic.

2.2.1 Definitions

D is the domain of scalar values, and we assume from now on that D = R. M is the
set of memory states, which are pairs M = MV × MA containing a scalar environment

MV
Δ= V → D and a matrix contents environmentMA

Δ= A → (N×N) → D (here we are
not interested in proving that there is no out of bounds access, therefore A[X1][X2] is defined
as soon as X1, X2 ∈ N), where V (resp.A) is any subset ofX∪S (resp.A). E�E� ∈ M → D
is the semantic of an expression E (it is well-defined only on memory states that bind the
variables and array names appearing in E). B�B� ∈ ℘(M) defines the set of memory states
in which B is true. Post�C�(S) denotes the set of states reachable from the set of states S after
a command C . Finally var(E), var(B), var(C) denote the variables appearing respectively
in an arithmetic expression, a boolean expression, a command. Figures 2, 3 and 4 describe
the behavior of expressions, booleans and the state reachability of the program.

– ∀v ∈ R, E v m
Δ= v

– E X m
Δ= mV (X)

– E E1 + E2 m
Δ= E E1 m + E E2 m

– E E1 × E2 m
Δ= E E1 m × E E2 m

– E A.n m
Δ= mV (A.n)

– E A.m m
Δ= mV (A.m)

– E A[X1][X2] m
Δ= mA(A)(mV (X1), mV (X2)) when mV (X1), mV (X2) ∈ N

Fig. 2 Evaluation of expressions, m designates (mV ,mA)

– B E1 < E2
Δ= {m ∈ M | E E1 m < E E2 m}

– B E1 ≤ E2
Δ= {m ∈ M | E E1 m ≤ E E2 m}

– B E1 = E2
Δ= {m ∈ M | E E1 m = E E2 m}

– B ¬E1
Δ= M \ B E1

Fig. 3 Evaluation of booleans

Post C (S) Δ= match C with:
| skip → S

| X := E → {(mV [X := E E m], mA) | m ∈ S}

| A[X1][X2] ← E → {(mV , mA[A := λ(i, j). E E m if (i, j) = (u, v)
mA(A)(i, j) otherwise])

| m ∈ S ∧ (mV (X1), mV (X2)) = (u, v) ∈ N
2}

| If B then C1 else C2 → Post C1 (S ∩ B B) ∪ Post C2 (S ∩ B ¬B)

| While B do C1 done → lfp⊆(λS0.S ∪ Post C1 (S0 ∩ B B)) ∩ B ¬B

| Array A of E1 E2 → {(mV [A.m := E E1 m, A.n := E E2 m],

mA[A := λ(i, j).0]) | m ∈ S}
| C1 ; C2 → Post C2 (Post C1 (S))

Fig. 4 Reachability semantics, m designates the pair (mV ,mA)

123

226 Form Methods Syst Des (2018) 53:221–258

t ::= A[x][y] | x ∈ Y | t1 + t2 | t1 × t2 | v ∈ R |
z

x=y

t

g ::= t1 = t2 | t1 ≤ t2 | t1 < t2

P ::= tt | ff | g | ¬P1 | P1 ∧ P2 | P1 ∨ P2 | P1 ⇒ P2 | ∀x ∈ N, P1 | ∃t ∈ A, P1

Fig. 5 Terms, atomic predicates, and predicates

3 Generic abstract semantics

3.1 Predicates

As suggested in Sect. 1, we define predicates to specify relations between matrices. The
language of predicates is based on the expressions from our programming language, with
added quantifiers. The predicate language is very general but we will only be using one
fragment at a time to describe the behavior of our programs. In order to do so we define
terms t ∈ T , using dedicated predicate variables y ∈ Y (such that X ∩ Y = Y ∩ S = ∅),
atomic predicates g ∈ G, and predicates P ∈ P , as shown in Fig. 5. Their interpretation will
be respectively: IT �t�, IG�g� and IP�P�. Those interpretations are defined the same way
as interpretations of expressions and booleans; therefore, they are not detailed here. var(P)

denotes the free variables of P that are in Y ∪ X ∪ S. In the rest of the article, whenever we
mention fresh variables, those will be fresh variables in Y. The

∑z
x=y t term is not useful

yet, however Sect. 4.2 will show how this construction enables us to link together multiple
sub-predicates.

Example 1 Modulo some syntactic sugar, we can define a predicate such as: P+(A, B,C, x,

y, z, t)
Δ= ∀u ∈ [x, z−1],∀v ∈ [y, t −1], A[u][v] = B[u][v]+C[u][v]. The interpretation

of such a predicate is the set of memory states in which the matrix A is the sum of two
matrices B and C on some rectangle.

Finally, we introduce the following relation P1 =S P2, meaning that ∃σ ∈ var(P1) →
var(P2) a bijection such that P1σ = P2, i.e., P1 and P2 are syntactically equivalent modulo a
renaming of the variables (e.g., P+(A, B,C, x, y, z, t) =S P+(A, B,C, x ′, y′, z′, t ′)). This
definition is extended to sets of predicates, P1 =S P2, meaning that there is a one-to-one
relation between the sets and every pair of elements in the relation are syntactically equivalent
(e.g., {Q(A, B,C, x, y, z, t), P(A, u, v)} =S {Q(A, B,C, x ′, y′, z′, t ′), P(A, u′, v′)}).

In the following we will only consider sets of predicates P wich are well-named in
the sense that ∀P �= Q ∈ P, var(P) ∩ var(Q) = ∅ in that case P =S Q amounts to
the existence of a renaming σ and a one-to-one relation b between P and Q such that
∀P ∈ P, ∃Q ∈ Q, P = b(Q)σ . It is to be noted that there might exist more that one such
one-to-one relation, this point will be detailed in the following Sect. 3.2.

3.2 Abstract states

We now assume we have an abstraction of the scalar environment MV (e.g.the interval or
polyhedra [6] domain) that we callM�

V , with concretization function γV , join ∪V , widening
�V , meet with a boolean constraint ∩B,V or a family of boolean constraints �B,V , and a
partial order relation �V . The set of variables bound by an abstract variable memory state
a ∈ M�

V is noted var(a) ⊂ X ∪ Y ∪ S.

123

Form Methods Syst Des (2018) 53:221–258 227

In the following, we define an abstraction for the analysis of our programming language,
this abstraction being built upon a set of predicates describing relations between matrices
and a numerical domain. To simplify, without loss of generality, we forbid predicates from
referencing program variables or array dimensions, hence Y∩ (X∪ S) = ∅. We rely instead
on the numerical domain to relate predicate variables with program variables, if needed.

Let us revisit the introductory example of Program 3. At program point 5 we would like
to infer the invariant (∀a, ∀b, (0 ≤ a < i ∧ 0 ≤ b < N) ⇒ C[a][b] = A[a][b] +
B[a][b]) ∧ (∀b, 0 ≤ b < j ⇒ C[i][b] = A[i][b] + B[i][b]), using the predicate from
Example 1we can rewrite the invariant as P+(C, A, B, x, y, z, t)∧P+(C, A, B, x ′, y′, z′, t ′)
with {x = y = 0 ∧ z = i ∧ t = N ∧ x ′ = i ∧ y′ = 0 ∧ z′ = i + 1 ∧ t ′ = j}. This last set
of constraints can be represented by a numerical abstract domain. Such a set of predicates
and the corresponding numerical abstract domain (that links predicate variables and program
variables) will be called a monomial. In order to express disjunctions of states that require
different numbers of predicates we will use as abstract state disjunctions of monomials.

Remark 1 The previous remarks amount to say that we want abstract states of the form:

(Mon1: numerical_constraints_1 ∧ predicate_1_1 ∧ predicate_1_2 ∧ . . .)

∨
(Mon2: numerical_constraints_2 ∧ predicate_2_1 ∧ predicate_2_2 ∧ . . .)

∨
.
.
.

(Monn : numerical_constraints_n ∧ predicate_n_1 ∧ predicate_n_2 ∧ . . .)

where variables appearing in predicate_i_j are bound by the numerical_
constraints_i

Hence, we will introduce a monomial as a conjunction of some predicates and a numerical
abstract domain; an abstract state will be a disjunction of such monomials. Moreover, we
want our state to be a set of monomials as small as possible (and in all cases, bounded, to
ensure termination); therefore, we would rather use the disjunctive features provided by the
numerical domain, if any, than predicate-level disjunctions. We enforce this rule through a
notion of well-formedness, explained below.

Definition 1 (Monomial) We call a well-named monomial an element (P, a) ∈ M =
℘(P)×M�

V such that
⋃

P∈P var(P) ⊂ var(a) and∀P1 �= P2 ∈ P, var(P1)∩var(P2) = ∅.

Definition 2 (Abstract memory state) We build an abstraction M� for memory states M
that is M� = ℘(M). We will say that an abstract memory state is well-named if every one
of its monomials is well-named. The following concretization function is defined on every
well-named abstract state S� ∈ M� as:

γ (S�) =
⋃

(P,a)∈S�

{(mV|X∪S,mA) | mV ∈ γV (a) ∧ ∀P ∈ P, (mV ,mA) ∈ IP (P)}

where mV|X∪S is the restriction of mV to X ∪ S.

Example 2 (P+ is the predicate defined in Example 1). Let us consider an abstract state
{(P, a)} where P = {P+(A, B,C, x, y, z, t)} and a is a polyhedron defined by the set of
equations {x = 0, y = 0, z = n, t = 1, i = 1, j = n, A.n = n, B.n = A.n,C.n =
A.n,C.m = B.m, B.m = A.m, A.m = n}. In this case: γ ({(P, a)}) is the set of memory
states in which the first column of the matrix A is the sum of the first columns of B and C.

123

228 Form Methods Syst Des (2018) 53:221–258

Definition 3 (Well-formed) We will say that an abstract state S� is well-formed if
∀(P1, a1), (P2, a2) ∈ S�, (P1 =S P2) ⇒ (P1, a1) = (P2, a2), i.e., no two monomials in
S� can be made equal through variable renaming.

The previous definition ensures that well-formed abstract states only have a bounded
number of monomials. Indeed there is only a finite number of available predicates, and we
want to keep unbounded numerical domains (so as to be expressive enough), therefore we
need to ensure that abstract elements are bounded. The wf operator ensures that a given set
of predicate is only bound to a unique numerical domain.

Definition 4 (Shape) We will say that two abstract states S�
1, S

�
2 have the same shape, noted

S�
1 =F S�

2, when ∃ f : S�
1 → S�

2, a bijection,∀(P1, a1) ∈ S�
1, (P2, a2) = f ((P1, a1)) ⇒

P1 =S P2, we also say that S�
1 and S�

2 have the same shape according to f .

Some of our operations on abstract states may not output well-formed states. We thus
propose the following algorithm in order to construct a well-formed state. This algorithm
may lose some precision, but is always sound.

Definition 5 (Algorithm wf(S�)): while there is still a pair of monomials (P1, a1) �=
(P2, a2) ∈ S� such that P1 =S P2:

– remove (P1, a1), (P2, a2) from S�

– find σ such that P1σ = P2

– add (P2, a1σ ∪V a2) to S�

Remark 2 We can note that the algorithm from Definition 5 is non deterministic. The pre-
cision of the analysis was satisfactory on the examples we wanted to analyze, therefore no
particular merging heuristic was needed.

Proposition 1 ∀S� well-named , γ (S�) ⊂ γ (wf(S�))

The proof can be found in “Appendix B”. It is to be noted that computing wf on some
S� does not require iterations until a fixpoint is reached, one can only iterate on every pair
(P1, a1), (P2, a2) ∈ S�. Indeed (P2, a1σ ∪V a2) has the same shape as (P1, a1) or (P2, a2).
wf transforms any well-named abstract state into a well-named, well-formed abstract state.
However, we only have γ (S�) ⊂ γ (wf(S�)) in general and not the equality. Indeed, we
transform a symbolic disjunction into a disjunction ∪V on the numerical domain, therefore
this transformation might not be exact.

Figure 6 gives the basic operations on the sets of abstract statesM�: a join (�), a widening
(�),1 a meet with booleans (�B), and an inclusion test with booleans (�B,V).

Remark 3 We note that both the widening and the join operators rely on an alignment of the
predicates of two monomials, however there might be different such alignments as noted in
Sect. 3.1. Indeed the wf operator transforms a disjunction of the form (A ∧ B) ∨1 (C ∧ D)

(where (A ∧ B) and (C ∧ D) represent monomials and ∨1 is a symbolic disjunction) into
a monomial of the form (A ∨2 C) ∧ (B ∨2 D) (where ∨2 is a disjunction performed in the
underlying numerical domain). The choice of matching predicates one-by-one to perform the

1 � can not be used when the two abstract states do not have the same shape, in which case the analyzer will
perform a join. However, ultimately, the shape will stabilize, (see proof in “Appendix B”) thus allowing the
analyzer to perform a widening. This widening technique is similar to the one proposed by [11] on cofibred
domains.

123

Form Methods Syst Des (2018) 53:221–258 229

: S1 S2
Δ= wf(S1 ∪ S2)

: S1 S2
Δ=

⎧⎪⎪⎨
⎪⎪⎩

{ (P1,a1 Va2σ) | m = (P1,a1) ∈ S1}
where (P2,a2) = f(m), P1 = P2σ

if S1, S2 have the same
shape according to f

undefined otherwise

B: S1 B B
Δ=

(P,a)∈S1
{(P, a ∩B,V B)}

B,V : a ∈ MV B,V i∈I Bi ∈ B
Δ= ∀i ∈ I, γV (a) ⊆ B Bi

Fig. 6 Operations on abstract states

= ∧

= ∧ =

Fig. 7 The blue predicate is the first one to have appeared in the abstract state and the red predicate is the
second one. (Color figure online)

disjunction ensures that the number of predicates in the monomial does not grow too large
after the operation is performed. Different heuristics can be used to choose which predicates
should be paired when the operation is performed. In our analyzer we decided to remember
the order of apparition of predicates in each monomial, that way we could pair together
predicates that appeared at the same time during the analysis. Figure 7 illustrates this choice.

3.3 Abstract transfer functions

We now describe how program commands are interpreted using the memory abstract domain
to yield a computable over-approximation of the set of reachable states. We assume that
the numeric domain provides the necessary transfer functions (Post�V�C�) for all instructions
involving only scalar variables. In Fig. 8, the call to fp(f)(x) computes an over-approximation
of the fixpoint of f reached by successive iterations of f starting at x (terminating in finite
time through the use of a widening).

Two functions are yet to be defined: Assign�

M and Merge. Indeed, these functions will
depend on our choice of predicates. For instance, Sect. 4.1 will introduce one version
of Assign�

M, named Assign�

+,M, able to handle expressions of the form A[X1][X2] ←
B[X1][X2] + C[X1][X2] to analyze matrix additions, while Sect. 4.2 will discuss multi-
plications. In practice, the developer will enrich the functions when adding new predicates
to analyze new kinds of matrix algorithms in order to design a flexible, general-purpose
analyzer. Depending on E and the predicates already existing in the abstract state,
Assign�

M(. . . , E, . . .) will either modify variables appearing in predicates, produce new

predicates, or remove predicates. In the worst case, when Assign�

M cannot handle some
expression E , it yields the approximation �, thus ensuring the correctness of the analyzer.

123

230 Form Methods Syst Des (2018) 53:221–258

Post skip (S1)
Δ= S1

Post X := E (S1)
Δ=

(P,a)∈S1
{P,PostV X := E (a)}

Post A[X1][X2] ← E (S1)
Δ= wf(

(P,a)∈S1
{AssignM(P, a, A, E, X1, X2)})

Post If B then C1 else C2 (S1)
Δ=

Post C1 (S1 B B) Post C2 (S1 B (¬B))

Post While B do C done (S1)
Δ=

Merge(fp(λS → let SP = S Post C (S B B) in

if SP =F S then S SP else SP)(S1) B ¬B)

Post C1 ; C2 (S1)
Δ= Post C2 (Post C1 (S1))

Fig. 8 Abstract postconditions

The function Merge geometrically merges the abstract state: it coalesces predicates
describing adjacent matrix parts into a single part, as long as their join can be exactly repre-
sented in our domain (over-approximating the joinwouldbeunsound as our predicates employ
universal quantifiers). An algorithm for Merge for the case of the addition is proposed in
Sect. 4.1. As expected, the problem of extending a bi-dimensional rectangle is slightly more
complex than that of extending a segment, as done in traditional array analysis [4,5]. New
rewriting rules are added to Merge when new families of predicates are introduced.

Example 3 For example, we set Assign�

M�A[0][0] ← B[0][0] + C[0][0]�((∅,∅)) =
({P+(A, B,C, x, y, z, t)}, {x = y = 0, z = t = 1}) and Merge({P+(A, B,C, x, y, z, t),
P+(A, B,C, a, b, c, d)}, {x = y = 0, z = 1, t = 10, a = 1, b = 0, c = 2, d = 10}) =
({P+(A, B,C, x, y, z, t)}, {x = 0, y = 0, z = 2, t = 10}).

3.3.1 Maximum number of predicates.

As widenings are used on pairs of abstract states with the same shape, we need to ensure
that the shape will stabilize; therefore, we need to bound the number of possible shapes an
abstract state can have. In order to do so, we only authorize a certain amount of each kind
of predicates in a given abstract state. This number will be denoted as Mpred . This bound is
necessary to ensure the termination of the analysis, but it can be set to an arbitrary value by
the user. Note, however, that Merge will naturally reduce the number of predicates without
loss of precision, whenever possible. In practice, Mpred depends on the complexity of the
loop invariant, experimentally setting Mpred to the number of nested loops is enough to
successfully analyze the programs proposed in this article.

4 Abstraction instances

4.1 Matrix addition

We now consider the analysis of the assignment E = A[X1][X2] ← B[X1][X2] +
C[X1][X2], as part of proving that a matrix addition is correct. As suggested by the intro-
ductory example in Sect. 1, let us define the following predicate:

P+(A, B,C, x, y, z, t)
Δ= ∀a, b ∈ [x, z − 1] × [y, t − 1], A[a][b] = B[a][b] + C[a][b]

We define now versions Assign�

+,M and Merge+ of Assign�

M and Merge to compute
postconditions and possible merges over P+. Even though the analyzer we implemented can

123

Form Methods Syst Des (2018) 53:221–258 231

handle predicates on arbitrary many matrices, we will make the description of the algorithms
and the proof of correctness simpler by only allowing our analyzer to use predicates of the
form P+ such that ∃A, B,C, ∀P+(A′, B ′,C ′, . . .) ∈ P, A′ = A ∧ B ′ = B ∧ C ′ = C (i.e.,
the source and destination matrices are the same for all the addition predicates used in an
abstract state).
Assign�

+,M. The computation of Assign�

+,M(P, a, A, B,C, X1, X2) is described in Algo-
rithm 1. It starts by looking at whether one of the predicates stored in P (the variables of
which are bound by a) can be geometrically extended using the fact that the cell (X1, X2)

(also bound by a) now also contains the addition of B and C (case (a) of Fig. 9). This helper
function is detailed in Algorithm 6: we only have to test a linear relation among variables in
the numerical domain. In this case, the variables in a are rebound to fit the new rectangle. If
no such predicate is found and P already contains Mpred predicates then Assign�

+,M gives
back (P, a) (case (c) of Fig. 9). If no such predicate is found butP contains less than Mpred

predicates, then a new predicate is added to P (case (b) of Fig. 9), stating that the square
(X1, X2, X1 + 1, X2 + 1) contains the addition of B and C . Finally, the other cases in the
algorithm ensure that all predicates of the abstract state are describing the same matrices.
The soundness of Assign�

+,M comes from the fact that we extend a predicate only in the cell
where an addition has just been performed and from the test on line 15 in Algorithm 1 that
ensures that if we store the sum of some newly encountered matrices in a matrix where some
predicates held, then all the former predicates are removed.

Algorithm 1: Assign�

+,M, computes the image by the transfer functions (associated to
the expression E = A[X1][X2] ← B[X1][X2] + C[X1][X2])

Input : (P, a),A,B,C ,i , j
Output: (P′, a′) the postcondition

1 if ∃P0 ∈ P, find_extension((P0, a),A,B,C,i , j) = res �= None then
2 x ′, y′, z′, t ′ ← fresh();
3 I ← switch res do
4 case Some(Right)
5 (x = x ′ ∧ y = y′ ∧ z + 1 = z′ ∧ t = t ′)
6 case Some(Down)
7 (x = x ′ ∧ y = y′ ∧ z = z′ ∧ t + 1 = t ′)
8 case Some(Left)
9 (x = x ′ + 1 ∧ y = y′ ∧ z = z′ ∧ t = t ′)

10 case Some(Up)
11 (x = x ′ ∧ y = y′ + 1 ∧ z = z′ ∧ t = t ′)
12 endsw
13 return ((P \ P0) ∪ {P+(A, B,C, x ′, y′, z′, t ′)}, a �B,V I)
14 else
15 if ∀P+(A′, B′,C ′, _, _, _, _) ∈ P, A′ = A ∧ B′ = B ∧ C ′ = C then
16 if �P < Mpred then
17 x ′, y′, z′, t ′ ← fresh();
18 I ← (x ′ = i ∧ y′ = j ∧ z′ = i + 1 ∧ t ′ = j + 1);
19 return (P ∪ {P+(A, B,C, x ′, y′, z′, t ′)}, a �B,V I)
20 else
21 return (P, a)
22 end
23 else
24 return (∅, a)
25 end
26 end

123

232 Form Methods Syst Des (2018) 53:221–258

C = A[i][j] ← B[i][j] + C[i][j]
C

(a)

C

(b)

C

(c)

Fig. 9 Illustration of the behavior of the Assign�
+,M function when Mpred = 2. Yellow and blue rectangles

represent predicates, the red circle represents the value (i, j). (Color figure online)

Merge+. The function Merge+ tries to merge two predicates when they correspond to two
adjacent rectangles, the union of which can be exactly represented as a larger rectangle (the
merge conditions are also given by linear relations). A description of a function Merge+,M

can be found in Algorithm 2, with the help of Algorithm 4, and Merge+ is the application of
Merge+,M to every monomial in the abstract state considered. The soundness of Merge+
comes from the soundness of the underlying numerical domain and the tests performed by
find_merge. Figure 10 gives a visual representation of the behavior of Merge+.

Theorem 1 The analyzer defined by the Post� function is sound, in the sense that it over-
approximates the reachable states of the program:

∀C ∈ C, ∀S, ∀S�, S ⊆ γ (S�) ⇒ Post�C�(S) ⊆ γ (Post��C�(S�))

The proof can be found in “Appendix B”. The idea of the proof is to show that the proposed
functions Assign�

+,M, Merge+,M are sound, and to underline that the termination of the
analysis of the while loop is ensured by a convergence of the shape of the abstract states.

4.2 Matrix multiplication

Consider Program 4 that implements a matrix multiplication. It employs two kinds of
assignments E1 = A[X1][X2] ← c ∈ R and E2 = A[X1][X2] ← A[X1][X2]+

Algorithm 2: Merge+,M, merges possible predicates of a monomial

Input : (P, a)
Output: (P′, a′) merged state

1 (Po, ao) ← (P, a);
2 while ∃(P0, P1) ∈ Po, find_merge(P0, P1, ao) �= None do
3 P+(A, B,C, x0, y0, z0, t0) = P0;
4 P+(A, B,C, x1, y1, z1, t1) = P1;
5 x ′, y′, z′, t ′ ← fresh();
6 I ← ((x ′ = x0) ∧ (y′ = y0) ∧ (z′ = z1) ∧ (t ′ = t1));
7 (Po, ao) ← ((Po \ {P0, P1}) ∪ P+(A, B,C, x ′, y′, z′, t ′), ao �B,V I)
8 end
9 return (Po, ao)

123

Form Methods Syst Des (2018) 53:221–258 233

Algorithm 3: find_extension, finds possible extensions of a monomial
Input : (P, a),A,B,C ,i , j
Output: None ‖ Some(dir): the direction in which the rectangle can be extended

1 P+(A′, B′,C ′, x, y, z, t) = P;
2 if A = A′ ∧ B = B′ ∧ C = C ′ then
3 if a �B,V ((z = i) ∧ (y = j) ∧ (t = j + 1)) then
4 return Some(Right)
5 else if a �B,V ((x = i) ∧ (z = i + 1) ∧ (t = j)) then
6 return Some(Down)
7 else if a �B,V ((x = i + 1) ∧ (y = j) ∧ (t = j + 1)) then
8 return Some(Left)
9 else if a �B,V ((x = i) ∧ (z = j) ∧ (y = j + 1)) then

10 return Some(Up)
11 else
12 return None
13 else
14 return None
15 end

Algorithm 4: find_merge, finds possible merges among two predicates in a monomial
Input : P0, P1, a
Output: None ‖ Some(dir): the direction in which the two rectangles can be merged

1 P+(A′, B′,C ′, x0, y0, z0, t0) = P0;
2 P+(A′′, B′′,C ′′, x1, y1, z1, t1) = P1;
3 if A′′ = A′ ∧ B′′ = B′ ∧ C ′′ = C ′ then
4 if a �B,V ((x0 = x1) ∧ (z0 = z1) ∧ (t0 = y1)) then
5 return Some(Right)
6 else
7 if a �B,V ((y0 = y1) ∧ (t0 = t1) ∧ (z0 = x1)) then
8 return Some(Down)
9 else

10 return None
11 end
12 end
13 else
14 None
15 end

Fig. 10 Illustration of the
behavior of the Merge function.
Yellow and blue rectangles
represent predicates. (Color
figure online)

Merge

B[X1][X3] × C[X3][X2], the first one being used as an initialization, and the other one
to accumulate partial products. To achieve a modular design, we naturally associate to each
kind of assignments a kind of predicates, and show how these predicates interact. More

123

234 Form Methods Syst Des (2018) 53:221–258

1 /*n >= 1; */
2 i := 0;
3 while (i < n) do
4 j := 0;
5 while (j < n) do
6 A[i][j] <- 0;
7 j := j +1
8 done;
9 i := i +1
10 done;
11 i := 0;
12 while (i < n) do
13 j := 0;
14 while (j < n) do

15 k := 0;
16 while (k < n) do
17 A[i][j]<-A[i][j]+
18 B[i][k]*C[k][j];
19 k := k + 1;
20 done
21 j := j + 1;
22 done
23 i := i + 1;
24 done

Program 4 Multiplication with inner loop on
k

precisely, in our case, we consider the following two predicates:

Ps(A, x, y, z, t, c)
Δ= ∀i, j ∈ [x, z − 1] × [y, t − 1], A[i][j] = c

P×(A, B,C, x, y, z, t, u, v)
Δ= ∀i, j ∈ [x, z − 1] × [y, t − 1], A[i][j]

=
v−1∑

k=u

B[i][k]C[k][j]

which state respectively that the matrix A has been initialized to c on some rectangle, and
that the matrix A received a partial product of B and C .

Predicates can interact together in two ways. Firstly, in a non productive way, for example
an addition is performed on a matrix A and then the matrix A is reset to 0. In order to ensure
soundness, we need to remove the predicate stating that A received an addition. Secondly, in
a productive way, meaning that a matrix A is initialized to 0 as a prerequisite to receiving the
product of two matrices, by summation over k of the partial products B[i][k]C[k][j]. How
to handle these different cases is explained in details in the following.

4.2.1 Removing predicates

The analysis suggested for the addition in terms of postconditions can be extended to the
initialization predicate the same way. Indeed, we add a Assign�

s,M abstract operator that
enlarges the predicates Ps(A, x, y, z, t, c) and a function Merges,M, that merges them when
possible (it is done the same way as for the addition predicate). However, for the analyzer to
be sound, we need to modify the Assign�

×,M and Assign�

s,M functions to check whether the
matrix that was modified (A) by the evaluated command (resp A[X1][X2] ← B[X1][X2] +
C[X1][X2] and A[X1][X2] ← c) appears in some other predicate P . If it is the case, then
P is removed from the state, thus loosing information but ensuring soundness. Assign�

×,M

and Assign�

s,M can both be found in “Appendix A”, alongside some helper functions.

4.2.2 Splitting predicates

In Program 4, matrix A is initialized to 0 before the main loop. This is necessary if we want to
compute the product of B and C into A. Therefore, we can only assert P×(A, B,C, i, j, i +
1, j +1, 0, 1) after a command A[i][j] ← A[i][j]+ B[i][k]×C[k][j] if some precondition
states that A[i][j] = 0 (e.g., a Ps predicate). Therefore the postcondition Post�×,M checks
whether a predicate states that A[i][j] = 0. If no such predicate exists, we can not produce

123

Form Methods Syst Des (2018) 53:221–258 235

i

k

j

i

k

j

i

k

j

i

k

j

(a) at 5 (b) at 8 (c) at 8 (d) at 10
i = 0, j = 0 i = 0, j = 1 i = 3, j = 2 i = 7, j = 7

i

k

j

i

k

j3

i

k

j6

i

k

j

(e) at 19 (f) at 19 (g) at 19 (h) at 24
i = 0, j = 0, k = 1 i = 0, j = 4, k = 3 i = 5, j = 3, k = 6 i = 7, j = 7, k = 7

Fig. 11 Evolution of the predicates for Program 4, the predicates are the following: P×(A, B,C, . . .),
P×(A, B,C, . . .), P×(A, B,C, . . .), Ps (A, B,C, . . .), Ps (A, B,C, . . .)

a multiplication predicate. If it exists, then we can, but we have to punch a hole in the zero
predicates, to keep the information that, around the modified matrix element, the rest of the
matrix stays initialized to 0 while the modified element is no longer guaranteed do be 0.
Punching a hole is implemented by splitting the predicates, as we are only able to express
matrix properties over rectangular areas. In order to illustrate this case, Fig. 11 depicts the
evolution of the different predicates during the analysis of Program 4. Notice that we have
only drawn the evolution of predicates that will lead to a successful result (meaning that,
among all the possible states the matrix can be in according to the abstract state, Fig. 11 only
depicts the most advanced one, i.e., the one that is the most precise about the contents of
the matrix). An abstract state is the superposition of all possible states, hence not only those
shown in Fig. 11.

4.2.3 Iterating on k first

Let us consider Program 5, this program also computes the matrix product of B and C and
stores the result in A. However this version of the matrix product does not iterate on variables
in the same order as Program 4. Indeed it iterates first on the k variable. Moreover, we notice
that the variables occurring in the P× predicate mentioned above do not have the same role.
Indeed, x, y, z, t variables denote a localization in the matrix and u, v variables depict the
evolution of the multiplication. Therefore if we analyze Program 5 with the P× predicate,
the first analysis of the body of the loop (at line 15) will yield an abstract state of the form:2

P×(A, B,C, 0, 0, n, n, 1)where n×n is the size of thematrix. During the next analysis of the
body of the loop we would like the analyzer to produce a second predicate so that the abstract
state is of the form: S�

1 = (P×(A, B,C, 0, 0, n, n, 0, 1)∧P×(A, B,C, 0, 0, n, n, 1, 2))∪. . . ,

2 For clarity reasons, we use here predicates with numerical value as variable instantiation instead of the
conjunction of a predicate and a numerical domain.

123

236 Form Methods Syst Des (2018) 53:221–258

1 /*n >= 1;*/
2 Array A of n n;
3 Array B of n n;
4 Array C of n n;
5 i := 0;
6 while (i < n) do
7 j := 0;
8 while (j < n) do
9 A[i][j] <- 0;
10 j := j +1
11 done;
12 i := i +1
13 done;
14 k := 0;
15 while (k < n) do

16 i := 0;
17 while (i < n) do
18 j := 0;
19 while (j < n) do
20 A[i][j]<-

A[i][j]+B[i][k]*C[k][j];
21 j := j + 1;
22 done
23 i := i + 1;
24 done
25 k := k + 1;
26 done

Program 5 Multiplication with outer-loop on
k

giving us after a merge a predicate of the form: P×(A, B,C, 0, 0, n, n, 0, 2). However S�
1

contains a contradiction, because it is stating two different things about the cells in [0, n[2,
therefore we can not add a P× predicate describing a cell already described by another P×
predicate. In order to be able to analyze matrix multiplicating programs where loops on
k and i have been interchanged we have to introduce new predicates including existential
quantification over matrices that were able to successfully analyze both Programs 5 and 4.

Pl,×(A, B,C, {(xi , yi , zi , ti , ui , vi)}i∈[0,l])

= ∃m0, . . . , ∃ml ,
∧

i∈[0,l]
p×(mi , B,C, xi , yi , zi , ti , ui , vi)

∧ ∀a, b ∈
l⋃

i=0

[xi , zi − 1] ×
l⋃

i=0

[yi , ti − 1], A[a][b] = m0[a][b] + · · · + ml [a][b]

where p×(mi , B,C, xi , yi , zi , ti , ui , vi)

= ∀a, b ∈ [xi , zi − 1] × [yi , ti − 1], mi [a][b] =
vi−1∑

c=ui

B[a][c]C[c][b]

∧ ∀a, b /∈ [xi , zi − 1] × [yi , ti − 1], mi [a][b] = 0

Using this new family of predicates, we are able to express disjunctions on the k direc-
tion the same way we were able for i and j. A predicate Pl,×(A, B,C, {(xi , yi , zi , ti , ui ,
vi)}i∈{0,l}) can be seen as a conjunction of l +1 predicates stating that the multiplication was
effectively computed on l + 1 zones, however we need a relation combining all those predi-
cates into one to state our goal. In this sense for Program 5 we only allow the analyzer to use
some initialization predicates and one predicate at a time among P0,×, P1,×, . . . , PMpred ,×.

4.3 Trace partitioning

In this subsection we tackle some source of imprecisions in our analyzer. As an abstract state
in our analyzer is a symbolic disjunction of somemonomials, changing themaximumnumber
of monomials allowed enables us to change the precision of the analyzer (more monomials
make for a more precise analyzer). Figure 12 is a tiled version of the addition. In this version
of the addition, the program iterates on blocks of size 32 by 32, however in order to deal with
the case where n is not a multiple of 32, we need the last iterations to be on rectangles of size

123

Form Methods Syst Des (2018) 53:221–258 237

1 /* n >= 10 */;
2 /* n = 32 * a + b*/
3 /* 1 <= b < 32*/
4 Array A of n n;
5 Array B of n n;
6 Array C of n n;
7 i := 0;
8 while (i <= a) do
9 j := 0;

10 while (j <= a) do
11 ii := 0;
12 endi := i < a ? 32 : b
13 while (ii < endi) do
14 jj := 0;

15 endj := j < a ? 32 : b
16 while (jj < endj) do
17 x = 32 * i + ii;
18 y = 32 * j + jj;
19 A[x][y] <- B[x][y] + C[x][y];
20 jj := jj + 1;
21 done;
22 ii := ii + 1;
23 done;
24 j := j + 1;
25 done;
26 i := i + 1;
27 done

Fig. 12 Addition tiled with reminder using if conditions

i

endi

32

b

0 1 2 3 4 5

0,P,

Not last,P,

i

endi

32

b

0 1 2 3 4 5

last,P,

i

endi

32

b

0 1 2 3 4 5

Fig. 13 Trace partitioning: black dots are concrete values, red zones are the numerical abstraction of the set of
black dots, blue dots are spurious values appearing in the concretization of the red zone. (Color figure online)

32×c,b×32 and finally b×cwhere b (resp. c) is the reminder of A.n (resp A.m) modulo
32 and is therefore symbolic. This explains the tests in lines 12 and 15 of Program 12.

Most commonnumerical domains (and the onewe chose,which is the polyhedron domain)
store linear inequalities betweenvariables. Figure 13underlines the fact that there are no linear
relations describing precisely all the concrete states, meaning that to ensure soundness the
polyhedron domain over approximates the set of possible states, leading to an imprecision
preventing our analyzer from concluding that the addition was indeed performed. By keeping
a record of the history of the monomials we are able to increase precision by relying on a
symbolic disjunction for monomials with different history alongside the program, as shown
by Fig. 13. Our analyzer relies on a symbolic disjunction of monomials, this disjunction
depends on the notion of well-formedness and thus of shape of a monomial; therefore by
changing the definition of shape (in this new definition there is still a finite number of possible
shapes, therefore ensuring the termination of the analysis) to take into account the history
of the monomial we ensure that monomials with different history will not be merged. Using

123

238 Form Methods Syst Des (2018) 53:221–258

this trace partitioning [12], our analyzer was able to prove the functional correctness of
Program 12 (where the value of a and b are parameters of the analysis3).

In this subsection we used the example of Fig. 12 to underline why we had to use trace
partitioning to improve precision (here the imprecision was coming from a if branching,
therefore we partitioned monomials coming from different branches). However in order to
be able to successfully analyze all the programs presented in this article, we also had to
add trace partitioning on while loops (meaning that the analyzer keeps apart monomials
that underwent at least one analysis of the body a loop, during the computation of the over-
approximation of the fixpoint of the while loop, from those which did not).

4.4 Example of application

Now that we have given an in-depth presentation of our analyzer, let us give some examples
of invariants automatically inferred on some programs we have presented.

– Program 3

– at line 6:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎝

{
P+(C, A, B,a0,b0,c0,d0)

P+(C, A, B,a1,b1,c1,d1)

}

,

⎧
⎪⎪⎨

⎪⎪⎩

-a1+i=0; -a1+c1-1=0; -a1+c0=0;
-d0+n=0; -d1+j+1=0; b1=0; b0=0;

a0=0; -a1+d0-1>=0; d1-1>=0;
d0-d1>=0; d0-5>=0; a1-1>=0

⎫
⎪⎪⎬

⎪⎪⎭

⎞

⎟
⎟
⎠

⎛

⎝
{
P+(C, A, B,a2,b2,c2,d2)

}
,

⎧
⎨

⎩

-d2+j+1=0; i=0; c2-1=0;
b2=0; a2=0; -d2+n>=0;

n-5>=0; d2-1>=0

⎫
⎬

⎭

⎞

⎠

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

– at line 10:
⎧
⎨

⎩

⎛

⎝
{
P+(C, A, B,a0,b0,c0,d0)

}
,

⎧
⎨

⎩

-c0+n=0; -c0+j=0; -c0+i=0;
-c0+d0=0; b0=0; a0=0;

c0-5>=0

⎫
⎬

⎭
(1)

⎞

⎠

⎫
⎬

⎭

– Program 1

– at line 5: (The abstract state contains 7 monomials, therefore for clarity reasons only
one will be given here)
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎧
⎨

⎩

Ps(C,a0,b0,c0,d0,z0)
P×(C, A, B,a1,b1,c1,d1,e1,f1)
P×(C, A, B,a2,b2,c2,d2,e2,f2)

⎫
⎬

⎭
,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z0 = 0; -a0+i=0; -a0+c2-1=0;
-a0+c1=0; -a0+c0-1=0; -a0+a2=0;
-b0+j=0; -b0+d2=0; -b0+d0-1=0;
-d1+n=0; -d1+f2=0; -d1+f1=0;

k=0; e2=0; e1=0; b2=0;
b1=0; a1=0; -a0+d1-1>=0;

-b0+d1-1>=0; d1-5>=0; b0-1>=0;
a0-1>=0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. . .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

– at line 7:
⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

{
P×(C, A, B,a0,b0,c0,d0,e0,f0)

}
,

⎧
⎪⎪⎨

⎪⎪⎩

-c0+n=0; -c0+k=0; -c0+j=0;
-c0+i=0; -c0+f0=0; -c0+d0=0;

e0=0; b0=0; a0=0;
c0-5>=0

⎫
⎪⎪⎬

⎪⎪⎭

(2)

⎞

⎟
⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭

Relations in the numerical abstract element of (1) (resp. (2)) and predicates prove that
Program 3 (resp. Program 1) is functionally correct in the sense that at the end of the program
C contains the addition (resp. the product) of A and B.

3 With some conditions indicated in Program 12.

123

Form Methods Syst Des (2018) 53:221–258 239

4.5 Adding further predicates

We presented in details three predicates so far (Addition, Set, Multiplication) but added more
to our analyzer (Scale, Gemm). If we want to analyze programs not in the scope of the before-
mentioned predicates (e.g.proving that a program performs a scale operation A ← αB),
we need to verify that loop invariants can be expressed using the predicate language we
showed in Sect. 3.1. Some features (independent from the actual choice of predicate) are
automatically provided (gestion of conjunctions, predicate disjunction, trace partitioning,
numerical domains, widening, …); however as mentioned, the following work still needs to
be performed when adding a new predicate:

1. Define the predicate (what are the free variables? what is its semantic?).
2. Define the way the predicate can be extended (the Assign� function). When encountering

a command where matrix names occur, our analyzer tries to pattern match the command
to a set of known commands (e.g.A[X][Y] ← B[X][Y]+C[X][Y],…). This step extends
the set of patterns that can be matched by the analyzer.

3. Define the way predicates can be merged (the Merge function).

Example 4 Let us present what should be done for the scale operation:

1. Define the scale predicate Psc(A, B, x, y, z, t, α) = ∀i, j ∈ [x, z[×[y, t[, A[i][j] =
αB[i][j]

2. A scale predicate Psc(A, B, x, y, z, t, α) can be extended if the analyzer encounters a
A[i][j] ← β×B[i][j]where i, j, x, y, z, t, α, β satisfy some relations that can be tested
in the underlying numerical domain (e.g.: α = β, …)

3. In the case of the scale predicate, predicates can bemerged in the sameway as the addition
predicate.

5 Modular analysis of functions

In this section, we extend our analysis to support analyzing function calls in a modular
way. Our goal is to be able to efficiently analyze larger programs by avoiding the constant
reanalysis of the same functions when the calling context only slightly changes, which would
be the case with the classic inlining approach to inter-procedural static analysis. Therefore,
we propose a method to compute pre and postconditions of functions and achieve a modular
inter-procedural analysis. For the sake of presentation, function arguments are limited to
matrices (we omit the handling of scalar function arguments as this is standard).

5.1 Function calls

We will store the result of the analysis of a function for further use. However, the context
in which functions are called may differ from one call to another. Those differences can
be either the size of the matrices or the contents of the matrices. In our analyzer, pre and
postconditions are expressed as abstract states: when the analysis of a function f is made,
starting from an abstract state S�

i yielding a postcondition S�
o, we store (f, S�

i , S
�
o). Then,

when another call to f is made under a context S�, we test whether S� � S�
i , in which case

γ (S�) ⊆ γ (S�
i) therefore Post(γ (S�)) ⊆ Post(γ (S�

i)) and the soundness of the analyzer

gives us Post(γ (S�)) ⊆ γ (Post�(S�
i)) and finally Post(γ (S�)) ⊆ γ (S�

o) (see for instance

123

240 Form Methods Syst Des (2018) 53:221–258

function add(A,B,C) {
/* n >= 10 */;
/* n = 32 * a*/
i := 0;
while (i <= a) do
j := 0;
while (j <= a) do
add32(A,B,C,i,j);
j := j + 1;

done;
i := i + 1;

done
}

function add32(A,B,C,i,j) {
ii := 0;
while (ii < 32) do
jj := 0;
while (jj < 32) do
x = 32 * i + ii;
y = 32 * j + jj;
A[x][y] <- B[x][y] + C[x][y];
jj := jj + 1;

done;
ii := ii + 1;

done;
}

Program 6 Memoisation of the two inner-most
loops of a tiled addition

[13]). Therefore, when S� � S�
i holds, a possible postcondition is S�

o, which enables us to

avoid reanalyzing the function. However when S� � S�
i does not hold, a new analysis of the

callee needs to be performed, starting from a state S�
n such that S� � S�

n holds. In order for
this method to be efficient, we need to store elements (S�

i , S
�
o) such that S�

i is the biggest
possible, so that it coversmany different calling contexts for the function (therefore increasing
the reuse possibility of the stored relations), but small enough, so that the evaluation of the
function produces an interesting state S�

o. In the implementation of our analyzer, we chose
to relax the following constraints in S�

i :

– Conditions of the form A.n = v ∈ N
∗ stored in the ground domain a are replaced

with A.n ≥ 1. But we keep (in)equalities between the sizes of matrices. That way,
we generalize the precondition in order to be able to reuse the analysis on matrices of
different sizes.

– Predicates on the content of matrices are forgotten (from a monomial (P, a) we only
keep a).

These choices can prevent us from analyzing precisely programs we could analyze using the
non-modular analysis of Sect. 4 by inlining functions; however, they make the efficient and
modular analysis easier to perform. Finding more clever abstractions of the calling context
that are precise enough to enable the analysis and that maximize the possibility of reuse is a
hard problem on which future work is required.

Example 5 As a motivating example, consider Program 6. This program is a tiled version of
the addition, where the two inner-most loops are placed in another function and replaced by
a call to this function. Traditional abstract interpretation by induction on the syntax requires
reanalyzing inner loops completely for each iteration of outer loops, which is very costly for
deeply nested loops. Being able to successfully perform a modular analysis of the function
add32 provides a way to speed up the analysis of function add by not having to reanalyze
the two inner-most loops at each analysis of the j loop thanks to stored input/output relations
on add32. We implemented this speed-up in our analyzer, on this example 4 input/ouput
relations are stored for add32 and those relations are used 21 times therefore 21

21+4 = 84%of
the two inner-most loops analyses are table lookups. Section 7 provides experimental results
on the speed up of the analysis using this method.

123

Form Methods Syst Des (2018) 53:221–258 241

1 function add(A,B,C) {
2 i := 0;
3 while (i < A.n) do
4 j := 0;
5 while (j < A.n) do
6 A[i][j] <- B[i][j] +

C[i][j];
7 j := j + 1;
8 done;
9 i := i + 1;
10 done;
11 }
12 function main () {
13 add(D,E,F);
14 add(A,B,C);
15 add(A,B,A);
16 }

Program 7 Addition with aliasing

5.2 The aliasing problem

In Sect. 4 we presented an analysis that was able to prove that some matrix-manipulating
programs were performing additions. However we worked in a context where matrices with
different names were different matrices. Consider now Program 7, as matrices are passed
by reference to the function add, we can not perform a precise analysis of the body of the
function without considering every possible way matrices can be related (e.g.whether A and
B point to the same matrix or not, this equivalence relation on formal arguments, indicating
whether they refer to the same concrete matrix or not is called an aliasing). However some
of those analyses might not be useful for the analysis of the whole program, therefore we
will only perform analysis when needed (i.e. when we encounter a new kind of aliasing).
This analysis is performed on formal matrices, verifying some aliasing conditions. For every
different aliasing the function is called with the analyzer keeps a record of the input/output
relation. Thereforewhen the analyzer encounters another function call with the same aliasing,
it can soundly reuse the previous analysis. Note that there is only a finite number of possible
aliasings.

5.3 Callee analysis

We consider new predicates, called equality predicates: Eq(A, B, x, y, z, t) = ∀a, b ∈
[x, z − 1] × [y, t − 1], A[a][b] = B[a][b] that we will use in the analysis of the callee. In
order to analyze a function call function f (A0, . . . , An−1) = { C }, we perform two
substitutions in the code C of the callee: a first one to match the semantic of the function call
((λA.C)B → C[B/A]) and a second one which transforms every matrix name (B) in the
body of the callee into an auxiliary name (B ′). We add equality predicates stating that those
two matrices are the same (B = B ′) at the entry of the function. When a read is made in an
auxiliary version (B ′) and the equality predicates specify that the two matrices are identical
(Eq(B, B ′, . . .)) we can state that the read was made in the original matrix (B). When a
write is made to a matrix, we destroy the equality predicate in the corresponding cell (by
punching in a hole, the same way we removed the set predicate for the analysis of matrix
multiplication programs in Sect. 4.2). This method gives us:

123

242 Form Methods Syst Des (2018) 53:221–258

– Input/Output relations between matrices (expressed as symbolic or predicate relations
between matrices and their auxiliary versions).

– Whichmatrices were unmodified by the function call (asmatrices are passed by reference
to the functions, knowing it was not modified is necessary if we want to ensure that
relations existing in the caller before the function call are still holding).

Example 6 Let us consider Program 7. The function add is analyzed twice, because of the
two different aliasing relationships. A first analysis of add is performed on line 13 (with
aliasing G,H,I independent from each other), this concludes that add(G,H,I) stores the
sum of H and I in G and leaves H and I unchanged. Therefore on line 14, no new analysis
of add is performed as we are able to reuse the first analysis. However, on line 15, we
need to perform a new analysis (with aliasing G,H,I where G = I and H independent
from the others) as no stored analysis result can be found to match the arguments. We are
able to conclude at the end of the analysis of main that E,F,B,C were not modified, that
A=B+B+C, and D=E+F. At the end of the analysis the store contains the following relations:

⎛

⎝add(D, E, F), (∅, a),

⎛

⎝

⎧
⎨

⎩

P+(D′, E, F, x, y, z, t)
Eq(E ′, E, x ′, y′, z′, t ′)
Eq(F, F ′, x ′′, y′′, z′′, t ′′)

⎫
⎬

⎭
, a′

⎞

⎠

⎞

⎠

and
(

add(A, B, A), (∅, a),

({
P+(A′, B, A, x, y, z, t)
Eq(B ′, B, x ′, y′, z′, t ′)

}

, a′
))

6 Matrix inversion program

6.1 Iterator abstraction

In this section, we discuss the analysis of more complex matrix-manipulating programs.
These programs are higher-level, and use the matrix additions and multiplications seen in the
previous sections as a base operation they use multiple times to perform complex computa-
tions. On the one hand, these programs will benefit from the technique from Sect. 4 to prove,
in a modular way, that matrix additions and multiplications are indeed correct. On the other
hand, we will require novel predicates to prove that the overall algorithm obeys its specifica-
tion. We consider in particular iterative algorithms, such as iterative matrix inversion. Let us
consider as an example Program 8, which is computing the sequence: vn+1 = 2vn − vn Avn .
If A is an invertible matrix and if v0 is well-chosen then the sequence vn converges toward
A−1. Therefore we want our analyzer to infer and prove that Program 8 is indeed com-
puting the sequence (vn). It is important to note that the analyzer will not infer that vn is
converging towards A−1, however it will infer that vn is computed by induction and follows
vn+1 = 2vn − vn Avn , which will help proving the functional correctness of this program.

Remark 4 The work of this section is focused around the iterative matrix inversion algo-
rithm for presentation reasons, however iterative algorithms using only simple operation
over matrices are fairly common and the techniques proposed in this section can be reused
for other iterative processes. Let us mention as an example that an eigenvector associated to
the biggest eigenvalue of a matrix A can be computed (under suitable conditions) using the
sequence : bk = Abk−1

‖Abk−1‖ .

123

Form Methods Syst Des (2018) 53:221–258 243

1 function main () {
2 /*n >= 10*/
3 /*n=m*/
4 /*en >= 100*/
5 matrix V of n of m;
6 matrix A of n of m;
7 matrix T1 of n of m;
8 matrix T2 of n of m;
9 matrix T3 of n of m;
10 matrix T4 of n of m;
11 i:=0;

12 while (i < en) do
13 multiplication(T1,A,V);
14 multiplication(T2,V,T1);
15 scale1(T3,T2);
16 addition(T4,V,V);
17 addition(T,T4,T3);
18 i := i + 1;
19 done
20 }

Program 8 Main function of the inversion program

U Δ= U + U | UU | x.U | 0 | A ∈ A

IU U (m) = match U with:

|U1 + U2 → {f | ∀(i, j) ∈ [0, mV (U1.n)[×[0, mV (U1.m)[,

f(i, j) = IU U1 (m)(i, j) + IU U2 (m)(i, j)}
|U1U2 → {f | ∀(i, j) ∈ [0, mV (U1.n)[×[0, mV (U2.m)[,

f(i, j) =
mV (U1.m)

k=0

IU U1 (m)(i, k)IU U2 (m)(k, j)}

|x.U1 → {f | ∀(i, j) ∈ [0, mV (U1.n)[×[0, mV (U1.m)[,

f(i, j) = mV (x)IU U1 (m)(i, j)}
|0 → {f | ∀(i, j) ∈ [0, mV (U1.n)[×[0, mV (U1.m)[,

f(i, j) = 0}
|A → {f | ∀(i, j) ∈ [0, mV (U1.n)[×[0, mV (U1.m)[,

f(i, j) = mA(A)(i, j)}

Iu u = {(mV , mA) |
A∈def(u)

mA(A) ∈ IU u(A) (m)}

Fig. 14 Terms over matrices and stores

Predicates over the matrix ring As these algorithms are higher-level, we no longer need to
express arithmetic predicates over real-valued scalar variables and individualmatrix elements,
but rather predicates over the matrix ring. We thus introduce a new predicate language and
its interpretation, we also define a store u as a partial function from A to U with finite set of
definitions denoted def(u). All those definitions can be found in figure 14. The subset of A
of matrix names appearing in a term t ∈ U is denoted by mat(t).

Example 7 u = (A �→ BC) ◦ (C �→ x B) is a store, whose interpretation is the set of states
where matrix A is the matrix product of B and C and matrix C is the scalar product of x and
B.

Example 8 At the end of the previous section (Sect. 5) we considered the analysis of Pro-
gram 7. Using the symbolic store defined here, the analyzer concludes that E,F,B,C were
not modified, that A=B+B+C, and D=E+F.

In order to prove that Program 8 is indeed computing the sequence vn we introduce a new
abstract domain. We call an iterator item an element j = (V, fV , Vi) ∈ (A × U × A) = J
(e.g.(A, AB, A0) is an iterator item). An iterator is an element i = (j, i) ∈ (℘ (J)×Y) = D,

123

244 Form Methods Syst Des (2018) 53:221–258

II (j, l) = {m |∃IV
(0)
0 , . . . , IV

(0)
n−1, . . . , IV

(i)
0 , . . . , IV

(i)
n−1, ∀k ∈ [1, i[, ∀j ∈ [0, n − 1],

IV
(k)
j ∈ IU fVj

[V0 ← V
(k−1)
0 , . . . , Vn−1 ← V

(k−1)
n−1] (me)}∧

IV
(0)
0 = mA(V (0)

0) ∧ · · · ∧ IV
(0)
n−1 = mA(V (0)

n−1)∧
IV

(i)
0 = mA(V (i)

0) ∧ · · · ∧ IV
(i)
n−1 = mA(V (i)

n−1)∧
i = mV (l)}

where:

j = {(V0, fV0 , V
(0)
0), . . . , (Vn−1, fVn−1 , V

(0)
n−1)}

me = (mV , mA[V (0)
0 := IV

(0)
0 , . . . , V

(0)
n−1 := IV

(0)
n−1, . . . , V

(i)
n−1 := IV

(i)
n−1])

γi(S) =
(I,a)∈S

{(mV|X∪S, mA) | mV ∈ γV (a) i ∈ I, (mV , mA) ∈ II (i) }

Fig. 15 Interpretation of an iterator and concretisation function

that is, a set of iterator items (understood conjunctively) and an element of Y (the set of
numerical variables not appearing in the program). It is said to be closed if ∀(V, fV , Vi) ∈
j, ∀A ∈ Mat(fV), ∃(U, fU ,Ui) ∈ j, A = U . As in Sect. 3.2 the numerical variable i ∈ Y

appearing in iterators is bound by a numerical abstract domain. The set of definition of
an iterator is: Mat((j, i)) = {V ∈ A | ∃(U, fU ,Ui) ∈ j, V = U }, in the following if
V ∈ Mat((j, i)) we note fV and Vi to denote the elements such that (V, fV , Vi) ∈ j.

Example 9 – ({(A, AB, A0)}, i) is an iterator, however it is not closed, indeed B ∈
Mat(AB).

– ({(A, AB, A0), (B, B, B0)}, i) is a closed iterator, whose set of definitions is {A, B}.
Figure 15 gives the formal interpretation of an iterator, the idea is the following: the

interpretation of a iterator (j, i) ∈ (℘ (J)×Y) is the set of memory states where the matrices
V appearing in Mat((j, i)) are obtained from iterating { fU | U ∈ Mat((j, i))} i th time,
starting on the set {Ui | U ∈ Mat((j, i))}.

As previously, our predicates (here the iterators) have free variables, that will be bound in
a numerical abstract domain. Therefore as in Sect. 3.2 we define a notion of monomial, shape
and well-formedness, a monomial is said to be well-formed when it contains at most one
iterator, thus ensuring thatwe have afinite number of possible shapes in our abstract state. This
enables us to define a join as the application of somewfoperator (as inDefinition 5 inSect. 3.2)
on the union of the monomials of the two abstract states, a widening as the application of the
widening in the underlying numerical domain. Figure 15 gives the concretisation function
for such an abstract state.

Example 10 The concretisation of S�
1 = {({{(A, AB, B), (B, B, B)}, i}, {i = 9})} is such

that A = B10, indeed f A = AB and A0 = B moreover fB = B and B0 = B therefore A1 =
A0B0 = B2 and B1 = B0 = B …. Moreover if S�

2 = {({{(A, AB, B), (B, B, B)}, i}, {i =
10})} then S�

1 � S�
2 = {({{(A, AB, B), (B, B, B)}, i}, {i = 9 ∨ i = 10})}.

From now on we will suppose that monomials are of the form (u, I,P, a) where:

• u is a symbolic store over matrix variables
• I is an iterator

123

Form Methods Syst Des (2018) 53:221–258 245

• P is a set of predicates
• a is the underlying numerical domain

and enable some rewriting from amonomial into another as shown by the following example:

Example 11 A monomial (∅,∅, {P+(A, B,C, x, y, z, t)}, a), where a �B,V {x = y =
0 ∧ y = A.n ∧ z = A.m} is turned into ({A �→ B + C},∅,∅, a)).

Analyzer We want our analyzer to infer and prove that Program 8 is computing the sequence
vn+1 = 2vn − vn Avn . In order to do so we want the iterator of the main loop to be of the
form (. . . , ({(V, V + V + xV AV, V0), (A, A, A)}, i), . . . , {x = −1 ∧ 0 ≤ i ≤ en − 1}),
where V0 denotes the initial value of V . However V is a matrix that is modified by the
content of the loop, therefore in order to have an iterator that holds along the analysis of
the body of the loop, the analyzer describes an iterator on a copy of matrices V and A
(resp. Vbeg and Abeg) and uses the matrix store to relate all matrices to those two. We
note that at the end of the body of the loop the matrix store will therefore contain: T1 �→
A_beg.V_beg, T2 �→ V_beg.A_beg.V_beg, T3 �→ xV_beg.A_beg.V_beg, T4 �→
yV_beg,V �→ yV_beg+xV_beg.A_beg.V_beg, Therefore at the end of the first analysis
of the loop, by looking up the contents of the store, we can infer ({(Vbeg, Vbeg + Vbeg +
xVbeg AbegVbeg, V0), (Abeg, Abeg, A0)}, 1). In the following iterations of the analysis of the
loop, a widening is performed in the underlying numerical abstract domain, allowing our
analyzer to infer the iterator shown in Sect. 6.2.

6.2 Full example

In this subsection we will not give the entire analysis of the entire Program 9, however we
will present how the different abstractions presented in this article all come together in this
analysis. i designates the abstracted states associated with control point i of the program
and i-i1-· · · -in designates the partial abstracted state constructed by the analyzer at control
point i after i1 iterations of the outer-most while loop, i2 iterations of the second outer-most
while loop up until in iterations of the inner-most loop.

44 {u = ∅, J = ∅,P = ∅, a = �} Initial abstract states

54 {u = ∅, J = ∅,P = ∅, a = (a0
Δ= {V.n = A.n = T1.n = T2.n = T3.n = T4.n =

n = m = V.m = A.m = T1.m = T2.m = T3.m = T4.m ≥ 10 ∧ en ≥ 100}) ∧ i = 0}
Initialization
58-0 {u = {T3 �→ x1ViAiVi ,T2 �→ ViAiVi ,T1 �→ AiVi ,V �→ Vi ,A �→ Ai }, J =
∅,P = ∅, a = a0 ∧ i = 0 ∧ x1 = −1}

33 {u = ∅, J = ∅,P = {Eq(V,V′, x1, y1, z1, t1), Eq(T4,T4′, x0, y0, z0, t0)}, a =
(a1

Δ= T4.n = T4′.n = V.n = V′.n = T4.m = T4′.m = V.m = V′.m = z1 = t1 ≥
1 ∧ x1 = y1 = 0) ∧ x0 = y0 = 0 ∧ z0 = y0 = A.n} Entering addition call

38-2-2 {u = ∅, J = ∅,P = {Eq(V,V′, x1, y1, z1, t1), Eq(T4,T4′, x0, y0, z0,
t0), Eq(T4,T4′, x2, y2, z2, t2), P+(T4′,V,V, x3, y3, z3, t3)}, a = a1 ∧ . . . , u = ∅, J =
∅,P = {Eq(V,V′, x1, y1, z1, t1), Eq(T4,T4′, x0, y0, z0, t0), Eq(T4,T4′, x2, y2, z2,
t2), P+(T4′,V,V, x3, y3, z3, t3), P+(T4′,V,V, x4, y4, z4, t4)}, a = a1 ∧ . . . , . . . } Anal-
ysis of addition program (see Sect. 4)

42 {u = ∅, J = ∅,P = {Eq(V,V′, x1, y1, z1, t1), P+(T4′,V,V, x1, y1, z1,
t1)}}, a = a1 ∧ x0 = y0 = 0 ∧ z0 = y0 = A.n} End of analysis of addition,
input/output relations is added to a store (see Sect. 5)

123

246 Form Methods Syst Des (2018) 53:221–258

1 function scale1 (C,A) {
2 cc := -1;
3 i := 0;
4 while (i <= (A.n - 1)) do
5 j := 0;
6 while (j <= (A.m - 1)) do
7 C[i][j] <- cc * A[i][j];
8 j := j + 1
9 done;
10 i := i + 1
11 done;
12 }
13 function multiplication

(C,A,B) {
14 i := 0;
15 while (i <= (A.n - 1)) do
16 j := 0;
17 while (j <= (A.m - 1)) do
18 zz := 0;
19 C[i][j] <- zz;
20 k := 0;
21 while (k <= (A.m -1)) do
22 C[i][j] <- C[i][j] +

A[i][k] * B[k][j];
23 k := k + 1
24 done;
25 j := j + 1
26 done;
27 i := i + 1
28 done
29 }
30
31
32

33 function addition (C,A,B) {
34 i := 0;
35 while (i <= (A.n - 1)) do
36 j := 0;
37 while (j <= (A.m - 1)) do
38 C[i][j] <-

A[i][j]+B[i][j];
39 j := j + 1
40 done;
41 i := i + 1
42 done;
43 }
44 function main () {
45 /*n >= 10*/
46 /*n=m*/
47 /*en >= 100*/
48 matrix V of n of m;
49 matrix A of n of m;
50 matrix T1 of n of m;
51 matrix T2 of n of m;
52 matrix T3 of n of m;
53 matrix T4 of n of m;
54 i:=0;
55 while (i < en) do
56 multiplication (T1,A,V);
57 multiplication (T2,V,T1);
58 scale1(T3,T2);
59 addition(T4,V,V);
60 addition(T,T4,T3);
61 i := i + 1;
62 done
63 }

Program 9 Inversion program: complete version

59-0 {u = {T3 �→ x1ViAiVi ,T2 �→ ViAiVi ,T1 �→ AiVi ,V �→ Vi ,A �→ Ai ,T4 �→
Vi + Vi }, J = ∅,P = ∅, a = a0 ∧ i = 0 ∧ x1 = −1}
55-1 {u = {V �→ Vbeg,A �→ Abeg}, J = {{(Vbeg,Vbeg + Vbeg − VbegAbegVbeg,Vi),
(Abeg,Abeg,Ai)}, x2},P = ∅, a = a0 ∧ i = x2 = 1 ∧ x1 = −1} After finding an
iterator (see Sect. 6.1)
55-2 {u = {V �→ Vbeg,A �→ Abeg}, J = {{(Vbeg,Vbeg + Vbeg − VbegAbegVbeg,Vi),
(Abeg,Abeg,Ai)}, x2},P = ∅, a = a0 ∧ 0 ≤ i = x2 < en ∧ x1 = −1} Proving the
iterator on every loop and widening
62 {u = {V �→ Vbeg,A �→ Abeg}, J = {{(Vbeg,Vbeg + Vbeg − VbegAbegVbeg,Vi),
(Abeg,Abeg,Ai)}, x2},P = ∅, a = a0 ∧ i = x2 = en ∧ x1 = −1} Final state

This example shows how to combine together the different abstractions suggested before
to enable users to prove the soundness of a program containingmultiple functions.We remind
that each of the function of the program is analyzed in amodularway, thereforewe do not have
to reanalyze a function at each call site. The final state of the previous analysis underlines that
the sequence Vn of matrices after the n-th loop iteration is indeed defined by the recurrence
Vn+1 = 2Vn − Vn AVn , thus under good initial conditions4 and if A is invertible a user is
ensured that this program computes a sequence that is converging toward A−1.

4 Those conditions are independant from the analysis, our analyzer does not verify them and does not need
them to infer the iterator of the program.

123

Form Methods Syst Des (2018) 53:221–258 247

7 Implementation

Results We implemented the algorithms proposed above as well as various improvements to
make the analysis more robust, notably symbolic equality domains [14] able to improve the
pattern matching used in the assignment transfer function. Our prototype was able to prove
the functional correctness of all the programs mentioned earlier (additions and multiplica-
tions). We also analyzed tiled versions of these algorithms, which is a classic optimization
(performed by hand or automatically) that increases cache efficiency, but makes algorithms
more difficult to understand. Program 12 gives one example of optimized matrix addition,
with a tiling factor of 32. Our method successfully analyzes the tiled algorithms, as long as
the tiling size is a constant, which is the case for all the optimizers we know of. Note that the
tiling transformation causes a doubling in the depth of nested loops and adds some complex
conditionals to handle border cases (partially filled tiles), resulting in a more challenging pro-
gram to analyze. Additionally, we analyzed alternate versions where loops are interchanged,
or indices run in decreasing order (from n − 1 to 0). In all those cases, the analyzer still
proves the functional correctness of the program. All of those programs were analyzed using
only few predicates, thus showing that multiple versions of a program can be analyzed using
a single predicate. Hence, the analysis is robust against all the following transformations:
loop tiling, switching the loops (row-major or column-major iteration), reverting the loops
(iterating downward instead of upward).

Implementation The implementation of the analyzer has been written in Ocaml using the
Apron module (for numerical domains). The final implementation using all proposed
abstract domains is about 6000 line long (not counting the parser). It enables us to parse
code written in a C like language (which contains no pointer, no struct, no float, no dynamic
allocation,…, it only manipulates matrices and real numbers) and analyze this code using
the previously mentioned abstractions. This analyzer computes the abstract reachability at
every code point depending on the initial abstract states. The implementation has been tested
mainly on programs performing additions, products, GEMM (general matrix multiplication:
C ← αAB + βC , Program 11 in “Appendix C” gives the code of the program as found in a
BLAS library, with minor modifications), with various optimizations and on every possible
loop order. As examples, we mostly used programs optimized by Pluto and BLAS (Basic
Linear Algebra Subprograms) library programs we found in the LAPACK package manually
rewritten in our analyzer input language. Those programs are all successfully analyzed by
the final implementation. Table 1 gives the time it took the analyzer to prove the functional
correctness of programs proposed in this article. The number of loops indicated is the biggest
number of nested while loops that can be found in the program (additions and multiplications
require respectively 2 and 3 nested loops without tiling, and 4 and 6 nested loops with tiling
enabled, addition tiled twice requires 6 loops).

Numerical abstract domain The abstract states defined in this paper require an underlying
numerical domain. Some of the numerical variables stored in the numerical domain are used
to describe “zones” in a matrix where some relations hold. As we wanted our analyzer to
be robust against operations such as tiling we needed relations such as 32i − j = 0 and
32i − j ≤ 0 to be precise, therefore we chose the polyhedra domain [6]. Note however that
in simpler cases (e.g.when no tiling is involved) the octagon domain [15] provides enough
precision for our analyzer to successfully conclude. As most of the operations performed
by our analyzer are done on the numerical abstract domain, the cost of the analysis depends

123

248 Form Methods Syst Des (2018) 53:221–258

Table 1 Analysis time in seconds

Set to 0 0.022 0.724 49.87

Addition 0.015 0.425 28.15 (1.72 using Sect.5)

Multiplication 0.233 56.59

Addition with rest 0.781

Scale 0.020 0.866 62.71 (3.10 using Sect.5)

GEMM 0.854

Table 2 Analyzer time in seconds with memoisation

Loop tabulated ∅ 5 4 {2, 6} {1, 5} {1, 6} {3, 6}
Time 28.15 1.72 2.00 2.00 2.68 2.73 3.33

Reusability 0% 97% 93% 92% 92% 97% 84%

mainly on the cost of the operations in the underlying numerical domain. However for a
different set of predicates (e.g.not describing rectangular shapes), a less expensive numerical
domain could be used (such as intervals or octagons).

Loop tabulation In Sect. 5 we proposed a method to find postconditions for function calls
that prevented re-computation of already analyzed code. We apply this same method for
loop analysis, indeed we perform an analysis the first time the analyzer encounters a loop,
starting from a relaxed version (to enable more reuse) of the abstract state holding when
entering the loop. However as pointed earlier, we do not yet have any interesting method
for inferring interesting preconditions on matrices (big enough to cover many cases and
small enough to provide meaningful postconditions) therefore we tested this method only
on programs computing additions as no precondition on matrices is needed. In our tests we
relaxed some conditions in the underlying numerical domain on well-chosen variables (those
appearing in loop conditions) so that the pre/postconditions computed by the analyzer could
be reused for other entry values of the loop. Table 2 shows the analyzer computation time on
an addition with 6 nested loops (a twice tiled addition), with memoisation on some loops, the
first line indicates at which loops depths conditions were stored, the third line indicates the
reusability factor (Number of analyses that amounts to a table lookup/Number of analyses).
Table 2 only shows the computation time for the 6 fastest analyses, we notice that we are
able to get a factor 15 speedup in the best case. It is to be noted that adding memoisation
on a loop induces an increase in the evaluation time of the body of the loop due to the
duplication of variables. Therefore memoisation can not be used on every loop otherwise the
computation time would increase significantly. Empirically a good heuristic seems to be to
apply memoisation on inner-most loops.

8 Related work

A standard way to efficiently handle possibly unbounded arrays when a low level of precision
is sufficient is to abstract arrays as a single cell containing anon-relational abstract value, using
weak updates. As the static analysis of array properties has drawn some significant attention
lately, more precise methods have been devised. Gopan et al. [16] extend this standard

123

Form Methods Syst Des (2018) 53:221–258 249

method by allowing relational (but still uniform) abstractions. A class of analyses [5,17,18]
dynamically partitions arrays, which allows expressing non-uniform properties of arrays as
well as strong updates. Allamigeon has designed companion numerical domains specifically
targeting array partition bounds [3]. String analysis for C programs can be seen as a special
case of array analysis, and similar partitioning-based methods have been proposed [19]. All
these methods differ on whether a partition or a covering is used, how partition bounds
are expressed and inferred, the relationality between partition contents and partition bounds.
Fluid updates [20] address the problemofweak updates in a differentway, by expressing array
parts using constraints, manipulated by a SMT solver, instead of explicit partitions.Monniaux
et al. [21] propose an original method by abstraction through ad-hoc Galois connections into
purely scalar programs that are then analyzed with standard methods. Our work is much
closer to parametric predicates abstractions [4], which also analyzes arrays using predicates
of fixed shape conjoinedwith numeric properties. The largemajority of theseworks only focus
on properties of uni-dimensional arrays. Nevertheless some array abstractions are powerful
enough to consider array elements of arbitrary types, and could be possibly nested to handle
matrices as arrays of arrays of numbers (this is explicitly mentioned as a possibility in [5] but
without details nor experiments) while the method of [21] can analyze matrix initialization
(and possibly more) when parameterized with the correct predicate. Some other approaches
to prove the functional correctness of matrix manipulating programs have been to automate
the proof through the help of theorem provers such as ACL2 as proposed in [22]. The Flame
framework proposed in [23] enables the development of matrix manipulating programs, and
the automatic generation, from invariants, of programs that are sound by constructions. Their
work focuses on higher level algorithms than those presented here and the soundness proofs
rely on the soundness of the underlying BLAS library, therefore our work complements
theirs. Non relational properties of matrices (e.g.lower triangular, diagonal,…) could also be
obtained via the use of loop transformation as proposed in [24]. As far as we know, none
of these methods has been applied to prove matrix multiplication algorithms correct, nor do
they address the problem of deeply nested loops in optimized matrix algorithms nor has there
been experiments performed on optimized programs (e.g.Pluto outputs).

9 Conclusion

We have proposed new abstractions to prove the functional correctness of matrix-
manipulating programs, such as addition and multiplication. They are parametric in a set of
predicates (corresponding to the functional properties to prove) and classic relational numeri-
cal domains. Our prototype implementation provided encouraging experimental results, both
in term of performance and precision. In particular, precision-wise, we could prove the cor-
rectness of several variants of additions and multiplications, including basic loop reordering
but also versions generated from a source-to-source loop optimizer which introduces tiling
(making the code significantly more complex, with in particular more nested loops). We also
showed how our method can be embedded in a modular inter-procedural analysis, with clear
benefits for the efficiency of the analysis.

Future work will include enriching our predicates in order to tackle a wider range of
matrix and vectormanipulations, such asGauss elimination, LUdecomposition, linear system
resolution, eigenvectors, or eigenvalues computation. Another direction for future work is
to make the analysis robust against more varied program transformations and optimizations,
such as instruction-level reordering, loop pipelining, or vectorization. Ultimately, we would

123

250 Form Methods Syst Des (2018) 53:221–258

like to be able to analyze the assembly or low-level representation output by a compiler, and
prove that the functional correctness still holds despite compiler optimization, without the
burden of certifying the optimizing part of the compiler itself. Our analysis currently assumes
a real semantics, while actual implementations of matrix operations employ floating-point
arithmetic.Hence,with respect to a float implementation,we prove that, e.g., amatrix addition
program computes one float approximation of thematrix addition, but not that it does sowhile
respecting the order of operations specified in the original, unoptimized program (and this
may change the result due to rounding errors). While we believe that this already provides
an interesting correctness criterion (especially because matrix libraries seldom guarantee an
evaluation order), future work will include designing predicates reasoning on floats in order
to take execution order and rounding into account. Finally, we have only demonstrated our
method on a simple prototype for a toy language, but future work will consider more realistic
C programs, such as actual BLAS library implementations or scientific applications.

A Complementary Algorithms

A.1 Set operations

Algorithm 5: Assign�

S,M, computes the image by the transfer functions (associated to
the expression E = A[X1][X2] ← c)

Input : (P, a),A,i , j ,k
Output: (P′, a′) the postcondition

1 if ∃P0 ∈ P, find_extension_set((P0, a),A,i , j ,k) = res �= None then
2 x ′, y′, z′, t ′ ← fresh();
3 I ← switch res do
4 case Some(Right)
5 (x = x ′ ∧ y = y′ ∧ z + 1 = z′ ∧ t = t ′ ∧ c′ = k)
6 case Some(Down)
7 (x = x ′ ∧ y = y′ ∧ z = z′ ∧ t + 1 = t ′ ∧ c′ = k)
8 case Some(Left)
9 (x = x ′ + 1 ∧ y = y′ ∧ z = z′ ∧ t = t ′ ∧ c′ = k)

10 case Some(Up)
11 (x = x ′ ∧ y = y′ + 1 ∧ z = z′ ∧ t = t ′ ∧ c′ = k)
12 endsw
13 return ((P \ P0) ∪ {Ps (A, x ′, y′, z′, t ′, c′)}, a �B,V I)
14 else
15 if �P < Mpred then
16 x ′, y′, z′, t ′ ← fresh();
17 I ← (x ′ = i ∧ y′ = j ∧ z′ = i + 1 ∧ t ′ = j + 1 ∧ c′ = k);
18 return (sanitize(P, A, i, j) ∪ {Ps (A, x ′, y′, z′, t ′, c′)}, a �B,V I)
19 else
20 return (sanitize(P, A, i, j), a)
21 end
22 end

123

Form Methods Syst Des (2018) 53:221–258 251

A.2 Product operations

Remark 5 the sanitize operator ensures soundness by punching holes in predicates that were
holding in a cellwhere awrite has beenperformed. For clarity reasonwedid notmake it appear
in the Assign�

+,M algorithm because its description was given under stronger hypothesis.

Algorithm 6: find_extension_set, finds possible extensions of a monomial for the set
operation

Input : (P, a),A,i , j ,k
Output: None ‖ Some(dir): the direction in which the rectangle can be extended

1 P+(A′, x, y, z, t, c) = P;
2 if A = A′ ∧ B = B′ ∧ C = C ′ then
3 if a �B,V ((z = i) ∧ (y = j) ∧ (t = j + 1) ∧ (k = c)) then
4 return Some(Right)
5 else if a �B,V ((x = i) ∧ (z = i + 1) ∧ (t = j) ∧ (k = c)) then
6 return Some(Down)
7 else if a �B,V ((x = i + 1) ∧ (y = j) ∧ (t = j + 1) ∧ (k = c)) then
8 return Some(Left)
9 else if a �B,V ((x = i) ∧ (z = j) ∧ (y = j + 1) ∧ (k = c)) then

10 return Some(Up)
11 else
12 return None
13 else
14 return None
15 end

Algorithm 7: Assign�

×,M, computes the image by the transfer functions (associated to
the expression E = A[X1][X2] ← A[X1][X3] + B[X3][X2] × C[X1][X2])

Input : (P, a),A,B,C ,i , j ,k
Output: (P′, a′) the postcondition

1 if ∃P0 ∈ P, find_extension_mult((P0, a),A,B,C,i , j ,k) = res �= None then
2 x ′, y′, z′, t ′, u′, v′ ← fresh();
3 I ← switch res do
4 case Some(Above)
5 (x = x ′ ∧ y = y′ ∧ z = z′ ∧ t = t ′ ∧ u = u′ ∧ v + 1 = v′)
6 case Some(Below)
7 (x = x ′ ∧ y = y′ ∧ z = z′ ∧ t = t ′ ∧ u − 1 = u′ ∧ v = v′)
8 endsw
9 return ((P \ P0) ∪ {P×(A, x ′, y′, z′, t ′, u′, v′)}, a �B,V I)

10 else
11 if �P < Mpred ∧ ∃P1 ∈ P, find_zero_mult(P1,a,A,i , j) then
12 x ′, y′, z′, t ′, u′, v′ ← fresh();
13 I ← (x ′ = i ∧ y′ = j ∧ z′ = i + 1 ∧ t ′ = j + 1 ∧ u′ = k ∧ v′ = k + 1); return

((sanitize(P, A, i, j)) ∪ {P×(A, x ′, y′, z′, t ′, u′, v′)}, a �B,V I)
14 else
15 return (sanitize(P, A, i, j), a)
16 end
17 end

123

252 Form Methods Syst Des (2018) 53:221–258

Algorithm 8: find_extension_mult, finds possible extensions of a monomial for the
partial product

Input : (P, a),A,B,C ,i , j ,k
Output: None ‖ Some(dir): the direction in which the cuboid can be extended

1 P+(A′, B′,C ′, x, y, z, t, u, v) = P;
2 if A = A′ ∧ B = B′ ∧ C = C ′ then
3 if a �B,V ((x = i) ∧ (y = j) ∧ (z = i + 1) ∧ (t = j + 1) ∧ (v = k)) then
4 return Some(Above)
5 else if a �B,V ((x = i) ∧ (y = j) ∧ (z = i + 1) ∧ (t = j + 1) ∧ (u + 1 = k)) then
6 return Some(Below)
7 else
8 return None
9 else

10 return None
11 end

Algorithm 9: find_zero_mult, finds wether a zero predicate holds in a cell
Input : P ,a,A,i , j
Output: a boolean, whether a zero predicate holds in cell (i, j)

1 if PS(A′, x, y, z, t, c) = P ∧ A′ = A then
2 return a �B,V ((x = i) ∧ (y = j) ∧ (z = i + 1) ∧ (t = j + 1) ∧ (c = 0))
3 else
4 return ⊥
5 end

B Soundness proof

In the following m[r] denotes the memory state (and r is called an extension):

m′ : x �→
⎧
⎨

⎩

r(x) when x ∈ def(r)
m(x) when x ∈ def(m) ∧ x /∈ def(r)
undefined otherwise

Proof of Proposition 1: Let us prove that ∀S�
0, γ (S�

0) ⊆ γ (wf(S�
0)).

We prove the following invariant along the algorithm wf : γ (S�
0) ⊆ γ (S�) where S�

0 is the
value at the beginning of the algorithm.

– The invariant holds trivially initially
– Let us consider S� such that γ (S�

0) ⊆ γ (S�), and (P1, a1) ∈ S�, (P2, a2) ∈ S� such
that P1 =s P2, as S� is well-named (by induction and Proposition hypothesis), there

exists some σ ∈ var(P1) → var(P2) a bijection such that P1σ = P2, and S
� =

S� \ {(P1, a1), (P2, a2)} ∪ (P2, a1σ ∪V a2). Let m ∈ γ (S�
0), by induction hypothesis

m ∈ γ (S�), therefore m = (mV ,mA) is such that ∃r,P, a, def(r) ⊆ Y ∧ (P, a) ∈
S� ∧ mV [r] ∈ γV (a) ∧ ∀P ∈ P, (mV [r],mA) ∈ IP (P)

• IfP /∈ {P1,P2} then trivially m ∈ γ (S� \ {(P1, a1), (P2, a2)} ∪ (P2, a1σ ∪V a2))

and therefore m ∈ γ (S
�
)

• If P = P1 then mV [r] ∈ γV (a1), thus mV [r] ◦ σ−1 ∈ γV (a1σ) and by soundness
of the ∪V operator we have: mV [r] ◦ σ−1 ∈ γV (a1σ ∪V a2). Moreover we show by
induction on terms, atomic predicates and predicates that (mV [r],mA) ∈ IP (P) ⇒

123

Form Methods Syst Des (2018) 53:221–258 253

(mV [r] ◦ σ−1,mA) ∈ IP (Pσ). Therefore ∀P ∈ P1σ, (mV [r] ◦ σ−1,mA[r]) ∈
IP (P) and as def(σ−1) ⊆ Y we have mV = mV [r] ◦ σ−1

|X∪S. Therefore m ∈ γ (S
�
).

• The case P = P2 is proved in the same manner as the previous case.

Therefore the invariant holds at the end of the loop, and ∀S�
0, γ (S�

0) ⊆ γ (wf(S�
0)). ��

Proof of Theorem 1 An analyzer is said to be sound if it over-approximates the reachable
states of the program. In order to prove such a result, we prove by induction on the commands
that:

∀C ∈ C, ∀S, ∀S�, S ⊆ γ (S�) ⇒ Post�C�(S) ⊆ γ (Post��C�(S�))

In the following r will always denote an extension such that var(r) ⊆ Y, therefore
∀m,m[r]|X∪S = m.

– C = X := E : Let S, S� be such that S ⊆ γ (S�), let ma = (ma,V ,ma,A) ∈ Post�C�(S),
there is mb = (mb,V ,mb,A) ∈ S such that ma ∈ Post�X := E�({mb}). Hence from
the definition of Post, we have ma,A = mb,A and ma,V = mb,V [X := v] where
v = E�E�(mb). From S ⊆ γ (S�) and the definition of γ we have: ∃r, ∃a,P, (a,P) ∈
S� ∧ mb,V [r] ∈ γV (a) ∧ ∀P ∈ P, (mb,V [r],mb,A) ∈ IP (P), from the definition of
Post�, (P, Post�V�X := E�(a)) ∈ Post��C�(S�), from the properties of the underlying

abstract domain we have: ma,V = mb,V [X := v] ∈ γV (Post�V�X := E�(a)) as v =
E�E�(mb), moreover X ∈ X and X ∩ Y = ∅ therefore ∀P ∈ P, X /∈ var(P), hence
∀P ∈ P, (mb,V [r],mb,A) ∈ IP (P) ⇒ (mb,V [r, X := v],mb,A) ∈ IP (P). Therefore
we have ma,V [r] ∈ γV (Post�V�X := E�(a)) ∧ (ma,V [r],ma,A) ∈ IP (P), hence: ma ∈
γ (Post��X := E�(S�)) and Post�C�(S) ⊆ γ (Post��X := E�(S�)).

– C = A[X1][X2] ← B[X1][X2] + C[X1][X2]: Let S, S� be such that S ⊆ γ (S�),
let ma = (ma,V ,ma,A) ∈ Post�C�(S), there is mb = (mb,V ,mb,A) ∈ S such that
ma ∈ Post�A[X1][X2] ← B[X1][X2] + C[X1][X2]�({mb}). Hence from the defini-
tion of Post, we have ma,V = mb,V and ma,A = mb,A[A[mb,V (X1)][mb,V (X2)] :=
mb,A(B)(mb,V (X1),mb,V (X2))+mb,A(C)(mb,V (X1),mb,V (X2))].mb ∈ γ (S�) hence
∃r, ∃a,P ∈ S�, mb,V [r] ∈ γV (a) ∧ ∀P ∈ P, (mb,V [r],mb,A) ∈ IP (P). We now
consider the following different cases: (where we will reuse the notation introduced by
Algorithms 6 and 1)

– ∃P0 ∈ P, find_extension((P0, a), A, B,C, X1, X2) = Some(Right), then
from the definition of find_extension we have P0 = P+(A, B,C, x, y, z, t)
and a �B,V ((z = X1) ∧ (y = X2) ∧ (t = X2 + 1)). As (mb,V [r],mb,A) ∈
IP (P0) we have ∀u, v ∈ [mb,V [r](x),mb,V [r](z)−1]× [mb,V [r](y),mb,V [r](t)−
1], mb,A(A)(u, v) = mb,A(B)(u, v) + mb,A(C)(u, v) and as mb,V [r] ∈ γ (a) we
have mb,V [r](X1) = mb,V [r](z) ∧ mb,V [r](X2) = mb,V [r](y) ∧ mb,V [r](t) =
mb,V [r](X2) + 1 . From the definition of Post, we have mb,A(A)(ma,V (X1),

ma,V (X2)) = mb,A(B)(mb,V (X1),mb,V (X2)) + mb,A(C)(mb,V (X1),mb,V (X2))

thereforema,A(A)(ma,V [r](z),ma,V [r](y)) = ma,A(B)(ma,V [r](z),ma,V [r](y))+
ma,A(C)(ma,V [r](z),ma,V [r](y)), and as ma,V [r](t) = ma,V [r](y) + 1 we have
∀u, v ∈ [ma,V [r](x),ma,V [r](z)] × [ma,V [r](y),ma,V [r](t) − 1], ma,A(A)(u,

v) = ma,A(B)(u, v) + ma,A(C)(u, v). As x ′, y′, z′, t ′ are fresh variables and as
the only available predicate states that the addition of B and C holds in some cells of
A (thanks to the hypothesis of Sect. 4) then ma,V [r, x ′ → x, y′ → y, z′ → z + 1,
t ′ → t],ma,A) ∈ IP (P \ P0). Finally ma,V [r, x ′ → x, y′ → y, z′ → z + 1,
t ′ → t],ma,A) ∈ IP ((P\P0)∪{P+(A, B,C, x ′, y′, z′, t ′)}) and asma,V [r, x ′ → x,

123

254 Form Methods Syst Des (2018) 53:221–258

y′ → y, z′ → z + 1, t ′ → t] ∈ γV (a �B,V I) we have ma = (ma,V [r, x ′ → x,
y′ → y, z′ → z + 1, t ′ → t]|X∪S,ma,A) ∈ γ (Post��C�(S�))

– The cases Down, Left, Up are very similar.
– ∀P0 ∈ P, find_extension((P0, a), A, B,C, X1, X2) = None

• Case P+(A′, B ′,C ′, _, _, _, _) ∈ P with A′ = A ∧ B ′ = B ∧ C ′ = C .
• Case �P < Mpred : ma,V [r, x ′ ← X1, y′ ← X2, z′ ← X1 + 1, t ′ ←

X2 + 1] ∈ γV (a �B,V x ′ = X1 ∧ y′ = X2 ∧ z′ = X1 + 1 ∧ t ′ = X2 +
1). As ma,A(A)(mb,V (X1),mb,V (X2)) = mb,A(B)(mb,V (X1),mb,V (X2)) +
mb,A(C)(mb,V (X1),mb,V (X2)), that is ∀u, v ∈ [mb,V (x ′),mb,V (z′) − 1] ×
[mb,V (y′),mb,V (t ′) − 1], ma,A(A)(u, v) = ma,A(B)(u, v) + ma,A(C)(u, v),
thus proving (ma,V [r, x ′ ← X1, y′ ← X2, z′ ← X1 + 1, t ′ ← X2 +
1]|X∪S,ma,A) ∈ IP (P+(A, B,C, x ′, y′, z′, t ′)), and as variables x ′, y′, z′, t ′
are fresh we still have : ∀P ∈ P, (ma,V [r, x ′ ← X1, y′ ← X2, z′ ← X1 +
1, t ′ ← X2+1],ma,A) ∈ IP (P) therefore proving thatma ∈ γ (Post��C�(S�)).

• Case �P ≥ Mpred : Trivial from A′ = A ∧ B ′ = B ∧ C ′ = C .
• Otherwise:ma,V [r] = mb,V [r] ∈ γV (a), moreover (ma,V ,ma,A) ∈ IP (∅). Thus

ma ∈ γ (Post��C�(S�)).

– C = C1 ; C2: Let S, S� be such that S ⊆ γ (S�), by induction hypothesis
applied on C1 we have Post�C1�(S) ⊆ γ (Post��C1�(S�)) and now applied on C2:
Post�C2�(Post�C1�(S)) ⊆ γ (Post��C2�(Post�C1�(S))) ⊆ γ (Post��C2�(Post��C1�

(S�))) (by monotony), hence from the definitions: Post�C1;C2�(S) ⊆ γ (Post��C1;C2�

(S�)).
– C = If B then C1 else C2: The proof for this point is not stated here as the analysis

we proposed for this command is classic and its soundness is ensured by the soundness
of the underlying abstraction.

– While B do C done: The proof for this point is not stated here as the analysis we
proposed for this command is classic and its soundness is ensured by the soundness of
the underlying abstraction. However for the usual proof to work we need to show the two
following lemmas. ��

Lemma 1 ∀S�, γ (S�) ⊆ γ (Merge+(S�)).

Proof Let mb ∈ γ (S�), by definition: ∃r, ∃(P, a) ∈ S�, mb,V [r] ∈ γV (a) ∧ ∀P ∈
P, (mb,V [r],mb,A) ∈ IP (P). We now show by induction on the loop in Merge+,M

(defined in Algorithm 2) the following invariant (we use notations of Algorithm 2):
mb ∈ γ ({Po, ao}). This is initially true thanks to the previous remark. Now let (P0, P1) ∈
Po, find_merge(P0, P1, ao) = Some(Right), with P0 = P+(A, B,C, x0, y0, z0, t0)
and P1 = P+(A, B,C, x1, y1, z1, t1), thanks to find_mergewe have ao �B,V ((x0 = x1)∧
(z0 = z1) ∧ (t0 = y1)). By induction ∃r, mb,V [r] ∈ γV (ao) ∧ ∀P ∈ Po (mb,V [r],mb,A) ∈
IP (P) hence mb,V [r, x ′ → x0, y′ → y0, z′ → z1, t ′ → t1] ∈ γV (ao �B,V I),
moreover ∀u, v ∈ [mb,V [r](x0),mb,V [r](z0) − 1] × [mb,V [r](y0),mb,V [r](t0) − 1],
ma,A(A)(u, v) = ma,A(B)(u, v)+ma,A(C)(u, v) and∀u, v ∈ [mb,V [r](x1),mb,V [r](z1)−
1] × [mb,V [r](y1),mb,V [r](t1) − 1], ma,A(A)(u, v) = ma,A(B)(u, v) + ma,A(C)(u, v)

and as mb,V [r](x0) = mb,V [r](x1), mb,V [r](z0) = mb,V [r](z1) and mb,V [r](t0) =
mb,V [r](y1)weget∀u, v ∈ [mb,V [r](x0),mb,V [r](z1)−1]×[mb,V [r](y0),mb,V [r](t1)−1],
ma,A(A)(u, v) = ma,A(B)(u, v)+ma,A(C)(u, v) hence (mb,V [r, x ′ → x0, y′ → y0, z′ →
z1, t ′ → t1],mb,A) ∈ IP (P+(A, B,C, x ′, y′, z′, t ′)). Thus ensuring the invariant mb ∈
γ ({Po, ao}). The case (P0, P1) ∈ Po, find_merge(P0, P1, ao) = Some(Down) is iden-
tical. We note that Merge+,M terminates because the number of predicates appearing inPo

123

Form Methods Syst Des (2018) 53:221–258 255

is strictly decreasing. The previous invariant gives us that mb ∈ γ (Merge+,M(P, a)) hence
γ (S�) ⊆ γ (Merge+S�)). ��
Lemma 2 (Widening ensures convergence) For all well-formed, well-named sequences
(V �

n)n∈N such that V �
n+1 = V �

n � f (V �
n), (V �

n)n∈N converges.

Proof Due to the widening definition, the sequence V �
n has constant shape, thus allow-

ing us (modulo a renaming of variables) to write ∀n ∈ N, V �
n = ⋃

i∈I (Pi , an,i,0),

∀n ∈ N, f (V �
n) = ⋃

i∈I (Pi , an,i,1) (thanks to the widening definition, V �
n and f (V �

n) must

have the same shape). Moreover, ∀n ∈ N, V �
n is well-formed, therefore ∀i �= j ∈ I 2,

Pi and P j have different shape, hence ∀n ∈ N, V �
n+1 = ⋃

i∈I (Pi , an,i,0�Van,i,1) =⋃
i∈I (Pi , an+1,i,0) with I a finite set. As ∀i ∈ I, an+1,i,0 = an,i,0�Van,i,1, the proper-

ties of �V ensure that ∀i ∈ I, (an,i,0)n∈N converges. Therefore (I being finite) the sequence
(V �

n) converges. ��
Lemma 3 The analysis terminates.

Proof We remind that the analyzer is only allowed a finite number Mpred of synchronous
use of the addition predicate in monomials hence ensuring that well-formed abstract
states have a finite number of possible shapes, more precisely 2Mpred+1 different shapes,
we consider the following shape function: sh(S�) = ⋃

(P,a)∈S�{�(P)} as we use only

an addition predicate, it is easy to show that two abstract states S�
1 and S�

2 have the

same shape if and only if sh(S�
1) = sh(S�

2). Let us now consider a sequence with U �
0

well-formed and U �
n+1 = let S�

P = U �
n � Post��C�(U �

n �B B) in if S�
P =F

U �
n then U �

n�S�
P else S�

P .The definition of � ensures that ∀n,U �
n is well-formed. By

definition of � and the wf function we have that ∀A�, sh(U �
n) ⊆ sh(U �

n � A�), by def-
inition of the widening ∀A�, B�, A� =F B� ⇒ A��B� =F A� hence ensuring that
sh(U �

n) ⊆ sh(U �
n+1), moreover ∀n, sh(Un) ⊆ {0, . . . , Mpred}, hence the sequence sh(Un)

converges. Let us consider the sub-sequence V �
n = U �

n+m such that ∀n, sh(V �
n) = sh(V �

0),

therefore V �
n+1 = V �

n �(V �
n � Post��C�(V �

n �B B)). Finally the properties of � (Lemma 2)

ensures the convergence of (V �
n)n∈N and thus of (U �

n)n∈N. The termination proof in this case
could be made by more simple consideration, however the idea of defining a shape function
and showing its convergence can be reused to prove the convergence of other abstractions
we have set up. ��

C Programs

C.1 Addition tiled

C.2 GEMM

123

256 Form Methods Syst Des (2018) 53:221–258

1 /* n >= 10 */; /* n = 32 * a + b*/; /* 1 <= b < 32*/
2 Array A of n n; Array B of n n; Array C of n n;
3 i := 0;
4 while (i < a) do
5 j := 0;
6 while (j < a) do
7 ii := 0;
8 while (ii < 32) do
9 jj := 0;

10 while (jj < 32) do
11 x = 32 * i + ii; y = 32 * j + jj;
12 A[x][y] <- B[x][y] + C[x][y];
13 jj := jj + 1;
14 done; ii := ii + 1;
15 done; j := j + 1;
16 done;
17 ii := 0;
18 while (ii < 32) do
19 jj := 0;
20 while (jj < b) do
21 x = 32 * i + ii; y = 32 * j + jj;
22 A[x][y] <- B[x][y] + C[x][y];
23 jj := jj + 1;
24 done; ii := ii + 1;
25 done; i := i + 1;
26 done;
27 j := 0;
28 while (j < a) do
29 ii := 0;
30 while (ii < b) do
31 jj := 0;
32 while (jj < 32) do
33 x = 32 * i + ii; y = 32 * j + jj;
34 A[x][y] <- B[x][y] + C[x][y];
35 jj := jj + 1;
36 done; ii := ii + 1;
37 done; j := j + 1;
38 done;
39 ii := 0;
40 while (ii < b) do
41 jj := 0;
42 while (jj < b) do
43 x = 32 * i + ii; y = 32 * j + jj;
44 A[x][y] <- B[x][y] + C[x][y];
45 jj := jj + 1;
46 done; ii := ii + 1;
47 done;

Program 10 Addition tiled with reminder using unroll

123

Form Methods Syst Des (2018) 53:221–258 257

1 /*n >= 5*/;
2 m := n;
3 Array A of n of n;
4 Array B of n of n;
5 Array D of n of n;
6 Array E of n of n;
7 zz := 0;
8 if (alpha = 0) {
9 if (beta = 0) {

10 t2 := 1;
11 while (t2 <= n) do
12 t1 := 1;
13 while (t1 <= m) do
14 i := t1 - 1;
15 j := t2 - 1;
16 E[i][j] <- zz;
17 t1 ++
18 done;
19 t2 ++
20 done
21 } else {
22 t2 := 1;
23 while(t2 <= n) do
24 t1 := 1;
25 while (t1 <= m) do
26 i := t1 -1;
27 j := t2 -1;
28 u <- D[i][j];
29 uu <- u * beta;
30 E[i][j] <- uu;
31 t1++
32 done;
33 t2 ++
34 done
35 }
36 } else {
37 t2 := 1;
38 while (t2 <= n) do
39 if (beta = 0) {
40 t1 := 1;
41 while (t1 <= m) do

42 i := t1 -1;
43 j := t2 -1;
44 c := 0;
45 u <- D[i][j];
46 uu <- u * c;
47 E[i][j] <- uu;
48 t1++
49 done
50 } else {
51 t1 := 1;
52 while (t1 <= m) do
53 i := t1 -1;
54 j := t2 -1;
55 u <- D[i][j];
56 uu <- u * beta;
57 E[i][j] <- uu;
58 t1 ++
59 done
60 };
61 t3 := 1;
62 while (t3 <= n) do
63 k := t3 -1;
64 j := t2 -1;
65 u <- B[k][j];
66 prev <- alpha*u;
67 t1 := 1;
68 while (t1 <= m) do
69 i := t1 -1;
70 v <- E[i][j];
71 aa <- A[i][k];
72 w <- prev * aa;
73 zz <- v + w ;
74 E[i][j] <- zz;
75 t1 ++
76 done;
77 t3 ++
78 done;
79 t2++
80 done
81 }

Program 11 Gemm

123

258 Form Methods Syst Des (2018) 53:221–258

References

1. Cousot P, Cousot R (1977) Abstract interpretation: a unified lattice model for static analysis of programs
by construction or approximation of fixpoints. In: Proceedings of the POPL 1977. ACM, pp 238–252

2. Blanchet B, Cousot P, Cousot R, Feret J, Mauborgne L, Miné A, Monniaux D, Rival X (2003) A static
analyzer for large safety-critical software. In: Proceedings of the PLDI’03. ACM, pp 196–207

3. Allamigeon X (2008) Non-disjunctive numerical domain for array predicate abstraction. In: SOP 2008,
volume 4960 of LNCS. Springer, pp 163–177

4. Cousot P (2003) Verification by abstract interpretation. In: Verification: theory and practice, essays dedi-
cated to Zohar Manna on the occasion of his 64th birthday, volume 2772 of LNCS. Springer, pp 243–268

5. Cousot P, Cousot R, Logozzo F (2011) A parametric segmentation functor for fully automatic and scalable
array content analysis. In: Proceedings of POPL 2011. ACM, pp 105–118

6. Cousot P, Halbwachs N (1978) Automatic discovery of linear restraints among variables of a program.
In: Proceeings of POPL 1978. ACM, pp 84–96

7. Bondhugula U, Baskaran M, Krishnamoorthy S, Ramanujam J, Rountev A, Sadayappan P (2008) Auto-
matic transformations for communication-minimized parallelization and locality optimization in the
polyhedral model. In: CC 2008, volume 4959 of LNCS. Springer, pp 132–146

8. Bondhugula U, Hartono A, Ramanujam J, Sadayappan P (2008) A practical automatic polyhedral paral-
lelizer and locality optimizer. In: Proceedings of the PLDI 2008. ACM, pp 101–113

9. Leroy X (2006) Formal certification of a compiler back-end, or: programming a compiler with a proof
assistant. In: Proceedings of the POPL 2006. ACM, pp 42–54

10. Journault M, Miné A (2016) Static analysis by abstract interpretation of the functional correctness of
matrix manipulating programs. In Xavier R (eds) Static analysis—23rd international symposium, SAS
2016, Edinburgh, UK, September 8–10, 2016, proceedings, volume 9837 of lecture notes in computer
science. Springer, pp 257–277

11. Venet A (1996) Abstract cofibered domains: application to the alias analysis of untyped programs. In:
SAS’96, volume 1145 of LNCS. Springer, pp 366–382

12. Rival X, Mauborgne L (2007) The trace partitioning abstract domain. ACM Trans. Program. Lang. Syst.
29(5):26

13. Cousot P, Cousot R (2002)Modular static program analysis. In: Horspool RN (ed) Compiler construction,
11th international conference, CC 2002, held as part of the joint European conferences on theory and
practice of software, ETAPS 2002, Grenoble, France, April 8–12, 2002, proceedings, volume 2304 of
lecture notes in computer science. Springer, pp 159–178

14. Miné A (2006) Symbolic methods to enhance the precision of numerical abstract domains. In: VMCAI
2006, volume 3855 of LNCS. Springer, pp 348–363

15. Miné A (2006) The octagon abstract domain. Higher Order Symb Comput (HOSC) 19(1):31–100 http://
www-apr.lip6.fr/~mine/publi/article-mine-HOSC06.pdf

16. Gopan D, DiMaio F, Dor N, Reps T, Sagiv M (2004) Numeric domains with summarized dimensions. In:
TACAS 2004. Springer, pp 512–529

17. GopanD, Reps TW, Sagiv S (2005)A framework for numeric analysis of array operations. In: Proceedings
of POPL 2005. ACM, pp 338–350

18. Halbwachs N, Péron M (2008) Discovering properties about arrays in simple programs. SIGPLAN Not
43(6):339–348

19. Allamigeon X, Godard W, Hymans C (2006) Static analysis of string manipulations in critical embedded
C programs. In: SAS 2006. Springer, pp 35–51

20. Dillig I, Dillig T,AikenA (2010) Fluid updates: beyond strong vs. weak updates. In: ESOP 2010. Springer,
pp 246–266

21. Monniaux D, Alberti F (2015) A simple abstraction of arrays and maps by program translation. In: SAS
2015, volume 9291 of LNCS. Springer, pp 217–234

22. Peng Y. Automate convergence rate proof for gradient descent on quadratic functions
23. Gunnels JA, Gustavson FG, Henry G, van de Geijn RA (2001) FLAME: formal linear algebra methods

environment. ACM Trans. Math. Softw. 27(4):422–455
24. Henzinger TA, Hottelier T, Kovács L, Voronkov A (2010) Invariant and type inference for matrices.

In: Barthe G, Hermenegildo MV (eds) Verification, model checking, and abstract interpretation, 11th
international conference, VMCAI 2010, Madrid, Spain, January 17–19, 2010, proceedings, volume 5944
of lecture notes in computer science. Springer, pp 163–179

123

http://www-apr.lip6.fr/~mine/publi/article-mine-HOSC06.pdf
http://www-apr.lip6.fr/~mine/publi/article-mine-HOSC06.pdf

	Inferring functional properties of matrix manipulating programs by abstract interpretation
	Abstract
	1 Introduction
	1.1 Introductory example
	1.2 Contribution
	2 Syntax and concrete semantics
	2.1 Programming language syntax
	2.2 Concrete reachability
	2.2.1 Definitions

	3 Generic abstract semantics
	3.1 Predicates
	3.2 Abstract states
	3.3 Abstract transfer functions
	3.3.1 Maximum number of predicates.

	4 Abstraction instances
	4.1 Matrix addition
	4.2 Matrix multiplication
	4.2.1 Removing predicates
	4.2.2 Splitting predicates
	4.2.3 Iterating on k first

	4.3 Trace partitioning
	4.4 Example of application
	4.5 Adding further predicates

	5 Modular analysis of functions
	5.1 Function calls
	5.2 The aliasing problem
	5.3 Callee analysis

	6 Matrix inversion program
	6.1 Iterator abstraction
	6.2 Full example

	7 Implementation
	8 Related work
	9 Conclusion
	A Complementary Algorithms
	A.1 Set operations
	A.2 Product operations
	B Soundness proof
	C Programs
	C.1 Addition tiled
	C.2 Gemm
	References

