
Towards an Industrial Use of Sound Static Analysis for the
Verification of Concurrent Embedded Avionics Software∗

Antoine Miné
École Normale Supérieure

45, rue d’Ulm
F-75230 Paris Cedes 05, France

mine@di.ens.fr

David Delmas
Airbus Operations S.A.S.
316, route de Bayonne

31060 Toulouse Cedex 9, France
david.delmas@airbus.com

ABSTRACT
Formal methods, and in particular sound static analyses,
have been recognized by Certification Authorities as reliable
methods to certify embedded avionics software. For sequen-
tial C software, industrial static analyzers, such as Astrée,
already exist and are deployed. This is not the case for con-
current C software. This article discusses the requirements
for sound static analysis of concurrent embedded software
at Airbus and presents AstréeA, an extension of Astrée with
the potential to address these requirements: it is scalable
and reports soundly all run-time errors with few false posi-
tives. We illustrate this potential on a variety of case studies
targeting different avionics software components, including
large ARINC 653 and POSIX threads applications, and a
small part of an operating system. While the experiments
on some case studies were conducted in an academic setting,
others were conducted in an industrial setting by engineers,
hinting at the maturity of our approach.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
Real-Time and Embedded Systems; D.1.3 [Programming
Techniques]: Concurrent Programming; D.2.4 [Software
Engineering]: Software/Program Verification—Formal meth-
ods, Validation, Assertion checkers; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reason-
ing About Programs—Assertions, Invariants, Mechanical
verification; F.3.2 [Logics and Meanings of Programs]:
Semantics of Programming Languages—Program analysis

Keywords
Static analysis, abstract interpretation, embedded software,
concurrent software

∗This work is supported by the INRIA project“Abstraction”
common to CNRS and ENS in France, and by the project
ANR-11-INSE-014 from the French ANR.

General Terms
Experimentation, Reliability, Verification

1. INTRODUCTION
The safety of embedded critical software, such as those

found in avionics, automotive, space, medical, and power
industries is crucial, as the slightest software error can have
dramatic consequences. Their verification and validation
process is well specified in domain-specific international stan-
dards (e.g., [1] for avionics systems). While testing remains
a key method, its shortcomings are well-known, and there
is a strong movement towards formal methods to comple-
ment or replace them. Such methods provide strong, math-
ematical guarantees about systems behaviors. In particular,
semantic-based static analysis can discover at compile-time
properties of the dynamic behaviors of programs by analysis
of the source code; it is automated, sound (full control and
data coverage), and can be made precise and efficient by
employing powerful abstractions (as advocated by abstract
interpretation [8]), making it an attractive method in an in-
dustrial context, where the cost of deploying new methods
must be taken into account. Nowadays, commercial static
analysis tools are deployed in embedded industries. One
example is the Astrée static analyzer [4], which detects all
the run-time errors in embedded C code. Astrée is however
limited to sequential codes and is not sound for concurrent
codes, which constitute an increasing share of critical em-
bedded software. Concurrent software is also a prime target
for formal verification because testing methods scale poorly
with the combinatorial explosion of concurrent executions.

This article discusses AstréeA, a recent extension of As-
trée to analyze soundly, efficiently, and precisely concurrent
codes, and its application to verify avionics code from Air-
bus: Sec. 2 discusses the place of formal methods in avion-
ics certification and its implementation at Airbus, Sec. 3
presents the challenges of certifying concurrent avionics soft-
ware, Sec. 4 presents the technology behind AstréeA, Sec. 5
presents on some case studies how AstréeA can address these
challenges, Sec. 6 discusses related work, and Sec. 7 con-
cludes. The foundations and use of Astrée were covered,
from both academic and industrial perspectives, in a number
of publications [5, 4]. The theoretical foundations underly-
ing AstréeA were covered in [17, 18]. This article discusses
the effective use of AstréeA. It presents novel case studies,
introducing for the first time studies performed by industrial
end-users, and builds a case for the widespread adoption of
sound static analysis to verify concurrent embedded soft-
ware. It brings an industrial perspective to AstréeA.

2. SEMANTIC VERIFICATION AT AIRBUS

2.1 Industrial context
Avionics software running on on-board computers is a crit-

ical component of the systems of civil aircraft. They are thus
subject to certification by Certification Authorities, and de-
veloped according to stringent rules imposed by the appli-
cable DO-178/ED-12 international standards.

Among the many processes described in DO-178, verifi-
cation processes are responsible for more than half of the
overall costs of avionics software development. Considering
the steady increase in size and complexity of this kind of
software, classical V&V processes, based on massive test-
ing campaigns and complementary intellectual reviews and
analyses, no longer scale up within reasonable costs.

Some formal verification techniques have been shown to
scale up to real-size industrial software. For a decade, Air-
bus has therefore been introducing such techniques into their
own verification processes [20], in order to replace or com-
plement legacy methods. Significant effort is currently be-
ing invested into updating Airbus avionics software develop-
ment and verification processes to take maximum advantage
from formal methods, i.e., improve industrial efficiency while
maintaining the safety and availability of avionics systems.

2.2 The requirement for soundness
Revision B of DO-178 states that software verification pro-

cess objectives are met through a combination of reviews,
analyses, and testing. It mentions formal methods as an al-
ternative method, but does not provide any guidance, due to
inadequate maturity at the time the document was written
and limited applicability to airborne software. Therefore,
DO-178B compliant avionics software verification processes
cannot rely on formal techniques.

This issue was addressed in revision C [1] of DO-178, ap-
plicable to new software developments as of 2014. It in-
troduces a technical supplement, DO-333, providing guid-
ance on the use of formal techniques to meet DO-178C ob-
jectives. The supplement introduces standard categories
of formal analysis techniques: deductive methods, model-
checking, and abstract interpretation. Abstract interpre-
tation, in particular, is presented as a method to construct
semantic-based analysis algorithms for the automatic, static,
and sound determination of dynamic properties of infinite-
state programs. It emphasizes soundness as the key criterion
for an analysis to be considered compliant: the applicant is
required to provide justifications that the method never as-
serts that a property is true when it may not be true.

DO-333 acknowledges that objectives of reviews and anal-
yses of source code can be achieved using formal methods,
provided a formal semantics is well-defined at source code
level. Such objectives include: compliance with the software
architecture (correct data and control flows), accuracy and
consistency (stack and memory usage, floating-point arith-
metic, resource contention and limitations, worst-case execu-
tion time, exception handling, use of uninitialized variables,
and data corruption due to task or interrupt conflicts). It
also acknowledges that some verification objectives tradi-
tionally addressed by testing executable object code can be
achieved using formal techniques. Such objectives include
robustness to complex incoming data, freedom from arith-
metic overflows, data corruption, inadequate numerical res-
olution, incorrect responses to missing or corrupted input

data, incorrect handling of exceptions, arithmetic faults, vi-
olations of array limits. Such analyses should be performed
either on executable object code, or at source code level,
provided that property preservation can be demonstrated
between source and executable code. We refer the reader
to [6] for more information on DO-178C.

2.3 Static analysis at Airbus
Several formal techniques are currently being used opera-

tionally as part of the verification processes of avionics soft-
ware. In order to verify functional properties, program proof
techniques have been successfully introduced to replace unit
testing on some software subsets. They are used for certifica-
tion credit [12] on small sequential C codes. In contrast, the
verification of non-functional properties requires automatic
analyses that scale up to very large programs. As a conse-
quence, static analysis based on abstract interpretation [8]
is currently used industrially for certification credit on many
avionics software products developed at Airbus, to compute
safe upper-bounds of stack consumption or worst-case exe-
cution time [19], or to verify data and control flows [10].

Among major non-functional properties of interest is free-
dom from run-time errors, i.e., integer or floating-point over-
flow or division by zero, array out of bounds, invalid pointer
dereference, etc. Many commercial bug finders allow for
the automatic detection of possible run-time errors. While
useful in a lightweight debugging approach to help detect
systematic errors, such tools cannot be used for verification
purposes. Indeed they implement unsound analysis meth-
ods, based on (implicit and incorrect) simplifying assump-
tions, and thus do not attempt to provide any assurance that
code free from warnings will actually run without errors.

In contrast, semantic based static analyzers allow for au-
tomatic proofs of absence of run-time errors on sequential
and synchronous software written in the C language. For in-
stance, Astrée is being used industrially at Airbus on safety-
critical synchronous control/command programs [11] prior
to certification. These programs are large (up to 650 000
lines of C), and perform intensive floating-point computa-
tions. They are certified with the highest DO-178 Develop-
ment Assurance Level (DAL A). Airbus plans to claim cer-
tification credit from the use of Astrée in the near future, in
order to alleviate intellectual reviews and analyses of source
code. To this aim, Astrée will have to undergo a dedicated
qualification process, as defined by the DO-178 standard.

In addition, extensive experiments [3] are being conducted
with the CompCert formally verified compiler to allow opti-
mizing compilation of DAL A software, while guaranteeing
semantic preservation between source and executable code.
This guarantee will enlarge the scope of sound source code
analyzers to also achieve verification objectives that tradi-
tionally require a machine code level analysis. In particular,
it will enable Airbus to use Astrée to alleviate robustness
testing, but also remove part of the local robustness code
(proved to be unnecessary), with obvious benefits for worst-
case execution time and structural coverage analysis.

3. CONCURRENT AVIONICS SOFTWARE
As of today, the scope of sound formal verification has

been mostly limited to sequential and synchronous software.
This encompasses the most safety-critical systems of Airbus
aircraft, e.g. flight control systems. Such systems are de-
signed for dedicated specialized computers running avionics

software on simple, deterministic architectures, in order to
ease verification. For instance, Airbus fly-by-wire control-
command software is bare metal synchronous programs.

In contrast, for less safety-critical aircraft functions, the
required level of automation, HMI comfort, and system in-
teroperability and configurability tends to increase from one
aircraft generation to the next, resulting in an exponential
increase of the complexity of the underlying embedded com-
puters, networks and software. Moreover, considering the
steady pressure on cost and weight reduction, such avionics
functions tend to be integrated into generic computers, as
shown by the current trend for Integrated Modular Avion-
ics [23]. As a consequence, the development of such com-
plex functions leads to more sophisticated designs, involving
synchronizations between concurrent tasks, shared resource
management, etc. They are implemented in asynchronous
software, composed of a set of concurrent threads interact-
ing in a shared memory. Traditional verification techniques,
based on reviews, analyses and tests, are especially ineffi-
cient on asynchronous programs, because of the huge num-
ber of thread interleavings to be considered. Nonetheless,
despite the limited impact of potential failures of related sys-
tems on aircraft safety, software correctness is of paramount
importance for efficient aircraft operation and maintenance,
and thus on aircraft availability and profitability. Formal
techniques, e.g. static analysis, would thus be especially use-
ful for scalable verification of asynchronous software.

AstréeA is the first example of such a sound static ana-
lyzer. It is an extension of Astrée aiming at proving the
absence of run-time error in asynchronous multithreaded C
software. The current underlying model matches that of
asynchronous applications developed at Airbus. Such appli-
cations run on a single mono-core processor, on top of com-
modity real-time operating systems, implementing a pre-
emptive, priority-based, real-time scheduling policy, e.g. the
ARINC 653 [2] standard or POSIX threads real-time [14].

Application software is analyzed for a given specification
of the operating system, and is thus sound for all operating
systems meeting this specification. In practice, such spec-
ifications are formalized by means of a library of stubs for
the API functions of the operating systems, which are writ-
ten in C with dedicated AstréeA primitives. Some charac-
teristics thereof may ease static analysis: for instance, all
threads are created in an initialization phase (no dynamic
thread creation), and dynamic memory allocation and re-
cursion are forbidden by coding standards. However, some
other characteristics are challenging. These are large data-
intensive programs, from a few hundred thousand to a few
million lines of C source code, composed of many nested
loops processing string buffers as well as rich data struc-
tures based on pointers, e.g. statically allocated linked lists.
Threads communicate through shared memory and standard
synchronization primitives offered by the operating system
(such as POSIX mutexes). Due to stringent (though usually
not hard real-time) timing constraints, such software may
rely on real-time scheduling to implement (implicit) critical
sections, so as to save on synchronization primitives with
significant worst-case execution time.

A more recent research direction (Sec. 5.3) is the verifica-
tion of actual operating systems (or fragments of thereof).

4. THE ASTRÉEA STATIC ANALYZER

4.1 Abstract Interpretation
In the general sense, the safety verification problem con-

sists in computing the set of program states reachable during
all possible executions and proving that it does not include
any unsafe state. Here, a program state denotes the current
contents of the memory (a map from variables to values)
and program position (PC, call stack). Program executions
and unsafe states are defined based on the language stan-
dards, which must be translated from an informal English
description to an unambiguous mathematical one.1

Industrial programs typically feature a large state space,
which cannot be enumerated in practice. The core idea of
abstract interpretation [8] is that it is often sufficient to rea-
son at a more abstract, simpler level. Instead of considering
sets of memory states (so called concrete elements), we can,
for instance, consider an interval abstraction that only re-
members the upper and lower bounds of each variable, and
forgets the exact values reachable within these bounds. An
abstract element then represents the set of memory states
that satisfy these bounds, i.e., a property on states, but
with a more compact representation (two numbers per vari-
able instead of an unbounded set of memory maps). We
will compute the reachable states entirely in this abstract
domain. Naturally, some concrete properties cannot be rep-
resented in the abstract and must be approximated. The
soundness principle formally states that any property com-
puted in the abstract must also be true of all the concrete
executions. For safety verification, this means that the com-
puted abstract states must over-approximate the concrete
ones. The over-approximation may, in certain cases, add
spurious unsafe states that do not exist in the concrete se-
mantics, i.e., we get a false alarm, which we want to avoid.

In practice, the reachable states of a program are defined
by composing in a generic way atomic semantic operations
from a small alphabet corresponding to language constructs
(assignments, tests, etc.). It is thus sufficient to provide a
sound abstract version for each atomic operation and com-
bine them to compute the abstract semantics of any pro-
gram. Abstract operators often induce a loss of precision
that accumulates over the abstract computation, so that we
may not be able to infer the most precise property express-
ible in the abstract domain (e.g., the interval domain may
not find the tightest bounds). To reduce the false alarm
rate, it is necessary to resort to more powerful (but more
costly) abstractions. Many general-purpose abstractions are
already available (for instance, we may replace intervals with
polyhedra and infer linear relationships), and novel ones can
be designed to specifically remove classes of false alarms.

4.2 Design Principles for Astrée and AstréeA
The AstréeA analyzer is based on the same design princi-

ples as the Astrée analyzer which it extends: both are spe-
cialized modular analyzers by syntax-directed interpretation
of programs in a collection of abstract domains. We recall
here briefly these common principles (an in-depth presenta-
tion can be found in [4]), while Sec. 4.3 is devoted to the
extension to concurrency implemented in AstréeA.

1More precisely, ambiguity in the standard can be rigorously
formalized using a non-deterministic semantics, which de-
fines the set of all possible executions. This allows verifying,
in one analysis, the correctness with respect to several inter-
pretations of the standard. Non-determinism is also useful
to model interactions with an unknown environment.

4.2.1 Concrete semantics
Astrée analyzes a large subset of C, including integers,

floats, pointers, structured data-types, loops, gotos. It ex-
cludes notably: dynamic memory allocation, recursion, and
long jumps. The concrete semantics is based on the C stan-
dard and the floating-point arithmetic standard. The ana-
lyzer reports all run-time errors, including: arithmetic over-
flows, invalid operations, invalid dereferences, assertion fail-
ures. The C semantics is notable for being under-defined: it
leaves a lot of room for implementation choices and maps er-
rors to undefined behaviors which have a truly random (pos-
sibly catastrophic) outcome. To fit more closely program-
mers’ expectations, Astrée allows specializing the analysis
by describing the actual implementation, among reasonable
choices, for unspecified or undefined behaviors. For instance,
by default Astrée reports signed integer overflows and con-
tinues the analysis assuming the wrap-around result.2 The
semantics of floats includes a sound model of rounding er-
rors, as well as infinities and not-a-number. Astrée’s pointer
and memory semantics is also very lax and low-level, allow-
ing unrestricted pointer arithmetic, casts, union types, and
even type-punning.

4.2.2 Syntax-directed interpretation
Astrée functions literally as an interpreter, except that

instead of propagating a single environment, it propagates
an abstraction of a set of environments. Astrée’s iterator
traverses the syntax tree of the program, starting from the
entry of the main function. Complex control structures are
handled by induction on their sub-components and, ulti-
mately, the iterator calls the abstract domain only on atomic
statements, such as assignments and tests:

– For tests if (c) s1 else s2, both branches s1 and s2
are interpreted, after filtering the current abstract environ-
ment by, respectively, the condition c and its negation ¬c,
and then the outputs of the branches are merged, using an
abstract version of the union of state sets (e.g., the interval
hull in the interval domain).

– Loops present the main difficulty for automated veri-
fication: they generate a large, possibly infinite number of
executions of unbounded length that cannot be all explored
explicitly, and must thus be approximated. In abstract in-
terpretation, a loop while (c) s is handled by iteration:
starting from the abstract environment before the loop, we
accumulate the iterated effect of the loop body s filtered by
the loop condition c until reaching a fixpoint. A special op-
erator, the widening O, is used to accelerate the iteration
and reach a fixpoint in a finite, generally small, number of
steps. For instance, the standard interval widening enlarges
unstable bounds to the type’s extreme values in one step,
where they cannot grow further. Upon stabilization, the ab-
stract environment represents an inductive loop invariant.
The analysis continues after the loop using the invariant fil-
tered by the exit condition ¬c.

– Functions are analyzed by interpreting the body of the
function at every call site. The result is a fully flow-sensitive
and context-sensitive analysis, and is hence very precise.
Such precision can come at a cost as full sensitivity does

2Considering that erroneous executions halt the program
would greatly simplify the analysis, but is not acceptable
for a safety analysis. In case the overflow was intentional,
it may cause the analysis to miss a more serious error after
wrap-around.

not scale up for programs with complex control flow or re-
cursive functions; however, for embedded software, which
employs neither, it achieves a sweet spot between precision
and scalability.

4.2.3 Collections of domains
Astrée does not use a single monolithic abstract represen-

tation of memory states, but rather a collection of interact-
ing abstract domains, which provides improved scalability
and flexibility to the analysis design. Astrée uses a stack
of domains, corresponding to different levels of complexity
in C expressions. Each domain handles specific C construc-
tions, abstracts a specific aspect of the memory, and uses this
information to dynamically translate expressions using sim-
pler constructions for lower domains to handle. A memory
domain decomposes each variable into a collection of scalar
cells (integers, pointers, floats), and resolves dereferences,
structures, arrays, and union accesses. A pointer domain
maintains the base variables targeted by each pointer cell,
and translates pointer arithmetic into integer arithmetic on
the offset. The numeric domains are left with abstracting
numeric cells and need only handle expressions containing
integer and float values. The numeric abstraction is actually
composed of a large set of domains, as software performs a
huge variety of computations that lead to different flavors
of numeric properties that no single domain can maintain
efficiently nor conveniently.

Information about the abstract state is distributed among
these domains, which collaborate to achieve the analysis of
every single C statement. The domains communicate by
transferring information expressed in a set of common prop-
erties (such as variable bounds), on a per-need basis to en-
sure efficiency.

4.2.4 Specialization
There is no universal abstraction able to analyze ade-

quately all programs. Astrée is based on a specialization
principle: it contains abstractions specifically adapted to an-
alyze very well a given kind of programs, embedded avionics
control-command software, while it is sound but possibly
imprecise or not scalable on other software. It was designed
by starting from a generic scalable interval analyzer and an-
alyzing a selected code in the family of interest. Initial anal-
yses suffered from many false alarms. They were removed
by a manual process consisting in inspecting the origin of
each false alarm, determining which property was missed by
the analyzer, and either designing a new abstract domain,
if the property was not expressible in Astrée, or strength-
ening the abstract operators and domain communication, if
it was. This resulted in an analyzer with no alarm on the
code of interest, which remains efficient (by parsimony, more
complex and costly abstractions are added only when neces-
sary). Abstract domains are not specific to a single program
but general enough to handle a programming pattern. We
observed experimentally [5] that a specialized analyzer was
able to handle a family of similar programs, requiring only
slight adjustments of analysis parameters (such as widening
aggressiveness) which can be performed by industrial end-
users [11].

The complete report of this experiment is described in
[5]. We give here only two examples of additional abstrac-
tions. Firstly, the precise analysis of loops required the
addition of relational domains. As general polyhedra are

not scalable, we used instead the octagon domain [16], an
expressive enough domain. A reasonable tradeoff between
precision and scalability was further achieved by applying
the domain parsimoniously, to selected variable packs. Sec-
ondly, control-command software features digital filter com-
putations, which require quadratic invariant relations to be
precisely analyzed. Feret thus designed a specific ellipsoid
domain [13] for this task. The octagon domain is of general
use and was employed in AstréeA, while ellipsoids are specific
to control-command software and not reused in AstréeA.

4.3 Extension to concurrent programs
AstréeA extends Astrée to handle concurrent embedded C

programs. It reuses its iterator and abstractions, and adds
new ones, as discussed here.

4.3.1 Concrete semantics
AstréeA supports a generic concurrency model. Program

executions have two phases: firstly, an initialization phase,
able to execute sequential code and create threads, and a sec-
ond phase, where threads execute concurrently but thread
creation is no longer allowed. This matches precisely the
ARINC 653 semantics [2] as well as current practice in avion-
ics software. AstréeA analyzes both phases for run-time er-
rors; in addition, it collects the set of threads created during
the sequential phase and checks that no thread is created
during the concurrent phase. The set of threads is thus not
fixed beforehand but discovered by the analyzer. In the sec-
ond phase, the semantic of the program is an interleaving
of atomic execution steps (such as assignments) from each
thread. AstréeA assumes a mono-core real-time execution
model: only the unblocked thread of highest priority can
run. This matches current avionics practice and permits a
more precise analysis than considering true parallel execu-
tion (such an extension will be considered in the future).
The execution model is fully preemptive: a high priority
thread can enter a wait state, e.g. waiting for a resource
to be available, let a lower-priority thread run for a while,
and preempt it at any point of its execution when the re-
source becomes available. As a consequence, a large number
of interleavings of concrete executions are possible. Threads
execute in a shared memory: it is the analysis’ responsibility
to detect which global variables are actually shared and their
possible values. AstréeA supports a small set of flexible but
low-level primitives on top of which C stub code simulating
high-level concurrency libraries can be written; for instance,
it supports non-nesting mutual exclusion locks, on top of
which more complex locks are constructed (Sec. 5). AstréeA
reports data-races for accesses not protected by locks.

4.3.2 Thread-modular interpretation
Iterating over all possible thread interleavings is not fea-

sible. AstréeA thus employs a thread-modular analysis ap-
proach, inspired from rely-guarantee reasoning [15]. It is
sound with respect to all interleavings, scalable, and allows
reusing the abstractions developed for Astrée. This analysis
is composed of a sequence of iterations. In the first one, each
thread is analyzed as an independent sequential program, ig-
noring the effect of other threads (which is unsound), but
collecting the effect it has on the global variables. Starting
from the second step, each thread is reanalyzed, but now
taking into account the interferences computed in the last
step, which discovers new behaviors, and possibly new in-

terferences. The analyses are iterated until the interferences
stabilize, at which point we have explored a superset of all
possible program behaviors and reported all the possible er-
rors. The increasing sequence of interferences is stabilized
efficiently by using a widening. When several threads ex-
ecute the same code, it is only necessary to analyze them
once per iteration; this enables the efficient analysis of pro-
grams creating an arbitrary (possibly unbounded) number
of instances of some threads. The theoretical foundation of
this method is presented in [17, 18].

4.3.3 Interference abstraction
Thread-modular analyses introduce the notion of inter-

ference. As for program states, interference sets are not
computed exactly but rather over-approximated at some ab-
stract level. Interferences require abstract domains of a dif-
ferent nature because they represent state transitions. Ini-
tially, AstréeA used a simple interference abstraction, which
only remembers, for each variable and thread, an interval
over-approximating the values stored by that thread into
that variable. This technique is very scalable and sufficient
in many cases. It was refined by adding a measure of flow-
sensitivity and relationality. Firstly, AstréeA takes mutual
exclusion into account by partitioning according to the locks
taken and thread priorities, thus removing spurious interfer-
ences. This can be further improved by using relational do-
mains (such as octagons [16]) to track lock invariants, i.e., re-
lations between variables that are maintained by locks: they
may be temporarily invalidated inside locks, but are restored
before releasing the lock, hence, the violation remains invis-
ible as long as all accesses are correctly protected (which is
checked by AstréeA). As second example, AstréeA includes a
domain tracking which variables are incremented. This is an
example of specialization: the domain was added specifically
to analyze code with clocks that are sampled and integrated,
as shown in Fig. 3. The correctness of the program depends
on the fact that, between two successive reads of a clock by a
thread, the clock can only be incremented by other threads
and never decremented. Additionally, these abstractions can
be proved to be sound with respect to widespread weakly
consistent memory models (such as Total Store Ordering,
used notably for multi-core intel x86).

4.3.4 Additional abstractions
In addition to being concurrent, the codes we consider

in our study are more general than the control-command
codes considered by Astrée. Handling them precisely and
efficiently required some specialization of the abstractions.

Firstly, we need to analyze software making an extensive
use of large data-structures, such as nested arrays and struc-
tures. We have thus enriched the abstraction with a notion
of dynamic array folding : a contiguous sequence of array
elements can be represented with a single abstract element.
Arrays start unfolded, and are folded dynamically when en-
countering an imprecise pointer targeting many array ele-
ments. This improves the time and memory efficiency with-
out jeopardizing precision. We also developed a new numeric
domain for offsets able to represent succinctly complex ac-
cess patterns (e.g., { 4× i + 100× j | i ∈ [0, 10], j ∈ [0, 10] }
is an access to a part of a matrix flattened, as is common in
C, into a uni-dimensional array). Similar dynamic abstrac-
tions are employed to merge dynamically several concrete
variables into an abstract one, and we also defined a pointer

Sec. Size Added Select. Time Mem. Ctx.
5.1.1 2.1 M 5.2 K 99.94% 24 h 27 GB A
5.1.2 1.9 M 2.4 K 99.56% 154 h 18 GB I
5.1.2 2.2 M 2.3 K 99.52% 160 h 23 GB I
5.2.1 31.8 K 2.2 K 97.28% 50 mn 0.6 GB I
5.2.2 33.1 K 1.2 K 97.18% 35 h 2.5 GB I
5.3 — 1.5 K 94.5% 22 mn 0.9 GB A

Figure 1: Summary of case studies with the origi-
nal size (in lines), the lines of code added for the
analysis, the selectivity, the time and memory con-
sumption, and the analysis context (academic or in-
dustrial setting).

widening to accelerate loops accessing linked lists.
Secondly, the case studies contain more complex control

than usually found in control-command software, including
deeply-nested functions and loops. A drawback of inter-
pretation by induction on the syntax is that, to analyze
nested loops, the inner loop must be completely reanalyzed
for each iteration of the outer loop. We solved this problem
by caching loop invariants, and reusing them to bootstrap
subsequent analyses of the same loops, reducing the number
of iterations needed to find a new invariant. The cache also
accelerates the iterations required to stabilize interferences.

5. CASE STUDIES AND EXPERIMENTS
We have applied AstréeA to the analysis of various indus-

trial concurrent cockpit avionics software. The case studies
are described in the following sections, and the results are
summarized in Fig. 1. Additionally to the size of the use
cases, we indicate the number of lines we had to add or
modify to perform the analysis (which gives an idea of how
much work is required to prepare a new analysis), and the
selectivity (a measure of precision defined as the percent-
age of alarm-free lines). Some information is omitted due to
non-disclosure agreements. Some analyses were performed
by researchers in an academic setting, and others by engi-
neers in an industrial setting. A preliminary version of the
first case study (Sec. 5.1.1) has been presented in [17]; it is
presented here updated and in more details. The other cases
studies are new.

5.1 Analysis of ARINC 653 Applications

5.1.1 Primary case study (DAL C)
Our first analysis target is a large embedded avionics code,

featuring 15 threads and 2.1 M lines of C (after preprocess-
ing and removing redundant declarations). This DAL C3

application monitors and aggregates a large number of data
coming from ports and displays synthetic summaries in an
interactive way in the cockpit. It contains 100 K lines of
hand-written C code performing a variety of tasks, including:
parsing binary messages, formatting strings, managing and
sorting arrays and lists, as well as 2 M lines of automatically
generated code, in particular reactive synchronous logic à la
SCADE running in threads concurrently with other tasks
and featuring boolean, integer, and float computations. We
analyze almost completely the original application; to sim-

3DAL (Development Assurance Level) C denotes a software
whose failure has a major incidence on the aircraft; DAL A
are the most critical applications; DAL E are the least ones.

plify, we omitted the custom error handler, which eventually
halts the application and thus does not add errors.

ARINC 653 model.
Astrée and AstréeA are whole-program analyzers, that take

as input programs without undefined symbols. This is not
a problem for Astrée as it focuses on synchronous programs
that run on bare metal, and are inherently self-contained.
On the contrary, the programs analyzed by AstréeA inter-
act with an operating system through function calls. For
instance, the applications considered in this section run on
ARINC 653, a specification for embedded avionics real-time
operating systems [2]. We analyze the application without
the actual system implementation, but with a hand-crafted
model of its specification. This has several benefits: the
analysis is sound with respect to any system implementation
obeying the specification; the analyzed code does not exhibit
hard-to-analyze low-level features encountered in system im-
plementations; and we can enrich the specification with as-
sertions to check that the application obeys API contracts.

Internally, AstréeA supports several kinds of objects and a
set of primitives to manipulate them, including for instance:

– Threads,4 which must be registered during a sequen-
tial initialization phase with a directive __ASTREE_create_

process(i,p,f). They are assigned by the program an in-
teger identifier i, an integer priority p, and an entry point
f. Other primitives, taking i as argument, can change the
thread state (e.g., stopping, pausing, yielding, etc.).

– Mutexes, which are also denoted by integers. AstréeA
assigns a mutex to every 32-bit integer i, and so, mutexes
do not need to be registered before being used. For instance,
the primitive __ASTREE_lock_mutex(i) will simply lock the
mutex identified by i.
ARINC 653 objects are, however, more complex. They must
be created during initialization and have a rich set of API
functions as well as properties (such as a name). The model
thus consists of an abstract implementation of each API
function written in C enriched with built-in primitives, so
that the combination of the analyzed application and the
model is a stand-alone program with no undefined sym-
bol. Figure 2 gives, as example, a simplified version of our
stub for semaphore locking, and illustrates certain interest-
ing points: we validate arguments to report API violations
(__ASTREE_error); we distinguish between locking with and
without a timeout (__ASTREE_lock and __ASTREE_yield in-
clude a non-deterministic wait allowing rescheduling lower-
priority threads5); we model both the case where a timeout
occurs without the semaphore being locked and a success-
ful locking and select between them with a non-determinism
choice (__ASTREE_rand) to ensure that the analysis soundly
consider both cases. Identifiers for ARINC 653 and AstréeA
objects (such as SEMAPHORE_ID) are allocated at creation
time and all their properties are maintained in plain C ar-
rays. The built-in support for non-determinism makes it
very easy to model soundly an unknown environment; for in-
stance, we model reading a message from a port connected
to another application, which is not analyzed, as reading

4Execution units are actually called processes in ARINC
653, but behave like POSIX threads as they execute in a
shared memory. We call them thread here for consistency.
5Note that our system is fully preemptive: the current
thread can return from __ASTREE_yield by interrupting a
lower priority thread at any point of its execution.

void WAIT_SEMAPHORE(SEMAPHORE_ID_TYPE SEMAPHORE_ID,
SYSTEM_TIME_TYPE TIMEOUT,
RETURN_CODE_TYPE * RETURN_CODE) {

*RETURN_CODE = NO_ERROR;
if (SEMAPHORE_ID<0

|| SEMAPHORE_ID>=NB_SEMAPHORE) {
__ASTREE_error("invalid semaphore");
*RETURN_CODE = INVALID_PARAM;

}
else if (TIMEOUT>0) {
if (TIMEOUT==INFINITE_SYSTEM_TIME_VALUE

|| __ASTREE_rand())
__ASTREE_lock_mutex(SEMAPHORE_ID);

}
else {
__ASTREE_yield();
*RETURN_CODE = TIMED_OUT;

}
}
else {
if (__ASTREE_rand()) *RETURN_CODE = NOT_AVAILABLE;
else __ASTREE_lock_mutex(SEMAPHORE_ID);

}
}

Figure 2: Stub implementation for locking a
semaphore in ARINC 653.

non-deterministic values. We implemented 66 ARINC 653
system calls in a 3.9 K lines model. Note that the correction
of the analysis depends on the correction of the stubs: they
must include all the behaviors of the actual OS implemen-
tation. However, the quantity of code to be trusted is small
(1 stub line for 500 lines of application), stubs can be reused
from one analysis of an ARINC 653 application to the other,
and are easily understandable by engineers, which improves
our confidence in their correctness.

Analysis results and refinement.
Currently, our analysis exhibits 1095 alarms, i.e., a 99.94%

selectivity. The selectivity is higher (99.98%) on automati-
cally generated parts than in manual parts (99.2%), which
is expected as the latter is more complex and less regular
(although much smaller). Early experiments using Astrée’s
state abstractions and a non-relational flow-insensitive in-
terference abstraction reported more than 12000 alarms [17],
and this number was decreased by specialization in AstréeA.
Similarly to our experiments with Astrée this included the
design of new abstractions. In some cases, however, AstréeA
already contained adequate domains and it was sufficient to
configure the analyzer to use them on specific variables and
program parts (by default, costly domains are only used par-
simoniously for scalability reasons). An example is given in
Fig 3: the three variables Clock (a monotonic clock), Prev
(its previously sampled value), and Dst (a time accumulator)
must be related in the octagon domain. This information is
communicated to the analyzer through the insertion of a
directive, __ASTREE_octagon.

Additional directives are used to gain precision by un-
rolling loops, handling arrays in a field-sensitive way, or en-
abling path-sensitivity. We added 2302 directives, most of
which (2183) appear in manual code; directives in automat-
ically generated code appear in macros that are massively
duplicated by macro-expansion. Ultimately, adapted heuris-
tics can be incorporated to control the precision and achieve

#define CLOCK(Dst,Enable,Clock) { \
static unsigned Prev; \
__ASTREE_octagon(Dst,Prev,Clock); \
if (Enable) { \
Dst += Clock - Prev; \
Prev = Clock; \

} \
else Prev = Clock; \

}

Figure 3: Time accumulator. The precise analysis
requires proving that other threads only increment
Clock, and tracking relations with the octagon do-
main (hence the __ASTREE_octagon directive).

fully automated analyses of unmodified source code but, for
fast prototyping, the ability to manually insert syntactic di-
rectives is convenient. Unlike designing a new domain, which
is a research activity, directive insertion can be performed by
industrial end-users, to adapt the analysis to new software.

5.1.2 Additional case study (DAL C)
Our second application of AstréeA is the analysis of an

application featuring 11 threads, and implementing similar
functions as the first one, but for a different aircraft. As a
consequence, several interfaces and functionalities differ sig-
nificantly. It has, however, a similar overall structure and
sets of threads, and about 20% of the hand-written source
code is common. The automatically generated code is dif-
ferent, though its structure is very similar. Two major (non-
consecutive) versions of this programs were analyzed. The
first one is composed of 1.9 M lines, among which 155 K are
hand-crafted. The second one is composed of 2.1 M lines,
among which 160 K are hand-crafted.

This case study was conducted in an industrial environ-
ment. The first version was analyzed by one avionics soft-
ware engineer experienced in static analysis with Astrée and
AstréeA, while the second was analyzed by a software en-
gineer experienced with Astrée, but with no prior exposure
to AstréeA. This case study benefited from the specialization
work performed for the primary case study. The ARINC 653
model was reused with minor adaptation (about 8%) and 7
new API functions were modelled. Much of the analysis re-
finement effort consisted in adapting AstréeA directives from
the first case study to the similar (but different) application
software: 2178 directives were used for the first version, with
limited adaptation for the second one (about 5%).

Currently, our analyses exhibit 8573 alarms, i.e., a 99.56%
selectivity, for the first version, and 10735 alarms, i.e., a
99.52% selectivity, for the second. The selectivity is again
higher for automatically generated code (99.79% for both
versions) than for hand-written code (96.88% for the first
version, and 95.97% for the second). Analyzing these appli-
cations is 6 times slower and slightly less precise than our pri-
mary case study (Sec. 5.1.1), for a similar code size. Indeed,
our first case study benefited from a larger code-specific spe-
cialization effort, which improved not only precision but also
efficiency, by carefully selecting useful abstractions only.

5.2 Analysis of POSIX Applications
AstréeA was extended to analyze a family of embedded

avionics applications developed at Airbus and running under
POSIX systems. The POSIX standard is more general and

more complex than ARINC 653. However, Airbus applica-
tions rely only on a subset of POSIX similar to ARINC 653.
This subset includes POSIX extensions such as Threads,
Thread Execution Scheduling, Realtime, Message Passing,
Semaphores, Timeouts and Timers. The applications use
a variety of POSIX objects such as processes, threads, mu-
texes, condition variables, message queues, and semaphores.

They also use sophisticated objects not directly related
to parallelism, including regular files, named pipes, shared
memories, and environment variables. Peculiarities of the
semantics of some of the associated primitives make analysis
in the large especially challenging. For instance, the shmat

function returns a valid pointer upon successful completion,
or -1 in case of failure. To avoid false alarms, we use parti-
tioning techniques which allow the analyzer to distinguish,
by path sensitivity, between normal and error cases. To
facilitate the analysis by non expert engineers in an indus-
trial context, we chose to restrict the scope from complete
POSIX applications to so-called subsets of them. These sub-
sets exist independently from the needs of static analysis, as
part of the (piece-wise) development strategy at Airbus, and
are subject to software integration testing: an application is
typically decomposed into 5 to 10 subsets.

5.2.1 Analysis of a DAL E application
This case study was conducted in by an avionics software

engineer experienced in static analysis, with extensive sup-
port from AstréeA developers. It aimed at analyzing a sub-
set of an avionics application developed at Airbus with low
safety-criticality, composed of 300 K lines of hand-crafted C
code. This application implements embedded system failure
monitoring and correlation to optimize aircraft maintenance
on ground. It is composed of 70 threads, some of which have
the same priority, and sometimes the same entry point. It is
a complex program performing intensive string processing,
and traversing large arrays of structures by means of nested
loops and pointer arithmetics. The case study focused on a
subset of this application composed of 7 threads and 32 K
lines of C. 790 lines of stubs were developed to abstract away
the threads (or parts of threads) excluded from the analysis.
Such stubs are non-deterministic C programs using AstréeA
directives. This work requires a precise knowledge of the
design of the software, and can be inspired by existing sim-
ulations developed for integration testing purposes.

POSIX model.
As for ARINC 653, a library of stubs was developed to

model the POSIX primitives used by the program to be ana-
lyzed. 1200 lines of C code and AstréeA directives were writ-
ten to model 45 API functions, among which 31 are related
to multi-threading. These primitives handle threads, mu-
texes, condition variables, message queues, and semaphores,
but also time, string management and I/Os.

Analysis results and refinement.
The first static analyses yielded about 1300 alarms, while

not covering all accessible code. Therefore the model of the
unanalyzed threads was refined, e.g., adding missing initial-
ization for correctness, and tuning the sets of values that
may be written for precision. AstréeA provides useful in-
dicators for data and control coverage, such as the set of
unanalyzed control points and invariants reduced to single-
tons (i.e., variables deemed stuck to their initial values).

if (b==0) { if (b==1) {

access(&X); access(&X);

b=1; b=0;

} }

Figure 4: Mutual exclusions between threads with
arbitrary priorities

The analyzed program was annotated with 197 AstréeA di-
rectives. The subsequent analyses cover all the reachable
control points, while yielding 865 alarms.

Remaining alarms.
Most of the remaining alarms are not related to paral-

lelism but are caused, e.g., by complex string processing and
pointer arithmetic. However, a concurrency-related source
of imprecision is the use, in some cases, of ad hoc boolean
flags playing the role of mutexes to implement critical sec-
tions. This non standard choice is motivated by perfor-
mance or system configuration constraints. For instance,
the algorithm of Fig. 4 synchronizes the access to X between
two threads with arbitrary priorities. The first (resp. sec-
ond) thread accesses X only if the boolean flag b is set to 0
(resp. 1), and then resets b to 1 (resp. 0). Atomic access is
guaranteed by the size of data and the use of the volatile

qualifier for the shared variables b and X. This synchroniza-
tion mechanism is incorrect when considering weakly con-
sistent memories, but it is correct for a real-time scheduler
on a single mono-core processor, provided that complemen-
tary verification activities are conducted to ensure that the
compiler does not suppress nor reorder volatile accesses.

5.2.2 Analysis of DAL C middleware
The next use case was conducted in an industrial environ-

ment, by an intern with no prior exposure to static analysis.
This use case considers a subset of a complex avionics soft-
ware platform. The full platform features 11 privileged mul-
tithreaded POSIX processes, running on top of an embedded
real-time operating system offering POSIX services to appli-
cations. The platform is composed of 400 K lines of C, more
than 80% of which are hand-written. It implements a vari-
ety of communication protocols, as well as human-machine
interface functions.

The case study addresses the process in charge of inter-
active cockpit displays. It is composed of 33 K lines of C
and 4 threads. The process reads a set of constant binary
configuration files at start up, which must be taken into ac-
count to prove the correctness of the application. Hence,
we model precisely a part of the file system service, includ-
ing the constant file data. The library of stubs of POSIX
primitives from case study 5.2.1 was also extended with 25
new system calls used by this process, including: named
pipes (used to read inputs) and shared memories (to com-
municate with other privileged processes of the platform).
Significant adaptations of the existing primitives were also
necessary, as the underlying operating system implements
a different version of POSIX, with different implementation
choices. Altogether, 70 API functions were modelled in a
POSIX stub library comprising 1000 lines of C with AstréeA
directives. The model of the environment of the analyzed
process (including a model of the non-analyzed processes)
is only a few tens of lines long and models asynchronous

writes into pipes and shared memories. The program itself
was annotated by means of 228 AstréeA directives. Current
analyses exhibit 932 alarms, i.e., a 94.5% selectivity. Ongo-
ing experiments target other processes of the same avionics
platform.

5.3 Analysis of an OS fragment
Our last case study is an on-going project to analyze a

part of an embedded operating system with AstréeA. We fo-
cus on the component providing ARINC 653 entry points to
applications. We analyze almost all of the component, in-
cluding the underlying implementation of preemptive multi-
threading through a priority-driven scheduler and the var-
ious communication objects, timers, error handling mecha-
nisms, but excluding machine-language context switching.

Stubbing and modeling.
The ARINC 653 implementation communicates to appli-

cations as they perform system calls. To achieve a stand-
alone analysis of the implementation that takes into account
all its execution contexts, we have written a 1.3 Kloc analysis
driver. Firstly, it takes care of calling ARINC 653 initial-
ization routines (this is normally performed as part of OS
bootstraping, which we do not analyze as it is in assembly).
Secondly, it provides abstract configuration tables that de-
clare an arbitrary number (up to the system limit) of ARINC
653 objects of arbitrary name and properties. Normally, the
OS is compiled with a fixed set of partitions (conceptually
similar to POSIX processes), each composed of a fixed set of
threads, described by a table fixed at compilation. Instead
of a fixed table, our analysis considers the set of all valid
tables. Thirdly, it models an arbitrary application execu-
tion by issuing all possible sequences of ARINC 653 system
calls with all possible argument values (within the range
authorized by the specification). We use non-determinism
extensively to achieve, in a single analysis, a sound coverage
of a large number of execution environments. The result
is an analysis that is sound for any multi-partition multi-
thread application respecting the API contract. Note that,
when analyzing ARINC 653 applications (Sec. 5.1), we ex-
plicitly checked API contracts by inserting into the OS stubs
assertions that are verified by the analyzer. Thus, separate
analyses of the OS and the applications ensure the safety
of the whole system. An additional 150 line stub provides
a C implementation for assembly functions. Most notably,
threads and context switching are implemented in the OS by,
respectively, allocating a stack for each thread and switch-
ing stacks, which cannot be expressed in C. In our model,
we associate instead an AstréeA thread to each stack and
model stack switching as a non-deterministic wait allowing
arbitrary threads to run. Handling concurrency is critical to
model soundly all the cases where several threads and par-
titions access concurrently the ARINC 653 implementation.

Results.
An early experiment conducted in an academic setting

achieved a 94.3% selectivity rate within 22 mn computation
time and 900 MB memory consumption. The false alarms
come from data-structures and program patterns never en-
countered by AstréeA before, and for which it lacks dedicated
abstract domains. We stress the fact that a better precision
can be achieved, in the future, by specializing the analysis
to this new class of software. This experiment validates the

fact that sound static analyses checking significant parts of
embedded operating systems are possible, and that AstréeA
provides a promising architecture to achieve it.

6. RELATED WORK
The problem of verifying concurrent systems has been

considered by formal methods for decades. Many works
have been inspired by Jones’ rely–guarantee reasoning [15],
primarily to design deductive methods, although AstréeA’s
static analysis applies similar principles to abstract inter-
pretation instead. Deductive methods put a heavy burden
on the user by requiring manual code annotations and, es-
pecially, providing, for each thread, a model of its environ-
ment (i.e., of the other threads). Moreover, deductive tools
for concurrent programs are not as mature as for sequential
programs. Sequential deductive methods are used at Airbus
to replace unit-testing, as interfaces must be developed for
such tests anyway. Model checking can also handle concur-
rent programs, but suffers from state (in explicit state meth-
ods) or path (in SAT-based methods) explosition problems,
that have only been partially addressed by partial-order re-
duction methods. Hence, popular software model checkers
often explore only a part of software behaviors (in bounded
or context bounded model checking), which is useful to find
errors but cannot serve for verification. An application to
the model-checking of ARINC 653 software is reported in
[21]. Static analysis by abstract interpretation allows, on
the other hand, designing sound and automated tools, mak-
ing it well suited for industrial use, provided that scalability
and precision objectives can be reached. Apart from the
work on Astrée and AstréeA discussed at length in this ar-
ticle, thread-modular static analysis has been considered in
other works. The Goblint analyzer [22] focuses only on de-
tecting data-races. The POSIX Thread analysis of Carré
and Hymans [7] uses non-relational abstractions, which lim-
its its precision. We refer the reader to [9] for an in-depth
comparison of various formal methods and static analysis
techniques. Dynamic analyzers, such as Valgrind, are also
popular tools, but have a different purpose: they can be
used for testing and debugging but, as they are not sound,
cannot be employed to gain certification credit and replace
less cost-effective verification methods.

7. CONCLUSION
The use of formal methods in embedded avionics software

is now sanctioned by Certification Authorities, in the DO-
178C and DO-333 international standards. They can thus
complement or replace some reviews, intellectual analyses
and tests required for certification. Formal methods are par-
ticularly satisfying as they provide strong guarantees based
on rigorous mathematical theories. Their use is however
subject to the availability of tool sets that both comply with
DO-333 requirements and are cost-effective in an industrial
context. Sound static analysis tools present a compelling
choice: for instance, the Astrée industrial analyzer is being
used at Airbus to help verifying non-functional safety prop-
erties of large sequential C codes. For concurrent software,
however, no industrial tool exists. We have discussed As-
tréeA, a prototype extension of Astrée to concurrent C code,
presented several case studies analyzing a variety of concur-
rent avionics software, and reported promising experimental
results. A key factor is that 4 out of our 6 studies were suc-

cessfully conducted by engineers in an industrial context,
which shows that our tool is mature and cost effective.

Future work.
For static analysis of concurrent software to be fully ex-

ploitable for certification in avionics industries, two lines of
work need to be conducted.

It is necessary to improve the precision, automation, and
generality of current analyzers. Reducing the number of
false alarms is critical because, for certification, each alarm
must be proved to be spurious by other, more costly means
(such as code review). In the limited scope of synchronous
fly-by-wire, Astrée was able to achieve the 0 false alarm goal
on specific code. For more complex, concurrent, less crit-
ical software, a more modest objective is acceptable, i.e.:
one alarm for every 500 lines in hand-written code, and
one alarm for 10000 lines of automatically generated code
(which is almost but not quite reached in our case stud-
ies). Furthermore, the results reported here were achieved
at the cost of a significant manual parameterization of the
analysis. The automated parameterization techniques from
Astrée must be adapted to the codes targeted by AstréeA to
achieve a full automation. Finally, models of the underlying
operating systems are necessary to conduct a sound analysis.
Currently, only ARINC 653 and a subset of POSIX Threads
are supported. Future work will consider additional mod-
els, including larger subsets of POSIX, alternate operating
systems, or implementation-specific variants.

The analysis must also be integrated into industrial pro-
cesses. A first step, which is underway, is to transfer AstréeA
to a suitable tool provider company, able to provide support
and extensions to industrial end-users. The analyzer then
needs to be qualified by the industrial end-user, in the con-
text of avionics software products to be certified. After this
step, the source-level analysis of AstréeA will be usable to
automate reviews and analyses of source code required by
DO-178. To go further and alleviate robustness tests, DO-
333 requires that a proof of soundness with respect to the
binary is provided. An attractive solution on sequential soft-
ware is to use a certified C compiler, such as CompCert [3],
that ensures that a proof performed on the C source is also
valid on the binary. For AstréeA, the proof of equivalence
between source and binary must be extended to concurrent
programs. Additionally, we must make sure that CompCert
and AstréeA have equivalent formal notions of the semantics
of C programs. We believe that, in the near future, certifi-
cation objectives using formal methods can be achieved on
concurrent avionics software. We are confident that sound
static analysis, and in particular AstréeA, can also benefit
other industries employing concurrent embedded software
with similarly stringent certification processes.

8. REFERENCES
[1] DO-178C: Software considerations in airborne systems

and equipment certification, 2011.

[2] Aeronautical Radio Inc. ARINC 653. Avionics
application software standard interface, Mar. 2006.

[3] R. Bedin França, D. Favre-Felix, X. Leroy, M. Pantel,
and J. Souyris. Towards formally verified optimizing
compilation in flight control software. In PPES 2011,
volume 18 of OASIcs, pages 59–68, 2011.

[4] J. Bertrane, P. Cousot, R. Cousot, J. Feret,
L. Mauborgne, A. Miné, and X. Rival. Static analysis

and verification of aerospace software by abstract
interpretation. In AIAA Infotech@Aerospace, number
2010-3385, pages 1–38. AIAA, Apr. 2010.

[5] B. Blanchet, P. Cousot, R. Cousot, J. Feret,
L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
A static analyzer for large safety-critical software. In
PLDI’03, pages 196–207. ACM, June 2003.

[6] D. Brown, H. Delseny, K. Hayhurst, and V. Wiels.
Guidance for using formal methods in a certification
context. In ERTS’12, 2012.

[7] J.-L. Carré and C. Hymans. From single-thread to
multithreaded: An efficient static analysis algorithm.
Technical Report arXiv:0910.5833v1, EADS, 2009.

[8] P. Cousot and R. Cousot. Abstract interpretation: A
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In
POPL’77, pages 238–252. ACM, Jan. 1977.

[9] P. Cousot, R. Cousot, J. Feret, L. Mauborgne,
A. Miné, D. Monniaux, and X. Rival. Varieties of
static analyzers: A comparison with Astrée. In
TASE’07, pages 3–17. IEEE, June 2007.

[10] P. Cuoq, D. Delmas, S. Duprat, and V. M. Lamiel.
Fan-C, a Frama-C plug-in for data flow verification. In
ERTS’12. SIA, 2012.

[11] D. Delmas and J. Souyris. Astrée: from research to
industry. In SAS’07, volume 4634 of LNCS, pages
437–451. Springer, Aug. 2007.

[12] S. Duprat, D. Favre-Félix, and J. Souyris. Formal
verification workbench for airbus avionics software. In
ERTS’08. SIA, 2008.

[13] J. Feret. Static analysis of digital filters. In ESOP’04,
volume 2986 of LNCS, pages 33–48. Springer, 2004.

[14] IEEE Computer Society and The Open Group.
POSIX API amendment 2: Threads extension.
Technical report, ANSI/IEEE Std. 1003.1c-1995, 1995.

[15] C. B. Jones. Development Methods for Computer
Programs including a Notion of Interference. PhD
thesis, Oxford University, Jun. 1981.

[16] A. Miné. The octagon abstract domain. Higher-Order
and Symbolic Computation, 19(1):31–100, 2006.

[17] A. Miné. Static analysis of run-time errors in
embedded critical parallel C programs. In ESOP’11,
volume 6602 of LNCS, pages 398–418. Springer, 2011.

[18] A. Miné. Relational thread-modular static value
analysis by abstract interpretation. In VMCAI’14,
volume 8318 of LNCS, pages 39–58. Springer, 2014.

[19] J. Souyris, E. L. Pavec, G. Himbert, V. Jégu, and
G. Borios. Computing the worst case execution time
of an avionics program by abstract interpretation. In
WCET, pages 21–24, 2005.

[20] J. Souyris, V. Wiels, D. Delmas, and H. Delseny.
Formal verification of avionics software products.
pages 532–546, 2009.

[21] S. Thompson, A. Venet, and G. Brat. Software model
checking of ARINC-653 flight code with MCP. In
NASA Formal Methods, pages 171–181, 2010.

[22] V. Vojdani and V. Vene. Goblint: path-sensitive data
race analysis. In SPLST’07, 2007.

[23] C. B. Watkins and R. Walter. Transitioning from
federated avionics architectures to integrated modular
avionics. In DASC’07, pages 1–10. IEEE, Oct. 2007.

