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Embedded critical systems, such as planes and cars, cannot be easily fixed
during missions and any error can have catastrophic consequences. It is thus
primordial to ensure the correctness of their controlling software before they
are deployed. At the very least, critical embedded software must be exempt
from runtime errors, including ill-defined operations according to the specifica-
tion of the language (such as arithmetic or memory overflows) as well as failure
of programmer-inserted assertions. Sound and approximate static analysis can
help, by providing tools able to analyze the large codes found in the industry in
a fully automated way and without missing any real error. Sound and scalable
static analyzers are sometimes thought to be too imprecise and report too many
false alarms to be of any use in the context of verification. This claim was dis-
proved when, a decade ago [2], the Astrée static analyzer [1] successfully analyzed
the runtime errors in several Airbus control flight software, with few or no false
alarm. This result could be achieved by employing abstract interpretation [4],
a principled framework to define and compose modular sound-by-construction
and parametric abstractions, but also by adopting a design-by-refinement devel-
opment strategy. Starting from an efficient and easy to design, but rather coarse,
fully flow- and context-sensitive interval analyzer, we integrated more complex
abstractions (carefully chosen from the literature, such as octagons [10], adapted
from it, such as trace partitioning [9], or specifically invented for our needs, such
as digital filter domains [6]) to remove large sets of related false alarms, until we
reached our precision target.

In this presentation, we discuss our on-going efforts towards a similar goal:
the efficient and precise sound verification of the absence of run-time errors, but
targeting another, more complex class of software: shared-memory concurrent
embedded C software. Such software are already present in critical systems and
will likely become the norm with the generalization of multi-core processors in
embedded systems, leading to new challenging demands in verification. Our ana-
lyzer is named AstréeA [5], in reference to Astrée on which it takes its inspiration
and on the code base of which it elaborates. AstréeA’s specialization target is a
family of several embedded avionic codes, each featuring a small fixed set of a
dozen threads, more than 1.5 Mlines of C code, implicit communication through
the shared memory, and running under a real-time OS based on the ARINC 653
specification.



One major challenge is that a concurrent program execution does not fol-
low a fixed sequential order, but one of many interleavings of executions from
different tasks chosen by the scheduler. A sound analysis must consider all pos-
sible interleavings in order to cover every corner case and race condition. As it
is impractical to build a fully flow-sensitive analysis by enumerating explicitly
all interleavings, we took inspiration from thread-modular methods: we analyze
each thread individually, in an environment consisting of (an abstraction of) the
effect of the other threads. This is a form of rely-guarantee reasoning [8], but
in a fully automatic static analysis settings formalized as abstract interpreta-
tion. Contrary to Jones’ seminal rely-guarantee proof method or its more recent
incarnations [7], our method does not require manual annotations: thread in-
terferences are automatically inferred by the analysis (including which variables
are actually shared and their possible values). Following the classic methodology
of abstract interpretation [4,3], a thread-modular static analysis is now viewed
as a computable abstraction of a complete concrete thread-modular semantics.
This permits a fine control between precision and efficiency, and opens the way
to analysis specialization: any given safety property of a given program can be
theoretically inferred given the right abstract domain.

Following the design-by-refinement principle of Astrée, our first prototype
AstréeA [11] used a very coarse but efficient flow-insensitive and non-relational
notion of thread interference: it gathered independently for each variable and
each thread an interval abstraction of the values the thread can store into the
variable along its execution, and injected these values as non-deterministic writes
into other threads. This abstraction allowed us to scale up to our target appli-
cations, in efficiency (a few tens of hours of computation) if not in precision (a
few tens of thousands alarms).

This presentation will describe our subsequent work in improving the preci-
sion of AstréeA by specialization on our target applications, and the interesting
abstractions we developed along the way. For instance, we developed new inter-
ference abstractions enabling a limited but controllable (for efficiency) degree of
relationality and flow-sensitivity [12]. We also designed abstractions able to ex-
ploit our knowledge of the real-time scheduler used in the analysis target: i.e., it
schedules tasks on a single core and obeys a strict priority scheme.1 The resulting
analysis is less general, but more precise on our target applications, which was
deemed necessary as the correctness of the applications relies on these hypothe-
ses on the scheduler.2 Finally, not all false alarms are caused by our abstraction
of concurrency; we also developed numeric and memory domains to handle more
precisely some programming patterns which we did not encounter in our previous
experience with Astrée and for which no stock abstract domain was available.

1 The scheduler remains fully preemptive: a low-priority thread may be interrupted
at any point by a higher-priority thread whose request to an external resource has
just been granted, resulting in a large number of possible thread interleavings.

2 It is important not to confuse here specialization with restriction: the scheduler
abstraction is optional and can be omitted to achieve a more general, but less spe-
cialized analysis.



The end-result is a more precise analyzer on our target applications, with cur-
rently around a thousand alarms. We stress that AstréeA is a work in progress
and that its results, although they are not yet as impressive as those of Astrée,
are likely to improve through further specialization. We also believe that, thanks
to the intrinsic modularity of the abstract interpretation framework, the anal-
ysis performed by AstréeA can be adapted to other settings (other families of
applications, other schedulers, other concurrency models) by developing new ab-
stractions, while the abstractions we designed along the journey may also be of
use in similar or different static analyses.
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