A combinatorial proof of strong normalisation for the simply typed λ -calculus

Alexandre Miquel

(DRAFT)

Abstract

We present a combinatorial proof of strong normalisation for the simply typed λ -calculus [1], by exhibiting a measure function from simplytyped λ -terms to natural numbers that decreases at each reduction step. This proof is a variant of Gandy's proof of normalization [2].

1 The simply typed λ -calculus

Simple types are inductively defined from the following two clauses:

- The symbol ι is a simple type (the ground type);
- If τ and σ are simple types, then so is $\tau \to \sigma$ (an arrow type).

Each simple type τ is equipped with an infinite set of symbols that are called the *variables of type* τ (notation: x^{τ} , y^{τ} , z^{τ} , etc.) We assume that the sets of variables associated to distinct simple types are disjoint. Simply typed λ -terms are inductively defined as follows:

- If x^{τ} is a variable of type τ , then x^{τ} is a simply typed λ -term of type τ ;
- If x^{τ} is a variable of type τ and if M is a simply typed λ -term of type σ , then $\lambda x^{\tau} \cdot M$ is a simply typed λ -term of type $\tau \to \sigma$;
- If M is a simply typed λ -term of type $\tau \to \sigma$ and if N is a simply typed λ -term of type τ , then MN is a simply typed λ -term of type σ .

Typed substitution $M\{x^{\tau} := N\}$ is defined as expected (with the constraint that N is a simply typed λ -term of type τ). One step β -reduction (notation: $M \succ_1 M'$) is inductively defined by the following rules:

$$\begin{array}{c} \hline (\lambda x^{\tau} \, . \, M) N \ \succ_1 \ M\{x^{\tau} := N\} \\ \\ \hline \frac{M \ \succ_1 \ M'}{\lambda x^{\tau} \, . \, M \ \succ_1 \ \lambda x^{\tau} \, . \, M'} \quad \frac{M \ \succ_1 \ M'}{MN \ \succ_1 \ M'N} \quad \frac{N \ \succ_1 \ N'}{MN \ \succ_1 \ MN'} \end{array}$$

Finally, the set of *strongly normalising terms*, written SN, is inductively defined by the unique clause:

• If for all $M', M \succ_1 M'$ implies $M' \in SN$, then $M \in SN$

The aim of this paper is to show that

Theorem 1 — All the simply typed λ -terms are strongly normalising.

2 Interpretation of types

To define the measure function, we associate to each simple type τ a set $|\tau|$ equipped with a well-founded ordering $\ll_{\tau} \subset |\tau| \times |\tau|$. Formally, the pair $(|\tau|, \ll_{\tau})$ is inductively defined on τ as follows:

- $|\iota| = \mathbb{N}$, and \ll_{ι} is the (usual) strict ordering $<_{\mathbb{N}}$ over natural numbers;
- $|\tau \to \sigma|$ is the set of all increasing functions from $|\tau|$ to $|\sigma|$, that is:

$$|\tau \to \sigma| = \{ f \in |\sigma|^{|\tau|}; \quad \forall v, v' \in |\tau| \ (v \ll_{\tau} v' \Rightarrow f(v) \ll_{\sigma} f(v')) \}$$

whereas $\ll_{\tau \to \sigma}$ is the corresponding extensional (strict) ordering:

 $f \ll_{\tau \to \sigma} g$ iff $\forall v \in |\tau| \quad f(v) \ll_{\sigma} g(v)$ $(f, g \in |\tau \to \sigma|)$

It is straightforward to check that

Proposition 1 – For every simple type τ , the relation \ll_{τ} is transitive.

Proof. By induction on τ .

On the other hand, well-foundedness—and even irreflexivity—of the binary relation \ll_{τ} is not that obvious, for it relies on the fact that none of the sets $|\tau|$ is empty.¹ To establish this, we need to define some extra structures.

2.1 Translation

Each set $|\tau|$ is equipped with an asymmetric binary operation of translation $+_{\tau} : |\tau| \times \mathbb{N} \to |\tau|$ which is inductively defined for all $k \in \mathbb{N}$ by

$$n +_{\iota} k = n +_{\mathbb{N}} k \qquad (n \in |\iota|)$$

$$f +_{\tau \to \sigma} k = (v \in |\tau| \mapsto f(v) +_{\sigma} k) \qquad (f \in |\tau \to \sigma|)$$

Proposition 2 — For all simple types τ :

- The operation $+_{\tau} : |\tau| \times \mathbb{N} \to |\tau|$ is well defined;
- $v \ll_{\tau} v'$ implies $v +_{\tau} k \ll v' +_{\tau} k$ for all $v, v' \in |\tau|$ and $k \in \mathbb{N}$.

Proof. Both items are proved simultaneously, by induction on τ .

Proposition 3 — For all $v \in |\tau|$ and $k, k' \in \mathbb{N}$:

- 1. $v +_{\tau} 0 = v$
- 2. $(v +_{\tau} k) +_{\tau} k' = v +_{\tau} (k + k').$
- 3. $k <_{\mathbb{N}} k'$ implies $v +_{\tau} k \ll_{\tau} v +_{\tau} k'$;

Proof. By induction on τ .

¹Would the set $|\tau|$ be empty for some type τ , then the set $|\tau \to \iota|$ would be the singleton formed by the empty function $\emptyset : \emptyset \to \mathbb{N}$ (which is increasing). By definition of the relation $\ll_{\tau \to \iota}$, one would have $\emptyset \ll_{\tau \to \iota} \emptyset$, so that $\ll_{\tau \to \iota}$ would be not well-founded.

2.2 The objects τ_* and τ^*

For each simple type τ , we want to define an element $\tau_* \in |\tau|$ together with an increasing function $\tau^* : |\tau| \to \mathbb{N}$ that we call the *collapse function* associated to the type τ . These structures are defined by mutual induction on τ by

$$\begin{array}{rrrrr} \iota_* &=& 0 & (\tau \to \sigma)_* &=& (v \in |\tau| \mapsto \sigma_* +_\sigma \tau^*(v)) \\ \iota^*(n) &=& n & (\tau \to \sigma)^*(f) &=& \sigma^*(f(\tau_*)) \end{array}$$

for all $n \in |\iota|$ and $f \in |\tau \to \sigma|$. We then check that

Proposition 4 — For all simple types τ :

- 1. $\tau_* \in |\tau|$ and
- 2. $v \ll_{\tau} v'$ implies $\tau^*(v) <_{\mathbb{N}} \tau^*(v')$ for all $v, v' \in |\tau|$.

Proof. Both items are proved simultaneously, by induction on τ .

From the very existence of τ_* and τ^* we get:

Corollary 5 — For all simple types τ , the set $|\tau|$ is inhabited and the relation \ll_{τ} is a well-founded strict ordering on this set.

Let us also notice that τ_* and τ^* enjoy the following algebraic properties:

Proposition 6 — For all simple types τ :

1. $\tau^*(\tau_*) = 0;$ 2. $\tau^*(v + \tau k) = \tau^*(v) + k$ (for all $v \in |\tau|$ and $k \in \mathbb{N}$).

2.3 Large ordering

Similarly to the definition of \ll_{τ} , we define a partial order \leq_{τ} on each set $|\tau|$ by setting:

$$\begin{array}{rcl} n \leq_{\iota} n' &\equiv& n \leq_{\mathbb{N}} n' \\ f \leq_{\tau \to \sigma} f' &\equiv& \forall v \in |\tau| \quad f(v) \leq_{\sigma} f(v') \end{array} \qquad (n, n' \in |\iota|) \\ \end{array}$$

By a straightforward induction on τ we check that:

Proposition 7 — The relation \leq_{τ} is a partial order on $|\tau|$ that contains the strict ordering \ll_{τ} , and for all $v, v', v'' \in |\tau|$ one has:

- 1. $v \ll_{\tau} v'$ and $v' \leq_{\tau} v''$ imply $v \ll_{\tau} v''$;
- 2. $v \leq_{\tau} v'$ and $v' \ll_{\tau} v''$ imply $v \ll_{\tau} v''$.

Moreover, the collapse function $\tau^* : |\tau| \to \mathbb{N}$ is monotonic, as well as the operation of translation $+_{\tau} : |\tau| \times \mathbb{N} \to |\tau|$:

Proposition 8 — For all $v, v' \in |\tau|$ and $k, k' \in \mathbb{N}$:

- 1. If $v \leq_{\tau} v'$, then $\tau^*(v) \leq_{\mathbb{N}} \tau^*(v')$;
- 2. If $v \leq_{\tau} v'$ and $k \leq_{\mathbb{N}} k'$, then $v +_{\tau} k \leq_{\tau} v' +_{\tau} k'$.

Proof. We first prove item 2 by induction on τ , and then item 1.

Actually, we can even characterize \ll_{τ} from \leq_{τ} and $+_{\tau}$:

Proposition 9 — For all
$$v, v' \in |\tau|$$
: $v \ll_{\tau} v'$ iff $v +_{\tau} 1 \leq_{\tau} v'$

Proof. By induction on τ .

3 Interpretation of simply typed λ -terms

3.1 Valuations

A valuation is a function ϕ that associates an object $\phi(x^{\tau}) \in |\tau|$ to each variable x^{τ} . Given two valuations ϕ and ϕ' , we write

 $\phi \leq \phi'$ iff $\phi(x^{\tau}) \leq_{\tau} \phi'(x^{\tau})$ for all variables x^{τ} .

Given a valuation, a variable x^{τ} and a value $v \in |\tau|$, we write $(\phi, x^{\tau} \leftarrow v)$ the valuation defined by

$$\begin{array}{rcl} (\phi, x^{\tau} \leftarrow v)(x^{\tau}) &=& v \\ (\phi, x^{\tau} \leftarrow v)(y^{\sigma}) &=& \phi(y^{\sigma}) & \text{for all variables } y^{\sigma} \neq x^{\tau} \,. \end{array}$$

This operation is monotonic in the sense that $(\phi, x^{\tau} \leftarrow v) \leq (\phi', x^{\tau} \leftarrow v')$ as soon as $\phi \leq \phi'$ and $v \leq_{\tau} v'$.

3.2 The interpretation function

To each pair formed by a term M of type τ and a valuation ϕ , we associate an object $[M]_{\phi} \in |\tau|$. Formally, the function $\phi \mapsto [M]_{\phi}$ is defined by induction on M for all ϕ by the equations:

$$\begin{aligned} & [x^{\tau}]_{\phi} &= \phi(x^{\tau}) \\ & [\lambda x^{\tau} \cdot M]_{\phi} &= (v \in |\tau| \mapsto [M]_{(\phi; x^{\tau} \leftarrow v)} +_{\sigma} (\tau^*(v) + 1)) \\ & [MN]_{\phi} &= [M]_{\phi} ([N]_{\phi}) \end{aligned}$$

We check that:

Proposition 10 — For all simply typed λ -terms M of type τ :

- 1. $[M]_{\phi} \in |\tau|$ for all valuations ϕ ;
- 2. $\phi \leq \phi'$ implies $[M]_{\phi} \leq_{\tau} [M]_{\phi'}$ for all valuations ϕ and ϕ' .

Proof. Both items are proved simultaneously, by induction on M.

Proposition 11 — Given a term M of type σ , a variable x^{τ} , a term N of type τ and a valuation ϕ , we have:

$$[M\{x^{\tau} := N\}]_{\phi} = [M]_{(\phi, x^{\tau} \leftarrow [N]_{\phi})}$$

Proof. By induction on M.

Proposition 12 — Let M and M' be two terms of type τ . If $M \succ_1 M'$, then $[M']_{\phi} \ll_{\tau} [M]_{\phi}$ for all valuations ϕ .

Proof. By induction on the derivation of one-step reduction:

• $(\lambda x^{\tau} \cdot M)N \succ_1 M\{x := N\}$ (Base case).

For all valuations ϕ we have

$$[(\lambda x^{\tau} . M)N]_{\phi} = [M]_{(\phi;x^{\tau} \leftarrow [N]_{\phi})} +_{\sigma} (\tau^{*}([N]_{\phi}) + 1))$$
 (Def. of [_])

whereas

$$[M\{x := N\}]_{\phi} = [M]_{(\phi; x^{\tau} \leftarrow [N]_{\phi})}$$
 (Prop. 11)

Hence we get $[M\{x := N\}]_{\phi} \ll_{\sigma} [(\lambda x^{\tau} \cdot M)N]_{\phi}$, since $\tau^*([N]_{\phi}) + 1 > 0$.

• $\lambda x . M \succ_1 \lambda x . M'$, from $M \succ_1 M'$ (ξ -rule).

Let ϕ be a valuation. By IH, we have $[M']_{(\phi;x^{\tau}\leftarrow v)} \ll_{\sigma} [M]_{(\phi;x^{\tau}\leftarrow v)}$ for all $v \in |\tau|$, and thus

$$[M']_{(\phi;x^{\tau}\leftarrow v)} +_{\sigma} (\tau^{*}(v)+1) \ll_{\sigma} [M]_{(\phi;x^{\tau}\leftarrow v)} +_{\sigma} (\tau^{*}(v)+1)$$

for all $v \in |\tau|$. Hence $[\lambda x^{\tau} \cdot M']_{\phi} \ll_{\tau \to \sigma} [\lambda x^{\tau} \cdot M]_{\phi}$.

• $MN \succ_1 M'N$, from $M \succ_1 M'$ (Application, left). Let ϕ be a valuation. By IH we have $[M']_{\phi} \ll_{\tau \to \sigma} [M]_{\phi}$, hence

$$[M'N]_{\phi} = [M']_{\phi}([N]_{\phi}) \ll_{\sigma} [M]_{\phi}([N]_{\phi}) = [MN]_{\phi}$$

by definition of the strict order $\ll_{\tau \to \sigma}$.

• $MN \succ_1 MN'$, from $N \succ_1 N'$ (Application, right). Let ϕ be a valuation. By IH we have $[N']_{\phi} \ll_{\tau} [N]_{\phi}$, hence

$$[MN']_{\phi} = [M]_{\phi}([N']_{\phi}) \ll_{\sigma} [M]_{\phi}([N]_{\phi}) = [MN]_{\phi}$$

since the function $[M]_\phi$ is increasing.

3.3 The measure function ε^{τ}

Fix an arbitrary valuation ϕ_0 —for instance the valuation² which is defined by setting $\phi_0(x^{\tau}) = \tau_*$ for all variables x^{τ} . To each term M of type τ , we now associate a natural number $\varepsilon^{\tau}(M)$ by setting:

$$\varepsilon^{\tau}(M) = \tau^*([M]_{\phi_0}).$$

From Prop. 4 and Prop. 12 it is now clear that

Proposition 13 — If $M \succ_1 M'$, then $\varepsilon(M') <_{\mathbb{N}} \varepsilon(M)$.

Theorem 1 is then immediate.

 $^{^{2}}$ As for any normalisation proof, we critically need the fact that the interpretation of every type is inhabited in order to build a valuation and conclude.

References

- H. P. Barendregt. Lambda Calculi with Types. Handbook of Logic in Computer Science, Vol. 2, Oxford University Press, 1992.
- [2] R. O. Gandy. Proofs of strong normalization. In J. P. Seldin, J. R. Hindley, eds.: To H. B. Curry: Essays in Combinatory Logic, Lambda Calculus, and Formalism, p. 457–477. Academic Press, 1980.