A combinatorial proof of strong normalisation
for the simply typed A-calculus

Alexandre Miquel
(DRAFT)

Abstract
We present a combinatorial proof of strong normalisation for the sim-
ply typed A-calculus [1], by exhbiting a measure function from simply-
typed A-terms to natural numbers that decreases at each reduction step.
This proof is a variant of Gandy’s proof of normalization [2].

1 The simply typed A-calculus

Simple types are inductively defined from the following two clauses:

e The symbol ¢ is a simple type (the ground type);

e If 7 and o are simple types, then so is 7 — & (an arrow type).

Each simple type 7 is equipped with an infinite set of symbols that are called
the variables of type T (notation: =7, y7, 27, etc.) We assume that the sets of
variables associated to distinct simple types are disjoint. Simply typed A-terms
are inductively defined as follows:

e If 27 is a variable of type 7, then x7 is a simply typed A-term of type ;

e If 27 is a variable of type 7 and if M is a simply typed A-term of type o,
then A\z” . M is a simply typed A-term of type 7 — o;

e If M is a simply typed A-term of type 7 — o and if NV is a simply typed
A-term of type 7, then M N is a simply typed A-term of type o.

Typed substitution M{z™ := N} is defined as expected (with the constraint
that N is a simply typed A-term of type 7). One step (-reduction (notation:
M =1 M) is inductively defined by the following rules:

(AT .M)N =, M{z":=N}
M = M’ M = M’ N = N’
AxT .M = Mz .M’ MN =, M'N MN >, MN’

Finally, the set of strongly normalising terms, written SN, is inductively defined
by the unique clause:

o If for all M', M =1 M’ implies M’ € SN, then M € SN
The aim of this paper is to show that

Theorem 1 — All the simply typed A-terms are strongly normalising.

2 Interpretation of types

To define the measure function, we associate to each simple type 7 a set |7|
equipped with a well-founded ordering <, C |7| X |7|. Formally, the pair
(I7], <+) is inductively defined on 7 as follows:

e || =N, and <, is the (usual) strict ordering <y over natural numbers;

e |7 — o] is the set of all increasing functions from |7| to |o|, that is:
T —o| = {felo|™ W elr] W<V = fv) <o f(V))}
whereas < ,_, is the corresponding extensional (strict) ordering:

f<enog i Vel fv) <o g(v) (frgelr—oal)
It is straightforward to check that

Proposition 1 — For every simple type T, the relation <, is transitive.

Proof. By induction on . O

On the other hand, well-foundedness—and even irreflexivity—of the binary
relation <, is not that obvious, for it relies on the fact that none of the sets |7|
is empty.! To establish this, we need to define some extra structures.

2.1 Translation

Each set |7| is equipped with an asymmetric binary operation of translation
+; 1 |7] x N — |7| which is inductively defined for all k¥ € N by

n+,k = n4nk (n €)
fhraok = (Welr|= f(v)+5 k) (felr—oal)
Proposition 2 — For all simple types T:

e The operation +, : |7| x N — |7| is well defined;
o v &, v implies v+, k< v +, k for all v,v’ € |r| and k € N.

Proof. Both items are proved simultaneously, by induction on 7. O

Proposition 3 — For all v € |7| and k, k' € N:
1.v+,0=v
2. (k) +- K =v+- (K+E).
3. k <y K implies v+, k <, v+, K

Proof. By induction on 7. O

IWould the set |7| be empty for some type 7, then the set |7 — | would be the singleton
formed by the empty function @ : & — N (which is increasing). By definition of the relation
< r—,, one would have @ <,_,, &, so that <,_,, would be not well-founded.

2.2 The objects 7, and 7*

For each simple type 7, we want to define an element 7, € |7| together with an
increasing function 7* : |7| — N that we call the collapse function associated to
the type 7. These structures are defined by mutual induction on 7 by

e = 0 (t—0) = (VE|T| = 04+, 7(V))

(n) = n (r—=0)(f) = o (f(=))
for all n € || and f € |7 — o|. We then check that

Proposition 4 — For all simple types 7:
1. 1. € 7] and
2. v &, v implies T (v) <y (V') for all v,v" € |7|.
Proof. Both items are proved simultaneously, by induction on 7. O

From the very existence of 7, and 7" we get:

Corollary 5 — For all simple types T, the set |T| is inhabited and the relation
<, s a well-founded strict ordering on this set.

Let us also notice that 7. and 7* enjoy the following algebraic properties:

Proposition 6 — For all simple types T:
1. 7(1) = 0;
2. T"(v+r k) =7"(v)+k (forallve|r| and k € N).

2.3 Large ordering

Similarly to the definition of <., we define a partial order <, on each set |7|
by setting:

n<,n n <y n' (n,n' € [¢])

f <o f Vo elr] fv) <o f(V) (f.f elr—oal)

By a straightforward induction on 7 we check that:

Proposition 7 — The relation <, is a partial order on || that contains the
strict ordering <., and for all v,v',v" € || one has:
1. v, v and v <, v imply v <, V”;

2. v <, v and v <, V" imply v <, 0.

Moreover, the collapse function 7* : |r| — N is monotonic, as well as the
operation of translation +, : |7| x N — |7]:

Proposition 8 — For all v,v" € |7| and k, k" € N:
1. Ifv <, 0/, then 7*(v) <y 7*(v');
2. Ifv<,v and k <y k', then v+, k <, v +, k'

Proof. We first prove item 2 by induction on 7, and then item 1. O

Actually, we can even characterize <, from <, and +,:

Proposition 9 — For all v,v" € |7|: v <. v iff v+,1<, 0.

Proof. By induction on 7. O

3 Interpretation of simply typed A-terms

3.1 Valuations

A waluation is a function ¢ that associates an object ¢(x”) € |7| to each vari-
able 7. Given two valuations ¢ and ¢, we write

p<¢ it @a") <, ¢ (27) for all variables z7 .

Given a valuation, a variable 7 and a value v € |7|, we write (¢, 27 « v) the
valuation defined by

(¢, 27 —v)(27) = v
(¢, 27 —v)(y?) = o(y?) for all variables y7 # 27 .

This operation is monotonic in the sense that (¢, 27 «— v) < (¢, 27 «— v') as
soon as ¢ < ¢’ and v <, v'.

3.2 The interpretation function

To each pair formed by a term M of type 7 and a valuation ¢, we associate
an object [M], € |7|. Formally, the function ¢ — [M], is defined by induction
on M for all ¢ by the equations:

7]y = ¢(a7)
a7 Mg = (velr] = [M](garv) +o (T%(v) + 1))
[MN]g = [M]s([N]y)

We check that:
Proposition 10 — For all simply typed \-terms M of type T:
1. [M]y € |7| for all valuations ¢;
2. ¢ < ¢ implies [M)y <, [M]y for all valuations ¢ and ¢'.
Proof. Both items are proved simultaneously, by induction on M. O

Proposition 11 — Given a term M of type o, a variable 7, a term N of
type T and a valuation ¢, we have:

[M{z" := N} = [M](42m—[N],) -

Proof. By induction on M. O

Proposition 12 — Let M and M’ be two terms of type 7. If M =1 M', then
[M']y <+ [M]y for all valuations ¢.

Proof. By induction on the derivation of one-step reduction:
o (\z" . M)N =1 M{z:= N} (Base case).
For all valuations ¢ we have

(™ M)Nly = [M]garinyy) +o (7(N]5)+1) (Def. of [])

whereas
[M{z = N}], = [M](¢;x*H[N]¢) (Prop. 11)

Hence we get [M{z := N}]y <, [(Ax™.M)N],, since 7%([N]y) +1 > 0.

o \x. M =1 Ax. M, from M »; M’ (&rule).

Let ¢ be a valuation. By IH, we have [M'] (4.0) <o [M] (427 for all
v € |7|, and thus

[M/](¢;x‘f<—v) +o (T*('U) + 1) <z [M](qﬁ;ncﬂ—v) +o (T* (U) + 1)
for all v € |7]. Hence [Az™ . M']y <o (A2 . M],.

e MN >y M'N, from M =y M’ (Application, left).
Let ¢ be a valuation. By IH we have [M']y <;_,, [M]4, hence

[M'N], = [M']s([Nly) <o [M]s([N]g) = [MN]g
by definition of the strict order <_,.

e MN >1 MN', from N >=; N’ (Application, right).
Let ¢ be a valuation. By IH we have [N'], <, [N],, hence

[MN']y = [M]s([N']s) <o [M]s([N]s) = [MN]
since the function [M], is increasing. O

3.3 The measure function &7

Fix an arbitrary valuation ¢o—for instance the valuation? which is defined by
setting ¢g(x”) = 7. for all variables 7. To each term M of type 7, we now
associate a natural number €™ (M) by setting:

e"(M) = 7 ([M]g,)-
From Prop. 4 and Prop. 12 it is now clear that
Proposition 13 — If M =1 M’, then e(M') <y e(M).

Theorem 1 is then immediate.

2 As for any normalisation proof, we critically need the fact that the interpretation of every
type is inhabited in order to build a valuation and conclude.

References

[1] H. P. Barendregt. Lambda Calculi with Types. Handbook of Logic in Com-
puter Science, Vol. 2, Oxford University Press, 1992.

[2] R. O. Gandy. Proofs of strong normalization. In J. P. Seldin, J. R. Hindley,
eds.: To H. B. Curry: Essays in Combinatory Logic, Lambda Calculus, and
Formalism, p. 457-477. Academic Press, 1980.

