A combinatorial proof of strong normalisation for the simply typed λ-calculus

Alexandre Miquel

(DRAFT)

Abstract

We present a combinatorial proof of strong normalisation for the simply typed λ-calculus [1], by exhbiting a measure function from simplytyped λ-terms to natural numbers that decreases at each reduction step. This proof is a variant of Gandy's proof of normalization [2].

1 The simply typed λ-calculus

Simple types are inductively defined from the following two clauses:

- The symbol ι is a simple type (the ground type);
- If τ and σ are simple types, then so is $\tau \rightarrow \sigma$ (an arrow type).

Each simple type τ is equipped with an infinite set of symbols that are called the variables of type τ (notation: $x^{\tau}, y^{\tau}, z^{\tau}$, etc.) We assume that the sets of variables associated to distinct simple types are disjoint. Simply typed λ-terms are inductively defined as follows:

- If x^{τ} is a variable of type τ, then x^{τ} is a simply typed λ-term of type τ;
- If x^{τ} is a variable of type τ and if M is a simply typed λ-term of type σ, then $\lambda x^{\tau} . M$ is a simply typed λ-term of type $\tau \rightarrow \sigma$;
- If M is a simply typed λ-term of type $\tau \rightarrow \sigma$ and if N is a simply typed λ-term of type τ, then $M N$ is a simply typed λ-term of type σ.
Typed substitution $M\left\{x^{\tau}:=N\right\}$ is defined as expected (with the constraint that N is a simply typed λ-term of type τ). One step β-reduction (notation: $\left.M \succ_{1} M^{\prime}\right)$ is inductively defined by the following rules:

$$
\frac{M \succ_{1} M^{\prime}}{M N \succ_{1} M^{\prime} N} \quad \frac{N \succ_{1} N^{\prime}}{M N \succ_{1} M N^{\prime}}
$$

Finally, the set of strongly normalising terms, written SN, is inductively defined by the unique clause:

- If for all $M^{\prime}, M \succ_{1} M^{\prime}$ implies $M^{\prime} \in \mathrm{SN}$, then $M \in \mathrm{SN}$

The aim of this paper is to show that
Theorem 1 - All the simply typed λ-terms are strongly normalising.

2 Interpretation of types

To define the measure function, we associate to each simple type τ a set $|\tau|$ equipped with a well-founded ordering $<_{\tau} \subset|\tau| \times|\tau|$. Formally, the pair $\left(|\tau|,<_{\tau}\right)$ is inductively defined on τ as follows:

- $|\iota|=\mathbb{N}$, and $<_{\iota}$ is the (usual) strict ordering $<_{\mathbb{N}}$ over natural numbers;
- $|\tau \rightarrow \sigma|$ is the set of all increasing functions from $|\tau|$ to $|\sigma|$, that is:

$$
|\tau \rightarrow \sigma|=\left\{f \in|\sigma|^{|\tau|} ; \quad \forall v, v^{\prime} \in|\tau| \quad\left(v<_{\tau} v^{\prime} \Rightarrow f(v)<_{\sigma} f\left(v^{\prime}\right)\right)\right\}
$$

whereas $<_{\tau \rightarrow \sigma}$ is the corresponding extensional (strict) ordering:

$$
f<_{\tau \rightarrow \sigma} g \quad \text { iff } \quad \forall v \in|\tau| \quad f(v)<_{\sigma} g(v) \quad(f, g \in|\tau \rightarrow \sigma|)
$$

It is straightforward to check that
Proposition 1 - For every simple type τ, the relation $<_{\tau}$ is transitive.
Proof. By induction on τ.
On the other hand, well-foundedness-and even irreflexivity - of the binary relation $<_{\tau}$ is not that obvious, for it relies on the fact that none of the sets $|\tau|$ is empty. ${ }^{1}$ To establish this, we need to define some extra structures.

2.1 Translation

Each set $|\tau|$ is equipped with an asymmetric binary operation of translation $+_{\tau}:|\tau| \times \mathbb{N} \rightarrow|\tau|$ which is inductively defined for all $k \in \mathbb{N}$ by

$$
\begin{aligned}
n+{ }_{\iota} k & =n+_{\mathbb{N}} k & (n \in|\iota|) \\
f+{ }_{\tau \rightarrow \sigma} k & =\left(v \in|\tau| \mapsto f(v)+_{\sigma} k\right) & (f \in|\tau \rightarrow \sigma|)
\end{aligned}
$$

Proposition 2 - For all simple types τ :

- The operation $+_{\tau}:|\tau| \times \mathbb{N} \rightarrow|\tau|$ is well defined;
- $v \ll{ }_{\tau} v^{\prime}$ implies $v+{ }_{\tau} k \ll v^{\prime}+_{\tau} k$ for all $v, v^{\prime} \in|\tau|$ and $k \in \mathbb{N}$.

Proof. Both items are proved simultaneously, by induction on τ.

Proposition 3 - For all $v \in|\tau|$ and $k, k^{\prime} \in \mathbb{N}$:

1. $v+{ }_{\tau} 0=v$
2. $\left(v+{ }_{\tau} k\right)+{ }_{\tau} k^{\prime}=v+_{\tau}\left(k+k^{\prime}\right)$.
3. $k<_{\mathbb{N}} k^{\prime}$ implies $v{ }_{\tau} k \ll_{\tau} v+_{\tau} k^{\prime}$;

Proof. By induction on τ.

[^0]
2.2 The objects τ_{*} and τ^{*}

For each simple type τ, we want to define an element $\tau_{*} \in|\tau|$ together with an increasing function $\tau^{*}:|\tau| \rightarrow \mathbb{N}$ that we call the collapse function associated to the type τ. These structures are defined by mutual induction on τ by

$$
\begin{aligned}
\iota_{*} & =0 & (\tau \rightarrow \sigma)_{*} & =\left(v \in|\tau| \mapsto \sigma_{*}+{ }_{\sigma} \tau^{*}(v)\right) \\
\iota^{*}(n) & =n & (\tau \rightarrow \sigma)^{*}(f) & =\sigma^{*}\left(f\left(\tau_{*}\right)\right)
\end{aligned}
$$

for all $n \in|\iota|$ and $f \in|\tau \rightarrow \sigma|$. We then check that
Proposition 4 - For all simple types τ :

1. $\tau_{*} \in|\tau|$ and
2. $v<_{\tau} v^{\prime}$ implies $\tau^{*}(v)<_{\mathbb{N}} \tau^{*}\left(v^{\prime}\right)$ for all $v, v^{\prime} \in|\tau|$.

Proof. Both items are proved simultaneously, by induction on τ.
From the very existence of τ_{*} and τ^{*} we get:
Corollary 5 - For all simple types τ, the set $|\tau|$ is inhabited and the relation $<_{\tau}$ is a well-founded strict ordering on this set.

Let us also notice that τ_{*} and τ^{*} enjoy the following algebraic properties:
Proposition 6 - For all simple types τ :

1. $\tau^{*}\left(\tau_{*}\right)=0$;
2. $\tau^{*}\left(v+{ }_{\tau} k\right)=\tau^{*}(v)+k \quad($ for all $v \in|\tau|$ and $k \in \mathbb{N})$.

2.3 Large ordering

Similarly to the definition of $<_{\tau}$, we define a partial order \leq_{τ} on each set $|\tau|$ by setting:

$$
\begin{array}{rlr}
n \leq_{\iota} n^{\prime} & \equiv n \leq_{\mathbb{N}} n^{\prime} & \left(n, n^{\prime} \in|\iota|\right) \\
f \leq_{\tau \rightarrow \sigma} f^{\prime} & \equiv \forall v \in|\tau| f(v) \leq_{\sigma} f\left(v^{\prime}\right) & \left(f, f^{\prime} \in|\tau \rightarrow \sigma|\right)
\end{array}
$$

By a straightforward induction on τ we check that:
Proposition 7 - The relation \leq_{τ} is a partial order on $|\tau|$ that contains the strict ordering $<_{\tau}$, and for all $v, v^{\prime}, v^{\prime \prime} \in|\tau|$ one has:

1. $v<_{\tau} v^{\prime}$ and $v^{\prime} \leq_{\tau} v^{\prime \prime}$ imply $v<_{\tau} v^{\prime \prime}$;
2. $v \leq_{\tau} v^{\prime}$ and $v^{\prime}<_{\tau} v^{\prime \prime}$ imply $v<_{\tau} v^{\prime \prime}$.

Moreover, the collapse function $\tau^{*}:|\tau| \rightarrow \mathbb{N}$ is monotonic, as well as the operation of translation $+_{\tau}:|\tau| \times \mathbb{N} \rightarrow|\tau|$:

Proposition 8 - For all $v, v^{\prime} \in|\tau|$ and $k, k^{\prime} \in \mathbb{N}$:

1. If $v \leq_{\tau} v^{\prime}$, then $\tau^{*}(v) \leq_{\mathbb{N}} \tau^{*}\left(v^{\prime}\right)$;
2. If $v \leq_{\tau} v^{\prime}$ and $k \leq_{\mathbb{N}} k^{\prime}$, then $v+_{\tau} k \leq_{\tau} v^{\prime}+{ }_{\tau} k^{\prime}$.

Proof. We first prove item 2 by induction on τ, and then item 1.

Actually, we can even characterize $<_{\tau}$ from \leq_{τ} and $+_{\tau}$:

Proposition $9-$ For all $v, v^{\prime} \in|\tau|: v<_{\tau} v^{\prime}$ iff $v+_{\tau} 1 \leq_{\tau} v^{\prime}$.
Proof. By induction on τ.

3 Interpretation of simply typed λ-terms

3.1 Valuations

A valuation is a function ϕ that associates an object $\phi\left(x^{\tau}\right) \in|\tau|$ to each variable x^{τ}. Given two valuations ϕ and ϕ^{\prime}, we write

$$
\phi \leq \phi^{\prime} \quad \text { iff } \quad \phi\left(x^{\tau}\right) \leq_{\tau} \phi^{\prime}\left(x^{\tau}\right) \quad \text { for all variables } x^{\tau} .
$$

Given a valuation, a variable x^{τ} and a value $v \in|\tau|$, we write $\left(\phi, x^{\tau} \leftarrow v\right)$ the valuation defined by

$$
\begin{aligned}
& \left(\phi, x^{\tau} \leftarrow v\right)\left(x^{\tau}\right)=v \\
& \left(\phi, x^{\tau} \leftarrow v\right)\left(y^{\sigma}\right)=\phi\left(y^{\sigma}\right) \quad \text { for all variables } y^{\sigma} \neq x^{\tau} .
\end{aligned}
$$

This operation is monotonic in the sense that $\left(\phi, x^{\tau} \leftarrow v\right) \leq\left(\phi^{\prime}, x^{\tau} \leftarrow v^{\prime}\right)$ as soon as $\phi \leq \phi^{\prime}$ and $v \leq_{\tau} v^{\prime}$.

3.2 The interpretation function

To each pair formed by a term M of type τ and a valuation ϕ, we associate an object $[M]_{\phi} \in|\tau|$. Formally, the function $\phi \mapsto[M]_{\phi}$ is defined by induction on M for all ϕ by the equations:

$$
\begin{aligned}
{\left[x^{\tau}\right]_{\phi} } & =\phi\left(x^{\tau}\right) \\
{\left[\lambda x^{\tau} \cdot M\right]_{\phi} } & =\left(v \in|\tau| \mapsto[M]_{\left(\phi ; x^{\tau} \leftarrow v\right)}+{ }_{\sigma}\left(\tau^{*}(v)+1\right)\right) \\
{[M N]_{\phi} } & =[M]_{\phi}\left([N]_{\phi}\right)
\end{aligned}
$$

We check that:
Proposition 10 - For all simply typed λ-terms M of type τ :

1. $[M]_{\phi} \in|\tau|$ for all valuations ϕ;
2. $\phi \leq \phi^{\prime}$ implies $[M]_{\phi} \leq_{\tau}[M]_{\phi^{\prime}}$ for all valuations ϕ and ϕ^{\prime}.

Proof. Both items are proved simultaneously, by induction on M.

Proposition 11 - Given a term M of type σ, a variable x^{τ}, a term N of type τ and a valuation ϕ, we have:

$$
\left[M\left\{x^{\tau}:=N\right\}\right]_{\phi}=[M]_{\left(\phi, x^{\tau} \leftarrow[N]_{\phi}\right)} .
$$

Proof. By induction on M.

Proposition 12 - Let M and M^{\prime} be two terms of type τ. If $M \succ_{1} M^{\prime}$, then $\left[M^{\prime}\right]_{\phi}<_{\tau}[M]_{\phi}$ for all valuations ϕ.

Proof. By induction on the derivation of one-step reduction:

- $\left(\lambda x^{\tau} \cdot M\right) N \succ_{1} M\{x:=N\} \quad$ (Base case).

For all valuations ϕ we have

$$
\left.\left[\left(\lambda x^{\tau} \cdot M\right) N\right]_{\phi}=[M]_{\left(\phi ; x^{\tau} \leftarrow[N]_{\phi}\right)}+_{\sigma}\left(\tau^{*}\left([N]_{\phi}\right)+1\right)\right) \quad(\text { Def. of }[-])
$$

whereas

$$
\begin{equation*}
[M\{x:=N\}]_{\phi}=[M]_{\left(\phi ; x^{\tau} \leftarrow[N]_{\phi}\right)} \tag{Prop.11}
\end{equation*}
$$

Hence we get $[M\{x:=N\}]_{\phi}<_{\sigma}\left[\left(\lambda x^{\tau} . M\right) N\right]_{\phi}$, since $\tau^{*}\left([N]_{\phi}\right)+1>0$.

- $\lambda x . M \succ_{1} \lambda x . M^{\prime}$, from $M \succ_{1} M^{\prime} \quad(\xi$-rule $)$.

Let ϕ be a valuation. By IH, we have $\left[M^{\prime}\right]_{\left(\phi ; x^{\tau} \leftarrow v\right)}<_{\sigma}[M]_{\left(\phi ; x^{\tau} \leftarrow v\right)}$ for all $v \in|\tau|$, and thus

$$
\left[M^{\prime}\right]_{\left(\phi ; x^{\tau} \leftarrow v\right)}++_{\sigma}\left(\tau^{*}(v)+1\right) \ll_{\sigma} \quad[M]_{\left(\phi ; x^{\tau} \leftarrow v\right)}+{ }_{\sigma}\left(\tau^{*}(v)+1\right)
$$

for all $v \in|\tau|$. Hence $\left[\lambda x^{\tau} . M^{\prime}\right]_{\phi}<_{\tau \rightarrow \sigma}\left[\lambda x^{\tau} . M\right]_{\phi}$.

- $M N \succ_{1} M^{\prime} N$, from $M \succ_{1} M^{\prime} \quad$ (Application, left).

Let ϕ be a valuation. By IH we have $\left[M^{\prime}\right]_{\phi}<_{\tau \rightarrow \sigma}[M]_{\phi}$, hence

$$
\left[M^{\prime} N\right]_{\phi}=\left[M^{\prime}\right]_{\phi}\left([N]_{\phi}\right) \ll_{\sigma} \quad[M]_{\phi}\left([N]_{\phi}\right)=[M N]_{\phi}
$$

by definition of the strict order $<_{\tau \rightarrow \sigma}$.

- $M N \succ_{1} M N^{\prime}$, from $N \succ_{1} N^{\prime}$ (Application, right).

Let ϕ be a valuation. By IH we have $\left[N^{\prime}\right]_{\phi}<_{\tau}[N]_{\phi}$, hence

$$
\left[M N^{\prime}\right]_{\phi}=[M]_{\phi}\left(\left[N^{\prime}\right]_{\phi}\right) \ll_{\sigma} \quad[M]_{\phi}\left([N]_{\phi}\right)=[M N]_{\phi}
$$

since the function $[M]_{\phi}$ is increasing.

3.3 The measure function ε^{τ}

Fix an arbitrary valuation ϕ_{0}-for instance the valuation ${ }^{2}$ which is defined by setting $\phi_{0}\left(x^{\tau}\right)=\tau_{*}$ for all variables x^{τ}. To each term M of type τ, we now associate a natural number $\varepsilon^{\tau}(M)$ by setting:

$$
\varepsilon^{\tau}(M)=\tau^{*}\left([M]_{\phi_{0}}\right) .
$$

From Prop. 4 and Prop. 12 it is now clear that
Proposition 13 - If $M \succ_{1} M^{\prime}$, then $\varepsilon\left(M^{\prime}\right)<_{\mathbb{N}} \varepsilon(M)$.

$$
\text { Theorem } 1 \text { is then immediate. }
$$

[^1]
References

[1] H. P. Barendregt. Lambda Calculi with Types. Handbook of Logic in Computer Science, Vol. 2, Oxford University Press, 1992.
[2] R. O. Gandy. Proofs of strong normalization. In J. P. Seldin, J. R. Hindley, eds.: To H. B. Curry: Essays in Combinatory Logic, Lambda Calculus, and Formalism, p. 457-477. Academic Press, 1980.

[^0]: ${ }^{1}$ Would the set $|\tau|$ be empty for some type τ, then the set $|\tau \rightarrow \iota|$ would be the singleton formed by the empty function $\varnothing: \varnothing \rightarrow \mathbb{N}$ (which is increasing). By definition of the relation $<_{\tau \rightarrow \iota}$, one would have $\varnothing \ll{ }_{\tau \rightarrow \iota} \varnothing$, so that $\ll \tau \rightarrow \iota$ would be not well-founded.

[^1]: ${ }^{2}$ As for any normalisation proof, we critically need the fact that the interpretation of every type is inhabited in order to build a valuation and conclude.

