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Abstract
We present a combinatorial proof of strong normalisation for the sim-

ply typed λ-calculus [1], by exhbiting a measure function from simply-
typed λ-terms to natural numbers that decreases at each reduction step.
This proof is a variant of Gandy’s proof of normalization [2].

1 The simply typed λ-calculus

Simple types are inductively defined from the following two clauses:

• The symbol ι is a simple type (the ground type);

• If τ and σ are simple types, then so is τ → σ (an arrow type).

Each simple type τ is equipped with an infinite set of symbols that are called
the variables of type τ (notation: xτ , yτ , zτ , etc.) We assume that the sets of
variables associated to distinct simple types are disjoint. Simply typed λ-terms
are inductively defined as follows:

• If xτ is a variable of type τ , then xτ is a simply typed λ-term of type τ ;

• If xτ is a variable of type τ and if M is a simply typed λ-term of type σ,
then λxτ .M is a simply typed λ-term of type τ → σ;

• If M is a simply typed λ-term of type τ → σ and if N is a simply typed
λ-term of type τ , then MN is a simply typed λ-term of type σ.

Typed substitution M{xτ := N} is defined as expected (with the constraint
that N is a simply typed λ-term of type τ). One step β-reduction (notation:
M �1 M ′) is inductively defined by the following rules:

(λxτ .M)N �1 M{xτ := N}

M �1 M ′

λxτ .M �1 λxτ .M ′
M �1 M ′

MN �1 M ′N

N �1 N ′

MN �1 MN ′

Finally, the set of strongly normalising terms, written SN, is inductively defined
by the unique clause:

• If for all M ′, M �1 M ′ implies M ′ ∈ SN, then M ∈ SN

The aim of this paper is to show that

Theorem 1 — All the simply typed λ-terms are strongly normalising.
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2 Interpretation of types

To define the measure function, we associate to each simple type τ a set |τ |
equipped with a well-founded ordering �τ ⊂ |τ | × |τ |. Formally, the pair
(|τ |,�τ ) is inductively defined on τ as follows:

• |ι| = N, and �ι is the (usual) strict ordering <N over natural numbers;

• |τ → σ| is the set of all increasing functions from |τ | to |σ|, that is:

|τ → σ| =
{
f ∈ |σ||τ |; ∀v, v′ ∈ |τ | (v �τ v′ ⇒ f(v)�σ f(v′))

}
whereas �τ→σ is the corresponding extensional (strict) ordering:

f �τ→σ g iff ∀v ∈ |τ | f(v)�σ g(v) (f, g ∈ |τ → σ|)

It is straightforward to check that

Proposition 1 — For every simple type τ , the relation �τ is transitive.

Proof. By induction on τ . 2

On the other hand, well-foundedness—and even irreflexivity—of the binary
relation �τ is not that obvious, for it relies on the fact that none of the sets |τ |
is empty.1 To establish this, we need to define some extra structures.

2.1 Translation

Each set |τ | is equipped with an asymmetric binary operation of translation
+τ : |τ | × N→ |τ | which is inductively defined for all k ∈ N by

n +ι k = n +N k
f +τ→σ k = (v ∈ |τ | 7→ f(v) +σ k)

(n ∈ |ι|)
(f ∈ |τ → σ|)

Proposition 2 — For all simple types τ :

• The operation +τ : |τ | × N→ |τ | is well defined;

• v �τ v′ implies v +τ k � v′ +τ k for all v, v′ ∈ |τ | and k ∈ N.

Proof. Both items are proved simultaneously, by induction on τ . 2

Proposition 3 — For all v ∈ |τ | and k, k′ ∈ N:

1. v +τ 0 = v

2. (v +τ k) +τ k′ = v +τ (k + k′).

3. k <N k′ implies v +τ k �τ v +τ k′;

Proof. By induction on τ . 2

1Would the set |τ | be empty for some type τ , then the set |τ → ι| would be the singleton
formed by the empty function ∅ : ∅ → N (which is increasing). By definition of the relation
�τ→ι, one would have ∅ �τ→ι ∅, so that �τ→ι would be not well-founded.
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2.2 The objects τ∗ and τ ∗

For each simple type τ , we want to define an element τ∗ ∈ |τ | together with an
increasing function τ∗ : |τ | → N that we call the collapse function associated to
the type τ . These structures are defined by mutual induction on τ by

ι∗ = 0 (τ → σ)∗ = (v ∈ |τ | 7→ σ∗ +σ τ∗(v))
ι∗(n) = n (τ → σ)∗(f) = σ∗(f(τ∗))

for all n ∈ |ι| and f ∈ |τ → σ|. We then check that

Proposition 4 — For all simple types τ :

1. τ∗ ∈ |τ | and

2. v �τ v′ implies τ∗(v) <N τ∗(v′) for all v, v′ ∈ |τ |.

Proof. Both items are proved simultaneously, by induction on τ . 2

From the very existence of τ∗ and τ∗ we get:

Corollary 5 — For all simple types τ , the set |τ | is inhabited and the relation
�τ is a well-founded strict ordering on this set.

Let us also notice that τ∗ and τ∗ enjoy the following algebraic properties:

Proposition 6 — For all simple types τ :

1. τ∗(τ∗) = 0;

2. τ∗(v +τ k) = τ∗(v) + k (for all v ∈ |τ | and k ∈ N).

2.3 Large ordering

Similarly to the definition of �τ , we define a partial order ≤τ on each set |τ |
by setting:

n ≤ι n′ ≡ n ≤N n′

f ≤τ→σ f ′ ≡ ∀v ∈ |τ | f(v) ≤σ f(v′)
(n, n′ ∈ |ι|)

(f, f ′ ∈ |τ → σ|)

By a straightforward induction on τ we check that:

Proposition 7 — The relation ≤τ is a partial order on |τ | that contains the
strict ordering �τ , and for all v, v′, v′′ ∈ |τ | one has:

1. v �τ v′ and v′ ≤τ v′′ imply v �τ v′′;

2. v ≤τ v′ and v′ �τ v′′ imply v �τ v′′.

Moreover, the collapse function τ∗ : |τ | → N is monotonic, as well as the
operation of translation +τ : |τ | × N→ |τ |:

Proposition 8 — For all v, v′ ∈ |τ | and k, k′ ∈ N:

1. If v ≤τ v′, then τ∗(v) ≤N τ∗(v′);

2. If v ≤τ v′ and k ≤N k′, then v +τ k ≤τ v′ +τ k′.

Proof. We first prove item 2 by induction on τ , and then item 1. 2
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Actually, we can even characterize �τ from ≤τ and +τ :

Proposition 9 — For all v, v′ ∈ |τ |: v �τ v′ iff v +τ 1 ≤τ v′.

Proof. By induction on τ . 2

3 Interpretation of simply typed λ-terms

3.1 Valuations

A valuation is a function φ that associates an object φ(xτ ) ∈ |τ | to each vari-
able xτ . Given two valuations φ and φ′, we write

φ ≤ φ′ iff φ(xτ ) ≤τ φ′(xτ ) for all variables xτ .

Given a valuation, a variable xτ and a value v ∈ |τ |, we write (φ, xτ ← v) the
valuation defined by

(φ, xτ ← v)(xτ ) = v
(φ, xτ ← v)(yσ) = φ(yσ) for all variables yσ 6= xτ .

This operation is monotonic in the sense that (φ, xτ ← v) ≤ (φ′, xτ ← v′) as
soon as φ ≤ φ′ and v ≤τ v′.

3.2 The interpretation function

To each pair formed by a term M of type τ and a valuation φ, we associate
an object [M ]φ ∈ |τ |. Formally, the function φ 7→ [M ]φ is defined by induction
on M for all φ by the equations:

[xτ ]φ = φ(xτ )
[λxτ .M ]φ =

(
v ∈ |τ | 7→ [M ](φ;xτ←v) +σ (τ∗(v) + 1)

)
[MN ]φ = [M ]φ

(
[N ]φ

)
We check that:

Proposition 10 — For all simply typed λ-terms M of type τ :

1. [M ]φ ∈ |τ | for all valuations φ;

2. φ ≤ φ′ implies [M ]φ ≤τ [M ]φ′ for all valuations φ and φ′.

Proof. Both items are proved simultaneously, by induction on M . 2

Proposition 11 — Given a term M of type σ, a variable xτ , a term N of
type τ and a valuation φ, we have:

[M{xτ := N}]φ = [M ](φ,xτ←[N ]φ) .

Proof. By induction on M . 2
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Proposition 12 — Let M and M ′ be two terms of type τ . If M �1 M ′, then
[M ′]φ �τ [M ]φ for all valuations φ.

Proof. By induction on the derivation of one-step reduction:

• (λxτ .M)N �1 M{x := N} (Base case).

For all valuations φ we have

[(λxτ .M)N ]φ = [M ](φ;xτ←[N ]φ) +σ (τ∗([N ]φ) + 1)
)

(Def. of [ ])

whereas
[M{x := N}]φ = [M ](φ;xτ←[N ]φ) (Prop. 11)

Hence we get [M{x := N}]φ �σ [(λxτ .M)N ]φ, since τ∗([N ]φ) + 1 > 0.

• λx .M �1 λx .M ′, from M �1 M ′ (ξ-rule).

Let φ be a valuation. By IH, we have [M ′](φ;xτ←v) �σ [M ](φ;xτ←v) for all
v ∈ |τ |, and thus

[M ′](φ;xτ←v) +σ (τ∗(v) + 1) �σ [M ](φ;xτ←v) +σ (τ∗(v) + 1)

for all v ∈ |τ |. Hence [λxτ .M ′]φ �τ→σ [λxτ .M ]φ.

• MN �1 M ′N , from M �1 M ′ (Application, left).

Let φ be a valuation. By IH we have [M ′]φ �τ→σ [M ]φ, hence

[M ′N ]φ = [M ′]φ([N ]φ) �σ [M ]φ([N ]φ) = [MN ]φ

by definition of the strict order �τ→σ.

• MN �1 MN ′, from N �1 N ′ (Application, right).

Let φ be a valuation. By IH we have [N ′]φ �τ [N ]φ, hence

[MN ′]φ = [M ]φ([N ′]φ) �σ [M ]φ([N ]φ) = [MN ]φ

since the function [M ]φ is increasing. 2

3.3 The measure function ετ

Fix an arbitrary valuation φ0—for instance the valuation2 which is defined by
setting φ0(xτ ) = τ∗ for all variables xτ . To each term M of type τ , we now
associate a natural number ετ (M) by setting:

ετ (M) = τ∗([M ]φ0) .

From Prop. 4 and Prop. 12 it is now clear that

Proposition 13 — If M �1 M ′, then ε(M ′) <N ε(M).

Theorem 1 is then immediate.
2As for any normalisation proof, we critically need the fact that the interpretation of every

type is inhabited in order to build a valuation and conclude.
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