Quantitative Semantics for Probabilistic Programing

joint work with T. Ehrhard and M. Pagani

Christine Tasson

Christine.Tasson@irif.fr
Laboratoire IRIF - Université Paris Diderot

A denotational semantics for probabilistic higher-order functional computation,

(based on quantitative semantics of Linear Logic)

Discrete setting:

Probabilistic Coherent Spaces are fully abstract for a programming language with natural numbers as base types suitable to encode discrete probabilistic programs.

Continuous setting:

A CCC of measurable spaces and stable maps that soundly denotes a programming language with reals as base types suitable to encode continuous probabilistic programs.

(1) Discrete Probability

- Syntax: Discrete Probabilistic PCF
- Semantics: Pcoh (Probabilistic Coherent Spaces)
- Results: Probabilistic Adequacy \& Full Abstraction
- Discrete Probabilistic Call By Push Value

(2) Continuous Probability

General Framework	Domains Semantics	Quantitative Semantics				
Types	Continuous dcpos	Proba. spaces (X, \leq)				
$\left(\|X\|, \mathrm{P}(X) \subseteq\left(\mathbb{R}^{+}\right)^{\|X\|}\right)$			$	$	Analytic Functions	
:---:	:---:					
Programs	Scott Continuous					

| Bibliography |
| :--- | :--- |
| 1976 Plotkin |
| 1981 Kozen |
| 1989 Plotkin and Jones |
| 1998 Jung and Tix |
| 2013 Goubault Larrecq and Varraca |
| 2013 Mislove |

Bibliography
1988 Girard
1994 Blute, Panangaden and Seely
2002 Hasegawa
2004 Girard
2011 Danos and Ehrhard
2014 Ehrhard, Pagani, T.
2016 Ehrahrd, T.

General Framework	Domains Semantics	Quantitative Semantics
Types	Continuous dcpos	Proba. spaces (X, \leq)
Programs	Scott Continuous	Analytic Functions
Probability	Proba. monad	Values as proba. distr.

How to interpret a program $M: \mathcal{N} \Rightarrow \mathcal{N}$

Type:
\mathbb{N}_{\perp} flat domain,
$\mathcal{V}\left(\mathbb{N}_{\perp}\right)$ proba. distr. over \mathbb{N}_{\perp},

$$
\begin{aligned}
& \text { Prog: } \llbracket M \rrbracket: \mathbb{N}_{\perp} \rightarrow \mathcal{V}\left(\mathbb{N}_{\perp}\right) \\
& \quad \llbracket \operatorname{let} \mathrm{n}=\mathrm{x} \text { in } \mathrm{M} \rrbracket: \mathcal{V}\left(\mathbb{N}_{\perp}\right) \rightarrow \mathcal{V}\left(\mathbb{N}_{\perp}\right)
\end{aligned}
$$

$$
x \mapsto\left(\sum_{n} \llbracket M \rrbracket_{n, q} x_{n}\right)_{q}
$$

Type:
\mid Nat $\mid=\mathbb{N}$
P (Nat) subproba. dist. over \mathbb{N}
Prog: $\llbracket M \rrbracket: \mathrm{P}(\mathbf{N a t}) \rightarrow \mathrm{P}(\mathbf{N a t})$
$x \mapsto\left(\sum_{\mu=\left[n_{1}, \ldots, n_{k}\right]} \llbracket M \rrbracket_{\mu, q} \prod_{i=1}^{k} x_{n_{i}}\right)_{q}$

General Framework	Domains Semantics	Quantitative Semantics					
Types	Continuous dcpos	Proba. spaces (X, \leq)					
$\left(\|X\|, \mathrm{P}(X) \subseteq\left(\mathbb{R}^{+}\right)^{\|X\|}\right)$			$	$		Analytic Functions	
:---:	:---:	:---:					
Programs	Scott Continuous	Vrobability					
Proba. monad	Values as proba. distr.						

Problematic in domain

Finding a full
subcategory of
continuous dcpos that is:
Cartesian Closed and closed under the proba. monad \mathcal{V}.

Full Abs.: PCOH/pPCF
$\operatorname{Red}(C[M], \underline{n})$
$\forall n, \forall C[]$
$\operatorname{Red}(C[N], \underline{n})$
iff

$$
\llbracket M \rrbracket=\llbracket N \rrbracket .
$$

(1) Discrete Probability

- Syntax: Discrete Probabilistic PCF
- Semantics: Pcoh (Probabilistic Coherent Spaces)
- Results: Probabilistic Adequacy \& Full Abstraction
- Discrete Probabilistic Call By Push Value

(2) Continuous Probability

Syntax of PPCF

Syntax of PPCF:

Types: $\quad A, B::=\mathcal{N} \mid A \rightarrow B$
Terms: $\quad M, N, L::=x\left|\lambda x^{A} \cdot M\right|(M) N|Y M|$

$$
\operatorname{coin}|\underline{n}| \operatorname{succ}(M) \mid \operatorname{ifz}(L, M, N)
$$

Operational Semantics:

$\operatorname{Red}(M, N)$ is the probability that M reduces to N in a step.

$$
\begin{gathered}
\operatorname{Red}\left(\left(\lambda x^{A} \cdot M\right) N, M[N / x]\right)=1, \text { as }\left(\lambda x^{A} \cdot M\right) N \xrightarrow{\stackrel{1}{\rightarrow}} M[N / x] \\
\operatorname{Red}(\operatorname{coin}, \underline{0})=\operatorname{Red}(\operatorname{coin}, \underline{1})=\frac{1}{2}, \text { as } \operatorname{coin} \xrightarrow{\frac{1}{2}} 0
\end{gathered}
$$

If $\vdash M: \mathcal{N}$, then $\operatorname{Red}^{\infty}\left(M,{ }_{-}\right)$is the discrete distribution over \mathbb{N} of all normal forms computed by M.

(1) Discrete Probability

- Syntax: Discrete Probabilistic PCF
- Semantics: Pcoh (Probabilistic Coherent Spaces)
- Results: Probabilistic Adequacy \& Full Abstraction
- Discrete Probabilistic Call By Push Value

(2) Continuous Probability

Types as Probabilistic Coherent Spaces: $(|X|, P(X))$

Proba. Space

$|X|$: the web, a (potentially infinite) set of final states $\mathrm{P}(X)$: a set of vectors $\subseteq\left(\mathbb{R}^{+}\right)^{|X|}$ such that
closure: $\mathbf{P}(\mathbf{X})^{\perp \perp}=\mathbf{P}(\mathbf{X})$ with

$$
\begin{aligned}
& \forall u, v \in\left(\mathbb{R}^{+}\right)^{|X|},\langle u, v\rangle=\sum_{a \in|X|} u_{a} v_{a} \\
& \forall P \subseteq\left(\mathbb{R}^{+}\right)^{|X|}, P^{\perp}=\left\{v \in\left(\mathbb{R}^{+}\right)^{|X|} ; \forall u \in P,\langle u, v\rangle \leq 1\right\}
\end{aligned}
$$

bounded covering: $\forall a \in|X|$,

$$
\exists v \in P(X) ; v_{a} \neq 0 \quad \text { and } \quad \exists p>0, ; \forall v \in \mathrm{P}(X), v_{a} \leq p .
$$

Proposition: Proba. spaces as Domains
$(|X|, \mathrm{P}(X))$ is a Proba. space iff $\mathrm{P}(X)$ is bounded covering, Scott Closed (downwards-closed and dcpo) and Convex.

Types as Probabilistic Coherent Spaces: $(|X|, P(X))$

Example:

$$
P(X) \subseteq\left(\mathbb{R}^{+}\right)^{|X|}
$$

$$
\begin{array}{rlrl}
|\mathbf{1}| & =\{*\} & \mathrm{P}(\mathbf{1}) & =[0,1] \\
\mid \text { Bool } \mid & =\{t, f\} & \mathrm{P}(\text { Bool }) & =\left\{\left(x_{t}, x_{f}\right) ; x_{t}+x_{f} \leq 1\right\} \\
|\mathbf{N a t}| & =\{0,1,2, \ldots\} & \mathrm{P}(\mathbf{N a t}) & =\left\{x \in[0,1]^{\mathbb{N}} ; \sum_{n} x_{n} \leq 1\right\} \\
\mid \text { Bool } \rightarrow \mathbf{1} \mid & =\left\{\left[t^{n}, f^{m}\right] ; n, m \in \mathbb{N}\right\}, \\
\mathrm{P}(\text { Bool } \rightarrow \mathbf{1}) & =\left\{Q \in\left(\mathbb{R}^{+}\right)^{\mid \text {Bool } \rightarrow \mathbf{1} \mid} ;\right. \\
\forall x_{t}+x_{f} \leq 1, & \left.\sum_{n, m=0}^{\infty} Q_{\left[t^{n}, f m\right]} x_{t}^{n} x_{f}^{m} \leq 1\right\}
\end{array}
$$

Proposition: Proba. spaces as Domains
$(|X|, \mathrm{P}(X))$ is a Proba. space iff $\mathrm{P}(X)$ is bounded covering, Scott Closed (downwards-closed and dcpo) and Convex.

A model of Linear Logic

Pcoh: Linear Category
 Objects: Proba. Spaces
 Morphisms: Linear Functions

- Smcc $(1, \otimes, \longrightarrow)$
- biproduct
- Comonad (!, der, dig)

Call by Name $\quad A \rightarrow B=!A \multimap B$

- Com. Comonoid $(!A, \mathbf{1}, \otimes)$

Pcoh!: Kleisli Category

Objects: Proba. Spaces
Morphisms: Analytic Functions

- CCC
- (PCF+coin)

Linear Category

Pcoh (X, Y)

Matrices $Q \in\left(\mathbb{R}^{+}\right)^{|X| \times|Y|}$ such that:

$$
\forall x \in \mathrm{P}(X), Q \cdot x=\left(\sum_{a \in|X|} Q_{a, b} x_{a}\right)_{b} \in \mathrm{P}(Y)
$$

Example

$\operatorname{Pcoh}($ Nat, Nat $):$ Stochastic Matrices $Q \in\left(\mathbb{R}^{+}\right)^{\mathbb{N} \times \mathbb{N}}$.

$$
\forall x \in\left(\mathbb{R}^{+}\right)^{\mathbb{N}} ; \sum_{n \in \mathbb{N}} x_{n} \leq 1, \sum_{m, n \in \mathbb{N}} Q_{m, n} x_{n} \leq 1
$$

Free Commutative Comonoid and Comonad

Exponential

$$
\begin{aligned}
|!X| & =\mathcal{M}_{\text {fin }}(|X|) \text { the set of finite multisets } \\
\mathrm{P}(!X) & =\left\{x^{!} ; x \in \mathrm{P}(X)\right\}^{\perp \perp} \text { where } x_{\left[a_{1}, \ldots, a_{k}\right]}^{\prime}=\prod_{i=1}^{k} x_{a_{i}}
\end{aligned}
$$

Example

Let $\mathbf{B c o i n}=(p, 1-p) \in \mathrm{P}($ Bool $)=\{(p, q) ; p+q \leq 1\}$.
$\operatorname{Bcoin}_{[]}^{!}=1, \quad \operatorname{Bcoin}_{[t, t]}^{!}=p^{2}, \quad \operatorname{Bcoin}_{[t, f]}^{!}=p(1-p), \ldots$

Theorem (2017: Crubillé - Ehrhard - Pagani - T.)
This exponential computes the free commutative comonoid.

Free Commutative Comonoid and Comonad

Exponential

$$
\begin{aligned}
|!X| & =\mathcal{M}_{\text {fin }}(|X|) \text { the set of finite multisets } \\
\mathrm{P}(!X) & =\left\{x^{!} ; x \in \mathrm{P}(X)\right\}^{\perp \perp} \text { where } x_{\left[a_{1}, \ldots, a_{k}\right]}^{\prime}=\prod_{i=1}^{k} x_{a_{i}}
\end{aligned}
$$

Commutative Comonoid
Cocontr.: $!X \xrightarrow{c^{\prime X}}!X \otimes!X$
Coweak.: ! $X \xrightarrow{w^{\prime X}} \mathbf{1}$
Comult.: $\operatorname{dig}_{!x}:!!X \rightarrow!X$ Counit: $\operatorname{der}_{!} X:!X \rightarrow X$

```
Theorem (2017: Crubillé - Ehrhard - Pagani - T.)
```

This exponential computes the free commutative comonoid.

Non Linear Category

$\operatorname{Pcoh}_{!}(X, Y)=\operatorname{Pcoh}(!X, Y)$

Matrices $Q \in\left(\mathbb{R}^{+}\right)^{\mathcal{M}_{\text {fi }}(|X|) \times|Y|}$ such that

$$
\forall U \in \mathrm{P}(!X), Q \cdot U=\left(\sum_{m \in \mathcal{M}_{\text {fin }}(|X|)} Q_{m, b} U_{m}\right)_{b} \in \mathrm{P}(Y)
$$

Non-Linear Morphisms are analytic and Scott Continuous.

$$
\operatorname{Pcoh}_{!}(\text {Bool, } \mathbf{1})=\left\{Q \in\left(\mathbb{R}^{+}\right)^{\mid \text {Bool } \rightarrow \mathbf{1} \mid} \text { s.t. } Q_{\left[t^{n}, f^{m}\right]} \leq \frac{(n+m)^{n+m}}{n^{n} m^{m}}\right\}
$$

$$
\text { let } \operatorname{rec} \mathrm{f} x=
$$

denotes

$$
\text { if } x \text { then if } x \text { then } f x
$$

$$
\left.\begin{gathered}
\text { else () } \\
\text { else if } \mathrm{x} \text { then () } \\
\text { else } f \mathrm{x}
\end{gathered} \right\rvert\, \sum_{n, m=0}^{\infty} \frac{(n+m)!}{n!m!} x_{t}^{2 n+1} x_{f}^{2 m+1}
$$

Non Linear Category

$\operatorname{Pcoh}_{!}(X, Y)=\operatorname{Pcoh}(!X, Y)$

Matrices $Q \in\left(\mathbb{R}^{+}\right)^{\mathcal{M}_{\text {fn }}(|X|) \times|Y|}$ such that if $x_{m}^{!}=\prod_{a \in m} x_{a}^{m(a)}$

$$
\forall x \in \mathrm{P}(X), Q(x)=\left(\sum_{m \in \mathcal{M}_{\text {fin }}(|X|)} Q_{m, b} x_{m}^{!}\right)_{b} \in \mathrm{P}(Y)
$$

Non-Linear Morphisms are analytic and Scott Continuous.

```
\(\operatorname{Pcoh}_{!}(\)Bool, \(\mathbf{1})=\left\{Q \in\left(\mathbb{R}^{+}\right)^{\mid \text {Bool } \rightarrow \mathbf{1} \mid}\right.\) s.t. \(\left.Q_{\left[t^{n}, f^{m}\right]} \leq \frac{(n+m)^{n+m}}{n^{n} m^{m}}\right\}\)
```

let rec f x $=$
if x then if x then $f x$
else ()
else if x then ()
else $\mathrm{f} x$
$\sum_{n, m=0}^{\infty} \frac{(n+m)!}{n!m!} x_{t}^{2 n+1} x_{f}^{2 m+1}$

Non Linear Category

$\operatorname{Pcoh}_{!}(X, Y)=\operatorname{Pcoh}(!X, Y)$

Matrices $Q \in\left(\mathbb{R}^{+}\right)^{\mathcal{M}_{\text {fn }}(|X|) \times|Y|}$ such that if $x_{m}^{!}=\prod_{a \in m} x_{a}^{m(a)}$

$$
\forall x \in \mathrm{P}(X), Q(x)=\left(\sum_{m \in \mathcal{M}_{\text {fin }}(|X|)} Q_{m, b} x_{m}^{!}\right)_{b} \in \mathrm{P}(Y)
$$

Non-Linear Morphisms are analytic and Scott Continuous.

```
\(\operatorname{Pcoh}_{!}(\)Bool, \(\mathbf{1})=\left\{Q \in\left(\mathbb{R}^{+}\right)^{\mid \text {Bool } \rightarrow \mathbf{1} \mid}\right.\) s.t. \(\left.Q_{\left[t^{n}, f^{m}\right]} \leq \frac{(n+m)^{n+m}}{n^{n} m^{m}}\right\}\)
```

let $\operatorname{rec} \mathrm{f}$ x =
if x then if x then $f x$
pb of DEFINABILITY

$$
\left.\begin{gathered}
\text { else () } \\
\text { else if } \mathrm{x} \text { then () } \\
\text { else } \mathrm{f} \times
\end{gathered} \right\rvert\, \sum_{n, m=0}^{\infty} \frac{(n+m)!}{n!m!} x_{t}^{2 n+1} x_{f}^{2 m+1}
$$

(1) Discrete Probability

- Syntax: Discrete Probabilistic PCF
- Semantics: Pcoh (Probabilistic Coherent Spaces)
- Results: Probabilistic Adequacy \& Full Abstraction
- Discrete Probabilistic Call By Push Value

(2) Continuous Probability

Probabilistic Full Abstraction

Theorem (2014: Ehrhard - Pagani - T.)

Pcoh

$$
\llbracket M \rrbracket=\llbracket N \rrbracket \quad \stackrel{\text { Adequacy }}{\stackrel{\text { P }}{\rightleftarrows}} \quad M \simeq \simeq_{0} N
$$

Full Abstraction

pPCF

$$
\operatorname{Red}^{\infty}(C[M], n) \stackrel{\forall C[] \forall n}{=} \operatorname{Red}^{\infty}(C[N], n)
$$

Adequacy Lemma (2011: Danos - Ehrhard):

$$
\text { If } \vdash M: \mathcal{N} \text {, then } \forall n \in \mathbb{N}, \llbracket M \rrbracket_{n}=\operatorname{Red}^{\infty}(M, n) \text {. }
$$

Adequacy proof:
If $\llbracket M \rrbracket=\llbracket N \rrbracket$ then, $\operatorname{Red}^{\infty}((C) M, \underline{n})=\operatorname{Red}^{\infty}((C) N, \underline{n})$
(1) Apply Adequacy Lemma:

$$
\operatorname{Red}^{\infty}((C) M, \underline{n})=\llbracket(C) M \rrbracket .
$$

(2) Apply Compositionality:

Probabilistic Full Abstraction

Theorem (2014: Ehrhard - Pagani - T.)

Pcoh

$$
\llbracket M \rrbracket=\llbracket N \rrbracket \quad \stackrel{\text { Adequacy }}{\Longleftrightarrow} \quad M \simeq_{0} N
$$

Full Abstraction

pPCF

$$
\operatorname{Red}^{\infty}(C[M], n) \stackrel{\forall C[] \forall n}{=} \operatorname{Red}^{\infty}(C[N], n)
$$

Adequacy Lemma (2011: Danos - Ehrhard):

$$
\text { If } \vdash M: \mathcal{N} \text {, then } \forall n \in \mathbb{N}, \llbracket M \rrbracket_{n}=\operatorname{Red}^{\infty}(M, n) \text {. }
$$

Full Abstraction proof:

- Find testing terms that depend only on points of the web.
- Use regularity of analytic functions.

(1) Discrete Probability

- Syntax: Discrete Probabilistic PCF
- Semantics: Pcoh (Probabilistic Coherent Spaces)
- Results: Probabilistic Adequacy \& Full Abstraction
- Discrete Probabilistic Call By Push Value

(2) Continuous Probability

How to encode a LasVegas Algorithm?

Input: A $\underline{0} / \underline{1}$ array of length $n \geq 2$ s.t. $\frac{1}{2}$ cells are $\underline{0}$.

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 4 & 5 \\
\hline \underline{0} & \underline{1} & \underline{0} & \underline{1} & \underline{1} & \underline{0} \\
\hline
\end{array}
$$

Output: Find the index of a cell containing $\underline{0}$.

Caml:
let rec LasVegas (f: nat -> nat) (n:nat) = let $\mathrm{k}=$ random n in
if ($\mathrm{f} k=0$) then k
else LasVegas f n

How to encode a LasVegas Algorithm?

Input: A $\underline{0} / \underline{1}$ array of length $n \geq 2$ s.t. $\frac{1}{2}$ cells are $\underline{0}$.

$$
\begin{array}{|l|llllllllll}
0 & 1 & 2 & 3 & 4 & 5 \\
\hline \underline{0} & \underline{1} & \underline{0} & \underline{1} & \underline{1} & \underline{0} \\
\hline
\end{array}
$$

Output: Find the index of a cell containing $\underline{0}$.

Cams:
let in
CBV
let rec LasVegas (f: nat \rightarrow nat) (n :nat) = let $k=r a n d o m n i n$
if ($\mathrm{f} k=0$) then k
else LasVegas f n

$$
\mathbf{Y}\left(\lambda \text { LasVegas }^{(\text {nat } \Rightarrow \text { nat }) \Rightarrow \text { nat } \Rightarrow \text { nat }} \lambda \mathrm{f}^{\text {nat } \Rightarrow \text { nat }} \lambda \mathrm{n}^{\text {nat }}\right.
$$

$$
\left(\lambda k^{\text {nat }} \text { if z } f k \text { then } k\right.
$$

else LasVegas f n) (rand n)

Semantics gives the answer

Storage Operator

```
let k = rand n in if k = 0 then k else 42
```

Integer in Pcoh: $\llbracket \mathcal{N} \rrbracket=\mathbf{N a t}=\left(\mathbb{N}, \mathrm{P}(\mathbf{N a t})=\left\{\left(\lambda_{n}\right) \mid \sum_{n} \lambda_{n} \leq 1\right\}\right)$
Equipped with a structure of comonoid in the linear Pcoh:

- Cocontraction: $\mathcal{C}^{\mathcal{N}}: \mathcal{N} \rightarrow \mathcal{N} \otimes \mathcal{N}$
- Coweakening: $w^{\mathcal{N}}: \mathcal{N} \rightarrow \mathbf{1}$

Bibliography

```
1990 Krivine, Opérateurs de mise en mémoire et Traduction.
1999 Levy, Call by Push Value, a subsuming paradigm.
2 0 0 0 \text { Nour, On Storage operator.}
2016 Curien, Fiore, Munch-Maccagnoni, A Theory of Effects and Resources .
```


What sem. object to encode Storage Operator.

The Eilenberg Moore Category: Pcoh!
Coalgebras $P=\left(\underline{P}, h_{P}\right)$ with $\underline{P} \in \mathbf{P c o h}$ and $h_{P} \in \mathbf{P} \boldsymbol{\operatorname { c o h }}(\underline{P},!\underline{P})$:

Coalgebras have a comonoid structure: values can be stored.
Types interpreted as coalgebras:
! X by def. of the exp. $\quad \mid \otimes, \oplus$ and Y preserve coalgebras.

Example

Stream: $\mathrm{S}_{\varphi}=\varphi \otimes!\mathrm{S}_{\varphi} \quad \mid \quad$ List: $\lambda_{0}=\mathbf{1} \oplus\left(\varphi \otimes \lambda_{0}\right)$

Probabilistic Call By Push Value

Types:

(Value) $A::=U \underline{B}\left|A_{1} \oplus A_{2}\right| \mathbf{1}\left|A_{1} \otimes A_{2}\right| \alpha \mid \operatorname{Fix} \alpha \cdot A$ Example of natural numbers: $\mathcal{N}::=\operatorname{Fix} \alpha \cdot \mathbf{1} \oplus \alpha$ (Computation) $\underline{B}::=F A \mid A \multimap \underline{B}$

Terms:

(Value) $\quad V::=x|\operatorname{thunk}(M)| \operatorname{in}_{i} V|()|(V, W)$
(Computation) $\quad M::=\operatorname{return}(V) \mid$ force (M)

$$
\left|\lambda x^{A} M\right|\langle M\rangle V \mid Y M
$$

$|\operatorname{coin}| \operatorname{case}\left(M, x_{1} \cdot N_{1}, x_{2} \cdot N_{2}\right)$

$$
\underline{n}|\operatorname{succ}(V)| \operatorname{let}(x, V, M) \mid \operatorname{ifz}(V, M, N)
$$

Probabilistic Call By Push Value

Types: ! \underline{B}

(Value) $A::=U \underline{B}\left|A_{1} \oplus A_{2}\right| \mathbf{1}\left|A_{1} \otimes A_{2}\right| \alpha \mid$ Fix $\alpha \cdot A$ Example of natural numbers: $\mathcal{N}::=\operatorname{Fix} \alpha \cdot \mathbf{1} \oplus \alpha$ (Computation) $\underline{B}::=F A \mid A \multimap \underline{B}$

Terms:

(Value) $\quad V::=x|\operatorname{thunk}(M)| \operatorname{in}_{i} V|()|(V, W)$
(Computation) $\quad M::=\operatorname{return}(V) \mid$ force (M)

$$
\begin{array}{r}
\left|\lambda x^{A} M\right|\langle M\rangle V \mid Y M \\
|\operatorname{coin}| \operatorname{case}\left(M, x_{1} \cdot N_{1}, x_{2} \cdot N_{2}\right) \\
|\underline{n}| \operatorname{succ}(V)|\operatorname{let}(x, V, M)| \operatorname{ifz}(V, M, N)
\end{array}
$$

Probabilistic Call By Push Value

Types: ! \underline{B}

(Value) $A::=U \underline{B}\left|A_{1} \oplus A_{2}\right| \mathbf{1}\left|A_{1} \otimes A_{2}\right| \alpha \mid$ Fix $\alpha \cdot A$ Example of natural numbers: $\mathcal{N}::=\operatorname{Fix} \alpha \cdot \mathbf{1} \oplus \alpha$
(Computation) $\underline{B}::=F A \mid A \multimap \underline{B}$ Forget: A

Terms:
(Value) $\quad V::=x|\operatorname{thunk}(M)| \operatorname{in}_{i} V|()|(V, W)$
(Computation) $\quad M::=\operatorname{return}(V) \mid$ force (M)

$$
\left|\lambda x^{A} M\right|\langle M\rangle V \mid \text { Y } M
$$

$|\operatorname{coin}| \operatorname{case}\left(M, x_{1} \cdot N_{1}, x_{2} \cdot N_{2}\right)$

$$
\underline{n}|\operatorname{succ}(V)| \operatorname{let}(x, V, M) \mid \operatorname{ifz}(V, M, N)
$$

Probabilistic Call By Push Value

Types: ! \underline{B}

(Value) $A::=U \underline{B}\left|A_{1} \oplus A_{2}\right| \mathbf{1}\left|A_{1} \otimes A_{2}\right| \alpha \mid$ Fix $\alpha \cdot A$ Example of natural numbers: $\mathcal{N}::=\operatorname{Fix} \alpha \cdot \mathbf{1} \oplus \alpha$ (Computation) $\underline{B}::=F A \rightarrow \underline{B}$ Forget: A

Terms:

$M^{!}$

(Value) $\quad V::=x|\operatorname{thunk}(M)| \operatorname{in}_{i} V|()|(V, W)$
(Computation) $\quad M::=\operatorname{return}(V) \mid$ force (M)

$$
\begin{array}{r}
\left|\lambda x^{A} M\right|\langle M\rangle V \mid Y M \\
|\operatorname{coin}| \operatorname{case}\left(M, x_{1} \cdot N_{1}, x_{2} \cdot N_{2}\right) \\
|\underline{n}| \operatorname{succ}(V)|\operatorname{let}(x, V, M)| \operatorname{ifz}(V, M, N)
\end{array}
$$

Probabilistic Call By Push Value

Types: ! \underline{B}

(Value) $A::=U \underline{B}\left|A_{1} \oplus A_{2}\right| \mathbf{1}\left|A_{1} \otimes A_{2}\right| \alpha \mid$ Fix $\alpha \cdot A$ Example of natural numbers: $\mathcal{N}::=\mathrm{Fix} \alpha \cdot \mathbf{1} \oplus \alpha$ (Computation) $\underline{B}::=F A \mid A \multimap \underline{B}$ Forget: A

The Eilenberg Moore categoy and the Linear Category

Dense coalgebra

$P=\left(\underline{P}, h_{P}\right)$ such that coalgebraic points characterize morphisms:
$\forall Y \in \operatorname{Pcoh}$ and $\forall t, t^{\prime} \in \operatorname{Pcoh}(\underline{P}, Y)$,
if $\forall v \in \boldsymbol{P c o h}^{!}(1, P), t v=t^{\prime} v$, then $\forall u \in \mathbf{P c o h}(1, \underline{P}), t u=t^{\prime} u$.
Already known for $!X$ as: if $\forall x \in \operatorname{Pcoh}(1, X), t x^{!}=t^{\prime} x^{!}$then $t=t^{\prime}$.
The Eilenberg Moore category Pcoh!
Value Types are interpreted as dense coalgebras
Values are morphisms of coalgebras

The Linear category Pcoh
Computation Types are interpreted in Pcoh
Computations are linear morphisms in Pcoh

Probabilistic Full Abstraction

Theorem (2016: Ehrhard - T.)

Pcoh

$$
\llbracket M \rrbracket=\llbracket N \rrbracket \quad \stackrel{\text { Adequacy }}{\rightleftarrows}
$$

pCBPV

$$
M \simeq_{0} N
$$

$$
\operatorname{Red}(C[M],()) \stackrel{\forall C[]}{=} \operatorname{Red}(C[N],())
$$

Adequacy Lemma Proof:

- Handle values separately
- Logical relations: fixpoint of types (hidden step indexing, biorthogonality closure, fixpoints of pairs of logical relations)
- Density: Morphisms on positive types are characterized by their action on coalgebraic points.

Probabilistic Full Abstraction

Theorem (2016: Ehrhard - T.)

Pcoh

$$
\llbracket M \rrbracket=\llbracket N \rrbracket \quad \stackrel{\text { Adequacy }}{\rightleftharpoons}
$$

pCBPV

Full Abstraction

$$
M \simeq_{0} N
$$

$$
\operatorname{Red}(C[M],()) \stackrel{\forall C[]}{=} \operatorname{Red}(C[N],())
$$

Full Abstraction Proof:

(1) By contradiction: $\exists \alpha \in|\sigma|, \llbracket M \rrbracket_{\alpha} \neq \llbracket N \rrbracket_{\alpha}$
(2) Find testing context: T_{α} such that $\llbracket\left\langle T_{\alpha}\right\rangle M^{!} \rrbracket \neq \llbracket\left\langle T_{\alpha}\right\rangle N^{!} \rrbracket$ (context only depends on α)
(3) Prove definability: $T_{\alpha} \in \mathbf{p C B P V}$ using coin and regularity of analytic functions and density.
(4) Apply Adequacy Lemma: $\operatorname{Red}\left(\left\langle T_{\alpha}\right\rangle M^{!} \xrightarrow{*}()\right) \neq \operatorname{Red}\left(\left\langle T_{\alpha}\right\rangle N^{!} \xrightarrow{*}()\right)$.

A denotational semantics for probabilistic higher-order functional computation,

(based on quantitative semantics of Linear Logic)

Discrete setting:

Probabilistic Coherent Spaces are fully abstract for a programming language with natural numbers as base types suitable to encode discrete probabilistic programs.

Continuous setting:

A CCC of measurable spaces and stable maps that soundly denotes a programming language with reals as base types suitable to encode continuous probabilistic programs.
(1) Discrete Probability
(2) Continuous Probability

- Syntax: Real Probabilistic PCF
- Semantics: Cstab ${ }_{m}$ (Cones and Stable measurable functions)
- Results: Adequacy

From Discrete to Continuous syntax

PPCF

Types: $A, B::=\mathcal{N} \mid A \rightarrow B$
Terms: $M, N, L::=$

$$
\begin{aligned}
& x\left|\lambda x^{A} \cdot M\right|(M) N|Y M| \\
& \underline{n}|\operatorname{succ}(M)| \\
& \operatorname{ifz}(L, M, N) \mid \\
& \operatorname{coin} \mid \operatorname{let}(x, M, N)
\end{aligned}
$$

Operational Semantics:
$\operatorname{Red}(\operatorname{coin}, \underline{0})=\operatorname{Red}(\operatorname{coin}, \underline{1})=\frac{1}{2}$
If $\vdash M: \mathcal{N}, \operatorname{Red}^{\infty}\left(M, _\right)$is the discrete distribution over \mathbb{N} computed by M.

From Discrete to Continuous syntax

PPCF

Types: $A, B::=\mathcal{N} \mid A \rightarrow B$
Terms: $M, N, L::=$

$$
\begin{aligned}
& x\left|\lambda x^{A} \cdot M\right|(M) N|Y M| \\
& \underline{n}|\operatorname{succ}(M)| \\
& \operatorname{ifz}(L, M, N) \mid \\
& \operatorname{coin} \mid \operatorname{let}(x, M, N)
\end{aligned}
$$

Operational Semantics:
$\operatorname{Red}(\operatorname{coin}, \underline{0})=\operatorname{Red}(\operatorname{coin}, \underline{1})=\frac{1}{2}$
If $\vdash M: \mathcal{N}, \operatorname{Red}^{\infty}\left(M, _\right)$is the discrete distribution over \mathbb{N} computed by M.

Real PPCF

Types: $A, B::=\mathcal{R} \mid A \rightarrow B$
Terms: $M, N, L::=$

$$
\begin{aligned}
& x\left|\lambda x^{A} \cdot M\right|(M) N|Y M| \\
& \underline{r}\left|\underline{f}\left(M_{1}, \ldots, M_{n}\right)\right| \\
& \text { ifz }(L, M, N) \mid \\
& \text { sample } \mid \operatorname{let}(x, M, N)
\end{aligned}
$$

Operational Semantics:

$\operatorname{Red}($ sample,$U)=\lambda_{[0,1]}(U)$
If $\vdash M: \mathcal{R}, \operatorname{Red}^{\infty}\left(M, _\right)$is the continuous distribution over \mathbb{R} computed by M.

Operational Semantics

The probability to observe U after at most one reduction step applied to M is $\operatorname{Red}(M, U)$

Red : $\Lambda^{\Gamma \vdash A} \times \Sigma_{\Lambda^{\ulcorner\vdash A}} \rightarrow \mathbb{R}^{+}$is a Kernel, i.e:

- for all $M \in \Lambda^{\Gamma \vdash A}, \operatorname{Red}\left(M,{ }_{-}\right)$is a measure;
- for all $U \in \Sigma_{\Lambda^{\ulcorner\vdash},}, \operatorname{Red}\left(_, U\right)$ is a measurable function.
$\operatorname{Red}^{\infty}(M, U)$ is the probability to observe U after any steps.

Operational Semantics

The probability to observe U after at most one reduction step applied to M is $\operatorname{Red}(M, U)$
$\Lambda^{\Gamma \vdash A}$: the set of terms M
s.t. $\Gamma \vdash M$: A.

Red : $\Lambda^{\ulcorner\vdash A} \times \Sigma_{\Lambda^{\ulcorner\vdash A}} \rightarrow \mathbb{R}^{+}$is a Kernel, i.e:

- for all $M \in \Lambda^{\Gamma+A}, \operatorname{Red}\left(M, _\right)$is a measure;
- for all $U \in \Sigma_{\Lambda^{\Gamma \vdash A}}, \operatorname{Red}\left(_, U\right)$ is a measurable function.
$\operatorname{Red}^{\infty}(M, U)$ is the probability to observe U after any steps.

Operational Semantics

The probability to observe U after at most one reduction step applied to M is $\operatorname{Red}(M, U)$
$\Lambda^{\ulcorner\vdash A}$: the set of terms M
s.t. $\Gamma \vdash M$: A.
$\Sigma_{\Lambda^{\ulcorner\vdash A}}$, i.e. U is measurable: $\forall n, \forall S,\{\vec{r} \mid S \vec{r} \in U\}$ meas. in \mathbb{R}^{n}

Red : $\Lambda^{\Gamma \vdash A} \times \Sigma_{\Lambda^{\ulcorner\vdash A}} \rightarrow \mathbb{R}^{+}$is a Kernel, i.e:

- for all $M \in \Lambda^{\Gamma \vdash A}, \operatorname{Red}\left(M,{ }_{-}\right)$is a measure;
- for all $U \in \Sigma_{\Lambda^{\Gamma \vdash}}, \operatorname{Red}\left(_, U\right)$ is a measurable function.
$\operatorname{Red}^{\infty}(M, U)$ is the probability to observe U after any steps.

Operational Semantics

The probability to observe U after at most one reduction step applied to M is $\operatorname{Red}(M, U)$
$\Lambda^{\ulcorner\vdash A}$: the set of terms M s.t. $\Gamma \vdash M: A$.
$\Sigma_{\Lambda^{\Gamma \vdash A}}$, i.e. U is measurable: $\forall n, \forall S,\{\vec{r} \mid S \vec{r} \in U\}$ meas. in \mathbb{R}^{n}

Red : $\Lambda^{\Gamma \vdash A} \times \Sigma_{\Lambda^{\ulcorner\vdash A}} \rightarrow \mathbb{R}^{+}$is a Kernel, i.e:

- for all $M \in \Lambda^{\Gamma \vdash A}, \operatorname{Red}\left(M,{ }_{-}\right)$is a measure;
- for all $U \in \Sigma_{\Lambda^{\Gamma \vdash A}}, \operatorname{Red}\left(_, U\right)$ is a measurable function.

Measurable sets and kernels constitute the category Kern.
$\operatorname{Red}^{\infty}(M, U)$ is the probability to observe U after any steps.

Operational Semantics

The probability to observe U after at most one reduction step applied to M is $\operatorname{Red}(M, U)$
$\Lambda^{\Gamma \vdash A}$: the set of terms M s.t. $\Gamma \vdash M: A$.
$\Sigma_{\Lambda^{\Gamma \vdash}}$, i.e. U is measurable: $\forall n, \forall S,\{\vec{r} \mid S \vec{r} \in U\}$ meas. in \mathbb{R}^{n}

Red : $\Lambda^{\Gamma \vdash A} \times \Sigma_{\Lambda^{\ulcorner\vdash A}} \rightarrow \mathbb{R}^{+}$is a Kernel, i.e:

- for all $M \in \Lambda^{\Gamma \vdash A}, \operatorname{Red}\left(M,{ }_{-}\right)$is a measure;
- for all $U \in \Sigma_{\Lambda^{\Gamma \vdash A}}, \operatorname{Red}\left(_, U\right)$ is a measurable function.

Measurable sets and kernels constitute the category Kern.
$\operatorname{Red}^{\infty}(M, U)$ is the probability to observe U after any steps.

It is computed by composition and lub.

Examples: Distributions

The Bernoulli distribution takes the value 1 with probability p and the value 0 with probability $1-p$.
bernoulli $p::=\operatorname{let}(x$, sample, $x \leq p)$ tests if sample draws a value within $[0, p]$.

The exponential distribution is specified by its density e^{-x}.

$\exp : \mathcal{R}::=\operatorname{let}(x$, sample,$-\log (x))$
by the inversion sampling method.

The standard normal distribution defined by its density $\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}$.

normal $::=$
let $(x, \operatorname{sample}$, let $(y$, sample, $\sqrt{-2 \log (x)} \cos (2 \pi y)))$ by the Box Muller method.

Examples:

Conditioning: If $U \subseteq \mathbb{R}$ measurable, then observe(U) of type $\mathcal{R} \rightarrow \mathcal{R}$, taking a term M and returning the renormalization of the distribution of M on the only samples that satisfy U : observe $(U)=\lambda m \cdot Y(\lambda y . \operatorname{let}(x, m, \operatorname{if}(x \in U, x, y)))$ conditioning by rejection sampling.

Monte Carlo Simulation, Metropolis Hasting, ...

(1) Discrete Probability

(2) Continuous Probability

- Syntax: Real Probabilistic PCF
- Semantics: Cstab ${ }_{\mathrm{m}}$ (Cones and Stable measurable functions) - Results: Adequacy

Semantical context

1981, Kozen Memory as measurable space and programs as kernels representing the transformation of the memory.
What is a measurable subset for function space?
1999, Panangaden
Meas, the category of measurable sets and functions
Kern, the category of measurable sets and kernels
They are cartesian but not closed.
2017, Heunen, Kammar, Staton, Yang Quasi-borel spaces
A CCC based on Meas embedded into presheaves.
How to interpret recursive types ?
2017, Keimel and Plotkin Kegelspitzen
A CCC of dcpos equipped with a convex structure (basic operations being scott continous) with scott continuous functions
How to restrict to measurable functions?

Semantical context

If $\vdash M: \mathcal{N}$, then $\llbracket M \rrbracket$ is a \mid If $\vdash M: \mathcal{R}$, then $\llbracket M \rrbracket$ is a discrete distribution over \mathbb{N} continuous measure over \mathbb{R}

- $\llbracket \mathcal{R} \rrbracket$ as $\operatorname{Meas}(\mathbb{R})$ the set of measures over the measurable space \mathbb{R}.
- Fixpoint of terms.

Cstab $_{\mathrm{m}}$ is a CCC based on Selinger's cones (dcpos with the order induced by addition and a convex structure).

Objects are cones and measurable spaces
Morphisms are stable and measurable functions

Pcoh is a subcategory of Cstab $_{m}$ which is a subcategory of Kegelspitzen.

An elegant model in 3 steps

Our purpose is to be able to interpret \mathcal{R} as the set of bounded measures.
(1) Complete cones (convex dcpos with the order induced by addition) with Scott continuous functions However, the category is cartesian but not closed.
(2) Complete cones and Stable functions (∞-non-decreasing functions) is a CCC.
However, not every stable function is measurable.
(3) Measurable Cones (complete cones with measurable tests). Measurable paths pass measurable tests and Measurable functions preserve measurable paths. Cstab $_{\mathrm{m}}$ is a CCC with measurability included !

Step 1: Complete Cones

A Cone P is analogous to a real normed vector space, except that scalars are \mathbb{R}^{+}and the norm $\left\|_{-}\right\|_{P}: P \rightarrow \mathbb{R}^{+}$satisfies:

$$
\begin{array}{cl}
x+y=0 \Rightarrow x, y=0, \quad\left\|x+x^{\prime}\right\| P \leq\|x\| P+\left\|x^{\prime}\right\| P, \quad\|\alpha x\| P=\alpha\|x\|_{P} \\
x+y=x+y^{\prime} \Rightarrow y=y^{\prime}, \quad\|x\| P=0 \Rightarrow x=0, \quad\|x\| P \leq\left\|x+x^{\prime}\right\| P
\end{array}
$$

The Unit Ball is the set $\mathcal{B} P=\left\{x \in P \mid\|x\|_{P} \leq 1\right\}$.
Order $x \leq_{P} x^{\prime}$ if there is a $y \in P$ such that $x^{\prime}=x+y$. This unique y is denoted as $y=x^{\prime}-x$.

A Complete Cone is s.t. any non-decreasing $\left(x_{n}\right)_{n \in \mathbb{N}}$ of $\mathcal{B} P$ has a lub and $\left\|\sup _{n \in \mathbb{N}} x_{n}\right\|_{P}=\sup _{n \in \mathbb{N}}\left\|x_{n}\right\|_{P}$.

Example of Complete Cones

- $\operatorname{Meas}(X)$ with X a measurable space.
- $\widehat{\mathcal{X}}=\left\{u \in\left(\mathbb{R}^{+}\right)^{|\mathcal{X}|} \mid \exists \varepsilon>0 \varepsilon u \in \mathrm{P} \mathcal{X}\right\}$ if $\mathcal{X} \in \mathbf{P c o h}$.

Step 2: Stable functions

The category of complete cones and Scott-continuous functions is not cartesian closed as currying fails to be non-decreasing.

A function $f: \mathcal{B} P \rightarrow Q$ is \mathbf{n}-non-decreasing function if:

$$
\begin{aligned}
& n=0 \text { and } f \text { is non-decreasing } \\
& n>0 \text { and } \forall u \in \mathcal{B} P, \Delta f(x ; u)=f(x+u)-f(x) \text { is }
\end{aligned}
$$ $(n-1)$-non-decreasing in x.

A function is stable if it is Scott-continuous and ∞-nondecreasing, i.e. n-non-decreasing for all $n \in \mathbb{N}$.

Complete cones and stable functions constitute a CCC.

Weak Parallel Or

wpor : $[0,1] \times[0,1] \rightarrow[0,1]$ given as wpor $(s, t)=s+t-s t$ is Scottcontinuous, but not Stable. Its currying is not Scott-continuous.

Step 3: The Measurability Problem

Type \mathcal{R} is interpreted as $\llbracket \mathcal{R} \rrbracket=\operatorname{Meas}(\mathbb{R})$,
Closed term $\vdash M: \mathcal{R}$ as a measure μ and
Term $x: \mathcal{R} \vdash N: \mathcal{R}$ as a stable $f: \operatorname{Meas}(\mathbb{R}) \rightarrow \operatorname{Meas}(\mathbb{R})$.

Operational semantics

$$
\forall r, \text { s.t. } M \rightarrow r, \operatorname{let}(x, M, N) \rightarrow N\{r / x\}
$$

By Soundness

$$
\llbracket \operatorname{let}(x, M, N) \rrbracket=\int_{\mathbb{R}}(f \circ \delta)(r) \mu(d r)
$$

Step 3: The Measurability Problem

Type \mathcal{R} is interpreted as $\llbracket \mathcal{R} \rrbracket=\operatorname{Meas}(\mathbb{R})$,
Closed term $\vdash M: \mathcal{R}$ as a measure μ and
Term $x: \mathcal{R} \vdash N: \mathcal{R}$ as a stable $f: \operatorname{Meas}(\mathbb{R}) \rightarrow \operatorname{Meas}(\mathbb{R})$.

Operational semantics

$$
\forall r, \text { s.t. } M \rightarrow r, \operatorname{let}(x, M, N) \rightarrow N\{r / x\}
$$

By Soundness

$$
\llbracket \operatorname{let}(x, M, N) \rrbracket=\int_{\mathbb{R} \rrbracket}(f \circ \delta)(r) \mu(d r)
$$

Step 3: The Measurability Problem

Type \mathcal{R} is interpreted as $\llbracket \mathcal{R} \rrbracket=\operatorname{Meas}(\mathbb{R})$,
Closed term $\vdash M: \mathcal{R}$ as a measure μ and
Term $x: \mathcal{R} \vdash N: \mathcal{R}$ as a stable $f: \operatorname{Meas}(\mathbb{R}) \rightarrow \operatorname{Meas}(\mathbb{R})$.

Operational semantics

$$
\forall r, \text { s.t. } M \rightarrow r, \operatorname{let}(x, M, N) \rightarrow N\{r / x\}
$$

By Soundness

$$
\llbracket \operatorname{let}(x, M, N) \rrbracket=\overbrace{\llbracket N \rrbracket}^{\int_{\mathbb{R}}(f} \circ \underset{\text { Dirac measure }}{f} \circ \delta)(r) \mu(d r)
$$

Step 3: The Measurability Problem

Type \mathcal{R} is interpreted as $\llbracket \mathcal{R} \rrbracket=\operatorname{Meas}(\mathbb{R})$,
Closed term $\vdash M: \mathcal{R}$ as a measure μ and
Term $x: \mathcal{R} \vdash N: \mathcal{R}$ as a stable $f: \operatorname{Meas}(\mathbb{R}) \rightarrow \operatorname{Meas}(\mathbb{R})$.

Operational semantics

$$
\forall r, \text { s.t. } M \rightarrow r, \operatorname{let}(x, M, N) \rightarrow N\{r / x\}
$$

By Soundness

$$
\llbracket \operatorname{let}(x, M, N) \rrbracket=\overbrace{\llbracket N \rrbracket}(f \circ \circ \overbrace{\mathbb{R}} f)(r) \underbrace{\mu(d r)}_{\text {Dirac measure }}
$$

Step 3: The Measurability Problem

Type \mathcal{R} is interpreted as $\llbracket \mathcal{R} \rrbracket=\operatorname{Meas}(\mathbb{R})$,
Closed term $\vdash M: \mathcal{R}$ as a measure μ and
Term $x: \mathcal{R} \vdash N: \mathcal{R}$ as a stable $f: \operatorname{Meas}(\mathbb{R}) \rightarrow \operatorname{Meas}(\mathbb{R})$.

Operational semantics

$$
\forall r, \text { s.t. } M \rightarrow r, \operatorname{let}(x, M, N) \rightarrow N\{r / x\}
$$

By Soundness

$$
\llbracket \operatorname{let}(x, M, N) \rrbracket=\int_{\mathbb{R}}(f \circ \delta)(r) \mu(d r)
$$

Thus $f \circ \delta$ needs to be measurable.

- There are non measurable stable functions
- We need to equip every cone with a notion of measurability

Step 3: Measurability tests

Measurability tests of $\operatorname{Meas}(\mathbb{R})$ are given by measurable sets of \mathbb{R} :

$$
\forall U \subseteq \mathbb{R} \text { measurable, } \varepsilon_{U} \in \operatorname{Meas}(\mathbb{R})^{\prime}: \mu \mapsto \mu(U)
$$

For needs of CCC, we parameterized measurable tests of a cone:

Measurable Cone

A cone P with a collection $\left(\mathrm{M}^{n}(P)\right)_{n \in \mathbb{N}}$ with $\mathrm{M}^{n}(P) \subseteq\left(P^{\prime}\right)^{\mathbb{R}^{n}}$ s.t.:

$$
\begin{aligned}
& 0 \in \mathrm{M}^{n}(P), \quad \ell \in \mathrm{M}^{n}(P) \text { and } h: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n} \Rightarrow \ell \circ h \in \mathrm{M}^{P}(P) \\
& \ell \in \mathrm{M}^{n}(P) \text { and } x \in P \Rightarrow\left\{\begin{array}{rlll}
\mathbb{R}^{n} & \rightarrow & \mathbb{R}^{+} \\
\vec{r} & \mapsto & \ell(\vec{r})(x)
\end{array}\right. \text { measurable. }
\end{aligned}
$$

Measurable Tests, Paths and Functions

$\mathbf{C s t a b}_{\mathrm{m}}$ is the category of complete and measurable cones with stable and measurable functions.

Let P and Q be measurable and complete cones:
Measurable Test: $\mathrm{M}^{n}(P) \subseteq\left(P^{\prime}\right)^{\mathbb{R}^{n}}$
Measurable Path: $\operatorname{Path}^{n}(P) \subseteq P^{\mathbb{R}^{n}}$ the set of bounded $\gamma: \mathbb{R}^{n} \rightarrow P$ such that $\ell * \gamma: \mathbb{R}^{k+n} \rightarrow \mathbb{R}^{+}$is measurable with

$$
\ell * \gamma:(\vec{r}, \vec{s}) \mapsto \ell(\vec{r})(\gamma(\vec{s}))
$$

Measurable Functions: Stable functions $f: P \rightarrow Q$ such that:

$$
\forall n \in \mathbb{N}, \forall \gamma \in \operatorname{Path}_{1}^{n}(P), \quad f \circ \gamma \in \operatorname{Path}^{n}(Q)
$$

If X is a measurable space, then $\operatorname{Meas}(X)$ is equipped with:
$\mathrm{M}^{n}(X)=\left\{\varepsilon_{U}: \mathbb{R}^{n} \rightarrow \operatorname{Meas}(X)^{\prime}\right.$ s.t. $\varepsilon_{U}(\vec{r})(\mu)=\mu(U), U$ meas. $\}$
$\operatorname{Path}_{1}^{n}(P)$ is the set of stochastic kernels from \mathbb{R}^{n} to X.

(1) Discrete Probability

(2) Continuous Probability

- Syntax: Real Probabilistic PCF
- Semantics: Cstab ${ }_{m}$ (Cones and Stable measurable functions)
- Results: Adequacy

Results

The category $\mathbf{C s t a b}_{\mathrm{m}}$ is a CCC and a model of Real PPCF.

Interpretation of some terms:

$$
\llbracket \boxed{\preceq} \rrbracket=\delta_{r}, \llbracket \text { sample } \rrbracket=\lambda_{[0,1]}, \llbracket \operatorname{let}(x, M, N) \rrbracket(U)=\int_{\mathbb{R}} \llbracket N \rrbracket\left(\delta_{r}\right)(U) \llbracket M \rrbracket(d r)
$$

Soundness

$$
\llbracket M \rrbracket^{\Gamma \vdash A}=\int_{\Lambda^{\ulcorner\vdash A}} \llbracket t \rrbracket^{\ulcorner\vdash A} \operatorname{Red}(M, d t)
$$

Adequacy

$$
\llbracket M \rrbracket^{\vdash \mathcal{R}}(U)=\operatorname{Red}^{\infty}(M, U)
$$

Examples: Distributions

The Bernoulli distribution takes the value 1 with probability p and the value 0 with probability $1-p$.

$$
\begin{gathered}
\text { bernoulli } p::=\operatorname{let}(x, \text { sample }, x \leq p) \\
\llbracket \text { bernoulli } \underline{p} \rrbracket^{\vdash \mathcal{R}}=p \delta_{1}+(1-p) \delta_{0}
\end{gathered}
$$

The exponential distribution is specified by its density e^{-x}.

$$
\begin{gathered}
\exp : \mathcal{R}::=\operatorname{let}(x, \text { sample },-\log (x)) \\
\llbracket \exp \rrbracket^{\vdash \mathcal{R}}(U)=\int_{\mathbb{R}^{+}} \chi U(s) \mathrm{e}^{-s} \lambda(d s)
\end{gathered}
$$

The standard normal distribution defined by its density $\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}$.

$$
\begin{aligned}
& \text { normal }::= \\
& \operatorname{let}(x, \text { sample, } \operatorname{let}(y, \text { sample }, \sqrt{-2 \log (x)} \cos (2 \pi y))) \\
& \qquad \llbracket \text { normal } \rrbracket^{\vdash \mathcal{R}}(U)=\frac{1}{\sqrt{2 \pi}} \int_{U} \mathrm{e}^{-\frac{x^{2}}{2}} \lambda(d x)
\end{aligned}
$$

Examples:

Conditioning: If $U \subseteq \mathbb{R}$ measurable, then observe(U) of type $\mathcal{R} \rightarrow \mathcal{R}$, taking a term M and returning the renormalization of the distribution of M on the only samples that satisfy U :
observe $(U)=\lambda m \cdot Y(\lambda y . \operatorname{let}(x, m, \operatorname{if}(x \in U, x, y)))$
conditioning by rejection sampling.
Whenever M represents a probability distribution, this equation gives the conditional probability:

$$
\llbracket \text { observe }(U) M \rrbracket(V)=\frac{\llbracket M \rrbracket(V \cap U)}{\llbracket M \rrbracket(U)}
$$

Conclusion

Pcoh and Cstab $_{\mathrm{m}}$ models of probabilistic programming

- For countable data types, Pcoh is fully abstract.
- For real data types, $\mathbf{C s t a b}_{\mathrm{m}}$ is a sound model that encodes probability measures used in probabilistic programming.

Further directions:

- A model of LL ?
- A model of pCBPV ?
- Full abstraction ?

