INSTITUT De recherche En Informatique Fondamentale	FSCD Oxford Wednesday, Septembre 6th, 2017	
---	--	--

Quantitative Semantics for Probabilistic Programing

joint work with T. Ehrhard and M. Pagani

Christine Tasson

Christine.Tasson@irif.fr

Laboratoire IRIF - Université Paris Diderot

A denotational semantics for probabilistic higher-order functional computation,

(based on quantitative semantics of Linear Logic)

Discrete setting:

Probabilistic Coherent Spaces are **fully abstract** for a programming language with **natural numbers** as base types suitable to encode discrete probabilistic programs.

Continuous setting:

A **CCC** of measurable spaces and **stable** maps that soundly denotes a programming language with **reals** as base types suitable to encode continuous probabilistic programs.

Discrete Probability

- Syntax: Discrete Probabilistic PCF
- Semantics: **Pcoh** (Probabilistic Coherent Spaces)
- Results: Probabilistic Adequacy & Full Abstraction
- Discrete Probabilistic Call By Push Value

General Framework	Domains Semantics	Quantitative Semantics
Types	Continuous dcpos (X, \leq)	Proba. spaces $(X , \mathrm{P}(X) \subseteq (\mathbb{R}^+)^{ X })$
Programs	Scott Continuous	Analytic Functions
Probability	Proba. monad	Values as proba. distr.

Bibliography	Bibliography
 1976 Plotkin 1981 Kozen 1989 Plotkin and Jones 1998 Jung and Tix 2013 Goubault Larrecq and Varraca 2013 Mislove 	1988Girard1994Blute, Panangaden and Seely2002Hasegawa2004Girard2011Danos and Ehrhard2014Ehrhard, Pagani, T.2016Ehrahrd, T.

General Framework	Domains Semantics	Quantitative Semantics
Types	Continuous dcpos (X, \leq)	Proba. spaces $(X , \mathrm{P}(X) \subseteq (\mathbb{R}^+)^{ X })$
Programs	Scott Continuous	Analytic Functions
Probability	Proba. monad	Values as proba. distr.

How to interpret a program $M : \mathcal{N} \Rightarrow \mathcal{N}$

C. Tasson

Introduction Discrete (Pcoh) Continuous (Cstabm) Conclusion

4/41

General Framework	Domains Semantics	Quantitative Semantics
Types	Continuous dcpos (X, \leq)	Proba. spaces $(X , \mathrm{P}(X) \subseteq (\mathbb{R}^+)^{ X })$
Programs	Scott Continuous	Analytic Functions
Probability	Proba. monad	Values as proba. distr.

Problematic in **domain**

Finding a full subcategory of continuous dcpos that is: Cartesian Closed and closed under the proba. monad \mathcal{V} .

Full Abs.: PCOH/pPCF

 $\begin{aligned} \operatorname{Red}(C[M],\underline{n}) \\ \stackrel{\forall n, \ \forall C[]}{=} \\ \operatorname{Red}(C[N],\underline{n}) \\ \quad \text{iff} \\ \llbracket M \rrbracket = \llbracket N \rrbracket. \end{aligned}$

Discrete Probability

• Syntax: Discrete Probabilistic PCF

- Semantics: Pcoh (Probabilistic Coherent Spaces)
- Results: Probabilistic Adequacy & Full Abstraction
- Discrete Probabilistic Call By Push Value

Syntax of PPCF

Syntax of PPCF:

Types:
$$A, B ::= \mathcal{N} \mid A \rightarrow B$$

Terms:
$$M, N, L ::= x \mid \lambda x^A . M \mid (M)N \mid YM \mid$$

 $\operatorname{coin} \mid \underline{n} \mid \operatorname{succ}(M) \mid \operatorname{ifz}(L, M, N)$

Operational Semantics:

Red(M, N) is the **probability** that M reduces to N in a step. Red $((\lambda x^A.M)N, M[N/x]) = 1$, as $(\lambda x^A.M)N \xrightarrow{1} M[N/x]$ Red $(\operatorname{coin}, \underline{0}) = \operatorname{Red}(\operatorname{coin}, \underline{1}) = \frac{1}{2}$, as $\operatorname{coin} \underbrace{\frac{1}{2}}_{1} 0$

If $\vdash M : \mathcal{N}$, then $\operatorname{Red}^{\infty}(M, _)$ is the discrete distribution over \mathbb{N} of all normal forms computed by M.

C. Tasson

Discrete Probability

- Syntax: Discrete Probabilistic PCF
- Semantics: **Pcoh** (Probabilistic Coherent Spaces)
- Results: Probabilistic Adequacy & Full Abstraction
- Discrete Probabilistic Call By Push Value
- **Continuous Probability**

Types as **Probabilistic Coherent Spaces**: (|X|, P(X))

Proba. Space

cl

|X|: the **web**, a (potentially infinite) set of final states

$$P(X)$$
: a set of vectors $\subseteq (\mathbb{R}^+)^{|X|}$ such that

Josure:
$$\mathbf{P}(\mathbf{X})^{\perp \perp} = \mathbf{P}(\mathbf{X})$$
 with
 $\forall u, v \in (\mathbb{R}^+)^{|X|}, \ \langle u, v \rangle = \sum_{a \in |X|} u_a v_a$
 $\forall P \subseteq (\mathbb{R}^+)^{|X|}, \ P^{\perp} = \{v \in (\mathbb{R}^+)^{|X|}; \ \forall u \in P, \ \langle u, v \rangle \leq 1\}$

bounded covering: $\forall a \in |X|$, $\exists v \in P(X) ; v_a \neq 0 \text{ and } \exists p > 0, ; \forall v \in P(X), v_a \leq p.$

Proposition: Proba. spaces as Domains

(|X|, P(X)) is a **Proba. space iff** P(X) is bounded covering, **Scott Closed** (downwards-closed and dcpo) and **Convex**.

Types as **Probabilistic Coherent Spaces**: (|X|, P(X))

Example:

$P(X) \subseteq (\mathbb{R}^+)^{|X|}$

$$\begin{aligned} |\mathbf{1}| &= \{*\} & P(\mathbf{1}) = [0, 1] \\ \mathbf{Bool}| &= \{t, f\} & P(\mathbf{Bool}) = \{(x_t, x_f) ; x_t + x_f \le 1\} \\ |\mathbf{Nat}| &= \{0, 1, 2, \dots\} & P(\mathbf{Nat}) = \{x \in [0, 1]^{\mathbb{N}} ; \sum_n x_n \le 1\} \\ |\mathbf{Bool} \to \mathbf{1}| &= \{[t^n, f^m] ; n, m \in \mathbb{N}\}, \\ P(\mathbf{Bool} \to \mathbf{1}) &= \{Q \in (\mathbb{R}^+)^{|\mathbf{Bool} \to \mathbf{1}|} ; \\ \forall x_t + x_f \le 1, \sum_{n,m=0}^{\infty} Q_{[t^n, f^m]} x_t^n x_f^m \le 1\} \end{aligned}$$

Proposition: Proba. spaces as Domains

(|X|, P(X)) is a **Proba. space iff** P(X) is bounded covering, **Scott Closed** (downwards-closed and dcpo) and **Convex**.

A model of Linear Logic

Linear Category

Pcoh(X, Y)

Matrices $Q \in (\mathbb{R}^+)^{|X| \times |Y|}$ such that: $\forall x \in P(X), \ Q \cdot x = \left(\sum_{a \in |X|} Q_{a,b} x_a\right)_b \in P(Y)$

Example

Pcoh(**Nat**, **Nat**): Stochastic Matrices $Q \in (\mathbb{R}^+)^{\mathbb{N} \times \mathbb{N}}$.

$$orall x \in (\mathbb{R}^+)^{\mathbb{N}}$$
; $\sum_{n \in \mathbb{N}} x_n \leq 1$, $\sum_{m,n \in \mathbb{N}} Q_{m,n} x_n \leq 1$

C. Tasson

Free Commutative Comonoid and Comonad

Exponential

$$|X| = \mathcal{M}_{\mathsf{fin}}(|X|)$$
 the set of finite multisets

$$P(!X) = \{x^{!} ; x \in P(X)\}^{\perp \perp} \text{ where } x^{!}_{[a_{1},...,a_{k}]} = \prod_{i=1}^{k} x_{a_{i}}$$

Example

Let
$$Bcoin = (p, 1 - p) \in P(Bool) = \{(p, q) ; p + q \le 1\}.$$

$$Bcoin^{!}_{[1]} = 1,$$
 $Bcoin^{!}_{[t,t]} = p^{2},$ $Bcoin^{!}_{[t,f]} = p(1-p),$...

Theorem (2017: Crubillé - Ehrhard - Pagani - T.)

This exponential computes the free commutative comonoid.

C. Tasson

Free Commutative Comonoid and Comonad

Exponential

$$||X| = \mathcal{M}_{fin}(|X|)$$
 the set of finite multisets

$$P(!X) = \{x^{!} ; x \in P(X)\}^{\perp \perp}$$
 where $x^{!}_{[a_{1},...,a_{k}]} = \prod_{i=1}^{k} x_{a_{i}}$

Commutative ComonoidComonadCocontr.: $!X \xrightarrow{c^{!X}} !X \otimes !X$
Coweak.: $!X \xrightarrow{w^{!X}} 1$ Comult.: $\operatorname{dig}_{!X} : !!X \to !X$
Counit: $\operatorname{der}_{!X} : !X \to X$

Theorem (2017: Crubillé - Ehrhard - Pagani - T.)

This exponential computes the free commutative comonoid.

C. Tasson

Non Linear Category

$\mathsf{Pcoh}_!(X, Y) = \mathsf{Pcoh}(!X, Y)$

latrices
$$Q \in (\mathbb{R}^+)^{\mathcal{M}_{\text{fin}}(|X|) \times |Y|}$$
 such that
 $\forall U \in P(!X), \ Q \cdot U = \left(\sum_{m \in \mathcal{M}_{\text{fin}}(|X|)} Q_{m,b} \ U_m\right)_b \in P(Y)$

Non-Linear Morphisms are analytic and Scott Continuous.

$$\begin{aligned} &\mathsf{Pcoh}_!(\mathsf{Bool},\mathbf{1}) = \{Q \in (\mathbb{R}^+)^{|\mathsf{Bool}\to\mathbf{1}|} \ s.t. \ Q_{[t^n,f^m]} \leq \frac{(n+m)^{n+m}}{n^n m^m} \} \\ & \texttt{let rec f } x = \\ & \texttt{if } x \texttt{ then if } x \texttt{ then f } x \\ & \texttt{else } () \\ & \texttt{else if } x \texttt{ then } () \\ & \texttt{else f } x \end{aligned} \\ & \sum_{n,m=0}^{\infty} \frac{(n+m)!}{n! \, m!} x_t^{2n+1} x_f^{2m+1} \end{aligned}$$

Μ

Non Linear Category

$Pcoh_!(X, Y) = Pcoh(!X, Y)$ DensityMatrices $Q \in (\mathbb{R}^+)^{\mathcal{M}_{fin}}(|X|) \times |Y|$ such that if $x_m^! = \prod_{a \in m} x_a^{m(a)}$ $\forall x \in P(X), \ Q(x) = \left(\sum_{m \in \mathcal{M}_{fin}} Q_{m,b} x^!_m\right)_b \in P(Y)$

Non-Linear Morphisms are analytic and Scott Continuous.

Non Linear Category

$\mathsf{Pcoh}_{!}(X, Y) = \mathsf{Pcoh}(!X, Y)$ DensityMatrices $Q \in (\mathbb{R}^+)^{\mathcal{M}_{\mathrm{fin}}(|X|) \times |Y|}$ such that if $x_m^! = \prod_{a \in m} x_a^{m(a)}$ $\forall x \in \mathrm{P}(X), \ Q(x) = \left(\sum_{m \in \mathcal{M}_{\mathrm{fin}}(|X|)} Q_{m,b} x_m^! m\right)_b \in \mathrm{P}(Y)$

Non-Linear Morphisms are analytic and Scott Continuous.

$$\begin{split} &\mathsf{Pcoh}_!(\mathsf{Bool},1) = \{Q \in (\mathbb{R}^+)^{|\mathsf{Bool} \to 1|} \ s.t. \ Q_{[t^n,f^m]} \leq \frac{(n+m)^{n+m}}{n^n m^m} \} \\ & \mathsf{let rec f x =} \\ & \mathsf{if x then if x then f x} \\ & \mathsf{else ()} \\ & \mathsf{else if x then ()} \\ & \mathsf{else f x} \end{split} \mathsf{pb of DEFINABILITY} \\ & \sum_{n,m=0}^{\infty} \frac{(n+m)!}{n! m!} x_t^{2n+1} x_f^{2m+1} \end{split}$$

Discrete Probability

- Syntax: Discrete Probabilistic PCF
- Semantics: **Pcoh** (Probabilistic Coherent Spaces)

• Results: Probabilistic Adequacy & Full Abstraction

- Discrete Probabilistic Call By Push Value
- **Continuous Probability**

Probabilistic Full Abstraction

Adequacy Lemma (2011: Danos - Ehrhard):

$$\mathsf{If} \vdash M : \mathcal{N}, \, \mathsf{then} \,\, \forall n \in \mathbb{N}, [\![M]\!]_n = \mathrm{Red}^\infty(M, n).$$

Adequacy proof:

If
$$\llbracket M \rrbracket = \llbracket N \rrbracket$$
 then, $\operatorname{Red}^{\infty}((C)M, \underline{n}) = \operatorname{Red}^{\infty}((C)N, \underline{n})$

$$\operatorname{Red}^{\infty}((C)M,\underline{n}) = \llbracket (C)M \rrbracket$$

② Apply Compositionality:

$$\llbracket (C) M \rrbracket = \sum_{\mu} \llbracket C \rrbracket_{\mu} \prod_{\alpha \in \mu} \llbracket M \rrbracket_{\alpha}^{\mu(\alpha)} = \sum_{\mu} \llbracket C \rrbracket_{\mu} \prod_{\alpha \in \mu} \llbracket N \rrbracket_{\alpha}^{\mu(\alpha)} = \llbracket (C) N \rrbracket$$

C. Tasson

Introduction Discrete (Pcoh) Continuous (Cstabm) Conclusion

14/41

Probabilistic Full Abstraction

Adequacy Lemma (2011: Danos - Ehrhard):

If
$$\vdash M : \mathcal{N}$$
, then $\forall n \in \mathbb{N}, \llbracket M \rrbracket_n = \operatorname{Red}^{\infty}(M, n)$.

Full Abstraction proof:

- Find testing terms that depend only on points of the web.
- Use regularity of analytic functions.

Discrete Probability

- Syntax: Discrete Probabilistic PCF
- Semantics: **Pcoh** (Probabilistic Coherent Spaces)
- Results: Probabilistic Adequacy & Full Abstraction
- Discrete Probabilistic Call By Push Value

How to encode a LasVegas Algorithm?

Output: Find the index of a cell containing $\underline{0}$.

How to encode a LasVegas Algorithm?

Output: Find the index of a cell containing 0.

C. Tasson

Semantics gives the answer

Storage Operator

let k = rand n in if k = 0 then k else 42

Integer in Pcoh: $\llbracket \mathcal{N} \rrbracket = \mathsf{Nat} = (\mathbb{N}, \mathbb{P}(\mathsf{Nat}) = \{(\lambda_n) \mid \sum_n \lambda_n \leq 1\})$

Equipped with a structure of comonoid in the linear Pcoh:

- Cocontraction: $c^{\mathcal{N}} : \mathcal{N} \to \mathcal{N} \otimes \mathcal{N}$
- Coweakening: $w^{\mathcal{N}}: \mathcal{N} \to \mathbf{1}$

Bibliography

- 1990 Krivine, Opérateurs de mise en mémoire et Traduction.
- 1999 Levy, Call by Push Value, a subsuming paradigm.
- 2000 Nour, On Storage operator.
- 2016 Curien, Fiore, Munch-Maccagnoni, A Theory of Effects and Resources .

What sem. object to encode Storage Operator.

Coalgebras have a comonoid structure: values can be stored.

Types:

(Value) $A ::= U\underline{B} | A_1 \oplus A_2 | \mathbf{1} | A_1 \otimes A_2 | \alpha | Fix \alpha \cdot A$ Example of natural numbers: $\mathcal{N} ::= Fix \alpha \cdot \mathbf{1} \oplus \alpha$ (Computation) $\underline{B} ::= FA | A \multimap \underline{B}$

Terms:

C. Tasson

C. Tasson

C. Tasson

The Eilenberg Moore categoy and the Linear Category

Dense coalgebra

 $P = (\underline{P}, h_P)$ such that coalgebraic points characterize morphisms: $\forall Y \in \mathbf{Pcoh} \text{ and } \forall t, t' \in \mathbf{Pcoh}(\underline{P}, Y),$ if $\forall v \in \mathbf{Pcoh}^!(1, P), t v = t' v$, then $\forall u \in \mathbf{Pcoh}(1, \underline{P}), t u = t' u$.

Already known for !X as: if $\forall x \in \mathbf{Pcoh}(1, X)$, $t x^{!} = t' x^{!}$ then t = t'.

The Eilenberg Moore category **Pcoh**[!]

Value Types are interpreted as dense coalgebras Values are morphisms of coalgebras

The Linear category **Pcoh**

Computation Types are interpreted in **Pcoh Computations** are linear morphisms in **Pcoh**

C. Tasson

Probabilistic Full Abstraction

Adequacy Lemma Proof:

- Handle values separately
- Logical relations: **fixpoint** of types (hidden step indexing, biorthogonality closure, fixpoints of pairs of logical relations)
- **Density:** Morphisms on positive types are characterized by their action on coalgebraic points.

Probabilistic Full Abstraction

Full Abstraction Proof:

- **1** By contradiction: $\exists \alpha \in |\sigma|, \ \llbracket M \rrbracket_{\alpha} \neq \llbracket N \rrbracket_{\alpha}$
- General Find testing context: *T*_α such that [[⟨T_α⟩M[!]]] ≠ [[⟨T_α⟩N[!]]] (context only depends on *α*)
- Prove **definability**: $T_{\alpha} \in \mathbf{pCBPV}$ using coin and regularity of analytic functions and density.
- ④ Apply Adequacy Lemma: Red(⟨*T_α*⟩*M*[!] ^{*}→ ()) ≠ Red(⟨*T_α*⟩*N*[!] ^{*}→ ()).

A denotational semantics for probabilistic higher-order functional computation,

(based on quantitative semantics of Linear Logic)

Discrete setting:

Probabilistic Coherent Spaces are **fully abstract** for a programming language with **natural numbers** as base types suitable to encode discrete probabilistic programs.

Continuous setting:

A **CCC** of measurable spaces and **stable** maps that soundly denotes a programming language with **reals** as base types suitable to encode continuous probabilistic programs.

Discrete Probability

2 Continuous Probability

• Syntax: Real Probabilistic PCF

• Semantics: **Cstab**_m (Cones and Stable measurable functions)

• Results: Adequacy

From Discrete to Continuous syntax

PPCF

Types: $A, B ::= \mathcal{N} \mid A \to B$

Terms: M, N, L ::= $x \mid \lambda x^A.M \mid (M)N \mid YM \mid$ $\underline{n} \mid \text{succ}(M) \mid$ $\text{ifz}(L, M, N) \mid$ $\text{coin} \mid \text{let}(x, M, N)$

Operational Semantics:

 $\operatorname{Red}(\operatorname{coin}, \underline{0}) = \operatorname{Red}(\operatorname{coin}, \underline{1}) = \frac{1}{2}$

If $\vdash M : \mathcal{N}$, $\operatorname{Red}^{\infty}(M, _)$ is the discrete distribution over \mathbb{N} computed by M.

C. Tasson

From Discrete to Continuous syntax

PPCF

Types: $A, B ::= \mathcal{N} \mid A \rightarrow B$

Terms: M, N, L ::= $x \mid \lambda x^A.M \mid (M)N \mid YM \mid$ $\underline{n} \mid \text{succ}(M) \mid$ $\text{ifz}(L, M, N) \mid$ $\text{coin} \mid \text{let}(x, M, N)$

Operational Semantics: $\operatorname{Red}(\operatorname{coin}, \underline{0}) = \operatorname{Red}(\operatorname{coin}, \underline{1}) = \frac{1}{2}$ If $\vdash M : \mathcal{N}, \operatorname{Red}^{\infty}(M, \underline{})$ is the discrete distribution over \mathbb{N} computed by M. $\mathsf{Real}\ \mathrm{PPCF}$

Types:
$$A, B ::= \mathcal{R} \mid A \rightarrow B$$

Terms: M, N, L ::= $x \mid \lambda x^A.M \mid (M)N \mid YM \mid$ $\underline{r} \mid \underline{f}(M_1, \dots, M_n) \mid$ $ifz(L, M, N) \mid$ sample $\mid let(x, M, N)$

Operational Semantics: Red(sample, U) = $\lambda_{[0,1]}(U)$

If $\vdash M : \mathcal{R}$, $\operatorname{Red}^{\infty}(M, _)$ is the continuous distribution over \mathbb{R} computed by M.

.

The probability to observe U after at most one reduction step applied to M is Red($M \ , \ U$)

 $\operatorname{Red}: \Lambda^{\Gamma \vdash A} \times \Sigma_{\Lambda^{\Gamma \vdash A}} \to \mathbb{R}^+$ is a Kernel, i.e:

- for all $M \in \Lambda^{\Gamma \vdash A}$, $\operatorname{Red}(M, _)$ is a measure;
- for all $U \in \Sigma_{\Lambda^{\Gamma \vdash A}}$, $\operatorname{Red}(\underline{\ }, U)$ is a measurable function.

The probability to observe U after at most one reduction step applied to M is Red(M, U) $\Lambda^{\Gamma \vdash A}$: the set of terms Ms.t. $\Gamma \vdash M : A$. Red : $\Lambda^{\Gamma \vdash A} \times \Sigma_{\Lambda^{\Gamma \vdash A}} \to \mathbb{R}^+$ is a Kernel, i.e: • for all $M \in \Lambda^{\Gamma \vdash A}$, Red(M, _) is a measure;

• for all $U \in \Sigma_{\Lambda^{\Gamma \vdash A}}$, $\operatorname{Red}(\underline{\ }, U)$ is a measurable function.

• for all $U \in \Sigma_{\Lambda^{\Gamma \vdash A}}$, $\operatorname{Red}(\underline{\ }, U)$ is a measurable function.

 $\operatorname{Red}: \Lambda^{\Gamma \vdash A} \times \Sigma_{\Lambda^{\Gamma \vdash A}} \to \mathbb{R}^+$ is a Kernel, i.e.

- for all $M \in \Lambda^{\Gamma \vdash A}$, $\operatorname{Red}(M, _)$ is a measure;
- for all $U \in \Sigma_{\Lambda^{\Gamma \vdash A}}$, $\operatorname{Red}(\underline{\ }, U)$ is a measurable function.

Measurable sets and kernels constitute the category Kern.

 $\operatorname{Red}: \Lambda^{\Gamma\vdash \mathcal{A}} \times \Sigma_{\Lambda^{\Gamma\vdash \mathcal{A}}} \to \mathbb{R}^+ \text{ is a Kernel, i.e.}$

- for all $M \in \Lambda^{\Gamma \vdash A}$, $\operatorname{Red}(M, _)$ is a measure;
- for all $U \in \Sigma_{\Lambda^{\Gamma \vdash A}}$, $\operatorname{Red}(\underline{\ }, U)$ is a measurable function.

Measurable sets and kernels constitute the category Kern.

 $\operatorname{Red}^{\infty}(M, U)$ is the probability to observe U after any steps.

It is computed by composition and lub.

C. Tasson

Examples: Distributions

The Bernoulli distribution takes the value 1 with probability p and $_{V}$ the value 0 with probability 1 - p.

bernoulli $p ::= let(x, sample, x \le p)$ tests if sample draws a value within [0, p].

The exponential distribution is specified by its density e^{-x} .

exp : \mathcal{R} ::= let(x, sample, -log(x)) by the inversion sampling method.

The standard normal distribution defined by its density $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$.

y _____x normal ::= $let(x, sample, let(y, sample, \sqrt{-2\log(x)} \cos(2\pi y)))$ by the Box Muller method.

C. Tasson

Conditioning: If $U \subseteq \mathbb{R}$ measurable, then observe(U) of type $\mathcal{R} \to \mathcal{R}$, taking a term M and returning the renormalization of the distribution of M on the only samples that satisfy U: observe(U) = $\lambda m.Y(\lambda y.let(x, m, if(x \in U, x, y)))$ conditioning by rejection sampling.

Monte Carlo Simulation, Metropolis Hasting,...

2 Continuous Probability

- Syntax: Real Probabilistic PCF
- Semantics: Cstab_m (Cones and Stable measurable functions)

• Results: Adequacy

Semantical context

1981, Kozen Memory as measurable space and programs as kernels representing the transformation of the memory. What is a measurable subset for function space ?

1999, Panangaden

Meas, the category of measurable sets and functions **Kern**, the category of measurable sets and kernels They are **cartesian** but **not closed**.

2017, Heunen, Kammar, Staton, Yang **Quasi-borel spaces** A **CCC** based on **Meas** embedded into presheaves. How to interpret recursive types ?

2017, Keimel and Plotkin Kegelspitzen

A **CCC** of dcpos equipped with a convex structure (basic operations being scott continous) with scott continuous functions

How to restrict to measurable functions ?

C. Tasson

Semantical context

If $\vdash M : \mathcal{N}$, then $\llbracket M \rrbracket$ is a \mid If $\vdash M : \mathcal{R}$, then $\llbracket M \rrbracket$ is a discrete distribution over $\mathbb{N} \mid$ continuous measure over \mathbb{R}

- $[\mathcal{R}]$ as Meas(\mathbb{R}) the set of measures over the measurable space \mathbb{R} .
- Fixpoint of terms.

 $\mathsf{Cstab}_{\mathsf{m}}$ is a CCC based on Selinger's **cones** (dcpos with the order induced by addition and a convex structure).

Objects are cones and measurable spaces

Morphisms are stable and measurable functions

 $\ensuremath{\text{Pcoh}}$ is a subcategory of $\ensuremath{\text{Cstab}}_m$ which is a subcategory of Kegelspitzen.

C. Tasson

Our purpose is to be able to interpret $\ensuremath{\mathcal{R}}$ as the set of bounded measures.

- Complete cones (convex dcpos with the order induced by addition) with Scott continuous functions However, the category is cartesian but not closed.
- ② Complete cones and Stable functions (∞-non-decreasing functions) is a CCC.

However, not every stable function is measurable.

Measurable Cones (complete cones with measurable tests). Measurable paths pass measurable tests and Measurable functions preserve measurable paths.
 Cstab_m is a CCC with measurability included !

Step 1: Complete Cones

A Cone *P* is analogous to a real normed vector space, except that scalars are \mathbb{R}^+ and the norm $\|_\|_P : P \to \mathbb{R}^+$ satisfies: $x + y = 0 \Rightarrow x, y = 0, \quad \|x + x'\|_P \le \|x\|_P + \|x'\|_P, \quad \|\alpha x\|_P = \alpha \|x\|_P$ $x + y = x + y' \Rightarrow y = y', \quad \|x\|_P = 0 \Rightarrow x = 0, \quad \|x\|_P \le \|x + x'\|_P$

The Unit Ball is the set $\mathcal{B}P = \{x \in P \mid ||x||_P \leq 1\}$.

Order $x \leq_P x'$ if there is a $y \in P$ such that x' = x + y. This unique y is denoted as y = x' - x.

A Complete Cone is s.t. any non-decreasing $(x_n)_{n \in \mathbb{N}}$ of $\mathcal{B}P$ has a lub and $\|\sup_{n \in \mathbb{N}} x_n\|_P = \sup_{n \in \mathbb{N}} \|x_n\|_P$.

Example of Complete Cones

- Meas(X) with X a measurable space.
- $\widehat{\mathcal{X}} = \{ u \in (\mathbb{R}^+)^{|\mathcal{X}|} \mid \exists \varepsilon > 0 \ \varepsilon u \in \mathsf{P}\mathcal{X} \} \text{ if } \mathcal{X} \in \mathsf{Pcoh}.$

Step 2: Stable functions

The category of **complete cones** and **Scott-continuous** functions is not cartesian closed as *currying* fails to be *non-decreasing*.

A function $f : \mathcal{B}P \to Q$ is **n-non-decreasing function** if: n = 0 and f is non-decreasing n > 0 and $\forall u \in \mathcal{B}P$, $\Delta f(x; u) = f(x + u) - f(x)$ is (n - 1)-non-decreasing in x. A function is **stable** if it is Scott-continuous and ∞ -non-decreasing, i.e. n-non-decreasing for all $n \in \mathbb{N}$.

Complete cones and stable functions constitute a CCC.

Weak Parallel Or

wpor : $[0,1] \times [0,1] \rightarrow [0,1]$ given as wpor(s,t) = s+t-st is Scott-continuous, but not Stable. Its currying is not Scott-continuous.

Operational semantics

$$\forall r, \text{ s.t. } M \rightarrow r, \ \texttt{let}(x, M, N) \rightarrow N\{r/x\}$$

By Soundness

$$\llbracket \texttt{let}(x, M, N) \rrbracket = \int_{\mathbb{R}} (f \circ \delta)(r) \ \mu \ (dr)$$

C. Tasson

Operational semantics

$$\forall r, \text{ s.t. } M \rightarrow r, \ \texttt{let}(x, M, N) \rightarrow N\{r/x\}$$

By Soundness

$$\llbracket \texttt{let}(x, M, N) \rrbracket = \int_{\mathbb{R}} (f \circ \delta)(r) \ \mu \ (dr)$$
$$\llbracket N \rrbracket$$

Operational semantics

$$\forall r, \text{ s.t. } M \rightarrow r, \ \texttt{let}(x, M, N) \rightarrow N\{r/x\}$$

By Soundness

$$\llbracket \texttt{let}(x, M, N) \rrbracket = \int_{\mathbb{R}} (f \circ \delta)(r) \ \mu \ (dr)$$
$$\llbracket N \rrbracket \qquad \text{Dirac measure}$$

Operational semantics

$$\forall r, \text{ s.t. } M \rightarrow r, \ \texttt{let}(x, M, N) \rightarrow N\{r/x\}$$

By Soundness

$$\llbracket \texttt{let}(x, M, N) \rrbracket = \int_{\mathbb{R}} (f \circ \delta)(r) \quad \mu(dr)$$

$$\llbracket N \rrbracket \quad \text{Dirac measure} \quad \llbracket M \rrbracket$$

Operational semantics

$$\forall r, \text{ s.t. } M \rightarrow r, \ \texttt{let}(x, M, N) \rightarrow N\{r/x\}$$

By Soundness

$$\llbracket \texttt{let}(x, M, N) \rrbracket = \int_{\mathbb{R}} (f \circ \delta)(r) \ \mu \ (dr)$$

Thus $f \circ \delta$ needs to be measurable.

- There are non measurable stable functions
- We need to equip every cone with a notion of measurability

C. Tasson

Measurability tests of $Meas(\mathbb{R})$ are given by measurable sets of \mathbb{R} :

$$\forall U \subseteq \mathbb{R} \text{ measurable}, \ \varepsilon_U \in \mathsf{Meas}(\mathbb{R})' : \mu \mapsto \mu(U)$$

For needs of CCC, we parameterized measurable tests of a cone:

Measurable Cone

A cone P with a collection
$$(M^n(P))_{n\in\mathbb{N}}$$
 with $M^n(P)\subseteq (P')^{\mathbb{R}^n}$ s.t.:

$$0 \in \mathsf{M}^{n}(P), \quad \ell \in \mathsf{M}^{n}(P) \text{ and } h : \mathbb{R}^{p} \to \mathbb{R}^{n} \Rightarrow \ell \circ h \in \mathsf{M}^{p}(P)$$
$$\ell \in \mathsf{M}^{n}(P) \text{ and } x \in P \Rightarrow \begin{cases} \mathbb{R}^{n} \to \mathbb{R}^{+} \\ \vec{r} \mapsto \ell(\vec{r})(x) \end{cases} \text{ measurable.}$$

 \mbox{Cstab}_m is the category of complete and measurable cones with stable and measurable functions.

Let P and Q be measurable and complete cones: Measurable Test: $M^n(P) \subseteq (P')^{\mathbb{R}^n}$ Measurable Path: Pathⁿ(P) $\subseteq P^{\mathbb{R}^n}$ the set of bounded $\gamma : \mathbb{R}^n \to P$ such that $\ell * \gamma : \mathbb{R}^{k+n} \to \mathbb{R}^+$ is measurable with

$$\ell * \gamma : (\vec{r}, \vec{s}) \mapsto \ell(\vec{r})(\gamma(\vec{s}))$$

Measurable Functions: Stable functions $f : P \rightarrow Q$ such that:

 $\forall n \in \mathbb{N}, \ \forall \gamma \in \mathsf{Path}_1^n(P), \quad f \circ \gamma \in \mathsf{Path}^n(Q)$

If X is a measurable space, then Meas(X) is equipped with: $M^n(X) = \{\varepsilon_U : \mathbb{R}^n \to Meas(X)' \text{ s.t. } \varepsilon_U(\vec{r})(\mu) = \mu(U), U \text{ meas.}\}$ $Path_1^n(P)$ is the set of stochastic kernels from \mathbb{R}^n to X.

2 Continuous Probability

- Syntax: Real Probabilistic PCF
- Semantics: **Cstab**_m (Cones and Stable measurable functions)

• Results: Adequacy

The category \boldsymbol{Cstab}_m is a CCC and a model of Real PPCF.

Interpretation of some terms:

$$\llbracket \underline{r} \rrbracket = \delta_r, \ \llbracket \mathtt{sample} \rrbracket = \lambda_{[0,1]}, \ \llbracket \mathtt{let}(x, M, N) \rrbracket (U) = \int_{\mathbb{R}} \llbracket N \rrbracket (\delta_r) (U) \ \llbracket M \rrbracket (dr)$$

Soundness

$$\llbracket M \rrbracket^{\Gamma \vdash A} = \int_{\Lambda^{\Gamma \vdash A}} \llbracket t \rrbracket^{\Gamma \vdash A} \mathrm{Red}(M, dt)$$

Adequacy

$$\llbracket M \rrbracket^{\vdash \mathcal{R}}(U) = \operatorname{Red}^\infty(M, U)$$

C. Tasson

Examples: Distributions

The Bernoulli distribution takes the value 1 with probability p and the value 0 with probability 1 - p. bernoulli $p ::= let(x, sample, x \le p)$ $\llbracket \text{bernoulli} p \rrbracket^{\vdash \mathcal{R}} = p \delta_1 + (1 - p) \delta_0$ Х The exponential distribution is specified by its density e^{-x} . $\exp : \mathcal{R} ::= \operatorname{let}(x, \operatorname{sample}, -\log(x))$ $\llbracket \exp \rrbracket^{\vdash \mathcal{R}}(U) = \int_{m_{\perp}} \chi_U(s) e^{-s} \lambda(ds)$ х The standard normal distribution defined by its density $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$. normal ::= У $let(x, sample, let(y, sample, \sqrt{-2\log(x)}\cos(2\pi y)))$ $[[normal]]^{\vdash \mathcal{R}}(U) = \frac{1}{\sqrt{2\pi}} \int_{U} e^{-\frac{x^2}{2}} \lambda(dx)$

C. Tasson

Examples:

Conditioning: If $U \subseteq \mathbb{R}$ measurable, then observe(U) of type $\mathcal{R} \to \mathcal{R}$, taking a term M and returning the renormalization of the distribution of M on the only samples that satisfy U: observe(U) = $\lambda m.Y(\lambda y.let(x, m, if(x \in U, x, y)))$ conditioning by rejection sampling. Whenever M represents a probability distribution, this equation gives the conditional probability:

 $\llbracket \texttt{observe}(U)M \rrbracket(V) = \frac{\llbracket M \rrbracket(V \cap U)}{\llbracket M \rrbracket(U)}$

Conclusion

$\boldsymbol{\mathsf{Pcoh}}$ and $\boldsymbol{\mathsf{Cstab}}_{\mathsf{m}}$ models of probabilistic programming

- For countable data types, **Pcoh** is fully abstract.
- For real data types, **Cstab**_m is a sound model that encodes probability measures used in probabilistic programming.

Further directions:

- A model of LL ?
- A model of pCBPV ?
- Full abstraction ?