

CSL Birmingham Thursday, September 7th, 2018

A linear logic approach to the semantics of probabilistic programs

joint work with T. Ehrhard and M. Pagani

Christine Tasson

Christine.Tasson@irif.fr

IRIF - University Paris Diderot

Probabilistic Programming

Study the *implementation* of probabilistic algorithms with *formal methods*: correctness, termination, contextual behaviour....

Bibliography					
1979 1989 1999 2008 2008 2016	Kozen Jones et al. Panangaden Danos et al. Park et al. Staton et al. Ehrhard et al.	- Semantics for probabilistic programs - A probabilistic powerdomain of evaluation - The category of markov kernel - Probabilistic coherent spaces - A probabilistic language based on sampling functions - Semantics for probabilistic programming: higher-order functions, continuous distributions, - Measurable cones and stable, measurable functions: a model for probabilistic higher-order programming			

<u>Differences:</u> CBV or CBN evaluation, Discrete or Continuous data, first or higher order programs.

Semantics of Probabilistic Programs

Operational Semantics: how probabilistic programs compute

The evaluation of a program is a markov process described by the probability of reduction from M to N: **Prob**(M, N)

- Discrete type: stochastic matrix
- Continuous type: stochastic kernel

Denotational Semantics: invariant of computation

If M is a closed program, $[\![M]\!]$ can represent the results.

- Discrete type (\mathbb{N}): discrete distributions over integers
- Continuous type (\mathbb{R}): continuous distributions over reals

Two examples of Probabilistic Programs

We will prove that the correctness of the implementation of two classic probabilistic algorithms in probability.

Conditioning - handling discrete integers

Given an array containing 0/1 cells, find the index of a 0 cell.

- choose an index k
- 2 test if the content of the kth cell is 0
- if yes output k
- 4 if no start from 1

Prove that LV outputs a correct value with probability 1

Two examples of Probabilistic Programs

We will prove that the correctness of the implementation of two classic probabilistic algorithms in probability.

Metropolis Hasting - handling continous reals

Simulate a markov chain following a probabilistic law that we know only up to a scaling.

- Start from a well-chosen point
- 2 Sample the proposal next point from a gaussian
- Test if it is coherent with the previous one according to the wanted law up to a scaling
- 4 if yes use the proposal next point and start from 2
- **5** if no keep the previous point and start from 2

Prove that MH produces a markov chain following the wanted probabilistic law.

What tools to study this programs

Syntax Describe programs, types and implementation

Operational Describe the evaluation of programs using semantics Prob(M, N) a stochastic matrix or kernel

Denotational Interpret types using mathematical spaces semantics Interpret programs using mathematical functions

Invariance of Discrete: $[\![M]\!] = \sum_N \mathbf{Prob}(M, N)[\![N]\!]$ semantics Continuous: $[\![M]\!] = \int \mathbf{Prob}(M, dt)[\![t]\!]$

Adequacy If $\vdash M : \text{nat}$, then $\llbracket M \rrbracket_n = \text{Prob}(M, \underline{n})$ Lemma If $\vdash M : \text{real}$, then $\llbracket M \rrbracket(U) = \text{Prob}(M, U)$

Adequacy If $\llbracket P \rrbracket = \llbracket Q \rrbracket$ then $P \simeq Q$ (Discr. \checkmark / Cont. \checkmark)

Full Abstraction $\llbracket P \rrbracket = \llbracket Q \rrbracket$ iff $P \simeq Q$ (Discr. \checkmark / Cont.?)

- Discrete Probability
 - Syntax: Discrete Probabilistic PCF
 - Semantics: **Pcoh** (Probabilistic Coherent Spaces)
 - Results: Probabilistic Adequacy & Full Abstraction
- 2 Continuous Probability

Types: $A, B := \text{nat} \mid A \rightarrow B$

Terms: $M, N, L ::= x \mid \lambda x^A . M \mid (M) N \mid fix(M) \mid$

 $|\underline{n}| \operatorname{succ}(M) | \operatorname{ifz}(L, M, N) | \operatorname{let} x = M \operatorname{in} N$

coin

Operational Semantics as a stochastic process: $M \stackrel{p}{\rightarrow} N$

$$\begin{array}{cccc} (\lambda x^A.M)N & \xrightarrow{1} & M[N/x] \\ \text{ifz}(\underline{0},M,N) & \xrightarrow{1} & M \\ \\ \text{ifz}(\underline{n+1},M,N) & \xrightarrow{1} & N \\ \\ \text{let} x = \underline{n} \text{in } N & \xrightarrow{1} & N[\underline{n}/x] \end{array}$$

C. Tasson

Types: $A, B := \text{nat} \mid A \rightarrow B$

Terms: $M, N, L ::= x \mid \lambda x^A . M \mid (M) N \mid fix(M) \mid$

 $\underline{n} \mid \text{succ}(M) \mid \text{ifz}(L, M, N) \mid \text{let } x = M \text{ in } N$

coin

Operational Semantics as a stochastic process: $M \stackrel{p}{\rightarrow} N$

If
$$M \xrightarrow{p} M'$$
 then
$$(M)N \xrightarrow{p} (M')N$$

$$let x=M in N \xrightarrow{p} let x=M' in N$$

$$succ(M) \xrightarrow{p} succ(M')$$

$$ifz(M,L,N) \xrightarrow{p} ifz(M',L,N),...$$

Types: $A, B ::= nat \mid A \rightarrow B$

Terms: $M, N, L ::= x \mid \lambda x^A . M \mid (M) N \mid fix(M) \mid$

 $|\underbrace{n}_{l}|\operatorname{succ}(M)|\operatorname{ifz}(L,M,N)|\operatorname{let}x=M\operatorname{in}N$

coin

Operational Semantics as a stochastic matrix $Prob(\cdot, \cdot)$

$$\mathbf{Prob}((\lambda x^A.M)N, M[N/x]) = 1 : (\lambda x^A.M)N \xrightarrow{1} M[N/x]$$

$$\mathbf{Prob}(\mathsf{coin},\underline{0}) = \mathbf{Prob}(\mathsf{coin},\underline{1}) = \frac{1}{2} : \quad \mathsf{coin} = \frac{\frac{1}{2}}{\frac{1}{2}}$$

Types: $A, B := nat \mid A \rightarrow B$

Terms: $M, N, L ::= x \mid \lambda x^A . M \mid (M) N \mid fix(M) \mid$

 $\mid \underline{n} \mid \mathsf{succ}(M) \mid \mathsf{ifz}(L, M, N) \mid \mathsf{let} \, x = M \, \mathsf{in} \, N$

Operational Semantics as a stochastic matrix $Prob(\cdot, \cdot)$

Prob(M, N): **probability** that $M \to N$ in **one** step.

 $\mathbf{Prob}^2(M,N)$: **probability** that $M \to N$ in **two** steps.

. . .

Prob $^{\infty}(M, N)$: **probability** that $M \to N$ in **any** steps (when N is a normal form)

Types: $A, B := \text{nat} \mid A \rightarrow B$

Terms: $M, N, L ::= x \mid \lambda x^A . M \mid (M) N \mid fix(M) \mid$

|n| succ(M) | ifz(L, M, N) | let x=M in N

coin

Operational Semantics as a stochastic matrix $Prob(\cdot, \cdot)$

$$\mathsf{Prob}^2(M,N) = \sum_{L} \mathsf{Prob}(M,L) \mathsf{Prob}(L,N)$$

If $\vdash M$: nat, then $\mathbf{Prob}^{\infty}(M, \underline{\ })$ is the subprobability **discrete distribution** over \mathbb{N} of normal forms of M.

How to encode a LasVegas Algorithm?

Input: A $\underline{0}/\underline{1}$ array of length $n \geq 2$ s.t. $\frac{1}{2}$ cells are $\underline{0}$.

 $\begin{array}{ccccc} f: & 0,2,5 & \mapsto & \underline{0} \\ & 1,3,4 & \mapsto & \underline{1} \end{array}$

Output: Find the index of a cell containing $\underline{0}$.

Caml:

pPCF:

How to encode a LasVegas Algorithm?

Input: A $\underline{0}/\underline{1}$ array of length $n \geq 2$ s.t. $\frac{1}{2}$ cells are $\underline{0}$.

Output: Find the index of a cell containing $\underline{0}$.

```
Caml:
```

```
pPCF:
pure
CBN
```

```
\begin{array}{c} \mathsf{fix} \left( \lambda \mathsf{LasVegas^{nat}} \left( \lambda \mathsf{k^{nat}} \right. \right. \\ & \mathsf{ifz} \; \mathsf{f} \; \mathsf{k} \; \mathsf{then} \; \mathsf{k} \\ & \mathsf{else} \; \mathsf{LasVegas} \right) \; (\mathsf{rand} \; \mathsf{n}) \, ) \end{array}
```

How to encode a LasVegas Algorithm?

Input: A $\underline{0}/\underline{1}$ array of length $n \geq 2$ s.t. $\frac{1}{2}$ cells are $\underline{0}$.

 $\begin{array}{cccc} f: & 0,2,5 & \mapsto & \underline{0} \\ & 1,3,4 & \mapsto & \underline{1} \end{array}$

Output: Find the index of a cell containing $\underline{0}$.

Caml:

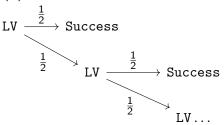
pPCF: let

```
 \begin{aligned}  & \text{fix} \big( \lambda \text{LasVegas}^{\text{nat}}. \text{ let } \textbf{k} = \textbf{rand } \textbf{n} \text{ in} \\ & \text{ifz (f k) then k} \\ & \text{else LasVegas} \big) \end{aligned}
```

Syntactical proof of correction of LasVegas

$$\label{eq:local_local_local} \text{LV} = \text{fix} \big(\lambda \text{LasVegas}^{\text{nat}} \, . \, \, \text{let k = rand n in} \\ \text{ifz (f k) then k else LasVegas} \big)$$

What is the probability LV terminates with a success: \underline{k} such that f(k) = 0:



$$\mathsf{Prob}^\infty(\mathtt{LV},\mathtt{Success}) = \sum_{k=1}^\infty rac{1}{2^n} = 1$$

- Discrete Probability
 - Syntax: Discrete Probabilistic PCF
 - Semantics: **Pcoh** (Probabilistic Coherent Spaces)
 - Results: Probabilistic Adequacy & Full Abstraction
- 2 Continuous Probability

General Framework	Domains Semantics	Quantitative Semantics
Types	Continuous dcpos (X, \leq)	Proba. spaces $(X , P(X) \subseteq (\mathbb{R}^+)^{ X })$
Programs	Scott Continuous	Analytic Functions
Probability	Proba. monad	Values as proba. distr.

Bibliography

1976 Plotkin

1981 Kozen

1989 Plotkin and Jones

1998 Jung and Tix

2013 Goubault Larrecq and Varraca

2013 Mislove

Bibliography 1988 Girard

Blute, Panangaden and Seely

2002 Hasegawa 2004 Girard

2011 Danos and Ehrhard

2014 Ehrhard, Pagani, T.

2016 Ehrahrd, T.

General Framework	Domains Semantics	Quantitative Semantics
Types	Continuous dcpos (X, \leq)	Proba. spaces $(X , P(X) \subseteq (\mathbb{R}^+)^{ X })$
Programs	Scott Continuous	Analytic Functions
Probability	Proba. monad	Values as proba. distr.

How to interpret a program $M: nat \Rightarrow nat$

Type:

 \mathbb{N}_{\perp} flat domain. $\mathcal{V}(\mathbb{N}_{\perp})$ proba. distr. over \mathbb{N}_{\perp} ,

$$\begin{array}{l} \textbf{Prog:} \; [\![M]\!] : \mathbb{N}_{\perp} \to \mathcal{V}\big(\mathbb{N}_{\perp}\big), \\ \\ [\![\text{let n=x in M}\!] : \mathcal{V}(\mathbb{N}_{\perp}) \!\!\to\!\! \mathcal{V}(\mathbb{N}_{\perp}) \end{array}$$

$$x \mapsto \left(\sum_{n} \llbracket M \rrbracket_{n,q} x_{n}\right)_{q}$$

Type:

 $|\mathsf{Nat}| = \mathbb{N}$ P(Nat) subproba. dist. over \mathbb{N}

Prog:
$$\llbracket M \rrbracket : P(\mathsf{Nat}) \to P(\mathsf{Nat})$$

$$x \mapsto \left(\sum_{n} \llbracket M \rrbracket_{n,q} x_{n}\right)_{q} \qquad x \mapsto \left(\sum_{\mu = [n_{1}, \dots, n_{k}]} \llbracket M \rrbracket_{\mu,q} \prod_{i=1}^{k} x_{n_{i}}\right)_{q}$$

General Framework	Domains Semantics	Quantitative Semantics
Types	Continuous dcpos (X, \leq)	Proba. spaces $(X , \mathrm{P}(X) \subseteq (\mathbb{R}^+)^{ X })$
Programs	Scott Continuous	Analytic Functions
Probability	Proba. monad	Values as proba. distr.

Problematic in domain

Finding a full subcategory of continuous dcpos that is: Cartesian Closed and closed under the proba. monad \mathcal{V} .

Full Abs.: PCOH/pPCF $Prob(C[M], \underline{n})$ $\forall n, \forall C[]$ $Prob(C[N], \underline{n})$ iff $\llbracket M \rrbracket = \llbracket N \rrbracket.$

Types as **Probabilistic Coherent Spaces**: (|X|, P(X))

Proba. Space

|X|: the **web**, a (potentially infinite) set of final states

 $\mathrm{P}\left(X
ight)$: a set of vectors $\subseteq (\mathbb{R}^+)^{|X|}$ such that

closure:
$$P(X)^{\perp\perp} = P(X)$$
 with $\forall u, v \in (\mathbb{R}^+)^{|X|}, \ \langle u, v \rangle = \sum_{a \in |X|} u_a v_a$ $\forall P \subseteq (\mathbb{R}^+)^{|X|}, \ P^{\perp} = \{v \in (\mathbb{R}^+)^{|X|} \ ; \ \forall u \in P, \ \langle u, v \rangle \leq 1\}$

bounded covering: $\forall a \in |X|$,

$$\exists v \in P(X) \; ; \; v_a \neq 0 \quad \text{and} \quad \exists p > 0, \; ; \; \forall v \in P(X) \, , \; v_a \leq p.$$

Proposition: Proba. spaces as Domains

(|X|, P(X)) is a **Proba. space iff** P(X) is bounded covering, **Scott Closed** (downwards-closed and dcpo) and **Convex**.

Types as **Probabilistic Coherent Spaces**: (|X|, P(X))

Example:
$$\begin{aligned} |\mathbf{1}| &= \{*\} & \text{P}\left(\mathbf{1}\right) = [0,1] \\ |\mathbf{Bool}| &= \{t,f\} & \text{P}\left(\mathbf{Bool}\right) = \{(x_t,x_f) \; ; \; x_t + x_f \leq 1\} \\ |\mathbf{Nat}| &= \{0,1,2,\ldots\} & \text{P}\left(\mathbf{Nat}\right) = \{x \in [0,1]^{\mathbb{N}} \; ; \; \sum_n x_n \leq 1\} \\ |\mathbf{Bool} \to \mathbf{1}| &= \{[t^n,f^m] \; ; \; n,m \in \mathbb{N}\}, \\ &\text{P}\left(\mathbf{Bool} \to \mathbf{1}\right) = \{Q \in (\mathbb{R}^+)^{|\mathbf{Bool} \to \mathbf{1}|} \; ; \\ &\forall x_t + x_f \leq 1, \; \; \sum_{n,m=0}^{\infty} Q_{[t^n,f^m]} \, x_t^n x_f^m \leq 1\} \end{aligned}$$

Proposition: Proba. spaces as Domains

(|X|, P(X)) is a **Proba. space iff** P(X) is bounded covering, **Scott Closed** (downwards-closed and dcpo) and **Convex**.

A model of Linear Logic

Pcoh: Linear Category

Objects: Proba. Spaces

Morphisms: Linear Functions

Call by Name

Pcoh: Kleisli Category

Objects: Proba. Spaces

Morphisms: Analytic Functions

- Smcc $(1, \otimes, \multimap)$
- biproduct

- Comonad (!, der, dig)
- Com. Comonoid $(!A, \mathbf{1}, \otimes)$

- CCC
- (PCF+coin)

Linear Category

Pcoh(X, Y)

Matrices $Q \in (\mathbb{R}^+)^{|X| \times |Y|}$ such that:

$$\forall x \in P(X), \ Q \cdot x = \left(\sum_{a \in |X|} Q_{a,b} x_a\right)_b \in P(Y)$$

Example

Pcoh(Nat, Nat): Stochastic Matrices $Q \in (\mathbb{R}^+)^{\mathbb{N} \times \mathbb{N}}$.

$$\forall x \in (\mathbb{R}^+)^{\mathbb{N}} ; \sum_{n \in \mathbb{N}} x_n \le 1, \sum_{m,n \in \mathbb{N}} Q_{m,n} x_n \le 1$$

Free Commutative Comonoid and Comonad

Exponential

$$|!X| = \mathcal{M}_{fin}(|X|)$$
 the set of finite multisets

$$\mathrm{P}\left(!X\right) = \ \{x^! \ ; \ x \in \mathrm{P}\left(X\right)\}^{\perp \perp} \ \text{where} \ x^!_{[a_1,\dots,a_k]} = \textstyle\prod_{i=1}^k x_{a_i}$$

Example

Let **Bcoin** =
$$(p, 1 - p) \in P(Bool) = \{(p, q) ; p + q \le 1\}.$$

$$\mathbf{Bcoin}_{[\hspace{0.05cm}]}^{!}=1, \qquad \mathbf{Bcoin}_{[t,t]}^{!}=p^2, \qquad \mathbf{Bcoin}_{[t,f]}^{!}=p(1-p), \ \ldots$$

Theorem (2017: Crubillé - Ehrhard - Pagani - T.)

This exponential computes the free commutative comonoid.

Free Commutative Comonoid and Comonad

Exponential

$$|!X| = \mathcal{M}_{fin}(|X|)$$
 the set of finite multisets

$$\mathrm{P}\left(!X\right) = \ \{x^! \ ; \ x \in \mathrm{P}\left(X\right)\}^{\perp\perp} \ \text{where} \ x^!_{[a_1,\dots,a_k]} = \prod_{i=1}^k x_{a_i}$$

Commutative Comonoid

Comonad

Cocontr.: $!X \xrightarrow{c^{!X}} !X \otimes !X$ Coweak.: $!X \xrightarrow{w^{!X}} 1$

Comult.: $\operatorname{dig}_{!X} : !!X \rightarrow !X$ **Counit:** $der_{!X} : !X \to X$

Theorem (2017: Crubillé - Ehrhard - Pagani - T.)

This exponential computes the free commutative comonoid.

Non-Linear Category

$Pcoh_!(X, Y) = Pcoh(!X, Y)$

Matrices $Q \in (\mathbb{R}^+)^{\mathcal{M}_{\mathsf{fin}}(|X|) \times |Y|}$ such that

$$\forall U \in P(!X), \ Q \cdot U = \left(\sum_{m \in \mathcal{M}_{fin}(|X|)} Q_{m,b} \ U_m\right)_b \in P(Y)$$

Non-Linear Morphisms are analytic and Scott Continuous.

$$\begin{array}{c} \mathbf{Pcoh_!(Bool,1)} = \{Q \in (\mathbb{R}^+)^{|\mathbf{Bool} \rightarrow 1|} \ s.t. \ Q_{[t^n,f^m]} \leq \frac{(n+m)^{n+m}}{n^n \, m^m} \} \\ \\ \text{let rec f x =} \\ \text{if x then if x then f x} \\ \text{else ()} \\ \text{else if x then ()} \\ \text{else f x} \\ \end{array} \\ \sum_{n,m=0}^{\infty} \frac{(n+m)!}{n! \, m!} x_t^{2n+1} x_f^{2m+1} \end{array}$$

Non-Linear Category

$$\begin{aligned} \operatorname{Pcoh}_!(X,Y) &= \operatorname{Pcoh}(!X,Y) & \operatorname{Density} \end{aligned}$$
 Matrices $Q \in (\mathbb{R}^+)^{\mathcal{M}_{\operatorname{fin}}(|X|) \times |Y|}$ such that if $x_m^! = \prod_{a \in m} x_a^{m(a)}$
$$\forall x \in \operatorname{P}(X), \ \widehat{Q}(x) = \left(\sum_{m \in \mathcal{M}_{\operatorname{fin}}(|X|)} Q_{m,b} x_m^! \right) \in \operatorname{P}(Y)$$

Non-Linear Morphisms are analytic and Scott Continuous.

$$\begin{array}{c} \textbf{Pcoh}_!(\textbf{Bool},\textbf{1}) = \{Q \in (\mathbb{R}^+)^{|\textbf{Bool}\rightarrow \textbf{1}|} \text{ s.t. } Q_{[t^n,f^m]} \leq \frac{(n+m)^{n+m}}{n^n\,m^m}\} \\ \\ \textbf{let rec f x =} \\ \textbf{if x then if x then f x} \\ \textbf{else ()} \\ \textbf{else if x then ()} \\ \textbf{else f x} \\ \end{array} \\ \begin{array}{c} \sum_{n,m=0}^{\infty} \frac{(n+m)!}{n!\,m!} x_t^{2n+1} x_f^{2m+1} \\ \end{array}$$

Non-Linear Category

$$\begin{aligned} & \mathsf{Pcoh}_!(X,Y) = \mathsf{Pcoh}(!X,Y) & \mathsf{Density} \\ & \mathsf{Matrices} \ Q \in (\mathbb{R}^+)^{\mathcal{M}_\mathsf{fin}(|X|) \times |Y|} \ \mathsf{such that if} \ x_m^! = \prod_{a \in m} x_a^{m(a)} \\ & \forall x \in \mathrm{P}(X), \ \widehat{Q}(x) = \left(\sum_{m \in \mathcal{M}_\mathsf{fin}(|X|)} Q_{m,b} \, x_m^! \right)_b \in \mathrm{P}(Y) \end{aligned}$$

Non-Linear Morphisms are analytic and Scott Continuous.

$$\begin{array}{c} \textbf{Pcoh}_!(\textbf{Bool},\textbf{1}) = \{Q \in (\mathbb{R}^+)^{|\textbf{Bool}\rightarrow \textbf{1}|} \text{ s.t. } Q_{[t^n,f^m]} \leq \frac{(n+m)^{n+m}}{n^n\,m^m} \} \\ \\ \textbf{let rec f x =} \\ \textbf{if x then if x then f x} \\ \textbf{else ()} \\ \textbf{else if x then ()} \\ \textbf{else f x} \\ \end{array} \\ \begin{array}{c} \textbf{pb of DEFINABILITY} \\ \\ \sum_{n,m=0}^{\infty} \frac{(n+m)!}{n!\,m!} x_t^{2n+1} x_f^{2m+1} \\ \\ \end{array}$$

Interpretation of terms

If $\Gamma \vdash M : A$, then $\llbracket A \rrbracket^{\Gamma} \in \mathbf{Pcoh}_{!}(\Gamma, A)$

 $\vdash \underline{n}$: nat, thus $\llbracket n \rrbracket \in \mathrm{P}(\mathbf{Nat})$ is a distribution over \mathbb{N} :

$$[\![\underline{\textit{n}}]\!] = (0,\ldots,0,\ 1\ , 0,\ldots)$$
 nth

 \vdash rand n: nat, thus \llbracket rand n \rrbracket is a distribution over $\Bbb N$:

$$[\![\text{rand n}]\!] = (\frac{1}{n}, \dots, \frac{1}{n}, \overbrace{0, \dots)}^{n} (n-1) \text{th}$$

If $\vdash N$: nat and $\vdash P$: A and $\vdash Q$: A, then

$$[[ifz(N, P, Q)]] = [N]_0[P] + \sum_{k=0}^{\infty} [N]_{k+1}[Q]$$

$$[\![let x = N in P]\!] = \sum_{k=0}^{\infty} [\![N]\!]_k [\![\widehat{P}]\!](k)$$

- Discrete Probability
 - Syntax: Discrete Probabilistic PCF
 - Semantics: **Pcoh** (Probabilistic Coherent Spaces)
 - Results: Probabilistic Adequacy & Full Abstraction
- 2 Continuous Probability

First results [Danos-Ehrhard 2011]

Operational **Prob**
$$(M, N) = p$$
 iff $M \stackrel{p}{\rightarrow} N$ semantics stochastic matrix vs. stochastic process

Denotational **Types** as probabilistic spaces:
$$[A] = (|A|, P(A))$$
 semantics **Programs** as **analytic functions**:

if
$$A \vdash M : B$$
 then $\llbracket M \rrbracket : P(A) \rightarrow P(B)$

$$\forall x \in \mathrm{P}(A), \forall b \in |B|, \ \widehat{\llbracket M \rrbracket}(x)_b = \sum_{m \in \mathcal{M}_{\mathrm{fin}}(|A|)} \llbracket M \rrbracket_{m,b} \prod_{a \in m} x_a^{m(a)}$$

Compositionality
$$[(M)N]_b = \widehat{[M]}([N])_b = \sum_m [M]_{m,b} \prod_{a \in m} [N]_a^{m(a)}$$

Invariance of sem.
$$[\![M]\!] = \sum_{N} \mathbf{Prob}(M, N)[\![N]\!]$$

Adequacy Lemma $\text{ if } \vdash M : \mathtt{nat}, \text{ then } \mathbf{Prob}^\infty(M,\underline{n}) = [\![M]\!]_n$

Probabilistic Full Abstraction

Theorem (2014: Ehrhard - Pagani - T.)

Pcoh

Adequacy

$$M \cong_{o} N$$

Full Abstraction

 $M \cong_{o} N$
 $M \cong_{o} N$
 $M \cong_{o} N$

Adequacy proof:

If
$$\llbracket M \rrbracket = \llbracket N \rrbracket$$
 then, $\mathsf{Prob}^{\infty}((C)M,\underline{n}) = \mathsf{Prob}^{\infty}((C)N,\underline{n})$

- **1** Apply Adequacy Lemma : $\mathbf{Prob}^{\infty}((C)M,\underline{n}) = [\![(C)M]\!]_n$.
- Apply Compositionality:

$$[\![(C)M]\!]_n = \sum_m [\![C]\!]_{m,n} \prod_{a \in m} [\![M]\!]_a^{m(a)} = \sum_m [\![C]\!]_{m,n} \prod_{a \in m} [\![N]\!]_a^{m(a)} = [\![(C)N]\!]_n$$

Probabilistic Full Abstraction

Theorem (2014: Ehrhard - Pagani - T.)

Pcoh

Adequacy

Full Abstraction

$$M \simeq_{o} N$$

$$Full Abstraction$$

$$Prob^{\infty}(C[M], n) \stackrel{\forall C[] \forall n}{=} Prob^{\infty}(C[M], n)$$

Full Abstraction Proof:

- **1** By contradiction: $\exists \alpha \in |\sigma|, \ [\![M]\!]_{\alpha} \neq [\![N]\!]_{\alpha}$
- ② Find testing context: T_{α} such that $[(T_{\alpha})M] \neq [(T_{\alpha})N]$ (context only depends on α)
- **§** Prove **definability**: $T_{\alpha} \in \mathsf{pPCF}$ using coin and regularity of analytic functions
- **4** Apply **Adequacy Lemma**: $\operatorname{Prob}((T_{\alpha})M \stackrel{*}{\to} \underline{0}) \neq \operatorname{Prob}((T_{\alpha})N \stackrel{*}{\to} \underline{0}).$

Semantical proof of correction of LasVegas

Input: A
$$\underline{0}/\underline{1}$$
 array of length $n \ge 2$ s.t. $\frac{1}{2}$ cells are $\underline{0}$.

$$\underline{0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5}$$

$$\underline{0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0}$$

$$f: \quad 0, 2, 5 \quad \mapsto \quad \underline{0}$$

$$1, 3, 4 \quad \mapsto \quad \underline{1}$$

Output: Find the index of a cell containing $\underline{0}$.

We want to prove that $\mathbf{Prob}^{\infty}(\mathtt{LV},\mathtt{Success})=1$

Semantical proof of correction of LasVegas

$$\label{eq:LV} \text{LV} = \begin{array}{l} \text{fix} \big(\lambda \text{LasVegas}^{\text{nat}} \, . \, \, \text{let } \, \text{k = rand n in} \\ & \text{ifz (f k) then k else LasVegas} \big) \end{array}$$

By operational semantics:

LV
$$\stackrel{1}{\rightarrow}$$
 let $k = rand n in ifz (fk) then \underline{k} else LV$

Semantical proof of correction of LasVegas

LV =
$$fix(\lambda Las Vegas^{nat})$$
. let k = rand n in ifz (f k) then k else Las Vegas)

By operational semantics:

LV
$$\xrightarrow{1}$$
 let $k = rand n in ifz (fk) then \underline{k} else LV$

By invariance of the semantics and interpretation of let and ifz:

$$\begin{split} \llbracket \mathbf{L} \mathbf{V} \rrbracket_{\rho} &= \sum_{k=0}^{\infty} \llbracket \mathbf{r} \mathbf{n} \mathbf{n} \rrbracket_{k} \llbracket \mathbf{i} \mathbf{f} \mathbf{z} \left(\mathbf{f} \, \mathbf{k} \right) \mathbf{t} \mathbf{h} \mathbf{e} \mathbf{n} \, \underline{\mathbf{k}} \, \mathbf{else} \, \mathbf{L} \mathbf{V} \rrbracket_{\rho} \\ &= \frac{1}{n} \cdot \left(\sum_{f(k)=0} \underbrace{\mathbb{k} \mathbf{k}}_{k} \mathbb{I}_{\rho} + \sum_{f(k) \neq 0} \underbrace{\mathbb{k} \mathbf{k}}_{k} \mathbb{I}_{\rho} \right) \end{split}$$

If
$$p < n \& f(p) = 0$$
, then $[LV]_p = \frac{1}{n} + \frac{1}{n} \cdot \frac{n}{2} \cdot [LV]_p$, so $[LV]_p = \frac{2}{n}$.
If $p > n$ or $f(p) \neq 0$, then $[LV]_p = \frac{1}{n} \cdot \frac{n}{2} \cdot [LV]_p$, so $[LV]_p = 0$.

Semantical proof of correction of LasVegas

```
\label{eq:LV} \text{LV} \ = \ \text{fix} \big( \lambda \text{LasVegas}^{\text{nat}} \, . \ \text{let } \text{k = rand n in} \\ \text{ifz (f k) then k else LasVegas} \big)
```

If
$$p < n$$
 and $f(p) = 0$, then $[LV]_p = \frac{2}{n}$, otherwise $[LV]_p = 0$.

Semantical proof of correction of LasVegas

$$\text{LV} = \text{ fix} \big(\lambda \text{LasVegas}^{\text{nat}} \, . \, \, \text{let k = rand n in} \\ \text{ ifz (f k) then k else LasVegas} \big)$$

If
$$p < n$$
 and $f(p) = 0$, then $[LV]_p = \frac{2}{n}$, otherwise $[LV]_p = 0$.

Using Adequacy Lemma, the probability that LV converges:

$$\begin{array}{ll} \mathbf{Prob}^{\infty}(\mathtt{LV},\mathtt{Success}) & = & \sum_{p} \mathbf{Prob}^{\infty}(\mathtt{LV},\underline{p}) \\ \\ & = & \sum_{p} [\![\mathtt{LV}]\!]_{p} \\ \\ & = & \sum_{\substack{f(p)=0\\p < n}} \frac{2}{n} = \frac{n}{2} \cdot \frac{2}{n} \\ \\ & = & 1 \end{array}$$

- Discrete Probability
- 2 Continuous Probability
 - Syntax: Real Probabilistic PCF
 - Semantics: Cstab_m (Cones and Stable measurable functions)
 - Results: Adequacy

From Discrete to Continuous syntax

Nat PPCF

```
Types: A, B := nat \mid A \rightarrow B
Terms: M, N, L :=
  \times \mid \lambda \times^{A} . M \mid (M) N \mid fix(M) \mid
  n \mid succ(M) \mid
  ifz(L, M, N)
  coin \mid let x = M in N
Operational Semantics:
Prob(coin, \underline{0}) = \frac{1}{2}
If \vdash M: nat, \mathbf{Prob}^{\infty}(M, ) is
the discrete distribution over \mathbb{N}
computed by M.
```

Nat PPCF

Types: $A, B := \text{nat} \mid A \to B$ **Terms:** $M, N, L := x \mid \lambda x^A . M \mid (M) N \mid \text{fix}(M) \mid \underline{n} \mid \text{succ}(M) \mid$

$ifz(L, M, N) \mid$ coin | let x=M in N

Operational Semantics:

$$\mathbf{Prob}(\mathsf{coin},\underline{0}) = \tfrac{1}{2}$$

If $\vdash M : \text{nat}$, $\mathbf{Prob}^{\infty}(M, \underline{\hspace{0.1cm}})$ is the discrete distribution over $\mathbb N$ computed by M.

Real PPCF

Types: $A, B ::= real \mid A \rightarrow B$

Terms:
$$M, N, L ::=$$

$$x \mid \lambda x^{A}.M \mid (M)N \mid \mathbf{fix}(M) \mid$$

$$\underline{r} \mid \underline{f}(M_{1},...,M_{n}) \mid$$

$$\mathbf{ifz}(L,M,N) \mid$$

$$\mathbf{sample} \mid \mathbf{let} x = M \mathbf{in} N$$

Operational Semantics:

$$\mathbf{Prob}(\mathtt{sample}, U) = \lambda_{[0,1]}(U)$$

If $\vdash M : real$, $Prob^{\infty}(M, _)$ is the continuous distribution over \mathbb{R} computed by M.

The probability to observe U after at most one reduction step applied to M is $\mathbf{Prob}(\ M\ ,\ U\)$

Prob : $\Lambda^{\Gamma \vdash A} \times \Sigma_{\Lambda^{\Gamma \vdash A}} \to \mathbb{R}^+$ is a stochastic **Kernel**, i.e:

- for all $M \in \Lambda^{\Gamma \vdash A}$, **Prob** $(M, _)$ is a measure;
- for all $U \in \Sigma_{\Lambda^{\Gamma \vdash A}}$, **Prob**(_, U) is a measurable function.

 $\mathbf{Prob}^{\infty}(M, U)$ is the probability to observe U after any steps.

The probability to observe U after at most one reduction step applied to M is $\mathbf{Prob}(\ M\ ,\ U\)$

 $\Lambda^{\Gamma \vdash A}$: the set of terms M s.t. $\Gamma \vdash M : A$.

Prob : $\Lambda^{\Gamma \vdash A} \times \Sigma_{\Lambda^{\Gamma \vdash A}} \to \mathbb{R}^+$ is a stochastic **Kernel**, i.e:

- for all $M \in \Lambda^{\Gamma \vdash A}$, **Prob** $(M, _)$ is a measure;
- for all $U \in \Sigma_{\Lambda^{\Gamma \vdash A}}$, **Prob**(_, U) is a measurable function.

 $\mathbf{Prob}^{\infty}(M, U)$ is the probability to observe U after any steps.

The probability to observe U after at most one reduction step applied to M is $\mathbf{Prob}(\ M\ ,\ U\)$

Prob : $\Lambda^{\Gamma \vdash A} \times \Sigma_{\Lambda^{\Gamma \vdash A}} \to \mathbb{R}^+$ is a stochastic **Kernel**, i.e:

- for all $M \in \Lambda^{\Gamma \vdash A}$, **Prob** $(M, _)$ is a measure;
- for all $U \in \Sigma_{\Lambda^{\Gamma \vdash A}}$, **Prob**(_, U) is a measurable function.

 $\mathbf{Prob}^{\infty}(M, U)$ is the probability to observe U after any steps.

The probability to observe U after at most one reduction step applied to M is $\mathbf{Prob}(\ M\ ,\ U\)$

Prob : $\Lambda^{\Gamma \vdash A} \times \Sigma_{\Lambda^{\Gamma \vdash A}} \to \mathbb{R}^+$ is a stochastic **Kernel**, i.e:

- for all $M \in \Lambda^{\Gamma \vdash A}$, **Prob** $(M, _)$ is a measure;
- for all $U \in \Sigma_{\Lambda^{\Gamma \vdash A}}$, **Prob**(_, U) is a measurable function.

Measurable sets and kernels constitute the category Kern.

 $\mathbf{Prob}^{\infty}(M,U)$ is the probability to observe U after any steps.

The probability to observe U after at most one reduction step applied to M is $\mathbf{Prob}(\ M\ ,\ U\)$

$$\begin{array}{c|c} \Lambda^{\Gamma \vdash A} \colon \text{ the set of terms } M & \overset{\searrow}{\Sigma}_{\Lambda^{\Gamma \vdash A}} \text{ , i.e. } U \text{ is measurable:} \\ \text{s.t. } \Gamma \vdash M : A. & \forall n, \forall S, \ \{\vec{r} \mid S\underline{\vec{r}} \in U\} \text{ meas. in } \mathbb{R}^n \end{array}$$

Prob : $\Lambda^{\Gamma \vdash A} \times \Sigma_{\Lambda^{\Gamma \vdash A}} \to \mathbb{R}^+$ is a stochastic **Kernel**, i.e:

- for all $M \in \Lambda^{\Gamma \vdash A}$, **Prob** $(M, _)$ is a measure;
- for all $U \in \Sigma_{\Lambda^{\Gamma \vdash A}}$, **Prob**(_, U) is a measurable function.

Measurable sets and kernels constitute the category Kern.

 $\mathbf{Prob}^{\infty}(M, U)$ is the probability to observe U after any steps.

It is computed by composition and lub.

Examples: Distributions

The Bernoulli distribution takes the value 1 with probability p and the value 0 with probability 1 - p.

$$p\delta_1 + (1-p)\delta_0$$

bernoulli $p := let x = sample in x \le p$ tests if sample draws a value within [0, p].

The exponential distribution is specified by its density e^{-x} .

exp ::= let x=sample in $-\log(x)$ by the inversion sampling method.

The standard normal distribution defined by its density $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$.

gauss ::= let x=sample in let y=sample in $\sqrt{-2\log(x)}\cos(2\pi y)$ by the Box Muller method.

Conditioning: If $U \subseteq \mathbb{R}$ measurable, then observe(U) of type real \to real, taking a term M and returning the renormalization of the distribution of M on the only samples that satisfy U: conditioning by rejection sampling.

$$observe(U) = \lambda m. fix(\lambda y.let x = m in if(x \in U, x, y))$$

Monte Carlo Simulation,...

Input: μ a distribution on $\mathbb R$ with density π :

 $\mu(U) = \int_U \pi(x) dx$, but we only know $\gamma \pi$.

Output: Markov Chain x_n converging to

a random variable x with law μ

- 1 Initialized x with a well-chosen point x_0
- Sample y from a gaussian gauss
- **3** Compute $\alpha(x, y) = \min(1, \frac{\pi(y)}{\pi(x)})$
- **4** With probability $\alpha(x, y)$, update x := y
- **6** With probability $1 \alpha(x, y)$, keep x

Input: μ a distribution on \mathbb{R} with density π : $\mu(U) = \int_U \pi(x) dx$, but we only know $\gamma \pi$.

Output: Markov Chain x_n converging to a random variable x with law μ

```
\begin{array}{lll} \text{MH = } \textbf{fix} \big( \lambda \text{MetHast}^{\text{nat} \rightarrow \text{nat}}. \lambda n^{\text{nat}}. \text{ if } n\text{=0 then } x_0 \text{ else} \\ & \text{let } x \text{ = MetHast (n-1) in} \\ & \text{let } y \text{ = gauss } x \text{ in} \\ & \text{let } z \text{ = bernouilli}(\alpha(x,y)) \text{ in} \\ & \text{if } z \text{ = 0 then } x \text{ else } y \big) \end{array}
```

- Discrete Probability
- 2 Continuous Probability
 - Syntax: Real Probabilistic PCF
 - Semantics: Cstab_m (Cones and Stable measurable functions)
 - Results: Adequacy

Semantical context

1981, Kozen Memory as measurable space and programs as kernels representing the transformation of the memory.

What is a measurable subset for function space?

1999, Panangaden

Meas, the category of measurable sets and functions **Kern**, the category of measurable sets and kernels They are **cartesian** but **not closed**.

2017, Heunen, Kammar, Staton, Yang **Quasi-borel spaces**A **CCC** based on **Meas** embedded into presheaves.
How to interpret recursive types?

2017, Keimel and Plotkin Kegelspitzen

A **CCC** of dcpos equipped with a convex structure (basic operations being scott continous) with scott continuous functions

How to restrict to measurable functions?

Discrete

If $\vdash M$: nat, then $\llbracket M \rrbracket$ is a distribution over $\mathbb N$

Continuous

If $\vdash M$: real, then $\llbracket M
rbracket$ is a measure over eals

- [real] as $Meas(\mathbb{R})$ the set of measures over \mathbb{R} .
- Fixpoint of terms.

 $\mathsf{Cstab}_{\mathsf{m}}$ is a CCC based on Selinger's cones (dcpos with the order induced by addition and a convex structure).

Objects are cones and measurable spaces

Morphisms are stable and measurable functions

Pcoh is a subcategory of \mathbf{Cstab}_m which is a subcategory of Kegelspitzen.

An elegant model in 3 steps

Our purpose is to be able to interpret real as the set of bounded measures.

- Complete cones (convex dcpos with the order induced by addition) with Scott continuous functions However, the category is cartesian but not closed.
- ② Complete cones and Stable functions (∞-non-decreasing functions) is a CCC. However, not every stable function is measurable.
- Measurable Cones (complete cones with measurable tests). Measurable paths pass measurable tests and Measurable functions preserve measurable paths.
 Cstab_m is a CCC with measurability included!

From Discrete to Continuous semantics

Pcoh!

- For $\vdash \underline{n} : \mathbb{N}$, $[\![\underline{n}]\!]_p = \delta_{p,n}$
- $\bullet \ \mathsf{For} \vdash \mathsf{coin} : \mathbb{N}, \\ [\![\mathsf{coin}]\!]_p = \tfrac{1}{2} \delta_{0,p} + \tfrac{1}{2} \delta_{1,p}$
- For $\vdash N : \mathbb{N}, \vdash P : A, \vdash Q : A,$ $[[ifz(N, P, Q)]]_a = [N]_0[P]_a + \sum_{n \neq 0} [N]_{n+1}[Q]_a$

$$[[let x=N in P]]_a = \sum_{n=0}^{\infty} [N]_n [\widehat{P}](n)_a$$

From Discrete to Continuous semantics

Pcoh!

- For $\vdash \underline{n} : \mathbb{N}$, $[\![\underline{n}]\!]_p = \delta_{p,n}$
- $\bullet \ \mathsf{For} \vdash \mathsf{coin} : \mathbb{N}, \\ [\![\mathsf{coin}]\!]_{p} = \tfrac{1}{2} \delta_{0,p} + \tfrac{1}{2} \delta_{1,p}$
- For $\vdash N : \mathbb{N}, \vdash P : A, \vdash Q : A,$ $\llbracket ifz(N, P, Q) \rrbracket_{a} =$ $\llbracket N \rrbracket_{0} \llbracket P \rrbracket_{a} + \sum_{n \neq 0} \llbracket N \rrbracket_{n+1} \llbracket Q \rrbracket_{a}$

$$[[let x=N in P]]_{a} = \sum_{n=0}^{\infty} [N]_{n} [\widehat{P}](n)_{a}$$

Cstab_m

- For $\vdash \underline{r}$: real, $[\![\underline{r}]\!](U) = \delta_r(U)$
- For \vdash sample : real, $\llbracket \mathtt{sample} \rrbracket = \lambda_{\llbracket 0.1 \rrbracket}(U)$
- $$\begin{split} \bullet \; \mathsf{For} \vdash R : \mathtt{real}, \vdash P, Q : A, \\ & [\![\mathtt{ifz}(R, P, Q)]\!](U) = \\ & [\![R]\!](\{0\})[\![P]\!](U) + [\![R]\!](\mathbb{R} \setminus \{0\})[\![Q]\!](U) \end{split}$$

$$[\![let x = R in P]\!](U) =$$
$$\int [\![R]\!](dr) [\![P]\!](\delta_r)(U)$$

- Discrete Probability
- 2 Continuous Probability
 - Syntax: Real Probabilistic PCF
 - Semantics: Cstab_m (Cones and Stable measurable functions)
 - Results: Adequacy

The category $Cstab_m$ is a CCC and a model of Real PPCF.

Invariance of the semantics

$$\llbracket M
bracket^{\Gamma \vdash A} = \int_{\Lambda^{\Gamma \vdash A}} \llbracket t
bracket^{\Gamma \vdash A} \mathsf{Prob}(M, dt)$$

Adequacy

$$\llbracket M
rbracket^{\vdash_{\mathtt{real}}}(U) = \mathsf{Prob}^{\infty}(M,U)$$

Full Abstraction ??

Examples: Distributions

The Bernoulli distribution takes the value 1 with probability p and the value 0 with probability 1 - p.

bernoulli
$$p := let x = sample in x \le p$$

$$p\delta_1 + (1-p)\delta_0$$
 [bernoulli \underline{p}] $-real = p\delta_1 + (1-p)\delta_0$

The exponential distribution is specified by its density e^{-x} .

$$exp : real ::= let x = sample in - log(x)$$

$$[\![\exp]\!]^{\vdash \mathtt{real}}(U) = \int_{\mathbb{R}^+} \chi_U(s) \mathrm{e}^{-s} \lambda(ds)$$

The standard normal distribution defined by its density $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$.

let
$$x$$
=sample in let y =sample in $\sqrt{-2\log(x)}\cos(2\pi y)$

$$[[gauss]^{\vdash real}(U) = \frac{1}{\sqrt{2\pi}} \int_{U} e^{-\frac{x^2}{2}} \lambda(dx)$$

Conditioning: If $U\subseteq\mathbb{R}$ measurable, then observe(U) of type real \to real, taking a term M and returning the renormalization of the distribution of M on the only samples that satisfy U: observe(U) = λm . fix(() λy .let x=m in if($x\in U,x,y$)) conditioning by rejection sampling. Whenever M represents a probability distribution, this equation gives the conditional probability:

$$[observe(U)M](V) = \frac{[M](V \cap U)}{[M](U)}$$

Input: μ a distribution on $\mathbb R$ with density π :

 $\mu(U) = \int_U \pi(x) dx$, but we only know $\gamma \pi$.

Output: Markov Chain x_n converging to

a random variable x with law μ

- **1** Initialized x with a well-chosen point x_0
- 2 Sample y from a gaussian centered on x
- **6** Compute $\alpha(x, y) = \min(1, \frac{\pi(y)}{\pi(x)})$
- **4** With probability $\alpha(x, y)$, update x := y
- **5** With probability $1 \alpha(x, y)$, keep x

C. Tasson

```
Input: \mu a distribution on \mathbb{R} with density \pi: \mu(U) = \int_U \pi(x) dx, but we only know \gamma \pi.
```

Output: Markov Chain x_n converging to a random variable x with law μ

```
\begin{array}{lll} \operatorname{MH} = \operatorname{fix} \big( \lambda \operatorname{MetHast}^{\operatorname{nat} \to \operatorname{nat}}. \lambda \operatorname{n^{\operatorname{nat}}}. & \text{if n=0 then } x_0 \text{ else} \\ & \operatorname{let} \ x = \operatorname{MetHast} \ (\operatorname{n-1}) \text{ in} \\ & \operatorname{let} \ y = \operatorname{gauss} \ x \text{ in} \\ & \operatorname{let} \ z = \operatorname{bernouilli}(\alpha(x,y)) \text{ in} \\ & \operatorname{if} \ z = 0 \text{ then } x \text{ else } y \big) \end{array}
```

```
\begin{array}{lll} \text{MH} = & \textbf{fix} \big( \lambda \text{MetHast}^{\text{nat} \rightarrow \text{nat}}. \lambda \text{n}^{\text{nat}}. \text{ if n=0 then } x_0 \text{ else} \\ & \text{let } x = \text{MetHast (n-1) in} \\ & \text{let } y = \text{gauss x in} \\ & \text{let } z = \text{bernouilli}(\alpha(x,y)) \text{ in} \\ & \text{if } z = 0 \text{ then x else y} \big) \end{array}
```

$$\mathtt{MH}(\underline{n+1}) \to M = \mathtt{let} \ x = \mathtt{MH}(\underline{n}) \ \mathtt{in} \ \mathtt{let} \ y = \mathtt{gauss} \ x \ \mathtt{in}$$

$$\mathtt{let} \ z = \mathtt{bernoulli}(\underline{\alpha}(x,y)) \ \mathtt{in} \ \mathtt{ifz}(z,x,y)$$

 $MH(0) \rightarrow x_0$ thus, **Prob** $(MH(0), U) = \delta_{x_0}(U)$

C. Tasson

```
 \begin{aligned} \text{MH} &= \mathbf{fix} \big( \lambda \text{MetHast}^{\text{nat} \to \text{nat}}. \lambda \mathbf{n}^{\text{nat}}. \text{ if n=0 then } \mathbf{x}_0 \text{ else} \\ \text{let } \mathbf{x} &= \text{MetHast (n-1) in} \\ \text{let } \mathbf{y} &= \text{gauss x in} \\ \text{let } \mathbf{z} &= \text{bernouilli}(\alpha(\mathbf{x},\mathbf{y})) \text{ in} \\ \text{if } z &= 0 \text{ then x else y} \big) \end{aligned}
```

$$\mathtt{MH}(\underline{0}) \to \mathtt{x}_0$$
 thus, $\mathbf{Prob}(\mathtt{MH}(\underline{0}), U) = \delta_{\mathtt{x}_0}(U)$

$$\mathrm{MH}(\underline{n+1}) \to M = \mathrm{let}\, x = \mathrm{MH}(\underline{n}) \, \mathrm{in} \, \mathrm{let}\, y = \mathrm{gauss}\, x \, \mathrm{in}$$

$$\mathrm{let}\, z = \mathrm{bernoulli}(\underline{\alpha}(x,y)) \, \mathrm{in}\, \mathrm{if}\, z(z,x,y)$$

$$\begin{split} \mathbf{Prob}(\mathtt{MH}(\underline{n+1}),U) &= [\![\mathtt{MH}(\underline{n+1})]\!](U) = [\![M]\!](U) \text{ (Adequacy/Reduction)} \\ &= \int_{\mathbb{D}} [\![N]\!](\delta_r)(U) \, [\![\mathtt{MH}(\underline{n})]\!](dr) = \int_{\mathbb{D}} P_{\mathtt{MH}}(r,U) \, \mathbf{Prob}(\mathtt{MH}(\underline{n}),dr) \end{split}$$

$$P_{ ext{MH}}(r,U) = \delta_r(U) \left(1 - \int_{\mathbb{T}_0} lpha(r,t) g(t,r) \lambda(dt) \right) + \int_{U} lpha(r,t) g(t,r) \lambda(dt).$$

Input: μ a distribution on \mathbb{R} with density π :

 $\mu(U) = \int_U \pi(x) dx$, but we only know $\gamma \pi$.

Output: Markov Chain x_n converging to

a random variable x with law μ

$$\begin{split} \mathbf{Prob}(\mathtt{MH}(\underline{n+1}),U) &= \int_{\mathbb{R}} P_{\mathtt{MH}}(r,U) \, \mathbf{Prob}(\mathtt{MH}(\underline{n}),dr), \\ P_{\mathtt{MH}}(r,U) &= \delta_r(U) \left(1 - \int_{\mathbb{R}} \alpha(r,t) g(t,r) \lambda(dt) \right) + \int_{U} \alpha(r,t) g(t,r) \lambda(dt). \end{split}$$

This shows that \mathbf{x}_n is a Markov-Chain whose law is defined with respect to the kernel $P_{\mathrm{MH}}(r,U)$. It is standard mathematics to prove that μ is its invariant measure.

C. Tasson

A denotational semantics for probabilistic higher-order functional computation,

(based on quantitative semantics of Linear Logic)

Discrete setting:

Probabilistic Coherent Spaces are **fully abstract** for a programming language with **natural numbers** as base types suitable to encode discrete probabilistic programs.

Continuous setting:

A **CCC** of measurable spaces and **stable** maps that soundly denotes a programming language with **reals** as base types suitable to encode continuous probabilistic programs.

Why can we use CBV in CBN?

Storage Operator

let k = rand n in if k = 0 then k else 42

Integer in Pcoh: $[nat] = Nat = (N, P(Nat) = \{(\lambda_n) \mid \sum_n \lambda_n \le 1\})$

Equipped with a structure of comonoid in the *linear* **Pcoh**:

- Cocontraction: $c^{\text{nat}} : \text{nat} \to \text{nat} \otimes \text{nat}$
- Coweakening: $w^{\text{nat}} : \text{nat} \to \mathbf{1}$

Bibliography

- 1990 Krivine, Opérateurs de mise en mémoire et Traduction.
- 1999 Levy, Call by Push Value, a subsuming paradigm.
- 2000 Nour, On Storage operator.
- 2016 Curien, Fiore, Munch-Maccagnoni, A Theory of Effects and Resources .

What sem. object to encode Storage Operator.

The Eilenberg Moore Category: Pcoh! Coalgebras $P = (\underline{P}, h_P)$ with $\underline{P} \in \mathbf{Pcoh}$ and $h_P \in \mathbf{Pcoh}(\underline{P}, !\underline{P})$: $P \xrightarrow{h_P} !\underline{P} \qquad P \xrightarrow{h_P} !\underline{P} \qquad \text{dig}_{\underline{P}} \qquad P \xrightarrow{!h_P} !\underline{P} \qquad P \xrightarrow{!h_P} !\underline{P} \qquad P \xrightarrow{!h_P} \cdots P = P$

Coalgebras have a comonoid structure: values can be stored.

Types interpreted as coalgebras:

!X by def. of the exp. $|\otimes, \oplus$ and fix preserve coalgebras.

Example

Stream:
$$S_{\varphi} = \varphi \otimes !S_{\varphi}$$

| List:
$$\lambda_0 = \mathbf{1} \oplus (\varphi \otimes \lambda_0)$$

Probabilistic Call By Push Value

Types:

```
(Value) A ::= U\underline{B} \mid A_1 \oplus A_2 \mid \mathbf{1} \mid A_1 \otimes A_2 \mid \alpha \mid \mathsf{Fix} \, \alpha \cdot A
```

Example of natural numbers: $\mathtt{nat} ::= \mathsf{Fix}\, \alpha \cdot \mathbf{1} \oplus \alpha$

(Computation) $\underline{B} ::= FA \mid A \multimap \underline{B}$

Terms:

(Value)
$$V ::= x \mid \operatorname{thunk}(M) \mid \operatorname{in}_i V \mid () \mid (V, W)$$

(Computation) $M ::= \operatorname{return}(V) \mid \operatorname{force}(M) \mid \lambda x^A M \mid \langle M \rangle V \mid \operatorname{fix}(M) \mid \operatorname{coin} \mid \operatorname{case}(M, x_1 \cdot N_1, x_2 \cdot N_2) \mid n \mid \operatorname{succ}(V) \mid \operatorname{let} x = V \operatorname{in} M \mid \operatorname{ifz}(V, M, N)$

Probabilistic Call By Push Value

```
Types: \underline{!B}

(Value) A ::= U\underline{B} \mid A_1 \oplus A_2 \mid \mathbf{1} \mid A_1 \otimes A_2 \mid \alpha \mid \operatorname{Fix} \alpha \cdot A

Example of natural numbers: \operatorname{nat} ::= \operatorname{Fix} \alpha \cdot \mathbf{1} \oplus \alpha

(Computation) \underline{B} ::= FA \mid A \multimap \underline{B}
```

Probabilistic Call By Push Value

```
Types: \underline{!B}

(Value) A ::= U\underline{B} \mid A_1 \oplus A_2 \mid \mathbf{1} \mid A_1 \otimes A_2 \mid \alpha \mid \operatorname{Fix} \alpha \cdot A

Example of natural numbers: \operatorname{nat} ::= \operatorname{Fix} \alpha \cdot \mathbf{1} \oplus \alpha

(Computation) \underline{B} ::= FA \mid A \multimap \underline{B} Forget: A
```

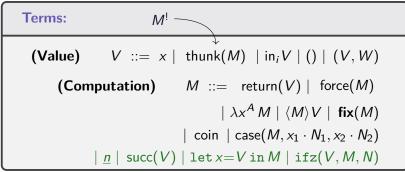
Probabilistic Call By Push Value

```
Types: \underline{!B}

(Value) A ::= U\underline{B} \mid A_1 \oplus A_2 \mid \mathbf{1} \mid A_1 \otimes A_2 \mid \alpha \mid \operatorname{Fix} \alpha \cdot A

Example of natural numbers: \operatorname{nat} ::= \operatorname{Fix} \alpha \cdot \mathbf{1} \oplus \alpha

(Computation) \underline{B} ::= FA \mid A \multimap \underline{B} Forget: A
```



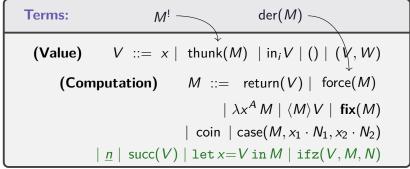
Probabilistic Call By Push Value

```
Types: \underline{B}

(Value) A ::= U\underline{B} \mid A_1 \oplus A_2 \mid \mathbf{1} \mid A_1 \otimes A_2 \mid \alpha \mid \operatorname{Fix} \alpha \cdot A

Example of natural numbers: \operatorname{nat} ::= \operatorname{Fix} \alpha \cdot \mathbf{1} \oplus \alpha

(Computation) \underline{B} ::= FA \mid A \multimap \underline{B} Forget: A
```



The Eilenberg Moore categoy and the Linear Category

Dense coalgebra

 $P = (\underline{P}, h_P)$ such that coalgebraic points characterize morphisms: $\forall Y \in \mathbf{Pcoh}$ and $\forall t, t' \in \mathbf{Pcoh}(\underline{P}, Y)$, if $\forall v \in \mathbf{Pcoh}^!(1, P)$, t v = t' v, then $\forall u \in \mathbf{Pcoh}(1, \underline{P})$, t u = t' u.

Already known for !X as: if $\forall x \in \mathbf{Pcoh}(1, X)$, $tx^! = t'x^!$ then t = t'.

The Eilenberg Moore category Pcoh!

Value Types are interpreted as dense coalgebras
Values are morphisms of coalgebras

The Linear category **Pcoh**

Computation Types are interpreted in Pcoh Computations are linear morphisms in Pcoh

Probabilistic Full Abstraction

Theorem (2016: Ehrhard - T.)

Pcoh

Adequacy

$$M = N$$

Full Abstraction

 $M \simeq_{o} N$
 $C[M] = Prob(C[M], ()) \stackrel{\forall C[N]}{=} Prob(C[N], ())$

Adequacy Lemma Proof:

- Handle values separately
- Logical relations: fixpoint of types (hidden step indexing, biorthogonality closure, fixpoints of pairs of logical relations)
- **Density:** Morphisms on positive types are characterized by their action on coalgebraic points.

Probabilistic Full Abstraction

Theorem (2016: Ehrhard - T.)

Pcoh

Adequacy

$$M = N$$

Full Abstraction

 $M \simeq_{o} N$
 $C[M] = Prob(C[M], ())$

Full Abstraction Proof:

- **1** By contradiction: $\exists \alpha \in |\sigma|, [\![M]\!]_{\alpha} \neq [\![N]\!]_{\alpha}$
- ② Find **testing context**: T_{α} such that $[\![\langle T_{\alpha} \rangle M^!]\!] \neq [\![\langle T_{\alpha} \rangle N^!]\!]$ (context only depends on α)
- **3** Prove **definability**: $T_{\alpha} \in \mathbf{pCBPV}$ using coin and regularity of analytic functions and **density**.
- **4** Apply **Adequacy Lemma**: $\text{Prob}(\langle T_{\alpha} \rangle M^! \xrightarrow{*} ()) \neq \text{Prob}(\langle T_{\alpha} \rangle N^! \xrightarrow{*} ()).$

Step 1: Complete Cones

A Cone P is analogous to a real normed vector space, except that scalars are \mathbb{R}^+ and the norm $\|_\|_P: P \to \mathbb{R}^+$ satisfies:

$$\begin{aligned} x+y&=0 \Rightarrow x,y=0, & \|x+x'\|_P \leq \|x\|_P + \|x'\|_P, & \|\alpha x\|_P = \alpha \|x\|_P \\ x+y&=x+y' \Rightarrow y=y', & \|x\|_P = 0 \Rightarrow x=0, & \|x\|_P \leq \|x+x'\|_P \end{aligned}$$

The Unit Ball is the set $\mathcal{B}P = \{x \in P \mid ||x||_P \le 1\}.$

Order $x \leq_P x'$ if there is a $y \in P$ such that x' = x + y. This unique y is denoted as y = x' - x.

A Complete Cone is s.t. any non-decreasing $(x_n)_{n\in\mathbb{N}}$ of $\mathcal{B}P$ has a lub and $\|\sup_{n\in\mathbb{N}} x_n\|_P = \sup_{n\in\mathbb{N}} \|x_n\|_P$.

Example of Complete Cones

- Meas(X) with X a measurable space.
- $\widehat{\mathcal{X}} = \{ u \in (\mathbb{R}^+)^{|\mathcal{X}|} \mid \exists \varepsilon > 0 \ \varepsilon u \in \mathsf{P}\mathcal{X} \} \text{ if } \mathcal{X} \in \mathsf{Pcoh}.$

Step 2: Stable functions

The category of **complete cones** and **Scott-continuous** functions is not cartesian closed as *currying* fails to be *non-decreasing*.

A function $f: \mathcal{B}P \to Q$ is **n-non-decreasing function** if:

n = 0 and f is non-decreasing

$$n > 0$$
 and $\forall u \in \mathcal{BP}$, $\Delta f(x; u) = f(x + u) - f(x)$ is $(n-1)$ -non-decreasing in x .

A function is **stable** if it is Scott-continuous and ∞ -non-decreasing, i.e. n-non-decreasing for all $n \in \mathbb{N}$.

Complete cones and stable functions constitute a CCC.

Weak Parallel Or

wpor : $[0,1] \times [0,1] \rightarrow [0,1]$ given as wpor(s,t) = s+t-st is Scott-continuous, but not Stable. Its currying is not Scott-continuous.

```
Type real is interpreted as [real] = Meas(\mathbb{R}),
Closed term \vdash M: real as a measure \mu and
Term \times: real \vdash N: real as a stable f : Meas(\mathbb{R}) \to Meas(\mathbb{R}).
```

Operational semantics

$$\forall r$$
, s.t. $M \rightarrow r$, let $x = M$ in $N \rightarrow N\{r/x\}$

$$\llbracket \mathsf{let} \, x = M \, \mathsf{in} \, N \rrbracket = \int_{\mathbb{R}} (f \circ \delta)(r) \, \mu \, (dr)$$

```
Type real is interpreted as [real] = Meas(\mathbb{R}), Closed term \vdash M: real as a measure \mu and Term x: real \vdash N: real as a stable f: Meas(\mathbb{R}) \to Meas(\mathbb{R}).
```

Operational semantics

$$\forall r$$
, s.t. $M \rightarrow r$, let $x = M$ in $N \rightarrow N\{r/x\}$

$$\llbracket \text{let } x = M \text{ in } N \rrbracket = \int_{\mathbb{R}} (f \circ \delta)(r) \ \mu \ (dr)$$

$$\llbracket N \rrbracket$$

```
Type real is interpreted as [real] = Meas(\mathbb{R}), Closed term \vdash M: real as a measure \mu and Term x: real \vdash N: real as a stable f: Meas(\mathbb{R}) \to Meas(\mathbb{R}).
```

Operational semantics

$$\forall r$$
, s.t. $M \rightarrow r$, let $x = M$ in $N \rightarrow N\{r/x\}$

$$[\![let x = M \text{ in } N]\!] = \int_{\mathbb{R}} (f \circ \delta)(r) \ \mu \ (dr)$$

$$[\![N]\!] \qquad \text{Dirac measure}$$

```
Type real is interpreted as [real] = Meas(\mathbb{R}), Closed term \vdash M: real as a measure \mu and Term x: real \vdash N: real as a stable f: Meas(\mathbb{R}) \to Meas(\mathbb{R}).
```

Operational semantics

$$\forall r$$
, s.t. $M \rightarrow r$, let $x = M$ in $N \rightarrow N\{r/x\}$

$$[\![let x = M \text{ in } N]\!] = \int_{\mathbb{R}} (f \circ \delta)(r) \ \mu \ (dr)$$

$$[\![N]\!] \quad \text{Dirac measure} \quad [\![M]\!]$$

```
Type real is interpreted as [real] = Meas(\mathbb{R}), Closed term \vdash M: real as a measure \mu and Term x: real \vdash N: real as a stable f: Meas(\mathbb{R}) \to Meas(\mathbb{R}).
```

Operational semantics

$$\forall r$$
, s.t. $M \rightarrow r$, let $x = M$ in $N \rightarrow N\{r/x\}$

By Soundness

$$\llbracket \mathsf{let} \, x = M \, \mathsf{in} \, N \rrbracket = \int_{\mathbb{R}} (f \circ \delta)(r) \, \mu \, (dr)$$

Thus $f \circ \delta$ needs to be measurable.

- There are non measurable stable functions
- We need to equip every cone with a notion of measurability

Step 3: Measurability tests

Measurability tests of Meas(\mathbb{R}) are given by measurable sets of \mathbb{R} :

$$\forall U \subseteq \mathbb{R}$$
 measurable, $\varepsilon_U \in \mathsf{Meas}(\mathbb{R})' : \mu \mapsto \mu(U)$

For needs of CCC, we parameterized measurable tests of a cone:

Measurable Cone

A cone P with a collection $(M^n(P))_{n\in\mathbb{N}}$ with $M^n(P)\subseteq (P')^{\mathbb{R}^n}$ s.t.:

$$0\in \mathsf{M}^n(P),\quad \ell\in \mathsf{M}^n(P) \text{ and } h:\mathbb{R}^p\to\mathbb{R}^n\Rightarrow \ell\circ h\in \mathsf{M}^p(P)$$

$$\ell \in \mathsf{M}^n(P) \text{ and } x \in P \Rightarrow \left\{ egin{array}{ll} \mathbb{R}^n & \to & \mathbb{R}^+ \\ \vec{r} & \mapsto & \ell(\vec{r})(x) \end{array} \right.$$
 measurable.

Measurable Tests, Paths and Functions

 \mathbf{Cstab}_{m} is the category of complete and measurable cones with stable and measurable functions.

Let P and Q be measurable and complete cones:

Measurable Test: $M^n(P) \subseteq (P')^{\mathbb{R}^n}$

Measurable Path: Pathⁿ(P) $\subseteq P^{\mathbb{R}^n}$ the set of bounded $\gamma: \mathbb{R}^n \to P$ such that $\ell * \gamma: \mathbb{R}^{k+n} \to \mathbb{R}^+$ is measurable with

$$\ell * \gamma : (\vec{r}, \vec{s}) \mapsto \ell(\vec{r})(\gamma(\vec{s}))$$

Measurable Functions: Stable functions $f: P \rightarrow Q$ such that:

$$\forall n \in \mathbb{N}, \ \forall \gamma \in \mathsf{Path}_1^n(P), \quad f \circ \gamma \in \mathsf{Path}^n(Q)$$

If X is a measurable space, then $\operatorname{Meas}(X)$ is equipped with: $\operatorname{M}^n(X) = \{\varepsilon_U : \mathbb{R}^n \to \operatorname{Meas}(X)' \text{ s.t. } \varepsilon_U(\vec{r})(\mu) = \mu(U), \ U \text{ meas.} \}$ Path $_1^n(P)$ is the set of stochastic kernels from \mathbb{R}^n to X.