
Sémantiques des Calculs
Distribués, Différentiels et Probabilistes

Habilitation à diriger des recherches

Christine Tasson
23 novembre 2018

Differential
Calculus

Probabilistic
Programming

Distributed
Systems

Encoding of
Communications

Schedulings
Approximation

Probabilistic Distributed
Systems

1

Computer Science

�

Mathematics

import random:
def flip(p):
 if random.random()<p:

return 0
else:

return 1

[0, 1] f→ V([0, 1])
0.3 7→ 0.3 δ0 + 0.7 δ1

Programs

Constructions

Interpretation

Structures

Lambda Functions

def shift(n):
 return lambda s:s+n

Denotational

Semantics

2

Computer Science � Mathematics
import random:
def flip(p):
 if random.random()<p:

return 0
else:

return 1

[0, 1] f→ V([0, 1])
0.3 7→ 0.3 δ0 + 0.7 δ1

Programs

Constructions

Interpretation

Structures

Lambda Functions

def shift(n):
 return lambda s:s+n

Denotational

Semantics

2

Computer Science � Mathematics
import random:
def flip(p):
 if random.random()<p:

return 0
else:

return 1

[0, 1] f→ V([0, 1])
0.3 7→ 0.3 δ0 + 0.7 δ1

Programs

Constructions

Interpretation

Structures

Lambda Functions

def shift(n):
 return lambda s:s+n

Denotational

Semantics

Computational

content

2

Computer Science � Mathematics
import random:
def flip(p):
 if random.random()<p:

return 0
else:

return 1

[0, 1] f→ V([0, 1])
0.3 7→ 0.3 δ0 + 0.7 δ1

Programs

Constructions

Interpretation

Structures

Lambda Functions

def shift(n):
 return lambda s:s+n

Denotational

Semantics

Computational

content

2

1930

Church

Lambda-Calculus

3

1930: Church

Lambda-terms represent computable functions.

Programs Functions

M,N f , g : N→ N

Variable x x Variable

Abstraction λx .M f : x 7→ f (x) Map

Application (λx .M)N f ◦ g : x 7→ f (g(x)) Composition

4

1930 1940 1950

Church

Lambda-Calculus

Computers

1960

ScottStrachey

Operational and Denotational Semantics

Landin

5

1930 1940 1950

Church

Lambda-Calculus

Computers

1960

ScottStrachey

Operational and Denotational Semantics

Landin

5

1960: From syntax to semantics

Syntax describes how to write programs,
Semantics describes how and what programs compute.

Operational semantics describes program execution as transition
system. [Landin 1966]

For λ-calculus, substitution in contexts

(λx .M)N → M[N/x]

Denotational Semantics denotes programs as functions acting on
values and on memory state. [Strachey 1960] [Scott 1969]
For pure λ-calculus, solving equation

D ?= Var + [D → D] + · · ·
6

1960: From syntax to semantics

Syntax describes how to write programs,
Semantics describes how and what programs compute.

Operational semantics describes program execution as transition
system. [Landin 1966]

For λ-calculus, substitution in contexts

(λx .M)N → M[N/x]

Denotational Semantics denotes programs as functions acting on
values and on memory state. [Strachey 1960] [Scott 1969]
For pure λ-calculus, solving equation

D X= Var + [D → D]
Continuous

+ · · ·
6

1930
1960

1970

1940 1950

Church

Lambda-Calculus

Computers ScottStrachey

Operational and Denotational Semantics

Landin

HowardCurry

Proofs-Programs

Lambek

Category

7

1970: Computer Science - Logic - Category

Curry-Howard correspondence between programs and proofs

λ-calculus Logic

Term : Type Proof : Formula

M : A⇒ B
π

A⇒ B

Lambek correspondence with Cartesian Closed Categories

Categories are made of objects and morphisms with ◦ composition,

[A→ B] Object of Morphisms from A to B

8

1970: Computer Science - Logic - Category

Curry-Howard correspondence between programs and proofs

λ-calculus Logic

Term : Type Proof : Formula

M : A⇒ B
π

A⇒ B

Lambek correspondence with Cartesian Closed Categories

Categories are made of objects and morphisms with ◦ composition,

[A→ B] Object of Morphisms from A to B

8

1930
1960

1970

1980

1940 1950

Church

Lambda-Calculus

Computers

Curry

Proofs-Programs

Lambek

Category

Stability

Berry

ScottStrachey

Operational and Denotational Semantics

Landin

Howard

9

1980: Sequential algorithms

PCF a typed functional languages such as Haskell or ML

M,N,P := x |λx .M | (M) N︸ ︷︷ ︸
λ-calculus

| 0 | succ M︸ ︷︷ ︸
Integers

| if M then N else P︸ ︷︷ ︸
Conditional

| fix M︸ ︷︷ ︸
Recursion

Denotational Semantics

Scott Domains contain non sequential functions such as Parallel-Or.

Stability gets rid of this example, but does not characterize sequentiality

Sequential algorithm model uses the language of category [Berry-Curien
1982]

The Full Abstraction quest generates new models Hypercoherence
[Ehrhard 1993] and Game semantics [Abramsky-Jagadeesan-Malacaria 1994],
[Hyland-Ong 1995]

10

1930
1960

1970

1980

1990

1940 1950

Church

Lambda-Calculus

Computers ScottStrachey

Operational and Denotational Semantics

Landin

HowardCurry

Proofs-Programs

Lambek

Category

Stability

Berry

Linear Logic
Girard

11

1990: Linear Logic

Semantical observation: [Girard 1987]

A Stable⇒ B ' !A
Linear
(B

Girard introduced new models

• qualitative Coherent Spaces [Girard 1986]
• quantitative Normal Functors [Girard 1988] and
Probabilistic Coherent Spaces [Girard 2004]

Categorical models

Linear Non-Linear

(L, 1,⊗,()
SMCC

⊥ (M,>,×,⇒)
CCC

12

Table of contents

1. Differential λ-Calculus

2. Probabilistic Programming

3. Distributed Systems

4. Perspectives

13

Differential λ-Calculus

Differential Lambda Calculus

Semantical observation: in quantitative models of Linear Logic,
programs are interpreted by smooth functions, hence differentiation.
[Ehrhard-Regnier 2003]

Programs Functions

M,N f , g

Variable x x Variable

Abstraction λx .M f : x 7→ f (x) Map

Application (λx .M)N f ◦ g : x 7→ f (g(x)) Composition

Differentiation Dλx .M · N u, x 7→ Dfx (u) Derivation

14

Categorical Model of Differential Lambda-Calculus

[Blute-Cockett-Seely 2009] [Bucciarelli-Ehrhard-Manzonetto 2010]

A differential operator such that if f : A⇒ B, then Df : A× A⇒ B
corresponds to u, x 7→ Dfx (u) with axioms for linearity in 1st coord.

What setting for handling both linear and non-linear variables ?

using the substitution monoidal structure [Fiore-Plotkin-Turi 1999].

15

Categorical Model of Differential Lambda-Calculus

[Blute-Cockett-Seely 2009] [Bucciarelli-Ehrhard-Manzonetto 2010]

A differential operator such that if f : A⇒ B, then Df : A× A⇒ B
corresponds to u, x 7→ Dfx (u) with axioms for linearity in 1st coord.

What setting for handling both linear and non-linear variables ?

using the substitution monoidal structure [Fiore-Plotkin-Turi 1999].
15

Linear Substitution

A profunctor A F−7→ B is a functor A× Bop → Set,
it generalizes relations and matrices but with set coefficients.

Composition: G ◦ F (a, c) =
∫ b∈B G(b, c)× F (a, b)

A generalised species is a profunctor R : LA −7→ A where
L computes the free Symmetric Monoidal Category over a category A.
LA: sequences 〈a1, . . . , an〉 and bijections and sequence of morphisms.
[Fiore-Gambino-Hyland-Winskel 2007]

As for operads, substitution of generalised species is described by the
composition in the Kleisli bicategory: LA R−7→ A LA R−7→ A gives a
profuntor LA R◦R−7→ A because L lifts to profunctors
[Fiore-Gambino-Hyland-Winskel 2016]

16

Resource Lambda Calculus

Semantical observation: in quantitative models of Linear Logic,
programs are interpreted by series, hence Syntactic Taylor Expansion
approximating programs by polynomials. [Ehrhard-Regnier 2006]

Programs Functions

s, t f , g

Variable x x

Abstraction λx .s f : x 7→
∑

anxn

Linear App. 〈λx .s〉[t1, . . . , tn] f ◦ g : x 7→
∑

an g(x) · · · · · g(x)︸ ︷︷ ︸
n

Resource terms formalized as a generalised species R : LA −7→ A
R(〈a1, . . . , a`〉, b) is the set of resource terms x1 : a1, . . . , x` : a` ` s : b
[Ong-Tsukada 2017]

17

Non-Linear Substitution

A Cartesian generalised species a profunctor Λ :MA −7→ A where
M computes the free Cartesian Category over a category A.
MA: sequences 〈a1, . . . , an〉 and functions and sequence of morphisms.
[Tanaka-Power 2004]

As for Lawvere theory, substitution is described by the composition in the
Kleisli bicategory which is possible becauseM also lifts to profunctors.

Lambda terms can be formalized as a cartesian generalized species.
Λ(〈b1, . . . , bn〉, b): the set of lambda terms x1 : b1, . . . , xn : bn ` M : b
[Hyland 2017]

18

Mathematical Theory of Linear / non-Linear Substitution

What construction to combine into a 2-monad lifting to profunctors ?

• L free symmetric monoidal category 2-monad
LA: objects are sequences 〈a1, . . . , a`〉
morphisms are bijections and sequence of morphisms.

• M free cartesian cateogory 2-monad
MA: objects are sequences 〈b1, . . . , bn〉
morphisms are functions and sequence of morphisms.

• Q Mixed linear / non linear 2-monad [Power-Tanaka 2005][Fiore 2006]
QA: objects are mixed sequences 〈a1, . . . , a`, b1, . . . , bn〉
morphisms combine functions, bijections and sequence of morphisms.

19

Mixed Linear Non Linear Monad

Colimit in the 2-category of Symmetric Monoidal Categories.
LA

QA C

MA

⇑

QA → MA
〈a1, . . . , a`, b1, . . . , bn〉 7→ 〈a1, . . . , a`, b1, . . . , bn〉

We do not know if Q lifts to profunctors.

Theorem (Hyland - Tasson)

Q is a 2-monad on Symmetric Monoidal Categories.

Theorem (Hyland - Tasson)

A Q-algebra is a Symmetric Monoidal Category that splits through
a Cartesian Category with coherences.

20

Mixed Linear Non Linear Monad

Colimit in the 2-category of Symmetric Monoidal Categories.
LA

QA C

MA

⇑

QA → MA
〈a1, . . . , a`, b1, . . . , bn〉 7→ 〈a1, . . . , a`, b1, . . . , bn〉

We do not know if Q lifts to profunctors.

Theorem (Hyland - Tasson)

Q is a 2-monad on Symmetric Monoidal Categories.

Theorem (Hyland - Tasson)

A Q-algebra is a Symmetric Monoidal Category that splits through
a Cartesian Category with coherences.

20

Contribution

• The construction of the colimit of 2-monads
• The characterisation of its algebras

Next steps

• Lift Q to profunctors and describe the substitution monoidal
structure of mixed linear/non linear variables.

• Combine the additive structure and encode differential operator

Perspectives

• Study other 2-monads appearing in semantics
• Exploit the bridge with combinatorics

21

Table of contents

1. Differential λ-Calculus

2. Probabilistic Programming

3. Distributed Systems

4. Perspectives

22

Probabilistic Programming

Study the implementation of probabilistic algorithms with formal
methods: correctness, termination, behavior in context,. . .

Operational Semantics describes how probabilistic programs compute.

Prob(M,N) is the probability that M reduces to N

• In the discrete setting, Prob(M,N) is a stochastic matrix
• In the continuous setting, Prob(M,N) is a stochastic kernel

Denotational Semantics describes what probabilistic programs compute

JMK is a probabilistic distribution, if M is a closed ground type program

• If ` M : nat, then JMK a discrete distributions over integers
• If ` M : real, then JMK a continuous distributions over reals

23

Study the implementation of probabilistic algorithms with formal
methods: correctness, termination, behavior in context,. . .

Operational Semantics describes how probabilistic programs compute.

Prob(M,N) is the probability that M reduces to N

• In the discrete setting, Prob(M,N) is a stochastic matrix
• In the continuous setting, Prob(M,N) is a stochastic kernel

Denotational Semantics describes what probabilistic programs compute

JMK is a probabilistic distribution, if M is a closed ground type program

• If ` M : nat, then JMK a discrete distributions over integers
• If ` M : real, then JMK a continuous distributions over reals

23

Study the implementation of probabilistic algorithms with formal
methods: correctness, termination, behavior in context,. . .

Operational Semantics describes how probabilistic programs compute.

Prob(M,N) is the probability that M reduces to N

• In the discrete setting, Prob(M,N) is a stochastic matrix
• In the continuous setting, Prob(M,N) is a stochastic kernel

Denotational Semantics describes what probabilistic programs compute

JMK is a probabilistic distribution, if M is a closed ground type program

• If ` M : nat, then JMK a discrete distributions over integers
• If ` M : real, then JMK a continuous distributions over reals

23

Syntax

Nat PPCF

Types: A,B ::= nat | A→ B

Terms: M,N, L ::=
x | λxA.M | (M)N | fix(M) |
n | succ(M) |
ifz(L,M,N) |
coin | let x=M in N

Operational Semantics:
Prob(coin, 0) = 1

2

If ` M : nat, Prob∞(M,_) is the
discrete distribution over N com-
puted by M.

Real PPCF

Types: A,B ::= real | A→ B

Terms: M,N, L ::=
x | λxA.M | (M)N | fix(M) |
r | f (M1, . . . ,Mn) |
ifz(L,M,N) |
sample | let x=M in N

Operational Semantics:
Prob(sample,U) = λ[0,1](U)

If ` M : real, Prob∞(M,_) is the
continuous distribution over R com-
puted by M.

24

Syntax

Nat PPCF

Types: A,B ::= nat | A→ B

Terms: M,N, L ::=
x | λxA.M | (M)N | fix(M) |
n | succ(M) |
ifz(L,M,N) |
coin | let x=M in N

Operational Semantics:
Prob(coin, 0) = 1

2

If ` M : nat, Prob∞(M,_) is the
discrete distribution over N com-
puted by M.

Real PPCF

Types: A,B ::= real | A→ B

Terms: M,N, L ::=
x | λxA.M | (M)N | fix(M) |
r | f (M1, . . . ,Mn) |
ifz(L,M,N) |
sample | let x=M in N

Operational Semantics:
Prob(sample,U) = λ[0,1](U)

If ` M : real, Prob∞(M,_) is the
continuous distribution over R com-
puted by M.

24

Denotational Semantics - Discrete

Domains Semantics Quantitative Semantics
Types Continuous dcpos (X ,≤) Proba. Coh. Spaces

(|X |,P (X) ⊆ R|X |≥0)
Programs Scott Continuous Analytic Functions
Probability Probabilistic monad V Values as proba. distrib.

Type:
N⊥ flat domain,
V(N⊥) proba. distr. over N⊥,

Prog: JMK : N⊥ → V(N⊥),
Jlet n=x in MK : V(N⊥)→V(N⊥)

x 7→

(∑
n

JMKn,qxn

)
q

[Jones-Plotkin 1989]

Type:
|Nat| = N
P (Nat) subproba. dist. over N

Prog: JMK : P (Nat)→ P (Nat)

x 7→

 ∑
µ=[n1,...,nk]

JMKµ,q
k∏

i=1
xni

q

[Danos-Ehrhard 2008]
25

Denotational Semantics - Continuous

Memory : measurable space and probabilistic
Programs: kernels encoding transformations of memory. [Kozen 1981]
The category Kern is cartesian but not closed. [Panangaden 1999]

Quasi-Borel spaces, a model of Real PPCF and recursive types based
on domains and presheaves [Vakar-Kammar-Staton 2019].

A CCC with measurability ! [Ehrhard-Pagani-Tasson 2018]

1. Complete cones and Scott continuous functions
However, the category is cartesian but not closed.

2. Complete cones and Stable functions is cartesian closed.
However, not every stable function is measurable.

3. Measurable Cones (complete cones with measurable
tests). Measurable paths pass measurable tests and
Measurable Stable functions preserve measurable paths.

26

Denotational Semantics - Continuous

Memory : measurable space and probabilistic
Programs: kernels encoding transformations of memory. [Kozen 1981]
The category Kern is cartesian but not closed. [Panangaden 1999]

Quasi-Borel spaces, a model of Real PPCF and recursive types based
on domains and presheaves [Vakar-Kammar-Staton 2019].

A CCC with measurability ! [Ehrhard-Pagani-Tasson 2018]

1. Complete cones and Scott continuous functions
However, the category is cartesian but not closed.

2. Complete cones and Stable functions is cartesian closed.
However, not every stable function is measurable.

3. Measurable Cones (complete cones with measurable
tests). Measurable paths pass measurable tests and
Measurable Stable functions preserve measurable paths.

26

Denotational Semantics - Continuous

Memory : measurable space and probabilistic
Programs: kernels encoding transformations of memory. [Kozen 1981]
The category Kern is cartesian but not closed. [Panangaden 1999]

Quasi-Borel spaces, a model of Real PPCF and recursive types based
on domains and presheaves [Vakar-Kammar-Staton 2019].

A CCC with measurability ! [Ehrhard-Pagani-Tasson 2018]

1. Complete cones and Scott continuous functions
However, the category is cartesian but not closed.

2. Complete cones and Stable functions is cartesian closed.
However, not every stable function is measurable.

3. Measurable Cones (complete cones with measurable
tests). Measurable paths pass measurable tests and
Measurable Stable functions preserve measurable paths.

26

Interpretation of programs

Discrete

Continuous

• For ` n : N,

• For ` r : real,

JnKp = δp,n

JrK(U) = δr (U)

• For ` coin : N,

• For ` sample : real,

JcoinKp = 1
2δ0,p + 1

2δ1,p

JsampleK = λ[0,1](U)

• For ` N : N, ` P : A, ` Q : A,

• For ` R : real, ` P,Q : A,

Jifz(N,P,Q)Ka =

Jifz(R,P,Q)K(U) =

JNK0JPKa+
∑

n 6=0
JNKn+1JQKa

JRK({0})JPK(U)+JRK(R\{0})JQK(U)

Jlet x=N in PKa =

Jlet x=R in PK(U) =

∞∑
n=0

JNKnĴPK(n)a

∫
JRK(dr)JPK(δr)(U)

27

Interpretation of programs

Discrete Continuous

• For ` n : N, • For ` r : real,
JnKp = δp,n JrK(U) = δr (U)

• For ` coin : N, • For ` sample : real,
JcoinKp = 1

2δ0,p + 1
2δ1,p JsampleK = λ[0,1](U)

• For ` N : N, ` P : A, ` Q : A, • For ` R : real, ` P,Q : A,
Jifz(N,P,Q)Ka = Jifz(R,P,Q)K(U) =

JNK0JPKa+
∑

n 6=0
JNKn+1JQKa JRK({0})JPK(U)+JRK(R\{0})JQK(U)

Jlet x=N in PKa = Jlet x=R in PK(U) =
∞∑

n=0
JNKnĴPK(n)a

∫
JRK(dr)JPK(δr)(U)

27

Results

Invariance of semantics

• (Discrete) JMK =
∑

N Prob(M,N)JNK
• (Continuous) JMK =

∫
Prob(M, dt)JtK

Adequacy Lemma

• (Discrete) If ` M : nat, then JMKn = Prob∞(M, n)
• (Continous) If ` M : real, then JMK(U) = Prob∞(M,U)

Adequacy:
If JPK = JQK then P ' Q (Prob∞(C [P], ·) = Prob∞(C [Q], ·))

• (Discrete) Pcoh is adequate for Nat PPCF. [Danos-Ehrhard 2008]
• (Continuous):

Theorem (Ehrhard-Pagani-Tasson 2018)

Measurable cones and Stable measurable functions are adequate
for Real PPCF.

28

Results

Invariance of semantics

• (Discrete) JMK =
∑

N Prob(M,N)JNK
• (Continuous) JMK =

∫
Prob(M, dt)JtK

Adequacy Lemma

• (Discrete) If ` M : nat, then JMKn = Prob∞(M, n)
• (Continous) If ` M : real, then JMK(U) = Prob∞(M,U)

Adequacy:
If JPK = JQK then P ' Q (Prob∞(C [P], ·) = Prob∞(C [Q], ·))

• (Discrete) Pcoh is adequate for Nat PPCF. [Danos-Ehrhard 2008]
• (Continuous):

Theorem (Ehrhard-Pagani-Tasson 2018)

Measurable cones and Stable measurable functions are adequate
for Real PPCF.

28

Results

Invariance of semantics

• (Discrete) JMK =
∑

N Prob(M,N)JNK
• (Continuous) JMK =

∫
Prob(M, dt)JtK

Adequacy Lemma

• (Discrete) If ` M : nat, then JMKn = Prob∞(M, n)
• (Continous) If ` M : real, then JMK(U) = Prob∞(M,U)

Adequacy:
If JPK = JQK then P ' Q (Prob∞(C [P], ·) = Prob∞(C [Q], ·))

• (Discrete) Pcoh is adequate for Nat PPCF. [Danos-Ehrhard 2008]
• (Continuous):

Theorem (Ehrhard-Pagani-Tasson 2018)

Measurable cones and Stable measurable functions are adequate
for Real PPCF.

28

Results

Full Abstraction: JPK = JQK iff P ' Q

• (Discrete X) Pcoh is adequate for Nat PPCF. [Danos-Ehrhard 2008]

Theorems (Ehrhard-Pagani-Tasson 2018)

Probabilistic Coherent Spaces are Fully Abstract for Nat PPCFand
for probabilistic Call-By-Push-Value.

Key tool: programs are interpreted as series thanks to quantitative
semantics of LL

• (Continuous ?) We do not know if Full Abstraction holds for
Measurable cones and Stable measurable functions.
The continuous case is a conservative extension of the discrete case
[Crubille 2018]

29

From Theory to Application

Denotational semantics is a first step towards certification.

By applying Operational Semantics, Invariance of the denotational
semantics, Adequacy we can prove properties of the implementation

• (Discrete) Rejection Sampling Algorithm
• (Continuous) Metropolis Hasting Algorithm

30

Rejection Sampling Algorithm

Input: A 0/1 array of length n ≥ 2 s.t. 1
2 cells are 0.

0 1 2 3 4 5

0 1 0 1 1 0
f : 0, 2, 5 7→ 0

1, 3, 4 7→ 1

Output: Find the index of a cell containing 0 (Success.

Implementation: LV = fix (λLasVegasnat . let k = rand n in
ifz (f k) then k else LasVegas)

Wanted: prove that Prob∞(LV, Success) = 1

31

Rejection Sampling Algorithm

Implementation: LV = fix (λLasVegasnat . let k = rand n in
ifz (f k) then k else LasVegas)

Operational sem.: LV 1→ let k = rand n in ifz (f k) then k else LV
Invariance of the semantics and interpretation of let and ifz:

JLVKp =
∞∑

k=0
Jrand nKkJifz (f k) then k else LVKp

= 1
n · (

∑
f (k)=0k<n

JkKp +
∑

f (k)6=0k<n

JLVKp)

If p < n & f (p) = 0, then JLVKp = 1
n + 1

n ·
n
2 · JLVKp, so JLVKp = 2

n .

If p ≥ n or f (p) 6= 0, then JLVKp = 1
n ·

n
2 · JLVKp, so JLVKp = 0.

Adequacy Lemma, the probability that LV converges:

Prob∞(LV, Success) =
∑

p
Prob∞(LV, p) =

∑
p

JLVKp

=
∑

f (p)=0;p<n

2
n = n

2 ·
2
n = 1

32

Rejection Sampling Algorithm

Implementation: LV = fix (λLasVegasnat . let k = rand n in
ifz (f k) then k else LasVegas)

Operational sem.: LV 1→ let k = rand n in ifz (f k) then k else LV

Invariance of the semantics and interpretation of let and ifz:

JLVKp =
∞∑

k=0
Jrand nKkJifz (f k) then k else LVKp

= 1
n · (

∑
f (k)=0k<n

JkKp +
∑

f (k)6=0k<n

JLVKp)

If p < n & f (p) = 0, then JLVKp = 1
n + 1

n ·
n
2 · JLVKp, so JLVKp = 2

n .

If p ≥ n or f (p) 6= 0, then JLVKp = 1
n ·

n
2 · JLVKp, so JLVKp = 0.

Adequacy Lemma, the probability that LV converges:

Prob∞(LV, Success) =
∑

p
Prob∞(LV, p) =

∑
p

JLVKp

=
∑

f (p)=0;p<n

2
n = n

2 ·
2
n = 1

32

Rejection Sampling Algorithm

Implementation: LV = fix (λLasVegasnat . let k = rand n in
ifz (f k) then k else LasVegas)

Operational sem.: LV 1→ let k = rand n in ifz (f k) then k else LV
Invariance of the semantics and interpretation of let and ifz:

JLVKp =
∞∑

k=0
Jrand nKkJifz (f k) then k else LVKp

= 1
n · (

∑
f (k)=0k<n

JkKp +
∑

f (k)6=0k<n

JLVKp)

If p < n & f (p) = 0, then JLVKp = 1
n + 1

n ·
n
2 · JLVKp, so JLVKp = 2

n .

If p ≥ n or f (p) 6= 0, then JLVKp = 1
n ·

n
2 · JLVKp, so JLVKp = 0.

Adequacy Lemma, the probability that LV converges:

Prob∞(LV, Success) =
∑

p
Prob∞(LV, p) =

∑
p

JLVKp

=
∑

f (p)=0;p<n

2
n = n

2 ·
2
n = 1

32

Rejection Sampling Algorithm

Implementation: LV = fix (λLasVegasnat . let k = rand n in
ifz (f k) then k else LasVegas)

Operational sem.: LV 1→ let k = rand n in ifz (f k) then k else LV
Invariance of the semantics and interpretation of let and ifz:

JLVKp =
∞∑

k=0
Jrand nKkJifz (f k) then k else LVKp

= 1
n · (

∑
f (k)=0k<n

JkKp +
∑

f (k)6=0k<n

JLVKp)

If p < n & f (p) = 0, then JLVKp = 1
n + 1

n ·
n
2 · JLVKp, so JLVKp = 2

n .

If p ≥ n or f (p) 6= 0, then JLVKp = 1
n ·

n
2 · JLVKp, so JLVKp = 0.

Adequacy Lemma, the probability that LV converges:

Prob∞(LV, Success) =
∑

p
Prob∞(LV, p) =

∑
p

JLVKp

=
∑

f (p)=0;p<n

2
n = n

2 ·
2
n = 1

32

Metropolis-Hasting Algorithm

Input: µ a distribution on R with density π:
µ(U) =

∫
U π(x)dx , but we only know γπ.

Output: Markov Chain xn converging to
a random variable x with law µ

Program: MH = fix (λMetHastnat→nat.λnnat. if n=0 then x0 else
let x = MetHast (n-1) in

let y = gauss x in
let z = bernouilli(α(x,y)) in

if z = 0 then x else y)
Wanted: MH(n) is a Markov Chain converging to a random var. of law µ.

Operational Semantics:

MH(0)→ x0 thus, Prob(MH(0),U) = δx0 (U)
MH(n + 1)→ M = let x=MH(n) in let y=gauss x in

let z=bernoulli(α(x , y)) in ifz(z , x , y)

33

Metropolis-Hasting Algorithm

Input: µ a distribution on R with density π:
µ(U) =

∫
U π(x)dx , but we only know γπ.

Output: Markov Chain xn converging to
a random variable x with law µ

Program: MH = fix (λMetHastnat→nat.λnnat. if n=0 then x0 else
let x = MetHast (n-1) in

let y = gauss x in
let z = bernouilli(α(x,y)) in

if z = 0 then x else y)
Wanted: MH(n) is a Markov Chain converging to a random var. of law µ.

Operational Semantics:

MH(0)→ x0 thus, Prob(MH(0),U) = δx0 (U)
MH(n + 1)→ M = let x=MH(n) in let y=gauss x in

let z=bernoulli(α(x , y)) in ifz(z , x , y)

33

Metropolis-Hasting Algorithm

Input: µ a distribution on R with density π:
µ(U) =

∫
U π(x)dx , but we only know γπ.

Output: Markov Chain xn converging to
a random variable x with law µ

Program: MH = fix (λMetHastnat→nat.λnnat. if n=0 then x0 else
let x = MetHast (n-1) in

let y = gauss x in
let z = bernouilli(α(x,y)) in

if z = 0 then x else y)
Wanted: MH(n) is a Markov Chain converging to a random var. of law µ.

Operational Semantics:

MH(0)→ x0 thus, Prob(MH(0),U) = δx0 (U)
MH(n + 1)→ M = let x=MH(n) in let y=gauss x in

let z=bernoulli(α(x , y)) in ifz(z , x , y) 33

Metropolis-Hasting Algorithm

MH(n + 1)→ M = let x=MH(n) in let y=gauss x in

let z=bernoulli(α(x , y)) in ifz(z , x , y)

Adequacy/Invariance/Interpretation:

Prob(MH(n + 1),U) = JMH(n + 1)K(U) = JMK(U)

=
∫
R
JNK(δr)(U) JMH(n)K(dr) =

∫
R

PMH(r ,U)Prob(MH(n), dr)

PMH(r ,U) = δr (U)
(
1−

∫
R
α(r , t)g(t, r)λ(dt)

)
+
∫

U
α(r , t)g(t, r)λ(dt).

Thus it is a Markov-Chain whose law is defined with respect to the kernel
PMH(r ,U). It is standard to prove that µ is its invariant measure.

Example

Operational Sem., Invariance and Adequacy imply Correctness

34

Contributions

• The study of semantics of discrete and continuous probabilistic
programming

• Full Abstraction for Probabilistic Coherent Spaces and Nat PPCF
• Adequacy for Measurable Cones and Measurable Stable functions

and Real PPCF
• Use of quantitative approach of LL: JMK =

∑
JMKµxµ

Next steps

• Compare with Quasi Borel Spaces
• Extract model of Linear Logic from Measurable Cones and

Measurable Stable Functions

Perspectives

• Combine differentiation and probability
• Certification in proof assistant

35

Table of contents

1. Differential λ-Calculus

2. Probabilistic Programming

3. Distributed Systems

4. Perspectives

36

Distributed Systems

Distributed systems

0

1 2

Shared Memory

Process

ProcessProcess

Update Update

Update

Scan Scan

Scan

37

Asynchronous computations

Distributed System

A fixed family of n + 1 processes communicate by Update and Scan of
their local memory into a shared global memory.

Asynchronous

• For each process, the kth Scan follows the kth Update
• Update and Scan are mutually exclusive
• no delay or order restriction

Interleaving Trace

Each execution of a protocol is given by an interleaving trace
T ∈ {Ui ,Si | i ∈ [n] = {0 · · · n}}∗ well-bracketed.

Example for 3 processes, 2 rounds: U1 U2 S1 U0 S0 S2 U1 U0 S1 U2 S2 S0

38

Operational Semantics

Consider a program with n + 1 processes and (ri)i∈[n] rounds.

State a pair s = (`,m) where

• ` = (`i)i∈[n] local memories (one register per process)
• m = (mi)i∈[n] global memory (one register per process)

Initial state s0: `i = i and mi = ⊥

Operational Equivalence

Two interleaving traces T ,T ′ are operationaly equivalent when

s0
T−→
∗

s iff s0
T−→
∗

s

39

Directed Algebraic Topology

Pospace Xn =
∏
i∈[n]

[0, ri] \
⋃

i,j∈[n]
k∈[ri], l∈[rj]

Uk
i ∩ S l

j

Dipath α : [0, 1]→ Xn continuous and non decreasing

Dihomotopy h :
−−→
[0, 1]× [0, 1]→ Xn continuous non decreasing

r1

r0

U1

S1

U1

S1

U0 S0 U0 S0 U0 S0 U0 S0

[Fajstrup-Goubault-Haucourt-Raussen 2016] 40

Directed Algebraic Topology

Pospace Xn =
∏
i∈[n]

[0, ri] \
⋃

i,j∈[n]
k∈[ri], l∈[rj]

Uk
i ∩ S l

j

Dipath α : [0, 1]→ Xn continuous and non decreasing

Dihomotopy h :
−−→
[0, 1]× [0, 1]→ Xn continuous non decreasing

r1

r0

U1

S1

U1

S1

U0 S0 U0 S0 U0 S0 U0 S0

[Fajstrup-Goubault-Haucourt-Raussen 2016]
40

Directed Algebraic Topology

Pospace Xn =
∏
i∈[n]

[0, ri] \
⋃

i,j∈[n]
k∈[ri], l∈[rj]

Uk
i ∩ S l

j

Dipath α : [0, 1]→ Xn continuous and non decreasing

Dihomotopy h :
−−→
[0, 1]× [0, 1]→ Xn continuous non decreasing

r1

r0

U1

S1

U1

S1

U0 S0 U0 S0 U0 S0 U0 S0

[Fajstrup-Goubault-Haucourt-Raussen 2016]
40

Consider a program with n + 1 processes and (ri)i∈[n] rounds.

Protocol Complex [Herlihy-Kozlov-Rasjbaum 2013]

• Vertex: (process, local memory)
• Maximal Simplex: {(0, `0), . . . , (n, `n)} where `i is the local view
by process i of the global execution.

Examples

S0(110) S1(010)

S2(111)

U1 S1 U0 S0 U2 S2

41

Consider a program with n + 1 processes and (ri)i∈[n] rounds.

Protocol Complex [Herlihy-Kozlov-Rasjbaum 2013]

• Vertex: (process, local memory)
• Maximal Simplex: {(0, `0), . . . , (n, `n)} where `i is the local view
by process i of the global execution.

Examples

0, 0⊥ 1, 01 0, 01 1,⊥1

0 ⊥

0⊥ 1

0 1

0⊥ 1

0 1

0⊥ 01

⊥ ⊥

0 1

0 ⊥

0 1

U0 U1

S0 S1Global

l0 l1

Global

l0 l1

Global

l0 l1

Global

l0 l1

Global

l0 l1

41

Consider a program with n + 1 processes and (ri)i∈[n] rounds.

Protocol Complex [Herlihy-Kozlov-Rasjbaum 2013]

• Vertex: (process, local memory)
• Maximal Simplex: {(0, `0), . . . , (n, `n)} where `i is the local view
by process i of the global execution.

Examples

0, 0⊥ 1, 01 0, 01 1,⊥1

⊥ ⊥

0 1

0 ⊥

0 1

U0 U1

S1 S0

0 1

0 1

0 1

0 01

0 1

01 01

Global

l0 l1

Global

l0 l1

Global

l0 l1

Global

l0 l1

Global

l0 l1

41

Impossibility Results

Theorem [Herlihy-Shavit 1999]

If the Protocol Complex is contractible then, the consensus is impossible.

Proof sketch

Assume there is an algorithm δ solving the task, for any execution.

0, 0⊥ 1, 01 0, 01 1,⊥1 δ // •0 •1

42

Impossibility Results

Theorem [Herlihy-Shavit 1999]

If the Protocol Complex is contractible then, the consensus is impossible.

Proof sketch

Assume there is an algorithm δ solving the task, for any execution.

δ // •0 •1 •2

42

Geometrical Interpretation of Asynchronous Computability

Theorem (Goubault-Mimram-Tasson 2015)

Equivalence between Simplexes, Interval Orders, Dipath, Traces.

[U1 U0 S1 S0 U2 S2]
Interleaving Trace/≈

2

0

77

1

gg

Interval Order

S0(110) S1(010)

S2(111)

Simplex

S1

U1

U0 S0
Dipath/!

43

Contributions

• The operational semantics of execution traces
• The equivalence between two geometric semantics

Next steps

• Generalise this equivalence to other communication primitives and
failures

• Use this equivalence to transfer properties from one model to the
other

Perspectives

• Combine differentiation and distributed calculus
• Describe a denotational semantics of distributed systems

44

Table of contents

1. Differential λ-Calculus

2. Probabilistic Programming

3. Distributed Systems

4. Perspectives

45

Perspectives

Differential λ-calculus:

Contribution: A monad for mixed linear non linear variables.

Perspectives: Toward mixed subsitution and theory of derivation.

Probabilistic Programming:

Contribution: Discrete and Continuous semantics.

Perspectives: Comparison with other models, Full Abstraction, Linear
Logic, Recursive types,...

Distributed Computing:

Contribution: Equivalence between geometric semantics.

Perspectives: Generalise to different communication primitives and
systematic method to produce protocol complexes

46

Differential
Calculus

Probabilistic
Programming

Distributed
Systems

Encoding of
Communications

Schedulings
Approximation

Probabilistic Distributed
Systems

47

	Differential -Calculus
	Probabilistic Programming
	Distributed Systems
	Perspectives

