DIDEROT

Sémantiques des Calculs
 Distribués，Différentiels et Probabilistes

Habilitation à diriger des recherches

Christine TASSON
23 novembre 2018

Differential Calculus

Computer Science

Mathematics

Computer Science
import random:
def flip(p):
if random. random()<p: return 0
else:
return 1

Mathematics

Computer Science
import random:
def flip(p):
if random. random()<p: return 0
else:
return 1

Mathematics

Computer Science
import random:
def flip(p):
if random. random()<p: return 0
else:
return 1

Mathematics

$$
\begin{array}{clc}
{[0,1]} & \xrightarrow{f} & \mathcal{V}([0,1]) \\
0.3 & \mapsto & 0.3 \delta_{0}+0.7 \delta_{1}
\end{array}
$$

Programs
Denotational

Constructions

Structures

Lambda
Functions

```
def shift(n):
    return lambda s:s+n
```

Lambda-Calculus

1930

1930: Church

Lambda-terms represent computable functions.

	Programs	Functions	
	M, N	$f, g: \mathbb{N} \rightarrow \mathbb{N}$	
Variable	x	x	Variable
Abstraction	$\lambda x \cdot M$	$f: x \mapsto f(x)$	Map
Application	$(\lambda x \cdot M) N$	$f \circ g: x \mapsto f(g(x))$	Composition

Lambda-Calculus
Operational and Denotational Semantics

Computers

193019401950

1960: From syntax to semantics

Syntax describes how to write programs, Semantics describes how and what programs compute.

Operational semantics describes program execution as transition system. [Landin 1966]

For λ-calculus, substitution in contexts

$$
(\lambda x \cdot M) N \rightarrow M[N / x]
$$

Denotational Semantics denotes programs as functions acting on values and on memory state. [Strachey 1960] [Scott 1969] For pure λ-calculus, solving equation

$$
D \stackrel{?}{=} \operatorname{Var}+[D \rightarrow D]+\cdots
$$

1960: From syntax to semantics

Syntax describes how to write programs, Semantics describes how and what programs compute.

Operational semantics describes program execution as transition system. [Landin 1966]

For λ-calculus, substitution in contexts

$$
(\lambda x . M) N \rightarrow M[N / x]
$$

Denotational Semantics denotes programs as functions acting on values and on memory state. [Strachey 1960] [Scott 1969] For pure λ-calculus, solving equation

$$
D \stackrel{\checkmark}{=} \operatorname{Var}+[D \rightarrow D]+\cdots
$$

Lambda-Calculus

Computers
Operational and Denotational Semantics

1970: Computer Science - Logic - Category

Curry-Howard correspondence between programs and proofs

$$
\begin{array}{cc}
\lambda \text {-calculus } & \text { Logic } \\
\text { Term : Type } & \text { Proof : Formula } \\
M: A \Rightarrow B & \overline{A \Rightarrow B}
\end{array}
$$

1970: Computer Science - Logic - Category

Curry-Howard correspondence between programs and proofs

λ-calculus

$$
\begin{array}{cc}
\text { Term : Type } & \text { Proof: Formula } \\
M: A \Rightarrow B & \overline{A \Rightarrow B}
\end{array}
$$

Logic

Lambek correspondence with Cartesian Closed Categories

Categories are made of objects and morphisms with o composition, $[A \rightarrow B]$ Object of Morphisms from A to B

Lambda-Calculus

Computers

Curry Howard Lambek

Operational and Denotational Semantics

Landin Strachey Scott
Stability

1980: Sequential algorithms

PCF a typed functional languages such as Haskell or ML
$M, N, P:=\underbrace{x|\lambda x \cdot M|(M) N}_{\lambda \text {-calculus }}|\underbrace{0 \mid \operatorname{succ} M}_{\text {Integers }}| \underbrace{\text { if } M \text { then } N \text { else } P}_{\text {Conditional }} \mid \underbrace{\text { fix } M}_{\text {Recursion }}$

Denotational Semantics
Scott Domains contain non sequential functions such as Parallel-Or.
Stability gets rid of this example, but does not characterize sequentiality
Sequential algorithm model uses the language of category [Berry-Curien 1982]

The Full Abstraction quest generates new models Hypercoherence [Ehrhard 1993] and Game semantics [Abramsky-Jagadeesan-Malacaria 1994], [Hyland-Ong 1995]

Lambda-Calculus

Computers

Operational and Denotational Semantics

Landin Strachey Scott

Curry Howard Lambek 1960

1990

Stability

Girard

1990: Linear Logic

Semantical observation: [Girard 1987]

$$
A \stackrel{\text { Stable }}{\Rightarrow} B \simeq!A \xrightarrow{\text { Linear }} B
$$

Girard introduced new models

- qualitative Coherent Spaces [Girard 1986]
- quantitative Normal Functors [Girard 1988] and Probabilistic Coherent Spaces [Girard 2004]

Categorical models
Linear
Non-Linear

Table of contents

1. Differential λ-Calculus
2. Probabilistic Programming
3. Distributed Systems
4. Perspectives

Differential λ-Calculus

Differential Lambda Calculus

Semantical observation: in quantitative models of Linear Logic, programs are interpreted by smooth functions, hence differentiation. [Ehrhard-Regnier 2003]

	Programs	Functions	
	M, N	f, g	
Variable	x	x	Variable
Abstraction	$\lambda x \cdot M$	$f: x \mapsto f(x)$	Map
Application	$(\lambda x \cdot M) N$	$f \circ g: x \mapsto f(g(x))$	Composition
Differentiation	$D \lambda x \cdot M \cdot N$	$u, x \mapsto D f_{x}(u)$	Derivation

Categorical Model of Differential Lambda-Calculus

Definition 4.2 A Cartesian (closed) differential category is a Cartesian (closed) left-additive category having an operator $D(-)$ that maps a morphism $f: A \rightarrow B$ into a morphism $D(f): A \times A \rightarrow B$ and satisfies the following axioms:

D1. $D(f+g)=D(f)+D(g)$ and $D(0)=0$
D2. $D(f) \circ\langle h+k, v\rangle=D(f) \circ\langle h, v\rangle+D(f) \circ\langle k, v\rangle$ and $D(f) \circ\langle 0, v\rangle=0$
D3. $D(\mathrm{Id})=\pi_{1}, D\left(\pi_{1}\right)=\pi_{1} \circ \pi_{1}$ and $D\left(\pi_{2}\right)=\pi_{2} \circ \pi_{1}$
D4. $D(\langle f, g\rangle)=\langle D(f), D(g)\rangle$
D5. $D(f \circ g)=D(f) \circ\left\langle D(g), g \circ \pi_{2}\right\rangle$
D6. $D(D(f)) \circ\langle\langle g, 0\rangle,\langle h, k\rangle\rangle=D(f) \circ\langle g, k\rangle$
D7. $D(D(f)) \circ\langle\langle 0, h\rangle,\langle g, k\rangle\rangle=D(D(f)) \circ\langle\langle 0, g\rangle,\langle h, k\rangle\rangle$

[Blute-Cockett-Seely 2009] [Bucciarelli-Ehrhard-Manzonetto 2010]

A differential operator such that if $f: A \Rightarrow B$, then $D f: A \times A \Rightarrow B$ corresponds to $u, x \mapsto D f_{x}(u)$ with axioms for linearity in 1st coord.

Categorical Model of Differential Lambda-Calculus

Definition 4.2 A Cartesian (closed) differential category is a Cartesian (closed) left-additive category having an operator $D(-)$ that maps a morphism $f: A \rightarrow B$ into a morphism $D(f): A \times A \rightarrow B$ and satisfies the following axioms:

D1. $D(f+g)=D(f)+D(g)$ and $D(0)=0$
D2. $D(f) \circ\langle h+k, v\rangle=D(f) \circ\langle h, v\rangle+D(f) \circ\langle k, v\rangle$ and $D(f) \circ\langle 0, v\rangle=0$
D3. $D(\mathrm{Id})=\pi_{1}, D\left(\pi_{1}\right)=\pi_{1} \circ \pi_{1}$ and $D\left(\pi_{2}\right)=\pi_{2} \circ \pi_{1}$
D4. $D(\langle f, g\rangle)=\langle D(f), D(g)\rangle$
D5. $D(f \circ g)=D(f) \circ\left\langle D(g), g \circ \pi_{2}\right\rangle$
D6. $D(D(f)) \circ\langle\langle g, 0\rangle,\langle h, k\rangle\rangle=D(f) \circ\langle g, k\rangle$
D7. $D(D(f)) \circ\langle\langle 0, h\rangle,\langle g, k\rangle\rangle=D(D(f)) \circ\langle\langle 0, g\rangle,\langle h, k\rangle\rangle$

[Blute-Cockett-Seely 2009] [Bucciarelli-Ehrhard-Manzonetto 2010]

A differential operator such that if $f: A \Rightarrow B$, then $D f: A \times A \Rightarrow B$ corresponds to $u, x \mapsto D f_{x}(u)$ with axioms for linearity in 1st coord.

What setting for handling both linear and non-linear variables ? using the substitution monoidal structure [Fiore-Plotkin-Turi 1999].

Linear Substitution

A profunctor $A \xrightarrow{F} B$ is a functor $A \times B^{\mathrm{op}} \rightarrow$ Set,
it generalizes relations and matrices but with set coefficients.
Composition: $G \circ F(a, c)=\int^{b \in B} G(b, c) \times F(a, b)$
A generalised species is a profunctor $\mathcal{R}: \mathcal{L A} \longrightarrow A$ where
\mathcal{L} computes the free Symmetric Monoidal Category over a category A.
$\mathcal{L} A$: sequences $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ and bijections and sequence of morphisms.
[Fiore-Gambino-Hyland-Winskel 2007]
As for operads, substitution of generalised species is described by the composition in the Kleisli bicategory: $\mathcal{L} A \xrightarrow{\underset{\sim}{\mathcal{R}}} A \quad \mathcal{L} A \xrightarrow{\underset{\longrightarrow}{\longrightarrow}} A$ gives a profuntor $\mathcal{L} A \xrightarrow{\substack{\mathcal{R}}} \boldsymbol{\mathcal { R }} A$ because \mathcal{L} lifts to profunctors
[Fiore-Gambino-Hyland-Winskel 2016]

Resource Lambda Calculus

Semantical observation: in quantitative models of Linear Logic, programs are interpreted by series, hence Syntactic Taylor Expansion approximating programs by polynomials. [Ehrhard-Regnier 2006]

	Programs	Functions
	s, t	f, g
Variable	x	x
Abstraction	$\lambda x . s$	$f: x \mapsto \sum a_{n} x^{n}$
Linear App.	$\langle\lambda x . s\rangle\left[t_{1}, \ldots, t_{n}\right]$	$f \circ g: x \mapsto \sum a_{n} \underbrace{g(x) \cdots \cdots g(x)}_{n}$

Resource terms formalized as a generalised species $\mathcal{R}: \mathcal{L A} \longrightarrow A$ $\mathcal{R}\left(\left\langle a_{1}, \ldots, a_{\ell}\right\rangle, b\right)$ is the set of resource terms $x_{1}: a_{1}, \ldots, x_{\ell}: a_{\ell} \vdash s: b$ [Ong-Tsukada 2017]

Non-Linear Substitution

A Cartesian generalised species a profunctor $\wedge: \mathcal{M A} \rightarrow A$ where \mathcal{M} computes the free Cartesian Category over a category A. $\mathcal{M A}$: sequences $\left\langle\bar{a}_{1}, \ldots, \bar{a}_{n}\right\rangle$ and functions and sequence of morphisms.
[Tanaka-Power 2004]
As for Lawvere theory, substitution is described by the composition in the Kleisli bicategory which is possible because \mathcal{M} also lifts to profunctors.

Lambda terms can be formalized as a cartesian generalized species. $\Lambda\left(\left\langle\bar{b}_{1}, \ldots, \bar{b}_{n}\right\rangle, \bar{b}\right)$: the set of lambda terms $x_{1}: \bar{b}_{1}, \ldots, x_{n}: \bar{b}_{n} \vdash M: \bar{b}$ [Hyland 2017]

What construction to combine into a 2-monad lifting to profunctors ?

- \mathcal{L} free symmetric monoidal category 2-monad
$\mathcal{L} A$: objects are sequences $\left\langle a_{1}, \ldots, a_{\ell}\right\rangle$ morphisms are bijections and sequence of morphisms.
- \mathcal{M} free cartesian cateogory 2-monad $\mathcal{M A}$: objects are sequences $\left\langle\bar{b}_{1}, \ldots, \bar{b}_{n}\right\rangle$ morphisms are functions and sequence of morphisms.
- \mathcal{Q} Mixed linear / non linear 2-monad [Power-Tanaka 2005][Fiore 2006] $\mathcal{Q A}$: objects are mixed sequences $\left\langle a_{1}, \ldots, a_{\ell}, \bar{b}_{1}, \ldots, \bar{b}_{n}\right\rangle$ morphisms combine functions, bijections and sequence of morphisms.

Mixed Linear Non Linear Monad

Colimit in the 2-category of Symmetric Monoidal Categories.

$$
\begin{array}{ccc}
\mathcal{Q A} & \rightarrow & \mathcal{M A} \\
\left\langle a_{1}, \ldots, a_{\ell}, \bar{b}_{1}, \ldots, \bar{b}_{n}\right\rangle & \mapsto & \left\langle\bar{a}_{1}, \ldots, \bar{a}_{\ell}, \bar{b}_{1}, \ldots, \bar{b}_{n}\right\rangle
\end{array}
$$

Theorem (Hyland - Tasson)

\mathcal{Q} is a 2-monad on Symmetric Monoidal Categories.

Theorem (Hyland - Tasson)
A \mathcal{Q}-algebra is a Symmetric Monoidal Category that splits through
a Cartesian Category with coherences.

Mixed Linear Non Linear Monad

Colimit in the 2-category of Symmetric Monoidal Categories.

$$
\begin{array}{ccc}
\mathcal{Q A} & \rightarrow & \mathcal{M A} \\
\left\langle a_{1}, \ldots, a_{\ell}, \bar{b}_{1}, \ldots, \bar{b}_{n}\right\rangle & \mapsto & \left\langle\bar{a}_{1}, \ldots, \bar{a}_{\ell}, \bar{b}_{1}, \ldots, \bar{b}_{n}\right\rangle
\end{array}
$$

We do not know if \mathcal{Q} lifts to profunctors.

Theorem (Hyland - Tasson)
\mathcal{Q} is a 2-monad on Symmetric Monoidal Categories.

Theorem (Hyland - Tasson)
A \mathcal{Q}-algebra is a Symmetric Monoidal Category that splits through a Cartesian Category with coherences.

Contribution

- The construction of the colimit of 2-monads
- The characterisation of its algebras

Next steps

- Lift \mathcal{Q} to profunctors and describe the substitution monoidal structure of mixed linear/non linear variables.
- Combine the additive structure and encode differential operator

Perspectives

- Study other 2-monads appearing in semantics
- Exploit the bridge with combinatorics

Table of contents

1. Differential λ-Calculus
2. Probabilistic Programming
3. Distributed Systems
4. Perspectives

Probabilistic Programming

Study the implementation of probabilistic algorithms with formal methods: correctness, termination, behavior in context,...

Operational Semantics describes how probabilistic programs compute.

Denotational Semantics describes what probabilistic programs compute

Study the implementation of probabilistic algorithms with formal methods: correctness, termination, behavior in context,...

Operational Semantics describes how probabilistic programs compute.
$\operatorname{Prob}(M, N)$ is the probability that M reduces to N

- In the discrete setting, $\operatorname{Prob}(M, N)$ is a stochastic matrix
- In the continuous setting, $\operatorname{Prob}(M, N)$ is a stochastic kernel

Denotational Semantics describes what probabilistic programs compute

Study the implementation of probabilistic algorithms with formal methods: correctness, termination, behavior in context,...

Operational Semantics describes how probabilistic programs compute.
$\operatorname{Prob}(M, N)$ is the probability that M reduces to N

- In the discrete setting, $\operatorname{Prob}(M, N)$ is a stochastic matrix
- In the continuous setting, $\operatorname{Prob}(M, N)$ is a stochastic kernel

Denotational Semantics describes what probabilistic programs compute
$\llbracket M \rrbracket$ is a probabilistic distribution, if M is a closed ground type program

- If $\vdash M$: nat, then $\llbracket M \rrbracket$ a discrete distributions over integers
- If $\vdash M$: real, then $\llbracket M \rrbracket$ a continuous distributions over reals

Syntax

Nat PPCF

Types: $A, B::=\operatorname{nat} \mid A \rightarrow B$
Terms: $M, N, L::=$

$$
\begin{aligned}
& x\left|\lambda x^{A} \cdot M\right|(M) N|\operatorname{fix}(M)| \\
& \underline{n}|\operatorname{succ}(M)| \\
& \operatorname{ifz}(L, M, N) \mid \\
& \operatorname{coin} \mid \operatorname{let} x=M \operatorname{in} N
\end{aligned}
$$

Operational Semantics:
$\operatorname{Prob}(\operatorname{coin}, \underline{0})=\frac{1}{2}$
If $\vdash M$: nat, $\operatorname{Prob}^{\infty}\left(M, _\right)$is the discrete distribution over \mathbb{N} computed by M.

Syntax

Nat PPCF

Types: $A, B::=\operatorname{nat} \mid A \rightarrow B$
Terms: $M, N, L::=$

$$
\begin{aligned}
& x\left|\lambda x^{A} \cdot M\right|(M) N|\operatorname{fix}(M)| \\
& \underline{n}|\operatorname{succ}(M)| \\
& \operatorname{ifz}(L, M, N) \mid \\
& \operatorname{coin} \mid \operatorname{let} x=M \operatorname{in} N
\end{aligned}
$$

Operational Semantics:
$\operatorname{Prob}(\operatorname{coin}, \underline{0})=\frac{1}{2}$
If $\vdash M$: nat, $\operatorname{Prob}^{\infty}\left(M, _\right)$is the discrete distribution over \mathbb{N} computed by M.

Real PPCF

Types: $A, B::=$ real $\mid A \rightarrow B$
Terms: $M, N, L::=$

$$
\begin{aligned}
& x\left|\lambda x^{A} \cdot M\right|(M) N|\operatorname{fix}(M)| \\
& \underline{r}\left|\underline{f}\left(M_{1}, \ldots, M_{n}\right)\right| \\
& \operatorname{ifz}(L, M, N) \mid \\
& \text { sample } \mid \operatorname{let} x=M \text { in } N
\end{aligned}
$$

Operational Semantics:
$\operatorname{Prob}($ sample,$U)=\lambda_{[0,1]}(U)$
If $\vdash M$: real, $\operatorname{Prob}^{\infty}\left(M, _\right)$is the continuous distribution over \mathbb{R} computed by M.

Denotational Semantics - Discrete

	Domains Semantics	Quantitative Semantics
Types	Continuous dcpos (X, \leq)	Proba. Coh. Spaces $\left(\|X\|, \mathrm{P}(X) \subseteq \mathbb{R}_{\geq 0}^{\|X\|}\right)$
Programs	Scott Continuous	Analytic Functions
Probability	Probabilistic monad \mathcal{V}	Values as proba. distrib.

Type:
\mathbb{N}_{\perp} flat domain, $\mathcal{V}\left(\mathbb{N}_{\perp}\right)$ proba. distr. over \mathbb{N}_{\perp},

Prog: $\llbracket M \rrbracket: \mathbb{N}_{\perp} \rightarrow \mathcal{V}\left(\mathbb{N}_{\perp}\right)$,

$$
\llbracket \text { let } \mathrm{n}=\mathrm{x} \text { in } \mathrm{M} \rrbracket: \mathcal{V}\left(\mathbb{N}_{\perp}\right) \rightarrow \mathcal{V}\left(\mathbb{N}_{\perp}\right)
$$

$$
x \mapsto\left(\sum_{n} \llbracket M \rrbracket_{n, q} x_{n}\right)_{q}
$$

[Jones-Plotkin 1989]

Type:

\mid Nat $\mid=\mathbb{N}$
P (Nat) subproba. dist. over \mathbb{N}
Prog: $\llbracket M \rrbracket: \mathrm{P}(\mathbf{N a t}) \rightarrow \mathrm{P}(\mathbf{N a t})$
$x \mapsto\left(\sum_{\mu=\left[n_{1}, \ldots, n_{k}\right]} \llbracket M \rrbracket_{\mu, q} \prod_{i=1}^{k} x_{n_{i}}\right)_{q}$
[Danos-Ehrhard 2008]

Denotational Semantics - Continuous

Memory : measurable space and probabilistic
Programs: kernels encoding transformations of memory. [Kozen 1981]
The category Kern is cartesian but not closed. [Panangaden 1999]

Denotational Semantics - Continuous

Memory : measurable space and probabilistic
Programs: kernels encoding transformations of memory. [Kozen 1981] The category Kern is cartesian but not closed. [Panangaden 1999]

Quasi-Borel spaces, a model of Real PPCF and recursive types based on domains and presheaves [Vakar-Kammar-Staton 2019].

Denotational Semantics - Continuous

Memory : measurable space and probabilistic
Programs: kernels encoding transformations of memory. [Kozen 1981]
The category Kern is cartesian but not closed. [Panangaden 1999]
Quasi-Borel spaces, a model of Real PPCF and recursive types based on domains and presheaves [Vakar-Kammar-Staton 2019].

A CCC with measurability! [Ehrhard-Pagani-Tasson 2018]

1. Complete cones and Scott continuous functions However, the category is cartesian but not closed.
2. Complete cones and Stable functions is cartesian closed. However, not every stable function is measurable.
3. Measurable Cones (complete cones with measurable tests). Measurable paths pass measurable tests and Measurable Stable functions preserve measurable paths.

Interpretation of programs

Discrete

- For $\vdash \underline{n}: \mathbb{N}$,

$$
\llbracket \underline{n} \rrbracket_{p}=\delta_{p, n}
$$

- For \vdash coin : \mathbb{N},

$$
\llbracket \text { coin } \rrbracket_{p}=\frac{1}{2} \delta_{0, p}+\frac{1}{2} \delta_{1, p}
$$

- For $\vdash N: \mathbb{N}, \vdash P: A, \vdash Q: A$, $\llbracket i f z(N, P, Q) \rrbracket_{a}=$ $\llbracket N \rrbracket_{0} \llbracket P \rrbracket_{a}+\sum_{n \neq 0} \llbracket \mathbb{N} \mathbb{\rrbracket}_{n+1} \llbracket Q \rrbracket_{a}$
$\llbracket \operatorname{let} x=N$ in $P \rrbracket_{a}=$

$$
\sum_{n=0}^{\infty} \llbracket N \rrbracket \widehat{\rrbracket \rrbracket \rrbracket}(n)_{a}
$$

Interpretation of programs

Discrete

- For $\vdash \underline{n}: \mathbb{N}$,

$$
\llbracket \underline{\eta} \rrbracket_{p}=\delta_{p, n}
$$

- For \vdash coin : \mathbb{N},

$$
\llbracket \text { coin } \rrbracket_{p}=\frac{1}{2} \delta_{0, p}+\frac{1}{2} \delta_{1, p}
$$

- For $\vdash N: \mathbb{N}, \vdash P: A, \vdash Q: A$, $\llbracket i f z(N, P, Q) \rrbracket_{a}=$ $\llbracket N \rrbracket_{\square} \llbracket P \rrbracket_{a}+\sum_{n \neq 0} \llbracket N \rrbracket_{n+1} \llbracket Q \rrbracket_{a}$
$\llbracket \operatorname{let} x=N$ in $P \rrbracket_{a}=$

$$
\sum_{n=0}^{\infty} \llbracket N \rrbracket \widehat{\rrbracket \rrbracket} \widehat{P \rrbracket}(n)_{a}
$$

Continuous

- For $\vdash \underline{r}$: real,

$$
\llbracket r \rrbracket(U)=\delta_{r}(U)
$$

- For \vdash sample : real, \llbracket sample】 $=\lambda_{[0,1]}(U)$
- For $\vdash R$: real, $\vdash P, Q: A$, $\llbracket i f z(R, P, Q) \rrbracket(U)=$ $\llbracket R \rrbracket(\{0\}) \llbracket P \rrbracket(U)+\llbracket R \rrbracket(\mathbb{R} \backslash\{0\}) \llbracket Q \rrbracket(U)$
\llbracket let $x=R$ in $P \rrbracket(U)=$ $\int \llbracket R \rrbracket(d r) \llbracket P \rrbracket\left(\delta_{r}\right)(U)$

Results

Invariance of semantics

- (Discrete) $\llbracket M \rrbracket=\sum_{N} \operatorname{Prob}(M, N) \llbracket N \rrbracket$
- (Continuous) $\llbracket M \rrbracket=\int \operatorname{Prob}(M, d t) \llbracket t \rrbracket$

Results

Invariance of semantics

- (Discrete) $\llbracket M \rrbracket=\sum_{N} \operatorname{Prob}(M, N) \llbracket N \rrbracket$
- (Continuous) $\llbracket M \rrbracket=\int \operatorname{Prob}(M, d t) \llbracket t \rrbracket$

Adequacy Lemma

- (Discrete) If $\vdash M$: nat, then $\llbracket M \rrbracket_{n}=\operatorname{Prob}^{\infty}(M, \underline{n})$
- (Continous) If $\vdash M$: real, then $\llbracket M \rrbracket(U)=\operatorname{Prob}^{\infty}(M, \underline{U})$

Results

Invariance of semantics

- (Discrete) $\llbracket M \rrbracket=\sum_{N} \operatorname{Prob}(M, N) \llbracket N \rrbracket$
- (Continuous) $\llbracket M \rrbracket=\int \operatorname{Prob}(M, d t) \llbracket t \rrbracket$

Adequacy Lemma

- (Discrete) If $\vdash M$: nat, then $\llbracket M \rrbracket_{n}=\operatorname{Prob}^{\infty}(M, \underline{n})$
- (Continous) If $\vdash M$: real, then $\llbracket M \rrbracket(U)=\operatorname{Prob}^{\infty}(M, \underline{U})$

Adequacy:
If $\llbracket P \rrbracket=\llbracket Q \rrbracket$ then $P \simeq Q\left(\operatorname{Prob}^{\infty}(C[P], \cdot)=\operatorname{Prob}^{\infty}(C[Q], \cdot)\right)$

- (Discrete) Pcoh is adequate for Nat PPCF. [Danos-Ehrhard 2008]
- (Continuous):

Theorem (Ehrhard-Pagani-Tasson 2018)
Measurable cones and Stable measurable functions are adequate for Real PPCF.

Results

Full Abstraction: $\llbracket P \rrbracket=\llbracket Q \rrbracket$ iff $P \simeq Q$

- (Discrete \checkmark) Pcoh is adequate for Nat PPCF. [Danos-Ehrhard 2008]

Theorems (Ehrhard-Pagani-Tasson 2018)
Probabilistic Coherent Spaces are Fully Abstract for Nat PPCFand for probabilistic Call-By-Push-Value.

Key tool: programs are interpreted as series thanks to quantitative semantics of LL

- (Continuous ?) We do not know if Full Abstraction holds for Measurable cones and Stable measurable functions.
The continuous case is a conservative extension of the discrete case [Crubille 2018]

From Theory to Application

Denotational semantics is a first step towards certification.

By applying Operational Semantics, Invariance of the denotational semantics, Adequacy we can prove properties of the implementation

- (Discrete) Rejection Sampling Algorithm
- (Continuous) Metropolis Hasting Algorithm

Rejection Sampling Algorithm

Input: A $\underline{0} / \underline{1}$ array of length $n \geq 2$ s.t. $\frac{1}{2}$ cells are $\underline{0}$.

0	1	2	3	4	5					
$\underline{0}$	$\underline{1}$	$\underline{0}$	$\underline{1}$	$\underline{1}$	$\underline{0}$	\quad	1,	$0,2,5$	\mapsto	$\underline{0}$
:---	:---	:---	:---	:---	:---					
$1,3,4$	\mapsto	$\underline{1}$								

Output: Find the index of a cell containing $\underline{0}$ (Success.

Implementation: $\quad \mathrm{LV}=\mathrm{fix}\left(\lambda\right.$ LasVegas $^{\text {nat }}$. let $\mathrm{k}=$ rand n in ifz (f k) then k else LasVegas)

Wanted: prove that $\operatorname{Prob}^{\infty}(\mathrm{LV}$, Success $)=1$

Rejection Sampling Algorithm

> Implementation: $\quad \mathrm{LV}=\mathbf{f i x}\left(\lambda\right.$ LasVegas $^{\text {nat }}$. let $\mathrm{k}=$ rand n in ifz (f k) then k else LasVegas)

Rejection Sampling Algorithm

> Implementation: $\quad \mathrm{LV}=\mathrm{fix}\left(\lambda \operatorname{LasVegas}^{\text {nat }}\right.$. let $k=r a n d \mathrm{n}$ in $\operatorname{ifz(fk)\text {then}k\text {elseLasVegas})}$

Operational sem.: LV $\xrightarrow{1}$ let $k=r a n d n$ in $\operatorname{ifz}(f k)$ then \underline{k} else LV

Rejection Sampling Algorithm

Implementation: $\quad \mathrm{LV}=\mathrm{fix}\left(\lambda\right.$ LasVegas $^{\text {nat }}$. let $\mathrm{k}=$ rand n in ifz (f k) then k else LasVegas)
Operational sem.: LV $\xrightarrow{1}$ let $k=r a n d n$ in ifz $(f k)$ then \underline{k} else LV Invariance of the semantics and interpretation of let and ifz:

$$
\begin{aligned}
\llbracket L V \rrbracket_{p} & =\sum_{k=0}^{\infty} \llbracket r \text { rand } n \rrbracket_{k} \llbracket i f z(f \text { k }) \text { then } \underline{k} \text { else } L V \rrbracket_{p} \\
& =\frac{1}{n} \cdot\left(\sum_{f(k)=0 k<n} \llbracket k \rrbracket_{p}+\sum_{f(k) \neq 0 k<n} \llbracket L V \rrbracket_{p}\right)
\end{aligned}
$$

If $p<n \& f(p)=0$, then $\llbracket \mathrm{LV} \rrbracket_{p}=\frac{1}{n}+\frac{1}{n} \cdot \frac{n}{2} \cdot \llbracket \mathrm{LV} \rrbracket_{p}$, so $\llbracket \mathrm{LV} \rrbracket_{p}=\frac{2}{n}$.
If $p \geq n$ or $f(p) \neq 0$, then $\llbracket \mathrm{LV} \rrbracket_{p}=\frac{1}{n} \cdot \frac{n}{2} \cdot \llbracket \mathrm{LV} \rrbracket_{p}$, so $\llbracket \mathrm{LV} \rrbracket_{p}=0$.

Rejection Sampling Algorithm

Implementation: $\mathrm{LV}=\operatorname{fix}\left(\lambda \operatorname{LasVegas}{ }^{\text {nat }}\right.$. let $\mathrm{k}=$ rand n in ifz (f k) then k else LasVegas)

Operational sem.: LV $\xrightarrow{1}$ let $k=r a n d n$ in $\operatorname{ifz}(f \mathrm{k})$ then \underline{k} else LV Invariance of the semantics and interpretation of let and ifz:

$$
\begin{aligned}
\llbracket \mathrm{LV} \rrbracket_{p} & =\sum_{k=0}^{\infty} \llbracket \mathrm{rand} \mathrm{n} \rrbracket_{k} \llbracket \mathrm{ifz}(\mathrm{f} k) \text { then } \underline{\mathrm{k}} \mathrm{else} \mathrm{LV} \rrbracket_{p} \\
& =\frac{1}{n} \cdot\left(\sum_{f(k)=0 k<n} \llbracket k \rrbracket_{p}+\sum_{f(k) \neq 0 k<n} \llbracket \mathrm{LV} \rrbracket_{p}\right)
\end{aligned}
$$

If $p<n \& f(p)=0$, then $\llbracket \mathrm{LV} \rrbracket_{p}=\frac{1}{n}+\frac{1}{n} \cdot \frac{n}{2} \cdot \llbracket \mathrm{LV} \rrbracket_{p}$, so $\llbracket \mathrm{LV} \rrbracket_{p}=\frac{2}{n}$.
If $p \geq n$ or $f(p) \neq 0$, then $\llbracket \mathrm{LV} \rrbracket_{p}=\frac{1}{n} \cdot \frac{n}{2} \cdot \llbracket \mathrm{LV} \rrbracket_{p}$, so $\llbracket \mathrm{LV} \rrbracket_{p}=0$.
Adequacy Lemma, the probability that LV converges:

$$
\begin{aligned}
\operatorname{Prob}^{\infty}(\mathrm{LV}, \text { Success }) & =\sum_{p} \operatorname{Prob}^{\infty}(\mathrm{LV}, \underline{p})=\sum_{p} \llbracket \mathrm{LV} \rrbracket_{p} \\
& =\sum_{f(p)=0 ; p<n} \frac{2}{n}=\frac{n}{2} \cdot \frac{2}{n}=1
\end{aligned}
$$

Metropolis-Hasting Algorithm

Input: $\quad \mu$ a distribution on \mathbb{R} with density π :
$\mu(U)=\int_{U} \pi(x) d x$, but we only know $\gamma \pi$.

Output: Markov Chain x_{n} converging to a random variable x with law μ

Metropolis-Hasting Algorithm

Input: $\quad \mu$ a distribution on \mathbb{R} with density π :
$\mu(U)=\int_{U} \pi(x) d x$, but we only know $\gamma \pi$.
Output: Markov Chain x_{n} converging to a random variable x with law μ

Program: $\quad M H=\operatorname{fix}\left(\lambda\right.$ MetHast ${ }^{\text {nat } \rightarrow \text { nat }} . ~ \lambda n^{\text {nat }}$. if $n=0$ then x_{0} else let $\mathrm{x}=$ MetHast ($\mathrm{n}-1$) in

$$
\text { let } \mathrm{y}=\text { gauss } \mathrm{x} \text { in }
$$

$$
\text { let } \mathrm{z}=\text { bernouilli }(\alpha(\mathrm{x}, \mathrm{y})) \text { in }
$$

$$
\text { if } z=0 \text { then } x \text { else } y)
$$

Wanted: $\mathrm{MH}(\underline{n})$ is a Markov Chain converging to a random var. of law μ.

Metropolis-Hasting Algorithm

Input: $\quad \mu$ a distribution on \mathbb{R} with density π :
$\mu(U)=\int_{U} \pi(x) d x$, but we only know $\gamma \pi$.
Output: Markov Chain x_{n} converging to a random variable x with law μ

Program: $\quad M H=\operatorname{fix}\left(\lambda\right.$ MetHast ${ }^{\text {nat } \rightarrow \text { nat }} . ~ \lambda n^{\text {nat }}$. if $n=0$ then x_{0} else let $\mathrm{x}=$ MetHast ($\mathrm{n}-1$) in

$$
\text { let } \mathrm{y}=\text { gauss } \mathrm{x} \text { in }
$$

$$
\text { let } \mathrm{z}=\text { bernouilli }(\alpha(\mathrm{x}, \mathrm{y})) \text { in }
$$

$$
\text { if } z=0 \text { then } x \text { else } y)
$$

Wanted: $\mathrm{MH}(\underline{n})$ is a Markov Chain converging to a random var. of law μ.
Operational Semantics:

$$
\begin{aligned}
& \operatorname{MH}(\underline{0}) \rightarrow \mathrm{x}_{0} \text { thus, } \operatorname{Prob}(\mathrm{MH}(\underline{0}), U)=\delta_{x_{0}}(U) \\
& \mathrm{MH}(\underline{n+1}) \rightarrow M=\operatorname{let} x= \\
& \quad \operatorname{MH}(\underline{n}) \text { in let } y=\text { gauss } x \text { in } \\
& \quad \operatorname{let} z=\text { bernoulli }(\underline{\alpha}(x, y)) \text { in if } z(z, x, y)
\end{aligned}
$$

Metropolis-Hasting Algorithm

$$
\begin{aligned}
\mathrm{MH}(\underline{n+1}) \rightarrow M=\operatorname{let} x= & \operatorname{MH}(\underline{n}) \text { in let } y=\operatorname{gauss} x \text { in } \\
& \text { let } z=\text { bernoulli }(\underline{\alpha}(x, y)) \text { in if } z(z, x, y)
\end{aligned}
$$

Adequacy/Invariance/Interpretation:

$$
\begin{gathered}
\operatorname{Prob}(\mathrm{MH}(\underline{n+1}), U)=\llbracket \mathrm{MH}(\underline{n+1}) \rrbracket(U)=\llbracket M \rrbracket(U) \\
=\int_{\mathbb{R}} \llbracket N \rrbracket\left(\delta_{r}\right)(U) \llbracket \mathrm{MH}(\underline{n}) \rrbracket(d r)=\int_{\mathbb{R}} P_{\mathrm{MH}}(r, U) \operatorname{Prob}(\mathrm{MH}(\underline{n}), d r) \\
P_{\mathrm{MH}}(r, U)= \\
\delta_{r}(U)\left(1-\int_{\mathbb{R}} \alpha(r, t) g(t, r) \lambda(d t)\right)+\int_{U} \alpha(r, t) g(t, r) \lambda(d t) .
\end{gathered}
$$

Thus it is a Markov-Chain whose law is defined with respect to the kernel $P_{\mathrm{MH}}(r, U)$. It is standard to prove that μ is its invariant measure.

Example

Operational Sem., Invariance and Adequacy imply Correctness

Contributions

- The study of semantics of discrete and continuous probabilistic programming
- Full Abstraction for Probabilistic Coherent Spaces and Nat PPCF
- Adequacy for Measurable Cones and Measurable Stable functions and Real PPCF
- Use of quantitative approach of $\mathrm{LL}: \llbracket M \rrbracket=\sum \llbracket M \rrbracket{ }_{\mu} x^{\mu}$

Next steps

- Compare with Quasi Borel Spaces
- Extract model of Linear Logic from Measurable Cones and Measurable Stable Functions

Perspectives

- Combine differentiation and probability
- Certification in proof assistant

Table of contents

1. Differential λ-Calculus
2. Probabilistic Programming
3. Distributed Systems
4. Perspectives

Distributed Systems

Distributed systems

Process

Asynchronous computations

Distributed System

A fixed family of $n+1$ processes communicate by Update and Scan of their local memory into a shared global memory.

Asynchronous

- For each process, the k th Scan follows the k th Update
- Update and Scan are mutually exclusive
- no delay or order restriction

Interleaving Trace

Each execution of a protocol is given by an interleaving trace $T \in\left\{U_{i}, S_{i} \mid i \in[n]=\{0 \cdots n\}\right\}^{*}$ well-bracketed.

Example for 3 processes, 2 rounds: $U_{1} U_{2} S_{1} U_{0} S_{0} S_{2} U_{1} U_{0} S_{1} U_{2} S_{2} S_{0}$

Operational Semantics

Consider a program with $n+1$ processes and $\left(r_{i}\right)_{i \in[n]}$ rounds.

State a pair $s=(\ell, m)$ where

- $\ell=\left(\ell_{i}\right)_{i \in[n]}$ local memories (one register per process)
- $m=\left(m_{i}\right)_{i \in[n]}$ global memory (one register per process)

Initial state $s_{0}: \ell_{i}=i \quad$ and $\quad m_{i}=\perp$

Operational Equivalence

Two interleaving traces T, T^{\prime} are operationaly equivalent when

$$
s_{0} \xrightarrow{T}^{*} s \quad \text { iff } \quad s_{0} \xrightarrow{T^{*}} s
$$

Directed Algebraic Topology

Pospace $\mathbb{X}_{n}=\prod_{i \in[n]}\left[0, r_{i}\right] \backslash \bigcup_{\substack{i, j \in[n] \\ k \in\left[r_{i}\right], l \in\left[r_{j}\right]}} U_{i}^{k} \cap S_{j}^{\prime}$

[Fajstrup-Goubault-Haucourt-Raussen 2016]

Directed Algebraic Topology

Pospace $\mathbb{X}_{n}=\prod_{i \in[n]}\left[0, r_{i}\right] \backslash \bigcup_{\substack{i, j \in[n] \\ k \in\left[r_{i}\right], I \in\left[r_{j}\right]}} U_{i}^{k} \cap S_{j}^{\prime}$
Dipath $\alpha:[0,1] \rightarrow \mathbb{X}_{n}$ continuous and non decreasing

[Fajstrup-Goubault-Haucourt-Raussen 2016]

Directed Algebraic Topology

Pospace $\mathbb{X}_{n}=\prod_{i \in[n]}\left[0, r_{i}\right] \backslash \bigcup_{\substack{i, j \in[n] \\ k \in\left[r_{i}\right], I \in\left[r_{j}\right]}} U_{i}^{k} \cap S_{j}^{\prime}$
Dipath $\alpha:[0,1] \rightarrow \mathbb{X}_{n}$ continuous and non decreasing
Dihomotopy $h: \overrightarrow{[0,1]} \times[0,1] \rightarrow \mathbb{X}_{n}$ continuous non decreasing

[Fajstrup-Goubault-Haucourt-Raussen 2016]

Consider a program with $n+1$ processes and $\left(r_{i}\right)_{i \in[n]}$ rounds.

Protocol Complex [Herlihy-Kozlov-Rasjbaum 2013]

- Vertex: (process, local memory)
- Maximal Simplex: $\left\{\left(0, \ell_{0}\right), \ldots,\left(n, \ell_{n}\right)\right\}$ where ℓ_{i} is the local view by process i of the global execution.

Examples

$U_{1} S_{1} U_{0} S_{0} U_{2} S_{2}$

Consider a program with $n+1$ processes and $\left(r_{i}\right)_{i \in[n]}$ rounds.

Protocol Complex [Herlihy-Kozlov-Rasjbaum 2013]

- Vertex: (process, local memory)
- Maximal Simplex: $\left\{\left(0, \ell_{0}\right), \ldots,\left(n, \ell_{n}\right)\right\}$ where ℓ_{i} is the local view by process i of the global execution.

Examples

$$
0,0 \perp \stackrel{\square}{\square} 1,01 \stackrel{\square}{\square} 0,01 \stackrel{\square \cdot}{\square} 1, \perp 1
$$

Consider a program with $n+1$ processes and $\left(r_{i}\right)_{i \in[n]}$ rounds.

Protocol Complex [Herlihy-Kozlov-Rasjbaum 2013]

- Vertex: (process, local memory)
- Maximal Simplex: $\left\{\left(0, \ell_{0}\right), \ldots,\left(n, \ell_{n}\right)\right\}$ where ℓ_{i} is the local view by process i of the global execution.

Examples

$$
0,0 \perp \stackrel{\square}{\square} 1,01 \stackrel{\square}{\square} 0,01 \stackrel{\square \cdot}{\square} 1, \perp 1
$$

Impossibility Results

Theorem [Herlihy-Shavit 1999]

If the Protocol Complex is contractible then, the consensus is impossible.

Proof sketch

Assume there is an algorithm δ solving the task, for any execution.
$0,0 \perp \stackrel{\square}{\square} 1,01 \stackrel{\square}{\square} 1, \perp^{\square}$

$\bullet 1$

Impossibility Results

Theorem [Herlihy-Shavit 1999]

If the Protocol Complex is contractible then, the consensus is impossible.

Proof sketch

Assume there is an algorithm δ solving the task, for any execution.

Geometrical Interpretation of Asynchronous Computability

Theorem (Goubault-Mimram-Tasson 2015)

Equivalence between Simplexes, Interval Orders, Dipath, Traces.

$$
\begin{aligned}
& {\left[U_{1} U_{0} S_{1} S_{0} U_{2} S_{2}\right]} \\
& \text { Interleaving Trace/ } \approx
\end{aligned}
$$

Interval Order

Simplex

Dipath/m

Contributions

- The operational semantics of execution traces
- The equivalence between two geometric semantics

Next steps

- Generalise this equivalence to other communication primitives and failures
- Use this equivalence to transfer properties from one model to the other

Perspectives

- Combine differentiation and distributed calculus
- Describe a denotational semantics of distributed systems

Table of contents

1. Differential λ-Calculus
2. Probabilistic Programming
3. Distributed Systems
4. Perspectives

Perspectives

Differential λ-calculus:

Contribution: A monad for mixed linear non linear variables.
Perspectives: Toward mixed subsitution and theory of derivation.

Probabilistic Programming:
Contribution: Discrete and Continuous semantics.
Perspectives: Comparison with other models, Full Abstraction, Linear Logic, Recursive types,...

Distributed Computing:

Contribution: Equivalence between geometric semantics.
Perspectives: Generalise to different communication primitives and systematic method to produce protocol complexes

