Full Abstraction

40 years of research
The Gandy Colloquium

Christine TASSON (tasson@irif.fr)
February 2020
Institut de Recherche en Informatique Fondamentale

Road map

Higher-order computability and Full Abstraction for PCF

Probabilistic Programming

Next Full Abstraction Challenges

Computability at higher types

Church's Thesis (1930)
(nat \rightarrow nat)
A partial function on natural numbers with first order type is 'computable' or 'effectively decidable',
if and only if it is computable by a Turing machine, if and only if it belongs to the general recursive functions (Gödel), if and only if it is definable in λ-calculus (Church).

Kleene's Problem (1960-1980)
Characterize all partial functions with higher types that are 'computable' or 'effectively decidable'.

- Realizability, used to extract concrete programs from math. proofs
- An effective version of higher-type computability in term of dialogue
- Gandy and Pani explored this direction introducing concepts such as no dangling questions, visibility with (counter-)examples, in a framework tracing the route to game theory

Programming Computable Functions (PCF)

Another approach to the higher type functions computability characterization

Syntax

$$
(\sigma, \tau::=\operatorname{nat} \mid \sigma \rightarrow \tau)
$$

$M, N, P:=\underbrace{x|\lambda x M|(M) N}_{\lambda \text {-calculus }}|\underbrace{0 \mid \operatorname{succ} M}_{\text {Arithmetics }}| \underbrace{\text { if } M=0 \text { then } N \text { else } P}_{\text {Conditionnal }} \mid \underbrace{\text { fix } M}_{\text {Recursion }}$
Operational Semantics (Call-by-Name)

$$
\overline{(\lambda \times M) N \rightarrow M[N / x]} \quad \overline{\operatorname{fix} M \rightarrow(M)(\operatorname{fix} M)} \quad \frac{M \rightarrow M^{\prime}}{(M) N \rightarrow\left(M^{\prime}\right) N}
$$

Denotational Semantics
Complete Partial Orders with continuous functions

- nat interpreted as flat domains with partiality with arithmetic
- fix induces partiality

Results relating operational and denotational semantics

Soundeness:
Semantics is an invariant of computation

$$
\text { If } M \rightarrow M^{\prime} \text {, then } \llbracket M \rrbracket=\llbracket M^{\prime} \rrbracket \text {. }
$$

Computational Adequacy:
A perfect match at observational types
For all closed term M of type nat, $M \rightarrow^{*} n$ if and only if $\llbracket M \rrbracket=n$.
Observational equivalence:

$$
M \simeq_{\mathrm{obs}} N \text { if } \forall C C[M] \rightarrow^{*} n \Longleftrightarrow C[N] \rightarrow^{*} n
$$

Full abstraction:

$$
M \simeq_{\text {obs }} N \text { if and only if } \llbracket M \rrbracket=\llbracket N \rrbracket
$$

Milner proved that there is a (unique) Fully Abstract standard model of PCF based on the syntax.

Definability criteria for Full Abstraction

A definable element of the model is the semantics of a program of PCF.
Separable definability: if $f \neq g$ definable of type τ, then there is h definable of type $\tau \rightarrow$ nat such that $h \circ f \neq h \circ g$.

Propostion Separable definability implies Full Abstraction
Proof. By contradiction, if $\llbracket M \rrbracket \neq \llbracket N \rrbracket$, then there is P such that

$$
\llbracket(P) M \rrbracket=\llbracket P \rrbracket \circ \llbracket M \rrbracket \neq \llbracket P \rrbracket \circ \llbracket N \rrbracket=\llbracket(P) N \rrbracket
$$

Conclude by adequacy, as $(P) M$ is of type nat.

Milner characterisation: Full Abstraction results from

- Compact definability (all compact elements at all types are definable)
- Extensionality (elements of the model at function types are functions)

Quest for a syntax free description of the FA model

Examples:

- Scott Model is not FA for PCF, but for PCF+POR (Plotkin)
- Sequential algorithm is not FA for PCF, but for PCF+catch (Curien-Berry)
- Strongly Stable model is extensional but not compact definable (Bucciarelli-Ehrhard)

Game semantics are compact definable but not extensional

- Games and history free strategies (Abramsky-Jagadesen-Malacaria)
- Games and innocent, well-bracketed strategies (Hyland-Ong and Nickau)

The extensional quotient is a Fully Abstract model

$$
\text { at any type } \tau, f \simeq g \text { whenever } h \circ f=h \circ g \text { for all } h: \tau \rightarrow \text { nat. }
$$

Gandy's inspiration

Game semantics took is root in Kleene and Gandy's work on higher-order computability where game ingredients appeared (dialogue, views, non dangling questions).

It resulted in a wide range of Full Abstraction results for various languages and effects and new insight in denotational semantics.

Open questions

- Does PCF answers the question of higher type computability ? (There is no hope for an effective characterization of the FA model of PCF as the observational order is undecidable for finitary PCF as shown by Loader.)
- What is the Church thesis for Higher Type ?

Probabilistic Programming

Bayesian Inference

Probabilistic programming languages

Every programmer can perform data analysis by describing models as programs and key operations (inference computations are delegated to compiler).

BUGS (Spiegelhalter et al. 1995), BLOG (Milch et al. 2005), Church (Goodman et al. 2008), WebPPL (Goodman et al. 2014), Venture (Mansinghka et al. 2014), Anglican (Wood et al. 2015), Stan (Stan Development Team 2014), Hakaru (Narayanan et al., 2016) BayesDB (Mansinghka et al. 2017), Edward (Tran et al.Tran et al. 2017), Birch (Murray et al. 2018), Turing (Ge et al. 2018), Gen (Cusumano-Towner et al. 2019), Pyro (Bingham et al. 2019), ...

Sampling

Idea: How to model probability distributions by programs
4 else:
7 else:
8

```
```

```
1 def plinko(n):
```

```
1 def plinko(n):
2 if ( }n==0)\mathrm{ :
2 if ( }n==0)\mathrm{ :
3 return 0
3 return 0
5 if coin():
5 if coin():
6 return plinko (n-1)+1
6 return plinko (n-1)+1
```

 return plinko(n-1)-1
    ```
```

 return plinko(n-1)-1
    ```


By Matemateca (IME USP)

\section*{Sampling}

Idea: How to model probability distributions by programs

> sample(plinko(4))
> \(>2\)
```

def plinko(n):
if (n==0):
return 0
else:
if coin():
return plinko(n-1)+1
else:
return plinko(n-1)-1

```

\section*{Sampling}

Idea: How to model probability distributions by programs
sample(plinko(4))
\(>2\)
nSample(plinko(4), 1000)
plot(gaussian(0,1))


\section*{What is Bayesian Inference}

Gender Bias (Laplace): Paris, from 1745 to 1770 \(f 0=241945\) females out of \(B 0=493472\) births (49\%).

\section*{What is Bayesian Inference}

Gender Bias (Laplace): Paris, from 1745 to 1770
\(f 0=241945\) females out of \(B 0=493472\) births (49\%).
What is the probability to be born female ?
- female births are independent and follow the same law with bias \(\theta\)
- the probability to get \(f\) females out of \(B\) births is
\[
P(f \mid \theta, B)=\binom{B}{f} \theta^{f}(1-\theta)^{B-f}
\]

Novelty: the bias \(\theta\) to be born female follows a probabilistic distribution.

\section*{What is Bayesian Inference}

Gender Bias (Laplace): Paris, from 1745 to 1770
\(f 0=241945\) females out of \(B 0=493472\) births (49\%).
What is the probability to be born female ?
- female births are independent and follow the same law with bias \(\theta\)
- the probability to get \(f\) females out of \(B\) births is
\[
P(f \mid \theta, B)=\binom{B}{f} \theta^{f}(1-\theta)^{B-f}
\]

Novelty: the bias \(\theta\) to be born female follows a probabilistic distribution.
Inference paradigm: what is the law of \(\theta\) conditioned on \(f\) and \(B\) ?
- Sample \(\theta\) from a postulated distribution \(\pi\) (prior)
- Simulate data \(f\) from the outcome \(\theta\) (likelihood)
- Infer the distribution of \(\theta\) (posterior) by Bayes Law
\[
P(\theta \mid f, B)=\frac{P(f \mid \theta, B) \pi(\theta)}{\int_{\theta} P(f \mid \theta, B) \pi(\theta)}=\alpha \cdot P(f \mid \theta, B) \pi(\theta)
\]

\section*{Conditioning and inference}
```

1 \# model
2 def fBirth(theta, B):
3 if (B== 0):
return 0
else:
f = flip(theta)
return f + fBirth(theta, B-1)

parameter (prior)

theta = uniform(0,1)

data 1747 - 1783

f0}=24194
BO = 493 472

inference (posterior)

infer(fBirth, theta, f0, BO)

```

Idea: adjust theta distribution by comparison to data by simulation.

\section*{Inference by rejection sampling}
```


prior: Unit -> S

def guesser() :
sample(uniform(0,1))

predicate: int x int }->>(S->> Boolean

def checker(f0, BO) :
lambda theta: gBirth(theta, BO) = f0

infer: (Unit }->\mathrm{ S) }->\mathrm{ (S }->\mathrm{ Boolean) }->\mathrm{ - S

def rejection(guesser, checker(f0, BO)):
theta = guesser()
if checker(f0, BO)(theta):
return theta
else:
rejection(guesser, checker(f0, B0))

```

Problem: inefficient, hence other approximated methods

\section*{Inference by Metropolis-Hasting}

Infer \(\theta\) by Bayes Law: \(P(\theta \mid f, B)=\alpha \cdot P(f \mid \theta, B) \pi(\theta)\)
```


proportion: S x S -> float

def proportion(x, y):
return P(f | x, B0) / P(f | y, B0)

Metropolis-Hasting: int * int * int }->\mathrm{ S

def metropolis(n, fO, BO):
if (n=0):
return f0/B0
else:
x = metropolis(n-1, f0, BO)
y=gaussian(x, 1)
z = bernouilli(proportion(x, y))
if (z = 0):
return x
else:
return y

```

\section*{Probabilistic Programming}

\author{
Semantics
}

\section*{Problems in semantics}
- Prove formally the correspondence between algorithms, implementations and mathematics.
- Prove that two programs have equivalent behavior

Operational Semantics describes how probabilistic programs compute.

Denotational Semantics describes what probabilistic programs compute

\section*{Problems in semantics}
- Prove formally the correspondence between algorithms, implementations and mathematics.
- Prove that two programs have equivalent behavior

Operational Semantics describes how probabilistic programs compute.
\(\operatorname{Proba}(M, N)\) is the probability \(p\) that \(M\) reduces to \(N\) in one step, \(M \xrightarrow{p} N\) defined by induction on the structure of \(M\) :
- \((\lambda x . M) N \xrightarrow{1} M[N / x]\)
- coin \(\xrightarrow{1 / 2} \underline{0}\)
- coin \(\xrightarrow{1 / 2} \underline{1}\)

Denotational Semantics describes what probabilistic programs compute

\section*{Problems in semantics}
- Prove formally the correspondence between algorithms, implementations and mathematics.
- Prove that two programs have equivalent behavior

Operational Semantics describes how probabilistic programs compute.
\(\operatorname{Proba}(M, N)\) is the probability \(p\) that \(M\) reduces to \(N\) in one step, \(M \xrightarrow{p} N\) defined by induction on the structure of \(M\) :
- \((\lambda x . M) N \xrightarrow{1} M[N / x]\)
- coin \(\xrightarrow{1 / 2} \underline{0}\)
- coin \(\xrightarrow{1 / 2} \underline{1}\)

Denotational Semantics describes what probabilistic programs compute
\(\llbracket M \rrbracket\) is a probabilistic distribution, if \(M\) is a closed ground type program.
- If \(M\) has type nat, then \(\llbracket M \rrbracket\) a discrete distribution over integers
- If \(M\) has type real, then \(\llbracket M \rrbracket\) a continuous distribution over reals

\section*{Operational Semantics on an example}
(Borgström-Dal Lago-Gordon-Szymczak ICFP'16)
\[
\begin{array}{ll}
\text { def } \quad \operatorname{addCoins}(): & \\
\begin{array}{l}
\mathrm{a}
\end{array}=\operatorname{coin} & (\lambda x \cdot M) N \xrightarrow{1} M[N / x] \\
\mathrm{b}=\operatorname{coin} & \text { • } \operatorname{coin} \xrightarrow{1 / 2} \underline{0} \\
\mathrm{c}=\operatorname{coin} & \\
& \text { return }(\mathrm{a}+\mathrm{b}+\mathrm{c})
\end{array}
\]
\[
\begin{aligned}
& \xrightarrow{1} \quad \begin{array}{l}
\mathrm{b}=1 \\
\mathrm{c}=1 \\
(0+\mathrm{b}+\mathrm{c})
\end{array} \quad \stackrel{1}{\rightarrow} \quad \begin{array}{l}
\mathrm{c}=1 \\
(0+1+\mathrm{c})
\end{array} \xrightarrow{\text { 1 }} \quad(0+1+1) \xrightarrow{1}
\end{aligned}
\]

\section*{Operational Semantics on an example}
\[
\begin{aligned}
& \text { def } \operatorname{addCoins}(): \\
& a=\operatorname{coin} \\
& b=\operatorname{coin} \\
& c=\operatorname{coin} \\
& \text { return }(a+b+c)
\end{aligned}
\]
- \((\lambda x . M) N \xrightarrow{1} M[N / x]\)
- coin \(\xrightarrow{1 / 2} \underline{0}\)
- coin \(\xrightarrow{1 / 2} \underline{1}\)...


\section*{Operational Semantics on an example}
\[
\begin{aligned}
& \text { def } \operatorname{addCoins}(): \\
& a=\operatorname{coin} \\
& b=\operatorname{coin} \\
& c=\operatorname{coin} \\
& \text { return }(a+b+c)
\end{aligned}
\]
- \((\lambda x . M) N \xrightarrow{1} M[N / x]\)
- coin \(\xrightarrow{1 / 2} \underline{0}\)
- coin \(\xrightarrow{1 / 2} \underline{1}\)...


\section*{Operational Semantics}

Proba \(^{\infty}(M, N)\) is the proba. that \(M\) reduces to \(N\) in any number of steps

\section*{Behavioral equivalence:}
\(M_{1} \simeq M_{2}\) iff \(\forall C[], \operatorname{Proba}^{\infty}\left(C\left[M_{1}\right], \underline{0}\right)=\operatorname{Proba}^{\infty}\left(C\left[M_{2}\right], \underline{0}\right)\)
```

def addCoins1():
a = coin
b = coin
c = coin
return (a + b + c)

```
```

def infer1(f0, B0):
rejection(guesser, checker(f0, BO)):
def infer2(f0, BO):
metropolis(f0, B0, 1000)

```

\section*{Semantics of a Bayesian Network (Jacobs-Kissinger-Zanasi FOSSACS'19)}


\section*{Semantics of a Bayesian Network (Jacobs-Kissinger-Zanasi FOSSACS'19)}


\section*{Semantics of a Bayesian Network (Jacobs-Kissinger-Zanasi FOSSACS'19)}

\[
p(W) \Delta(P(S \mid W) \otimes P(R \mid W)) P(G \mid S, R)=p(G)
\]

\section*{Denotational Semantics:}

Probabilistic Coherent Spaces (Pcoh) an adequate model of probabilistic functional programming with discrete probability.

- the universe \(|X|\) is a (potentially infinite) set of final states
- a set of vectors \(\mathrm{P}(X) \subseteq\left(\mathbb{R}^{+}\right)^{|X|}\)
closure: \(\mathbf{P}(\mathbf{X})^{\perp \perp}=\mathbf{P}(\mathbf{X})\) where
\(\forall P \subseteq\left(\mathbb{R}^{+}\right)^{|X|}, P^{\perp}=\left\{v \in\left(\mathbb{R}^{+}\right)^{|X|} ; \forall u \in P, \sum_{a \in|X|} u_{a} v_{a} \leq 1\right\}\)
bounded covering:
\[
\forall a \in|X|, \exists v \in P(X) ; v_{a} \neq 0 \quad \text { and } \quad \exists p>0, ; \forall v \in \mathrm{P}(X), v_{a} \leq p
\]

\section*{Denotational Semantics:}

Probabilistic Coherent Spaces (Pooh) an adequate model of probabilistic functional programming with discrete probability.

\((|X|, \mathrm{P}(X))\)
- the universe \(|X|\) is a (potentially infinite) set of final states
- a set of vectors \(\mathrm{P}(X) \subseteq\left(\mathbb{R}^{+}\right)^{|X|}\)

Type
\(A, B::=\) nat \(|A \rightarrow B| \ldots\) are interpreted by objects \(\llbracket A \rrbracket=(|A|, \mathrm{P}(A))\) defined by induction on \(A\).

\section*{Denotational Semantics:}

Probabilistic Coherent Spaces (Pcoh) an adequate model of probabilistic functional programming with discrete probability.

- the universe \(|X|\) is a (potentially infinite) set of final states
- a set of vectors \(\mathrm{P}(X) \subseteq\left(\mathbb{R}^{+}\right)^{|X|}\)

Type
\(A, B::=\) nat \(|A \rightarrow B| \ldots\) are interpreted by objects \(\llbracket A \rrbracket=(|A|, \mathrm{P}(A))\) defined by induction on \(A\).
- unit type 1: \(|1|=\{()\}\) and \(P(1)=[0,1]\)

\section*{Denotational Semantics:}

Probabilistic Coherent Spaces (Pcoh) an adequate model of probabilistic functional programming with discrete probability.
- the universe \(|X|\) is a (potentially infinite) set of final states
- a set of vectors \(\mathrm{P}(X) \subseteq\left(\mathbb{R}^{+}\right)^{|X|}\)

Type
\(A, B::=\) nat \(|A \rightarrow B| \ldots\) are interpreted by objects \(\llbracket A \rrbracket=(|A|, \mathrm{P}(A))\) defined by induction on \(A\).
- unit type 1: \(|1|=\{()\}\) and \(P(1)=[0,1]\)
- \(\mathcal{B}=1 \oplus 1:|\mathcal{B}|=\{\mathrm{t}, \mathrm{f}\}\) and \(\mathrm{P}(\mathcal{B})=\{x \cdot \mathrm{t}+y \cdot \mathrm{f} \mid x+y \leq 1\}\)
\[
p(W)=[3 / 5,2 / 5] \in \mathrm{P}(\mathcal{B}) .
\]

\section*{Denotational Semantics:}

Probabilistic Coherent Spaces (Pcoh) an adequate model of probabilistic functional programming with discrete probability.
- the universe \(|X|\) is a (potentially infinite) set of final states
- a set of vectors \(\mathrm{P}(X) \subseteq\left(\mathbb{R}^{+}\right)^{|X|}\)

Type
\(A, B::=\) nat \(|A \rightarrow B| \ldots\) are interpreted by objects \(\llbracket A \rrbracket=(|A|, \mathrm{P}(A))\) defined by induction on \(A\).
- unit type 1: \(|1|=\{()\}\) and \(P(1)=[0,1]\)
- \(\mathcal{B}=1 \oplus 1:|\mathcal{B}|=\{\mathrm{t}, \mathrm{f}\}\) and \(\mathrm{P}(\mathcal{B})=\{x \cdot \mathrm{t}+y \cdot \mathrm{f} \mid x+y \leq 1\}\)
\[
p(W)=[3 / 5,2 / 5] \in \mathrm{P}(\mathcal{B}) .
\]
- nat \(=1 \oplus\) nat: \(\mid\) nat \(\mid=\mathbb{N}\) and P (nat) sub-proba distrib. over \(\mathbb{N}\)

\section*{Denotational Semantics:}

Probabilistic Coherent Spaces (Pcoh) an adequate model of probabilistic functional programming with discrete probability.

- the universe \(|X|\) is a (potentially infinite) set of final states
- a set of vectors \(\mathrm{P}(X) \subseteq\left(\mathbb{R}^{+}\right)^{|X|}\)

Type
\(A, B::=\) nat \(|A \rightarrow B| \ldots\) are interpreted by objects \(\llbracket A \rrbracket=(|A|, \mathrm{P}(A))\) defined by induction on \(A\).
- unit type \(1:|1|=\{()\}\) and \(P(1)=[0,1]\)
- \(\mathcal{B}=1 \oplus 1:|\mathcal{B}|=\{\mathrm{t}, \mathrm{f}\}\) and \(\mathrm{P}(\mathcal{B})=\{x \cdot \mathrm{t}+y \cdot \mathrm{f} \mid x+y \leq 1\}\)
\[
p(W)=[3 / 5,2 / 5] \in \mathrm{P}(\mathcal{B}) .
\]
- nat \(=1 \oplus\) nat: \(\mid\) nat \(\mid=\mathbb{N}\) and P (nat) sub-proba distrib. over \(\mathbb{N}\)
- \(\mathcal{B}^{*}=1 \oplus\left(\mathcal{B} \otimes \mathcal{B}^{*}\right):\left|\mathcal{B}^{*}\right|=\{\epsilon\} \cup\left\{b_{1} \cdots \cdot b_{n}\left|n \in \mathbb{N}, b_{i} \in\right| \mathcal{B} \mid\right\}\) and \(\mathrm{P}\left(\mathcal{B}^{*}\right)\) sub-probability distribution over words of booleans.

\section*{Semantics: Probabilistic Coherent Spaces}

Morphism \(X X \in\left(\mathbb{R}^{+}\right)^{|X| \times|Y|}\) is a matrix
\(\forall x \in \underset{\subseteq\left(\mathbb{R}^{+}\right)^{|X|}}{\mathrm{P}(X)}, M \cdot x=\left(\sum_{a \in|X|} M_{a, b} x_{a}\right)_{b \in|Y|} \in \underset{\subseteq\left(\mathbb{R}^{+}\right)^{|Y|}}{P}(Y)\)

\section*{Semantics: Probabilistic Coherent Spaces}
\[
\begin{aligned}
& \text { Morphism } X X \underset{\subseteq\left(\mathbb{R}^{+}\right)^{|X|}}{ }, M(x)=\left(\sum_{m \in \mathcal{M}_{\text {fin }}(|X|)} M_{m, b} \prod_{a \in m} x_{a}^{m(a)}\right)_{b \in|Y|} \in \underset{\subseteq\left(\mathbb{R}^{+}\right)^{|Y|}}{\mathrm{P}}(Y) \\
& \forall x \in \underset{\text { fin }}{ }(|X|) \times|Y| \text { is a matrix }
\end{aligned}
\]

\section*{Semantics: Probabilistic Coherent Spaces}

Morphism \(X X \in\left(X, \mathbb{R}^{+}\right)^{\mathcal{M}_{\text {fin }}(|X|) \times|Y|}\) is a matrix
\(\forall x \in \underset{\subseteq\left(\mathbb{R}^{+}\right)^{|x|}}{\mathrm{P}(X)}, M(x)=\left(\sum_{m \in \mathcal{M}_{\text {fin }}(|X|)} M_{m, b} \prod_{a \in m} x_{a}^{m(a)}\right){ }_{b \in|Y|} \in \underset{\subseteq\left(\mathbb{R}^{+}\right)^{|Y|}}{\mathrm{P}(Y)}\)

Program
\(M, N::=x\left|\lambda x^{A} . M\right|(M) N|\boldsymbol{f i x}(M)| \underline{n}|\operatorname{coin}| \ldots\) are interpreted by morphisms, by induction on \(M\)

\section*{Semantics: Probabilistic Coherent Spaces}

Morphism \(X X \in\left(\mathbb{R}^{+}\right)^{\mathcal{M}_{\text {fin }}(|X|) \times|Y|}\) is a matrix
\(\forall x \in \underset{\substack{\subseteq\left(\mathbb{R}^{+}\right)|X|}}{\mathrm{P}(X)}, M(x)=\left(\sum_{m \in \mathcal{M}_{\text {fin }}(|X|)} M_{m, b} \prod_{a \in m} x_{a}^{m(a)}\right)_{b \in|Y|} \in \underset{\substack{ \\\mathrm{P} \\\left(\mathbb{R}^{+}\right)^{|Y|}}}{ }\)

Program
\[
M, N::=x\left|\lambda x^{A} . M\right|(M) N|\boldsymbol{f i x}(M)| \underline{n}|\operatorname{coin}| \ldots
\]
are interpreted by morphisms, by induction on \(M\)
- if \(M: A\), then \(\llbracket M \rrbracket \in \mathrm{P}(A)\)
\[
\llbracket \underline{n} \rrbracket=\left(0, \ldots, 1_{n}, 0, \ldots\right) \quad \llbracket \operatorname{coin} \rrbracket=\left(\underset{0}{\frac{1}{2}}, \frac{1}{2}, 0, \ldots\right)
\]
- if \(M: A \rightarrow B\), then \(\llbracket M \rrbracket: \mathrm{P}(A) \rightarrow \mathrm{P}(B)\) is a Taylor series

\section*{Semantics: Probabilistic Coherent Spaces}

Morphism
(X) \(M\) Y \(\in\left(\mathbb{R}^{+}\right)^{\mathcal{M}_{\text {fin }}(|X|) \times|Y|}\) is a matrix
\(\left.\forall x \in \underset{\subseteq\left(\mathbb{R}^{+}\right)^{|X|}}{\mathrm{P}}(X), M(x)=\left(\sum_{m \in \mathcal{M}_{\text {fin }}(|X|)} M_{m, b} \prod_{a \in m} x_{a}^{m(a)}\right)\right)_{b \in|Y|} \in \underset{\subseteq\left(\mathbb{R}^{+}\right)^{|Y|}}{\mathrm{P}(Y)}\)

Program
\[
M, N::=x\left|\lambda x^{A} . M\right|(M) N|\operatorname{fix}(M)| \underline{n}|\operatorname{coin}| \ldots
\] are interpreted by morphisms, by induction on \(M\)
- if \(M: A\), then \(\llbracket M \rrbracket \in \mathrm{P}(A)\)
\[
\llbracket \underline{n} \rrbracket=(0, \ldots, \underset{n}{1}, 0, \ldots) \quad \llbracket \operatorname{coin} \rrbracket=\left(\frac{1}{2}, \frac{1}{2}, 0, \ldots\right)
\]
- if \(M: A \rightarrow B\), then \(\llbracket M \rrbracket: \mathrm{P}(A) \rightarrow \mathrm{P}(B)\) is a Taylor series if \(M: 1 \rightarrow 1\), then \(\llbracket M \rrbracket\) is smooth real function from \([0,1]\) to \([0,1]\) if \(M\) : nat \(\multimap\) nat, then \(\llbracket M \rrbracket\) is a sub-stochastic matrix

\section*{Probabilistic Coherent Spaces}

Sound: Deterministic case: if \(M \rightarrow N\), then \(\llbracket M \rrbracket=\llbracket N \rrbracket\).
\[
\llbracket M \rrbracket=\sum_{N} \operatorname{Proba}(M, N) \llbracket N \rrbracket
\]

\section*{Probabilistic Coherent Spaces}

Sound: Deterministic case: if \(M \rightarrow N\), then \(\llbracket M \rrbracket=\llbracket N \rrbracket\).
\[
\llbracket M \rrbracket=\sum_{N} \operatorname{Proba}(M, N) \llbracket N \rrbracket
\]

Adequate: If \(M\) close term of type nat, then \(\llbracket M \rrbracket_{n}=\operatorname{Proba}^{\infty}(M, \underline{n})\)
(Danos-Ehrhard 2011)
\(\llbracket M \rrbracket\) sub-proba distrib. on \(\mathbb{N}\).

\section*{Probabilistic Coherent Spaces}

Sound: Deterministic case: if \(M \rightarrow N\), then \(\llbracket M \rrbracket=\llbracket N \rrbracket\).
\[
\llbracket M \rrbracket=\sum_{N} \operatorname{Proba}(M, N) \llbracket N \rrbracket
\]

Adequate: If \(M\) close term of type nat, then \(\llbracket M \rrbracket_{n}=\operatorname{Proba}^{\infty}(M, \underline{n})\)
(Danos-Ehrhard 2011)
\(\llbracket M \rrbracket\) sub-proba distrib. on \(\mathbb{N}\).

Fully abstract: \(\llbracket M \rrbracket=\llbracket N \rrbracket\) iff \(M \simeq N\)
(Ehrhard-Pagani-T. POPL'14)
This Full Abstraction result generalizes to:
- Probabilistic Games (Castellan-Clairambault-Paquet-Winskel LICS'18)
- Call-By-Push-Value (Ehrhard-T. JACM 2019)
- Quantum Programming (Clairambault-De Visme POPL'20)

\section*{Zoom on analytic Full Abstraction}

Key idea: Prove separate definability
Assume \(f \neq g\) of type \(\sigma\). Then, there is \(\alpha \in|\sigma|\) such that \(f_{\alpha} \neq g_{\alpha}\).

\section*{Zoom on analytic Full Abstraction}

Key idea: Prove separate definability
Assume \(f \neq g\) of type \(\sigma\). Then, there is \(\alpha \in|\sigma|\) such that \(f_{\alpha} \neq g_{\alpha}\).
1. Define \(T_{\alpha}\left(\zeta_{\alpha}\right)\) a testing term with finitely many parameters \(\zeta_{\alpha}\)

\section*{Zoom on analytic Full Abstraction}

Key idea: Prove separate definability
Assume \(f \neq g\) of type \(\sigma\). Then, there is \(\alpha \in|\sigma|\) such that \(f_{\alpha} \neq g_{\alpha}\).
1. Define \(T_{\alpha}\left(\zeta_{\alpha}\right)\) a testing term with finitely many parameters \(\zeta_{\alpha}\)
2. if \(\zeta_{\alpha}\) are replaced by small enough positive reals, then \(T_{\alpha}\) is in pPCF

\section*{Zoom on analytic Full Abstraction}

Key idea: Prove separate definability
Assume \(f \neq g\) of type \(\sigma\). Then, there is \(\alpha \in|\sigma|\) such that \(f_{\alpha} \neq g_{\alpha}\).
1. Define \(T_{\alpha}\left(\zeta_{\alpha}\right)\) a testing term with finitely many parameters \(\zeta_{\alpha}\)
2. if \(\zeta_{\alpha}\) are replaced by small enough positive reals, then \(T_{\alpha}\) is in pPCF
3. \(\llbracket T_{\alpha}\left(\zeta_{\alpha}\right) \rrbracket f\) is a formal series with finitely many parameters such that
\[
\llbracket T_{\alpha}\left(\zeta_{\alpha}\right) \rrbracket f=\cdots+c \cdot f_{\alpha} \prod_{i \in \alpha} \zeta_{i}+\ldots
\]

\section*{Zoom on analytic Full Abstraction}

Key idea: Prove separate definability
Assume \(f \neq g\) of type \(\sigma\). Then, there is \(\alpha \in|\sigma|\) such that \(f_{\alpha} \neq g_{\alpha}\).
1. Define \(T_{\alpha}\left(\zeta_{\alpha}\right)\) a testing term with finitely many parameters \(\zeta_{\alpha}\)
2. if \(\zeta_{\alpha}\) are replaced by small enough positive reals, then \(T_{\alpha}\) is in pPCF
3. \(\llbracket T_{\alpha}\left(\zeta_{\alpha}\right) \rrbracket f\) is a formal series with finitely many parameters such that
\[
\llbracket T_{\alpha}\left(\zeta_{\alpha}\right) \rrbracket f=\cdots+c \cdot f_{\alpha} \prod_{i \in \alpha} \zeta_{i}+\ldots
\]
4. If two formal series have different coefficients, then there are reals small enough on which they differ

\section*{Zoom on analytic Full Abstraction}

Key idea: Prove separate definability
Assume \(f \neq g\) of type \(\sigma\). Then, there is \(\alpha \in|\sigma|\) such that \(f_{\alpha} \neq g_{\alpha}\).
1. Define \(T_{\alpha}\left(\zeta_{\alpha}\right)\) a testing term with finitely many parameters \(\zeta_{\alpha}\)
2. if \(\zeta_{\alpha}\) are replaced by small enough positive reals, then \(T_{\alpha}\) is in pPCF
3. \(\llbracket T_{\alpha}\left(\zeta_{\alpha}\right) \rrbracket f\) is a formal series with finitely many parameters such that
\[
\llbracket T_{\alpha}\left(\zeta_{\alpha}\right) \rrbracket f=\cdots+c \cdot f_{\alpha} \prod_{i \in \alpha} \zeta_{i}+\ldots
\]
4. If two formal series have different coefficients, then there are reals small enough on which they differ
5. \(T_{\alpha}\) is the program that separates \(f\) and \(g\)

Definability: Pcoh morphisms are far from being definable

\section*{Next Full Abstraction Challenges}

Continuous probability semantics

\section*{Denotational Semantics}

\section*{A crucial challenge}
" The developers of probabilistic programming languages need to ensure that the implementation of compilers, optimizers, and inference algorithms do not have bugs."

Denotational semantics allows to define the mathematical meaning of every probabilistic program.

Problem: Measurable sets and measurable functions are not suitable to interpret higher order functional probabilistic programming languages.

The evaluation map ev : \(\mathcal{F}(\mathbb{R}, \mathbb{R}) \times \mathbb{R} \rightarrow \mathbb{R}\) with \(\operatorname{ev}(f, r)=f(r)\) is not measurable whatever measurable sets we put on the set \(\mathcal{F}(\mathbb{R}, \mathbb{R})\) of measurable functions between reals endowed with borel sets.

\section*{Towards FA for continuous probability}

Models for Higher-order languages with continuous probabilities
- Quasi Borel Spaces
(Kammar-Staton+Heunen-Yang LICS'17, +Vakar POPL'19)
- Measurable postive Cones and Stable maps (Ehrhard-Pagani-T. POPL'18)
- Ordered Banach Spaces and Regular maps
(Dahlqvist-Kozen POPL'20)

\section*{Towards FA for continuous probability}

Models for Higher-order languages with continuous probabilities
- Quasi Borel Spaces (Kammar-Staton+Heunen-Yang LICS'17, +Vakar POPL'19)
- Measurable postive Cones and Stable maps (Ehrhard-Pagani-T. POPL'18)
- Ordered Banach Spaces and Regular maps (Dahlqvist-Kozen POPL'20)

Towards full abstraction for the measurable positive cones model
- This model is a conservative extension of Pcoh (Crubillé LICS18)
- The linear and non-linear structures of cones (Ehrhard 2020)
- Wanted: prove that morphisms are power series

\section*{Next Full Abstraction Challenges}

An effective observational equivalence

\section*{Distance and Observational equivalence}

Observational equivalence: is not effective
\[
M_{1} \simeq M_{2} \quad \text { iff } \quad \forall C[], \operatorname{Proba}^{\infty}\left(C\left[M_{1}\right], \underline{0}\right)=\operatorname{Proba}^{\infty}\left(C\left[M_{2}\right], \underline{0}\right)
\]

Observational distance:
\[
\mathrm{d}_{\mathrm{obs}}(M, N)=\sup _{C}\left|\operatorname{Proba}^{\infty}\left(C\left[M_{1}\right], \underline{0}\right)-\operatorname{Proba}^{\infty}\left(C\left[M_{2}\right], \underline{0}\right)\right|
\]

\section*{Distance and Observational equivalence}

Observational equivalence: is not effective
\[
M_{1} \simeq M_{2} \quad \text { iff } \quad \forall C[], \operatorname{Proba}^{\infty}\left(C\left[M_{1}\right], \underline{0}\right)=\operatorname{Proba}^{\infty}\left(C\left[M_{2}\right], \underline{0}\right)
\]

Observational distance:
\[
\mathrm{d}_{\text {obs }}(M, N)=\sup _{C}\left|\operatorname{Proba}^{\infty}\left(C\left[M_{1}\right], \underline{0}\right)-\operatorname{Proba}^{\infty}\left(C\left[M_{2}\right], \underline{0}\right)\right|
\]

Semantical distance: \(\mathrm{d}_{\mathrm{P} \text { coh }}(x, y)=\|x-x \wedge y\|+\|x-x \wedge y\|\)

\section*{Distance and Observational equivalence}

Observational equivalence: is not effective
\[
M_{1} \simeq M_{2} \quad \text { iff } \quad \forall C[], \operatorname{Proba}^{\infty}\left(C\left[M_{1}\right], \underline{0}\right)=\operatorname{Proba}^{\infty}\left(C\left[M_{2}\right], \underline{0}\right)
\]

Observational distance:
\[
\mathrm{d}_{\mathrm{obs}}(M, N)=\sup _{C}\left|\operatorname{Proba}^{\infty}\left(C\left[M_{1}\right], \underline{0}\right)-\operatorname{Proba}^{\infty}\left(C\left[M_{2}\right], \underline{0}\right)\right|
\]

Semantical distance: \(\mathrm{d}_{\mathrm{P} \text { coh }}(x, y)=\|x-x \wedge y\|+\|x-x \wedge y\|\)
Amplification \(\mathrm{Pb}: \mathrm{d}_{\mathrm{obs}}(\boldsymbol{\operatorname { c o i n }} 0, \boldsymbol{\operatorname { c o i n }} \epsilon)=1\) due to \(C=\lambda x . \mathrm{if}(x, C x, 0)\)

\section*{Distance and Observational equivalence}

Observational equivalence: is not effective
\[
M_{1} \simeq M_{2} \quad \text { iff } \quad \forall C[], \operatorname{Proba}^{\infty}\left(C\left[M_{1}\right], \underline{0}\right)=\operatorname{Proba}^{\infty}\left(C\left[M_{2}\right], \underline{0}\right)
\]

Observational distance:
\[
\mathrm{d}_{\mathrm{obs}}^{\mathrm{p}}(M, N)=\sup _{C}\left|\operatorname{Proba}^{\infty}\left(C^{\mathrm{p}}\left[M_{1}\right], \underline{0}\right)-\operatorname{Proba}^{\infty}\left(C^{\mathrm{p}}\left[M_{2}\right], \underline{0}\right)\right|
\]

Semantical distance: \(\mathrm{d}_{\mathrm{P} \text { coh }}(x, y)=\|x-x \wedge y\|+\|x-x \wedge y\|\)
Amplification \(\mathrm{Pb}: \mathrm{d}_{\mathrm{obs}}(\boldsymbol{\operatorname { c o i n }} 0, \boldsymbol{\operatorname { c o i n }} \epsilon)=1\) due to \(C=\lambda x . \mathrm{if}(x, C x, 0)\)
Calm down contexts: \(C^{p}=\lambda z . C[i f(\operatorname{coin} p, z, \omega)]\)

\section*{Distance and Observational equivalence}

Observational equivalence: is not effective
\[
M_{1} \simeq M_{2} \quad \text { iff } \quad \forall C[], \operatorname{Proba}^{\infty}\left(C\left[M_{1}\right], \underline{0}\right)=\operatorname{Proba}^{\infty}\left(C\left[M_{2}\right], \underline{0}\right)
\]

Observational distance:
\[
\mathrm{d}_{\mathrm{obs}}^{\mathrm{p}}(M, N)=\sup _{C}\left|\operatorname{Proba}^{\infty}\left(C^{\mathrm{p}}\left[M_{1}\right], \underline{0}\right)-\operatorname{Proba}^{\infty}\left(C^{\mathrm{p}}\left[M_{2}\right], \underline{0}\right)\right|
\]

Semantical distance: \(\mathrm{d}_{\mathrm{Pcoh}}(x, y)=\|x-x \wedge y\|+\|x-x \wedge y\|\)
Amplification \(\mathrm{Pb}: \mathrm{d}_{\mathrm{obs}}(\boldsymbol{\operatorname { c o i n }} 0, \boldsymbol{\operatorname { c o i n }} \epsilon)=1\) due to \(C=\lambda x . \mathrm{if}(x, C x, 0)\)
Calm down contexts: \(C^{p}=\lambda z . C[i f(\operatorname{coin} p, z, \omega)]\)
Theorem: correspondence between syntax and semantics
\[
\begin{gathered}
\mathrm{d}_{\mathrm{obs}}^{p}(M, N)=0 \Rightarrow \llbracket M \rrbracket=\llbracket N \rrbracket \\
\mathrm{~d}_{\mathrm{obs}}^{p}(M, N) \leq \frac{p}{1-p} \mathrm{~d}_{\mathrm{Pcoh}}(\llbracket M \rrbracket, \llbracket N \rrbracket)
\end{gathered}
\]

\section*{Conclusion}

Higher-order computability and the related Full Abstraction are fascinating questions developed by Gandy with inspiring insights.

They generated theoretical development that had practical applications in the programming language community.

I believe that it is not the end.```

