I I' I I'

The Linear-Non-Linear Substitution Monad

MFPS, 2–6 June 2020

Christine Tasson (tasson@irif.fr)

Joint work with Martin HYLAND at <https://arxiv.org/abs/2005.09559>

Institut de Recherche en Informatique Fondamentale

Semantical observation: in quantitative models of Linear Logic, programs are interpreted by smooth functions, hence differentiation.

Linear and Non-Linear substitutions in Differential λ**-calculus**

Substitution

Linear approximation

$$
(\lambda x.M)N \rightarrow M[x\backslash N]
$$

$$
D\lambda x.M \cdot N \rightarrow \lambda x.\left(\frac{\partial M}{\partial x} \cdot N\right)
$$

Linear and Non-Linear substitutions in Differential λ**-calculus**

Substitution

Linear approximation

$$
(\lambda x.M)N \rightarrow M[x\backslash N]
$$

$$
D\lambda x.M \cdot N \rightarrow \lambda x.\left(\frac{\partial M}{\partial x} \cdot N\right)
$$

Categorical Model of Differential Lambda-Calculus

(Blute-Cockett-Seely 2010,Bucciarelli-Ehrhard-Manzonetto 2010)

Definition 4.2 A *Cartesian (closed) differential category* is a Cartesian (closed) left-additive category having an operator $D(-)$ that maps a morphism $f: A \rightarrow B$ into a morphism $D(f)$: $A \times A \rightarrow B$ and satisfies the following axioms: D1. $D(f + q) = D(f) + D(q)$ and $D(0) = 0$ D2. $D(f) \circ \langle h+k, v \rangle = D(f) \circ \langle h, v \rangle + D(f) \circ \langle k, v \rangle$ and $D(f) \circ \langle 0, v \rangle = 0$ D3. $D(\text{Id}) = \pi_1$, $D(\pi_1) = \pi_1 \circ \pi_1$ and $D(\pi_2) = \pi_2 \circ \pi_1$ D4. $D(\langle f, q \rangle) = \langle D(f), D(q) \rangle$ D5. $D(f \circ q) = D(f) \circ \langle D(q), q \circ \pi_2 \rangle$ D6. $D(D(f)) \circ \langle \langle q, 0 \rangle, \langle h, k \rangle \rangle = D(f) \circ \langle q, k \rangle$ D7. $D(D(f)) \circ \langle \langle 0, h \rangle, \langle q, k \rangle \rangle = D(D(f)) \circ \langle \langle 0, q \rangle, \langle h, k \rangle \rangle$

A differential operator such that if $f : A \rightarrow B$, then $Df : A \times A \rightarrow B$ corresponds to $u, x \mapsto Df_x(u)$ with axioms (D2) for linearity in 1st coord.

Categorical Model of Differential Linear Logic

(Blute-Cockett-Seely 2006, Blute-Cockett-Lemay-Seely 2019)

Idea: Non-Linear types are annotated with !.

Definition: A differential category is

- an additive symmetric monoidal closed category X with
- a coalgebra modality made of a (monoidal) comonad $! : X \rightarrow X$ together with digging δ :!A \sim !!A and dereliction ϵ :!A \sim A s.t.
- !A is a cocommutative comonoid together with contraction Δ :!A - \sim !A⊗!A and weakening e :!A - \sim 1
- a deriving transformation $d : A \otimes A \rightarrow A$ with commuting diagrams.

The deriving transformation maps a morphism $f : A \rightarrow B = A \rightarrow B$ in the cartesian closed coKleisli category into a morphism

$$
D(f): A \otimes |A \stackrel{d}{\multimap} |A \stackrel{f}{\multimap} B.
$$

Categorical Model of Differential Linear Logic

(Blute-Cockett-Seely 2006, Blute-Cockett-Lemay-Seely 2019)

Idea: Non-Linear types are annotated with !.

Definition: A differential category is

- an additive symmetric monoidal closed category X with
- a coalgebra modality made of a (monoidal) comonad $! : X \rightarrow X$ together with digging δ :!A \sim !!A and dereliction ϵ :!A \sim A s.t.
- !A is a cocommutative comonoid together with contraction Δ :!A - \circ !A⊗!A and weakening e :!A - \circ 1
- a deriving transformation $d : A \otimes A \rightarrow A$ with commuting diagrams.

The deriving transformation maps a morphism $f : A \rightarrow B = A \rightarrow B$ in the cartesian closed coKleisli category into a morphism

$$
D(f): A \otimes |A \stackrel{d}{\multimap} |A \stackrel{f}{\multimap} B.
$$

Problem: What is the nature of a morphism $:A \otimes (!(B \otimes !C) \otimes D) \neg A$

A term calculus for Linear-Non-Linear Logic

(Benton-Bierman-de Paiva-Hyland 1993, Barber 1996) **Dual Intuitionistic Linear Logic:** Γ | ∆ ` t : c Linear Non−Linear Linear rules: $x : a | \Delta \vdash x : a$
 $\Gamma | \Delta \vdash \lambda x : a$
 $\Gamma | \Delta \vdash \lambda x^a . t : a \neg a$ $\Gamma \mid \Delta \vdash \lambda x^a.t : a \multimap b$ $\Gamma \mid \Delta \vdash s : a \multimap b \qquad \Gamma' \mid \Delta \vdash t : a$ $\Gamma, \Gamma' \mid \Delta \vdash \langle s \rangle t : b$ Non-Linear rules: $\frac{\Gamma | \Delta, x : \underline{b} \vdash x : \underline{b}}{\Gamma | \Delta + \lambda x^{\underline{a}}. t : \underline{a} \rightarrow}$ $\Gamma \mid \Delta \vdash \lambda x^{\underline{a}}.t : \underline{a} \rightarrow b$ $\Gamma \mid \Delta \vdash s : a \rightarrow b$ $\cdot \mid \Delta \vdash t : a$ $\Gamma \mid \Delta \vdash (s)t : b$ Linear-Non-Linear rule: $\frac{\Gamma \, , \, x : a \mid \Delta \vdash t : b}{\Gamma \mid \Delta \, , \, x : \underline{a} \vdash t : b}$

If Δ is empty, we recover Multiplicative ILL and if Γ is empty, we recover $\frac{1}{3}$ simply typed λ -calculus 5

Axiomatic using Categories

In a category X, equipped with the right structure (SMC/ CC) **Types** are interpreted as objects **Contexts** are interpreted as objects (products/tensors) **Terms** are interpreted as morphisms. **Substitution** is interpreted as composition.

In **Multiplicative Linear Logic,** a proof of is interpreted as a morphism

 $x_1 : a_1, \ldots, x_\ell : a_\ell \vdash t : c$ as $a_1 \otimes \cdots \otimes a_\ell \multimap c$.

In λ -**calculus**, a term is interpreted as a morphism

$$
x_1: \underline{b}_1, \ldots, x_n: \underline{b}_n \vdash t : c
$$
 as $\underline{b}_1 \times \cdots \times \underline{b}_n \to c$.

Axiomatic using Multicategories

In a multicategory

Types are interpreted as objects in X

Terms are interpreted as multimorphisms

Substitution is interpreted as multicomposition.

In **Multiplicative Linear Logic,** a term is interpreted as a multimorphism in a symmetric multicategory:

 $x_1 : a_1, \ldots, x_\ell : a_\ell \vdash t : c$ as $a_1, \ldots, a_\ell \multimap c$.

In λ**-calculus,** a term is interpreted as a multimorphism in a cartesian multicategory:

$$
x_1: \underline{b}_1, \ldots, x_n: \underline{b}_n \vdash t : c
$$
 as $\underline{b}_1, \ldots, \underline{b}_n \rightarrow c$.

Multicategories can be seen as distributors combined with a monad. (Fiore-Plotkin-Turi 1999, Tanaka-Power 2006, Hirschowitz-Maggesi 2010)

Distributors, Kleisli Bicategories and 2-Monads

The category **Rel** has objects sets and morphisms $F: X \rightarrow Y$ relations $F: Y \times X \rightarrow 2$, composition $G \circ F = \{(a, c) \mid \exists b \ (b, c) \in G \land (a, b) \in F\}$

The bicategory **Prof** has objects categories and morphisms $F : X \rightarrow Y$ distributors $F: Y^{op} \times X \rightarrow$ **Set** and composition $G \circ F(a, c) = \int^{b \in B} G(b, c) \times F(a, b)$

A relation is $X \to \mathcal{P}Y$ with $\mathcal P$ is the powserset monad, so **Rel** is **Set** φ .

A distributor is a functor $X \rightarrow PshY$ where Psh is the presheaf pseudomonad. The bicategory **Prof** is the Kleisli bicategory **Cat**Psh

The commutative monoid monad M_{fin} extends from **Set** to **Rel**, thanks to a distributive law of P over M_{fin} . (Beck 1969)

A 2-monad $\mathcal T$ extends from **Cat** to **Prof**, thanks to a pseudo distributive law of Psh over $\mathcal T$. (Tanaka 2005, Fiore-Gambino-Hyland-Winskel 2016)

Multicategories as Distributors with Context Monad

Let $\mathcal T$ be a 2-monad on **Cat** that extends to **Prof**. For instance,

- $\mathcal L$ the 2-monad for free symmetric monoidal categories
- \blacksquare M the 2-monad for free categories with products

A **multicategory** can be seen as a **distributor** in the Kleisli bicat of T:

 $M: X \longrightarrow TX$ $M: T X^{\text{op}} \times X \longrightarrow$ Set

Together with a monadic structure that represents:

- identity: $1 \Rightarrow M$
- multicomposition: $M \circ M \Rightarrow M$

Axiomatization using Multicategories via Distributors

In a multicategory $M : X \longrightarrow TX$, that is $M : TX^{op} \times X \longrightarrow \mathbf{Set}$

Types are interpreted as objects in X

Terms are interpreted as elements of M

Substitution is interpreted by the monadic structure $M \circ M \Rightarrow M$

In **Multiplicative Linear Logic,** $T = \mathcal{L}$ with $\mathcal{L}X$ the free symmetric monoidal category over X (Fiore-Gambino-Hyland-Winskel 2007) $x_1 : a_1, \ldots, x_\ell : a_\ell \vdash t : c$ as $a_1, \ldots, a_\ell \multimap c$ in $M(\langle a_1, \ldots, a_\ell \rangle; c)$ In λ -calculus, $\mathcal{T} = \mathcal{M}$ with $\mathcal{M}X$ the free category with product over X (Tanaka-Power 2004, Hyland 2017)

 $x'_1 : \underline{b}_1, \ldots, x'_n : \underline{b}_n \vdash t : c$ as $\underline{b}_1, \ldots, \underline{b}_n \rightarrow c$ in $M(\langle \underline{b}_1, \ldots, \underline{b}_n \rangle; c)$

What is T **for a Mixed Linear-Non-Linear Calculus ? What is** TX **?**

$$
x_1: a_1, \ldots, x_\ell: a_\ell \mid x'_1: \underline{b}_1, \ldots, x'_n: \underline{b}_n \vdash t: c
$$

Mathematical Theory of Linear / Non-Linear Substitution

What construction to combine into a 2-monad lifting to profunctors ?

- $\mathcal L$ free symmetric monoidal category 2-monad $\mathcal{L}X$: objects are sequences $\langle a_1, \ldots, a_\ell \rangle$ morphisms are bijections and sequence of morphisms.
- M free cateogory with products 2-monad MX : objects are sequences $\langle \underline{b}_1, \dots, \underline{b}_n \rangle$ morphisms are functions and sequence of morphisms.
- α Mixed linear / non linear 2-monad (Power-Tanaka 2005, Fiore 2006) QX : objects are mixed sequences $\langle a_1, \ldots, a_\ell | b_1, \ldots, b_n \rangle$ morphisms combine functions, bijections and sequence of morphisms.

Colax colimits induced by a map in a 2**-category** K

If $\lambda : A \to B$ is a map in K, then the induced colax colimit is λ

A

 $B \longrightarrow C$

 ℓ α k

Mixing Linear and Non-Linear monads via a colimit

A map of 2-monads: $\lambda : \mathcal{L} \to \mathcal{M}$ as every category with products is a symmetric monoidal category.

Colax Colimit over λ in the 2-category of SymmMonCat satisfies

I can substitute a linear variable with a non-linear one.

Properties of the QX **from universality for 1-cell and 2-cell**

 QX a category whose objects are mixed sequences $\langle a_1, \ldots, a_\ell | \underline{b}_1, \ldots, \underline{b}_n \rangle$ and morphisms combine functions, bijections and sequence of morphisms.

- QX is a symmetric monoidal category
- QX splits through the free category with MX :

$$
f: QX \to MX \to QX
$$

$$
\langle a_1, \ldots, a_\ell \mid \underline{b}_1, \ldots, \underline{b}_n \rangle \mapsto \langle a_1, \ldots, a_\ell, b_1, \ldots, b_n \rangle \mapsto \langle \cdot \mid \underline{a}_1, \ldots, \underline{a}_\ell, \underline{b}_1, \ldots, \underline{b}_n \rangle
$$

 \bullet f is a strictly idempotent comonad that is strictly monoidal:

$$
\beta: f \Rightarrow 1 \qquad \frac{x_1 : a_1, \dots, x_\ell : a_\ell \mid \Delta + t : b}{\cdot \mid x_1 : \underline{a}_1, \dots, x_\ell : \underline{a}_\ell, \Delta + t : b}
$$

$$
\langle \cdot | \underline{a}_1, \dots, \underline{a}_\ell, \underline{b}_1, \dots, \underline{b}_n \rangle \rightarrow \langle a_1, \dots, a_\ell \mid \underline{b}_1, \dots, \underline{b}_n \rangle
$$

Mixed Linear-Non-Linear 2-Monad

Compute a Colimit in the 2-category of Symmetric Monoidal Categories.

- $\mathcal{L}X$ the free symmetric monoidal category X
- \blacksquare MX the free category with products over X

Theorem

Q is a 2-monad on **Cat**.

The proof uses universality of the colimit.

Theorem

A Q-algebra is a Symmetric Monoidal Category that splits through a Cartesian Category with coherences.

What is a model of Linear-Non-Linear Calculus

We are looking for a multicategorical axiomatisation: $M: X \rightarrow QX$ **DONE** We have defined a 2 monad Q on **Cat** which describes Linear-Non-Linear contexts.

TODO To describe what is a Q-multicategory, we need to extend Q to a pseudo-monad on the bicategory of distributors.

HOW Instead we prove that Psh lifts to pseudo Q algebras

PROBLEM The presheaf pseudo monad lifts from L-algebra (symmetric strict monoidal category) to pseudo- \mathcal{L} -algebra, where there are NO COLIMITS.

IDEA Pseudo version of the characterisation of Q-algebras, together with a strictification to recover colimits.

Back to differential λ**-calculus**

Mixed Linear-Non-Linear Calculus ?

• Closed structure to interpret abstractions

```
(Fiore-Plotkin-Turi 1999, Hyland 2017)
```
Differentiation $u, x \mapsto Df_x(u)$

- Derivation operator transforms a LNL-multimap of type $\langle \Gamma | b, \Delta \rangle \rightarrow c$ to a LNL-multimap of type $\langle \Gamma, b | b, \Delta \rangle \rightarrow c$ instead of $d : A \otimes A \rightarrow A$
- Chain rule will induce an additive structure