The linear-non-linear substitution 2-monad

² Martin Hyland

- ³ DPMMS, University of Cambridge Cambridge, United Kingdom
- 4 M.Hyland@dpmms.cam.ac.uk

5 Christine Tasson 💿

- ⁶ Université de Paris, IRIF, CNRS, F-75013 Paris, France
- 7 tasson@irif.fr

⁸ — Abstract

9 We introduce a general construction on 2-monads. We develop background on maps of 2-monads,
10 their left semi-algebras, and colimits in 2-category. Then we introduce the construction of a
11 colimit induced by a map of 2-monads, show that we obtain the structure of a 2-monad and give a
12 characterisation of its algebras. Finally, we apply the construction to the map of 2-monads between
13 free symmetric monoidal and the free cartesian 2-monads and combine them into a linear-non-linear
14 2-monad.
15 2012 ACM Subject Classification Theory of computation → Categorical semantics

¹⁶ Keywords and phrases 2-category, monads, colimit

17 Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

This paper is concerned with a particular general construction on 2-monads in the sense 18 of Cat-enriched monad theory [7]. Prima facie, the construction is not a universal one in 19 a standard 2-category of 2-monads. All the same we are able precisely to characterise the 20 2-category of algebras for the 2-monad which we construct. This is a first step and further 21 work will involve 2-dimensional monad theory in the sense of [4]. Specifically, we shall 22 address the question of extending our constructed 2-monads on the 2-category Cat of small 23 categories to the corresponding bicategory **Prof** of profunctors or distributeurs [2, 6, 1]. 24 We shall then use a resulting Kleisli bicategory [12] as the setting for an analysis of the 25 foundations of the differential calculus as it appears in the differential λ -calculus [8, 5, 10]. 26 This will involve an extension of the approach of variable binding and substitution in abstract 27 syntax [21, 9, 11, 15, 17]. 28

²⁹ Our project is based on 2-monads on a 2-category **K** in the setting of the pioneering ³⁰ paper [4]. Here, for a 2-monad \mathcal{T} on **K**, we follow the practice of that paper in writing ³¹ \mathcal{T} -**Alg**_s for the 2-category of strict \mathcal{T} -algebras, strict \mathcal{T} -algebra maps and \mathcal{T} -algebra 2-cells. ³² We shall use more detailed information from [4] in further papers.

In (enriched) categories of algebras for a monad, limits are easy and it is colimits which 33 are generally of more interest. We assume throughout that our ambient 2-category \mathbf{K} is 34 cocomplete, that our 2-monads \mathcal{T} are such that the 2-categories \mathcal{T} -Alg_s are also cocomplete. 35 In fact, we shall only need rather innocent looking colimits in \mathcal{T} -Alg_s, specifically the co-lax 36 colimit of an arrow. However, even that requires an infinite construction [18]. So it does not 37 seem worth worrying about minimal conditions for our results: we assume that we are in a 38 situation where all our 2-categories are cocomplete. That happens for example if our basic 39 2-category is locally finitely presentable and our monads are finitary [19]. 40

41 Content

We first describe the background in Section 1 on maps of 2-monads (Subsection 1.1), left-semi
algebras (Subsection 1.2) and colimits (Subsection 1.3), needed in our main Section 2. We
first define the colimits obtained from a map of monads (Subsection 2.1) and exhibit their

⁴⁵ properties (Subsection 2.2). Inspired by these properties, we define what we simply call the

© Martin Hyland and Christine Tasson; licensed under Creative Commons License CC-BY 42nd Conference on Very Important Topics (CVIT 2016). Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:13 Leibniz International Proceedings in Informatics LIPICS Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

23:2 Colimit of 2-monads.

⁴⁶ Structure 2-category (Subsection 2.3). We finally use (Subsection 2.4) the properties of the ⁴⁷ Structure 2-category to prove, in Theorem 22 that the colimit is a monad; and finally we ⁴⁸ prove our main Theorem 25 which states that the Structure 2-category is isomorphic to the ⁴⁹ 2-category of strict algebras over the colimit monad. We end by spelling out the construction ⁵⁰ for two examples, the first one generates the left-semi algebra 2-category (Proposition 26) ⁵¹ and the second the linear-non-linear monad (Section 3) which was the original intention for ⁵² developing this theory.

53 Notations

We denote as [n] the set $\{1, \ldots, n\}$ for $n \in \mathbf{N}$. In a 2-category \mathbf{K} , we denote as 1_Z the identity 1-cell on the object Z and horizontal composition as g f for $A \xrightarrow{f} B$ and $B \xrightarrow{g} C$; we denote as id_f the identity 2-cell on the morphism f and the vertical composition as $\beta * \alpha$ for 2-cells $\alpha : g \Rightarrow g'$ and $\beta : g' \Rightarrow g''$. We denote as $\alpha.f$ the horizontal composition of α and id_f.

⁵⁹ **1** Background

⁶⁰ **1.1** Maps of 2-monads

⁶¹ The construction which we introduce here takes for its input a map $\lambda : \mathcal{L} \Rightarrow \mathcal{M}$ of 2-monads ⁶² on \mathcal{K} . For clarity we stress that the usual diagrams commute on the nose. We rehearse some ⁶³ folklore related to this situation.

First, it is elementary categorical algebra that the monad map $\lambda : \mathcal{L} \Rightarrow \mathcal{M}$ induces a 2-functor $\lambda^* : \mathcal{L}\text{-}\mathbf{Alg}_s \Rightarrow \mathcal{M}\text{-}\mathbf{Alg}_s$ On objects λ^* takes an \mathcal{M} -algebra $\mathcal{M}X \to X$ to an \mathcal{L} -algebra $\mathcal{L}X \xrightarrow{\lambda} \mathcal{M}X \to X$. It is equally evident that $\lambda : \mathcal{L} \Rightarrow \mathcal{M}$ induces a 2-functor $\lambda_! : \mathbf{kl}(\mathcal{L}) \Rightarrow \mathbf{kl}(\mathcal{M})$ between the corresponding Kleisli 2-categories. We have the standard locally full and faithful comparisons: $\mathbf{kl}(\mathcal{L}) \to \mathcal{L}\text{-}\mathbf{Alg}_s$ and $\mathbf{kl}(\mathcal{M}) \to \mathcal{M}\text{-}\mathbf{Alg}_s$.

⁶⁹ Suppose we interpret $\lambda_{!}$ as acting on the free algebras so that $\lambda_{!}$ takes the free \mathcal{L} -algebra ⁷⁰ $\mathcal{L}^{2}A \xrightarrow{\mu^{\mathcal{L}}} \mathcal{L}A$ to the free \mathcal{M} -algebra $\mathcal{M}^{2}A \xrightarrow{\mu^{\mathcal{M}}} \mathcal{M}A$. Then we can see $\lambda_{!}$ as a restricted ⁷¹ left adjoint to λ^{*} in the following sense. Given the free \mathcal{L} -algebra $\mathcal{L}^{2} \xrightarrow{\mu^{\mathcal{L}}} \mathcal{L}A$ on A and ⁷² $\mathcal{M}B \xrightarrow{b} B$ an arbitrary \mathcal{M} -algebra, we have \mathcal{L} -Alg_s($\mathcal{L}A, \lambda^{*}B$) $\simeq \mathcal{M}$ -Alg_s($\lambda_{!}\mathcal{L}A, B$). For ⁷³ $\lambda_{!}(\mathcal{L}^{2}A \xrightarrow{\mu^{\mathcal{L}}} \mathcal{L}A) = \mathcal{M}^{2}A \xrightarrow{\mu^{\mathcal{M}}} \mathcal{M}A$ and so both sides are isomorphic to $\mathcal{K}(A, B)$.

⁷⁴ Any \mathcal{L} -algebra $\mathcal{L}A \xrightarrow{a} A$ lies in a coequalizer diagram in \mathcal{L} -Alg_s: $\mathcal{L}^{2}A \xrightarrow{\mu^{\mathcal{L}}} \mathcal{L}A \xrightarrow{a} a$. ⁷⁵ So to extend $\lambda_{!}$ to a full left adjoint $\lambda_{!}$: \mathcal{L} -Alg_s $\rightarrow \mathcal{M}$ -Alg_s one has only to take the coequal-⁷⁶ izer of the corresponding pair in \mathcal{M} -Alg_s: $\mathcal{M}\mathcal{L}A \xrightarrow{\mu^{\mathcal{M}}\mathcal{M}\lambda} \mathcal{M}A$. As it happens, we do not ⁷⁷ need the full left adjoint, but we shall need the unit of the adjunction given by the \mathcal{L} -algebra ⁷⁸ map λ_{A} from $\mathcal{L}^{2}A \xrightarrow{\mu^{\mathcal{L}}} \mathcal{L}A$ to $\lambda^{*}\lambda_{!}(\mathcal{L}^{2}A \xrightarrow{\mu^{\mathcal{L}}} \mathcal{L}A) = \mathcal{L}\mathcal{M}A \xrightarrow{\lambda\mathcal{M}} \mathcal{M}^{2}A \xrightarrow{\mu^{\mathcal{M}}} \mathcal{M}A$.

⁷⁹ If $\mathcal{L}A \bigvee_{g'}^{g \to j} \mathcal{L}B$ is an \mathcal{L} -algebra 2-cell then the corresponding 2-cell $\lambda^* \lambda_! g \Rightarrow \lambda^* \lambda_! g$ is

M. Hyland and C. Tasson

⁸⁰ given by the composite $\mathcal{M}A \xrightarrow{\mathcal{M}\eta\mathcal{L}} \mathcal{M}\mathcal{L}A \xrightarrow{\mathcal{M}g \prec} \mathcal{M}\mathcal{L}B \xrightarrow{\mathcal{M}\lambda} \mathcal{M}^2B \xrightarrow{\mu\mathcal{M}} \mathcal{M}B$ so that

82 1.2 Left-semi Algebras

In this section we present a theory of a generalization of the notion of \mathcal{T} -algebra for a 2-monad \mathcal{T} . In effect, it is a mere glimpse of an extensive theory of semi-algebra structure, in the sense of structure "up to a retraction", a terminology well-established in computer science. We do not need to have this background in place for the results which we give in this paper: we give only what is required to make the paper comprehensible. However, some impression of what is involved can be obtained by looking at [14] which gives some theory in the 1-dimensional context.

▶ Definition 1. Let \mathcal{T} be a 2-monad on a 2-category C. A left-semi \mathcal{T} -algebra structure on an object Z of C consists of a 1-cell $\mathcal{T}Z \xrightarrow{z} Z$ and a 2-cell $\epsilon : z.\eta \Rightarrow 1_Z$ satisfying the following 1-cell and 2-cell equalities:

94 ▶ Remark 2. 1. The diagrams

demonstrate that Condition (2) implies that the boundaries of the 2-cells in (3) do match.

⁹⁷ 2. Condition (2) is the standard composition for a strict \mathcal{T} -algebra, while Condition (3) is ⁹⁸ the unit condition for a colax \mathcal{T} -algebra.

P9 ► Definition 3. Suppose that $\mathcal{T}Z \xrightarrow{z} Z, \epsilon : z.\eta \Rightarrow 1_Z$ and $\mathcal{T}W \xrightarrow{w} W, \epsilon : w.\eta \Rightarrow 1_W$ are left-semi \mathcal{T} -algebras. A strict map from the first to the second consists of $p : Z \to W$ satisfying the following 1-cell and 2-cell equalities:

¹⁰³ ► Remark 4. 1. The Condition (4) with the naturality of η imply that the boundaries of the 2-cells in (5) do match.

- ¹⁰⁵ **2.** The definition is the restriction to left-semi algebras of the evident notion of strict map ¹⁰⁶ of colax \mathcal{T} -algebras.
- **3.** If $\mathcal{T}Z \xrightarrow{z} Z, \epsilon : z.\eta \Rightarrow 1_Z$ is a left-semi algebra, then $\mathcal{T}Z \xrightarrow{z} Z$ is a strict map to it from the free algebra $\mathcal{T}^2Z \xrightarrow{\mu} \mathcal{T}Z$.

▶ **Proposition 5.** Suppose that $\mathcal{T}Z \xrightarrow{z} Z, \epsilon : z.\eta \Rightarrow 1_Z$ is a left-semi algebra. Then the composite $f : Z \xrightarrow{\eta} \mathcal{T}Z \xrightarrow{z} Z$ is a strict endomap of the left-semi algebra.

- ¹¹¹ Finally, we consider 2-cells between maps of left-semi algebras.
- ▶ **Definition 6.** Suppose that $p, q: Z \to W$ are strict maps of left-semi algebras from $\mathcal{T}Z \xrightarrow{z} Z, \epsilon: z.\eta \Rightarrow 1_Z$ to $\mathcal{T}W \xrightarrow{w} W, \epsilon: w.\eta \Rightarrow 1_W$. A 2-cell from p to q consists of a 2-cell
- ¹¹⁴ $\gamma: p \Rightarrow q$ such that the equality $\mathcal{T}Z \xrightarrow{z} Z \xrightarrow{p}_{q} W = \mathcal{T}Z \xrightarrow{\mathcal{T}p}_{\mathcal{T}q} \mathcal{T}W \xrightarrow{w} W$ holds.
- Remark 7. Again, this is simply the restriction to the world of left-semi algebras of the definition of 2-cells for colax algebras.
- ▶ Proposition 8. Suppose that $\mathcal{T}Z \xrightarrow{z} Z$, $\epsilon : z.\eta \Rightarrow 1_Z$ is a left-semi \mathcal{T} -algebra, so that both $z.\eta$ and 1_Z are strict endomaps. Then $\epsilon : z.\eta \Rightarrow 1_Z$ is a left-semi \mathcal{T} -algebra 2-cell.
- At this point, it is straightforward to check that left-semi \mathcal{T} -algebras, strict maps and 2-cells forms a 2-category that we denote as \mathbf{ls} - \mathcal{T} -Alg_s.
- Looking more closely at what we showed above we see that if we set $f = z.\eta$, then we have $f = f^2$ and $\epsilon.f = \mathrm{id}_f = f.\epsilon$. So in fact we have the following.
- ▶ Proposition 9. Suppose that $\mathcal{T}Z \xrightarrow{z} Z, \epsilon : z.\eta \Rightarrow 1_Z$ is a left-semi \mathcal{T} -algebra. Then, in the ¹²⁴ 2-category ls- \mathcal{T} -Alg_s, the 1-cell f and the 2-cell $\epsilon : f \Rightarrow 1_Z$ equips the left-semi \mathcal{T} -algebra ¹²⁵ with the structure of a strictly idempotent comonad.
- Applying the evident forgetful 2-functor we get that $f = f^2$ and $\epsilon : f \Rightarrow 1_Z$ equips Z with the structure of a strictly idempotent comonad in the underlying 2-category \mathcal{K} .
- ▶ Proposition 10. Suppose that $\mathcal{T}X \xrightarrow{x} X$ is a \mathcal{T} -algebra and $f = f^2 : X \to X$ and $\epsilon: f \Rightarrow 1_X$ equips X with the structure of a strictly idempotent comonad natural in \mathcal{T} -Alg_s. 130 Then $\mathcal{T}X \xrightarrow{x} X \xrightarrow{f} X, \epsilon: fx.\eta \Rightarrow 1_X$ is a left-semi \mathcal{T} -algebra.
- ¹³¹ **Proof sketch.** The 1-cell part is routine and the 2-cell uses that ϵ is a 2-cell in \mathcal{T} -Alg_s.
- ▶ Definition 11. Suppose that S and T are 2-monads. A left-semi monad map from the first to the second consists of $\lambda : S \to T$ satisfying the following equalities

 $S \xrightarrow{\mathcal{S}_{\eta}} S^{2}$ $S \xrightarrow{\mathcal{S}_{\eta}} S^{2} = S$ $S \xrightarrow{\mathcal{S}_{\eta}} S^{2} = \lambda \left(= \right) \lambda = T \xrightarrow{\eta T} S T$ $\downarrow \lambda T$ $\downarrow \lambda T$ $T \xrightarrow{\mathcal{S}_{\eta}} T \xrightarrow{\mu} T$ $T^{2} \xrightarrow{\mu}$

134

1

$$\begin{array}{c|c}
 & \stackrel{\eta}{\longrightarrow} \mathcal{S} \\
 & \stackrel{\mu}{\searrow} \stackrel{\chi}{\longrightarrow} \stackrel{\chi}{\longrightarrow} (6) \\
 & \stackrel{\tau}{\longrightarrow} \stackrel{\tau}{\longrightarrow} \stackrel{\tau}{\longrightarrow} \stackrel{\tau}{\longrightarrow} \mathcal{T} \stackrel{\tau}{\longrightarrow} \stackrel{\tau}{\rightarrow} \stackrel{\tau}{\rightarrow} \stackrel{\tau}{\rightarrow} \stackrel{\tau}{\rightarrow} \stackrel{\tau}{\rightarrow} \stackrel$$

(8)

135

Figure 1 Cocones under the arrow λ .

▶ Proposition 12. Suppose that $\mathcal{T}Z \xrightarrow{z} Z, \epsilon : z.\eta \Rightarrow 1_Z$ is a left-semi \mathcal{T} -algebra and 136 $\mathcal{S} \xrightarrow{\lambda} \mathcal{T}, \gamma : \lambda.\eta \Rightarrow \eta \text{ is a left-semi monad map. Then } \mathcal{S}Z \xrightarrow{\lambda_Z} \mathcal{T}Z \xrightarrow{z} Z, \epsilon.\gamma : z.\lambda.\eta \Rightarrow 1_Z \text{ is a } \mathcal{S}Z \xrightarrow{\lambda_Z} \mathcal{T}Z \xrightarrow{z} Z, \epsilon.\gamma : z.\lambda.\eta \Rightarrow 1_Z \text{ is a } \mathcal{S}Z \xrightarrow{\lambda_Z} \mathcal{T}Z \xrightarrow{z} Z, \epsilon.\gamma : z.\lambda.\eta \Rightarrow 1_Z \text{ is a } \mathcal{S}Z \xrightarrow{\lambda_Z} \mathcal{T}Z \xrightarrow{$ 137 left-semi S-algebra. 138

Proof sketch. The 1-cell part is routine and the 2-cell parts use the naturality of λ to 139 separate the two 2-cells γ and ϵ . 4 140

1.3 Colax colimits induced by a map in 2-category 141

In this section we review the notion of colax colimits in a cocomplete 2-category specialised 142 to our context [3, 20]. 143

In the 2-category \mathcal{K} , suppose that α is a colax cocone (k, ℓ, α) under the arrow λ (see 144 Figure 1, left). Then, for every D, composition with α induces an isomorphism of categories 145 between $\mathcal{K}(C,D)$ and the category of colax cocones under the arrow λ with objects (f,g,ϕ) 146 (see Figure 1, center) and 1-cells $(f, g, \phi) \to (f', g', \phi')$ given by 2-cells $f \stackrel{p}{\Rightarrow} f'$ and $g \stackrel{\sigma}{\Rightarrow} g'$ 147 such that $\rho * \phi = \phi' * \sigma \lambda$ (see Figure 1, right). 148

This isomorphism of categories has two universal aspects, the first is 1-dimensional and 149 the second is 2-dimensional: 150

$$\begin{array}{rcl} & & & & & & & & & \\ & & & & & & & \\ 151 & & & & & & \\ 151 & & & & & & \\ 152 & & & & & & \\ 152 & & & & & & \\ 152 & & & & & & \\ 152 & & & & & & \\ 152 & & & & & & \\ 153 & & & & & & \\ 153 & & & & & & \\ 153 & & & & & & \\ 153 & & & & & \\ 153 & & & & & \\ 153 & & & & & \\ 153 & & & & & \\ 153 & & & & & \\ 153 & & & & & \\ 153 & & & & & \\ 153 & & & & & \\ 153 & & & & & \\ 153 & & & & & \\ 153 & & & & & \\ 153 &$$

Although we will compute colax colimits in the 2-category of $\mathcal{L}\text{-}\mathbf{Alg}_s$ where what happens 154 is more subtle, we illustrate this definition by computing colax colimits in the 2-category 155 Cat. 156

Example 13. In Cat, $A \xrightarrow{\lambda} B$ is a functor between categories. The colax colimit under λ 157 is a category C which consists of separate copies of A and B together with, for every object 158 $a \in A$, new maps $\lambda(a) \xrightarrow{\alpha_a} a$, composition of such and evident identifications. Precisely, 159 maps from $b \in B$ to $a \in A$ are given by $b \xrightarrow{v} \lambda(a) \xrightarrow{\alpha_A} a$ and $C(b, a) \simeq B(b, \lambda(a))$. 160

2 The colimit 2-monad induced by a map of 2-monads 161

From now on, we assume that \mathcal{L} is a finitary 2-monad, so that \mathcal{L} -Alg_s is cocomplete [19]. 162

¹⁶³ **2.1** Definition of the colimit and its 2-naturality

Proposition 14. Suppose that $\lambda : \mathcal{L} \to \mathcal{M}$ is a map of 2-monads. Then the colax colimit ¹⁶⁴ ($\mathcal{Q}X, u$) under the induced $\lambda_X : (\mathcal{L}X, \mu^{\mathcal{L}}) \to (\mathcal{M}X, \mu^{\mathcal{M}})$ in \mathcal{L} -Alg_s is natural in ($\mathcal{L}X, \mu^{\mathcal{L}}$)

166

$$\begin{array}{cccc}
\mathcal{L}X & & & \\
\lambda & & & \\
\mathcal{M}X & \xrightarrow{k} & & \\
\mathcal{M}X & \xrightarrow{\ell} & \mathcal{Q}X
\end{array}$$
(10)

¹⁶⁷ **Proof sketch.** Assume $\mathcal{L}A \xrightarrow[g]{\rightarrow} \mathcal{L}B$ is an \mathcal{L} -algebra 2-cell. For each 1-cell we get by ¹⁶⁸ 2-cell naturality a cocone and so we get a unique maps \hat{g} and $\hat{g'}$ mapping $\mathcal{Q}A$ to $\mathcal{Q}B$ arising ¹⁶⁹ from 1-cell universality. We then have

$$\mathcal{L}A \xrightarrow{g} \mathcal{L}B \xrightarrow{k} = \begin{array}{c} \mathcal{L}A \xrightarrow{k} \\ \downarrow \lambda \xrightarrow{\alpha} \\ \mathcal{M}B \xrightarrow{\ell} \mathcal{Q}B \end{array} = \begin{array}{c} \mathcal{L}A \xrightarrow{k} \\ \downarrow \xrightarrow{\alpha} \\ \mathcal{M}A \xrightarrow{\ell} \mathcal{Q}A \xrightarrow{\widehat{g}} \mathcal{Q}B \end{array}$$

and similarly for g' and $\hat{g'}$. By 2-cell universality (9), we then get:

$$\mathcal{L}A \xrightarrow{g'} \mathcal{L}B \xrightarrow{k} \mathcal{Q}B = \mathcal{L}A \xrightarrow{k} \mathcal{Q}A \xrightarrow{g'} \mathcal{Q}B$$

$$\mathcal{M}A \xrightarrow{\lambda^* \lambda_{1}g'} \mathcal{M}B \xrightarrow{\ell} \mathcal{Q}B = \mathcal{M}A \xrightarrow{\ell} \mathcal{Q}A \xrightarrow{g'} \mathcal{Q}B$$

173

172

170

174 2.2 A left semi-algebra

We explore the properties of QX by considering 1 and 2 dimensional aspects of trivial cocones under λ . From the identity cocone under λ , a unique \mathcal{L} -algebra map h arises by 1-dimensional universality.

179 If $\mathcal{L}A \xrightarrow{g' \ \ } \mathcal{L}B$ is an \mathcal{L} -algebra 2-cell, then by 2-dimensional universality, so h is natural

180
$$QA \xrightarrow{h} \mathcal{M}A \xrightarrow{\lambda^* \lambda_1 g'} \mathcal{M}B = QA \xrightarrow{g'} \mathcal{Q}B \xrightarrow{h} \mathcal{M}B$$
.

From the 2-cells $\mathrm{id}_{\ell}: \ell = \ell$ and $\alpha: \ell \lambda \Rightarrow k$, arises a unique \mathcal{L} -Alg_s 2-cell $\beta: \ell h \Rightarrow 1_{\mathcal{Q}X}$ s.t.

$$\begin{array}{cccc} \mathcal{L}X & 1_{\mathcal{Q}X} \\ \downarrow k & & & & \\ \mathcal{Q}X \xrightarrow{h} \mathcal{M}X \xrightarrow{\ell} \mathcal{Q}X \end{array} = \begin{array}{cccc} \mathcal{L}X & & & & \mathcal{M}X & 1_{\mathcal{Q}X} \\ \downarrow h & & & & \\ \mathcal{M}X \xrightarrow{\ell} \mathcal{Q}X \end{array} \text{ and } \begin{array}{cccc} \mathcal{M}X & & & & \\ \downarrow \ell & & & & \\ \mathcal{Q}X \xrightarrow{h} \mathcal{M}X \xrightarrow{\ell} \mathcal{Q}X \end{array} = \begin{array}{cccc} \mathcal{M}X \\ \downarrow \ell & & & \\ \mathcal{Q}X \xrightarrow{h} \mathcal{M}X \xrightarrow{\ell} \mathcal{Q}X \end{array} = \begin{array}{cccc} \mathcal{M}X \\ \downarrow \ell & & & \\ \mathcal{Q}X \xrightarrow{h} \mathcal{M}X \xrightarrow{\ell} \mathcal{Q}X \end{array}$$
 (12)

Denote $f = \ell h$. Then QX is a \mathcal{L} -algebra and $f = f^2 : QX \to QX$ and $\beta : f \Rightarrow 1_{QX}$ equips QX with the structure of a strictly idempotent comonad natural in \mathcal{L} -Alg_s as $\beta \cdot \ell = \mathrm{id}_{\ell}, \ \beta \cdot k = \alpha$, and thus $h \cdot \beta = \mathrm{id}_{\ell}$. We apply Proposition 10 and get

▶ Proposition 15. $\mathcal{LQX} \xrightarrow{u} \mathcal{QX} \xrightarrow{h} \mathcal{MX} \xrightarrow{\ell} \mathcal{QX}$ with $\beta : \ell h u \eta^{\mathcal{L}} = \ell h \Rightarrow 1_{\mathcal{QX}}$ is a left-semi *L*-algebra.

▶ Proposition 16. Assume z denotes the map $\mathcal{M}QX \xrightarrow{\mathcal{M}h} \mathcal{M}^2X \xrightarrow{\mu^{\mathcal{M}}} \mathcal{M}X \xrightarrow{\ell} QX$. Then QX together with z and $z\eta^{\mathcal{M}} = \ell h \xrightarrow{\beta} 1_{QX}$ is a left-semi \mathcal{M} -algebra.

- ¹⁹⁰ **Proof sketch.** The 2-cell property relies on $\beta . \ell = id_{\ell}$ and $h . \beta = id_{h}$.
- ¹⁹¹ As λ is a map of 2-monads, it is a left-semi monad map and we apply Proposition 12 and get

Proposition 17. $\mathcal{LQX} \xrightarrow{\lambda \mathcal{Q}} \mathcal{MQX} \xrightarrow{\mathcal{M}\ell} \mathcal{M}^2 X \xrightarrow{\mu^{\mathcal{M}}} \mathcal{MX} \xrightarrow{\ell} \mathcal{QX}$ together with the 2-cell $\beta : z (\lambda \mathcal{Q}) \eta^{\mathcal{L}} = \ell h \Rightarrow 1_{\mathcal{QX}}$ is a left-semi \mathcal{L} -algebra.

¹⁹⁴ The following is an immediate consequence of the definitions.

▶ Proposition 18. The left-semi *L*-algebras of Proposition 15 and 17 are equal.

Let us recap the properties of $\mathcal{Q}X$. It is equipped with an \mathcal{L} -algebra structure u and a left-semi \mathcal{M} -algebra structure z whose 2-cell β lies in \mathcal{L} -Alg_s and such that the two resulting left-semi \mathcal{L} -algebra structure coincide.

In order to prove that Q is a 2-monad (Theorem 22) and that these properties characterise Q-algebras (Theorem 25), we introduce an eccentric lemma. Given this structure on a general object X, we can build a map $QX \to X$ in a sufficiently functorial way that both theorems follow. What we need is the 1-cell and 2-cell aspects associated to these properties.

203 2.3 The Structure category

 $_{204}$ Let us define the Structure category \mathfrak{Q}

- 205 an object of \mathfrak{Q} consists of an object X of K equipped with
- 206 = the structure $\mathcal{L}X \xrightarrow{w} X$ of an \mathcal{L} -algebra

²⁰⁷ = the structure $\mathcal{M}X \xrightarrow{u} X$, $\epsilon : z \eta^{\mathcal{M}} = f \Rightarrow 1_X$ of a left-semi \mathcal{M} -algebra

²⁰⁸ such that

f is an endomap of the \mathcal{L} -algebra $\mathcal{L}X \xrightarrow{w} X$ and ϵ is an \mathcal{L} -algebra 2-cell

²¹⁰ = the two induced left-semi \mathcal{L} -algebra structures, with structure maps $\mathcal{L}X \xrightarrow{w} X \xrightarrow{\eta^{\mathcal{M}}}$ ²¹¹ $X \xrightarrow{f} X$ and $\mathcal{L}X \xrightarrow{\lambda} \mathcal{M}X \xrightarrow{z} X$, are equal

a map in \mathfrak{Q} between objects X and X' equipped as above is a map $p: X \to X'$ in K which is both an \mathcal{L} -algebra and a left-semi \mathcal{M} -algebra map

a 2-cell between two such maps p and q is a 2-cell $p \Rightarrow p'$ which is both an \mathcal{L} -algebra and a left-semi \mathcal{M} -algebra 2-cell.

Remark 19. 1. In the definition, the condition regarding the left-semi *L*-algebra structures amounts to the claim that f w = z λ. The equality of the 2-cells is then automatic

218 2. It is a consequence of the definition that $z : \mathcal{M}X \to X$ is a map of \mathcal{L} -algebras. Indeed, if 219 we consider the three following conditions, any two of them implies the third.

f is an endomap of \mathcal{L} -algebras,

 $= f w = \lambda z$

 $z_{222} = z$ is a map of \mathcal{L} -algebras

0 17

Proposition 20. QX together with u, z and α is an object in \mathfrak{Q} . 223

Assume X together with w, z, and ϵ is an object in \mathfrak{Q} . Then we define $\mathcal{Q}X \xrightarrow{x} X$ to be 224 the unique \mathcal{L} -Alg_s map arising from the colax cocone 225

227

Proposition 21. Assume X together with w, z, and ϵ is an object in \mathfrak{Q} and x denotes the 228 associated map. Then $x : \mathcal{Q}X \to X$ is a map in \mathfrak{Q} which is natural in X. 229

Sketch proof. Assume X' together with w', z', ϵ' in \mathfrak{Q} associated with x' and $p \stackrel{p}{\Rightarrow} q$ a 2-cell in 230 $\mathcal{Q}p$

231
$$\mathfrak{Q}$$
. Then $\mathcal{Q}X' \underbrace{\Downarrow}_{\mathcal{Q}q}^{\mathcal{P}} \mathcal{Q}X \xrightarrow{x} X = \mathcal{Q}X' \xrightarrow{x'} X' \underbrace{\downarrow}_{q}^{\mathcal{P}} X$ by 2-cell universality.

The colimit is a monad 2.4 232

As $\mathcal{Q}X$ is an object in \mathfrak{Q} (Proposition 20), the induced map $\mathcal{Q}^2X \xrightarrow{\mu^2} \mathcal{Q}X$ is a map in \mathfrak{Q} 233 (Proposition 21). 234

Assume (X, w, z, ϵ) in \mathfrak{Q} . Then the induced map $\mathcal{Q}X \xrightarrow{x} \mathcal{Q}X$ is a map in \mathfrak{Q} . We apply 235 the 1-cell part of the naturality (Proposition 21) with p = x and $x' = \mu^{Q}$ and get 236

$$\begin{array}{cccc} & \mathcal{Q}^{2}X \xrightarrow{\mu^{\mathcal{Q}}} \mathcal{Q}X \\ \mathbb{Q}_{x} \downarrow & \downarrow^{x} \\ \mathcal{Q}X \xrightarrow{x} X \end{array} \quad \text{in particular, setting } x = \mu^{\mathcal{Q}} & \mathcal{Q}^{3}X \xrightarrow{\mu^{\mathcal{Q}}} \mathcal{Q}X \\ \mathcal{Q}^{3}X \xrightarrow{\mu^{\mathcal{Q}}} \mathcal{Q}X \\ \mathbb{Q}^{2}X \xrightarrow{x} \mathcal{Q}X \end{array}$$

▶ Theorem 22. \mathcal{Q} is a 2-monad with multiplication $\mu^{\mathcal{Q}}$ and unit $X \xrightarrow{\eta^{\mathcal{L}}} \mathcal{L}X \xrightarrow{k} \mathcal{Q}X$. 238

▶ Proposition 23. $\mathcal{L} \xrightarrow{k} \mathcal{Q}$ is a map of monads. 239

Proof sketch. The unit aspect is by definition of $\eta^{\mathcal{Q}}$. As k is a map of \mathcal{L} -algebra and 240 $\mu^{\mathcal{Q}} k = u$ by cocone equality (13), we get the multiplication diagram. 241 4

▶ Proposition 24. $\mathcal{M} \xrightarrow{\ell} \mathcal{Q}$ is a left-semi map of monads. 242

Proof sketch. Recall that $h\ell = 1$ and that $\mu^{\mathcal{Q}}(\ell \mathcal{Q}) = z$ by cocone equality (13). Then, the 243 multiplication diagram (8) follows since $\mu^{\mathcal{Q}}(\ell \mathcal{Q})(\mathcal{L}\ell) = z(\mathcal{L}\ell) = \ell \mu^{\mathcal{M}}(\mathcal{M}h)(\mathcal{M}\ell) = \ell \mu^{\mathcal{M}}$. 244 We define the unit 2-cell $\gamma : \ell \eta^{\mathcal{M}} \Rightarrow \eta^{\mathcal{Q}}$ in (6) as 245

$$X \xrightarrow{\eta^{\mathcal{M}}} \mathcal{M}X$$

$$\downarrow^{\uparrow} \qquad \downarrow^{\downarrow} \qquad \downarrow^{\downarrow}$$

246

M. Hyland and C. Tasson

We prove Equalities (7). Recall that $\alpha = \beta . k$ and $\beta . \ell = \mathrm{id}_{\ell}$. As $\mu^{\mathcal{Q}}(\ell \mathcal{Q}) = z = \ell \mu^{\mathcal{M}}(\mathcal{M}h)$ and $h.\alpha = h.\beta.k = \mathrm{id}_{\ell}.k$

258

As $\mu^{\mathcal{Q}} . \alpha = \beta . u$ (see Equality (13) with $x = \mu^{\mathcal{Q}}$), and as u is an \mathcal{L} -algebra $u(\eta^{\mathcal{L}}\mathcal{Q}) = 1_{\mathcal{Q}X}$ so the second 2-cell equality follows: $\mu^{\mathcal{Q}} . \alpha . (\eta^{\mathcal{L}}\mathcal{Q}) \ell = \beta . u(\eta^{\mathcal{L}}\mathcal{Q}) \ell = \beta . \ell = \mathrm{id}_{\ell}.$

▶ Theorem 25. The 2-category Q-Alg_s of the 2-monad Q is isomorphic to the Structure category.

Proof sketch. It remains to prove the direct implication. Assume $\mathcal{Q}X \xrightarrow{x} X$ is a \mathcal{Q} -algebra.

255 Since $k : \mathcal{L} \to \mathcal{Q}$ is a monad map, $w : \mathcal{L}X \xrightarrow{k} \mathcal{Q}X \xrightarrow{x} X$ is an \mathcal{L} -algebra.

By Propositions 12, since $\ell : \mathcal{M} \to \mathcal{Q}$ is a left-semi monad map, $z : \mathcal{M}X \xrightarrow{\ell} \mathcal{Q}X \xrightarrow{x} X$ is a left-semi \mathcal{M} -algebra with 2-cell α where we denote $f_x = z \eta^{\mathcal{M}}$

We know that $h \ell = \lambda$ and $h \ell = 1_{QX}$ and $z = x \ell$ is a left-semi \mathcal{M} -algebra. We deduce $\mathcal{L}X \xrightarrow{w} X \xrightarrow{f}_x X = \mathcal{L}X \xrightarrow{\lambda} \mathcal{M}X \xrightarrow{z} X$ using the following.

We prove that ϵ is in \mathcal{L} -Alg_s. We first remark that $x.\beta = \epsilon.x$. Indeed, by naturality of $\eta^{\mathcal{M}}$ and of α , we have $\alpha.\eta^{\mathcal{L}}x = (\mathcal{Q}x).\alpha.\eta^{\mathcal{L}}$. Because x is a \mathcal{Q} -algebra, $x.\alpha.\eta^{\mathcal{L}}x = x(\mathcal{Q}x).\alpha.\eta^{\mathcal{L}} = x \mu^{\mathcal{Q}}.\alpha.\eta^{\mathcal{L}}$ and we conclude as $\mu^{\mathcal{Q}}.\alpha.\eta^{\mathcal{L}} = \beta$.

Then, as β is an \mathcal{L} -algebra 2-cell by construction and x is a \mathcal{L} -algebra, so that $\epsilon . x$ is a

 \mathcal{L} -algebra 2-cell. This can be represented by the lhs 2-cell equality which results in the

23:10 Colimit of 2-monads.

This proves that ϵ is an \mathcal{L} -algebra 2-cell.

Our analysis of the 2-monad Q involved consideration of left-semi \mathcal{M} -algebras. We can immediately say something about them. Suppose that \mathcal{M}^+ is the result of applying our construction to the map $\eta : \mathcal{I} \to \mathcal{M}$ of monads given by the unit. By Theorem 25, we deduce the following.

Proposition 26. \mathcal{M}^+ -Alg_s is isomorphic to ls- \mathcal{M} -Alg_s

276 So the 2-category of left-semi \mathcal{M} -algebras is in fact monadic over the base \mathcal{K} .

3 The Linear-non-linear 2-monad

In this section, we show how our theory applies in the case of most immediate interest to us. We take for \mathcal{L} the 2-monad for symmetric strict monoidal categories: we give a concrete presentation in 3.1. We take for \mathcal{M} the 2-monad for categories with strict finite products: we give a concrete presentation in 3.2. There is an evident map of monads $\mathcal{L} \to \mathcal{M}$ and in 3.3, we describe the 2-monad \mathcal{Q} obtained by our construction.

In further work we shall develop general theory to show that this Q in particular extends from **CAT** to profunctors. This gives a notion of algebraic theory in the sense of Hyland [16] and we shall use that to handle the linear and non-linear substitutions appearing in differential lambda-calculus [8].

²⁸⁷ 3.1 The 2-monad for symmetric strict monoidal categories

For a category A, let $\mathcal{L}A$ be the following category. The objects are finite sequences $\langle a_i \rangle_{i \in [n]}$ with $n \in \mathbf{N}$ and $a_i \in A$. The morphisms

$$_{290} \qquad \langle a_i \rangle_{i \in [n]} \to \left\langle a'_j \right\rangle_{j \in [m]}$$

consist of a bijection $\sigma : [n] \to [m]$ (so *n* and *m* are equal) and for each $j \in [m]$ a map $a_{\sigma(j)} \to b_j$ in *A*. The identity and composition are evident.

²⁹³ \mathcal{L} extends readily to a 2-functor on **CAT** and it has the structure of a 2-monad where ²⁹⁴ $\eta^{\mathcal{L}} : A \to \mathcal{L}A$ takes *a* to the singleton $\langle a \rangle$ and $\mu^{\mathcal{L}} : \mathcal{L}^2A \to \mathcal{L}A$ acts on objects by ²⁹⁵ concatenation of sequences.

Each $\mathcal{L}A$ has the structure of a symmetric empty sequence and tensor product is given by concatenation. One can check directly that $A \xrightarrow{\eta^{\mathcal{L}}} \mathcal{L}A$ makes $\mathcal{L}A$ the free symmetric strict monoidal category on A. Moreover to equip A with the structure of a symmetric strict monoidal category is to give A an \mathcal{L} -algebra structure. Maps and 2-cells are as expected so we identify \mathcal{L} -Alg_s as the 2-category of strict monoidal categories, strict monoidal functors and monoidal 2-cells.

302 3.2 The 2-monad for categories with products

For a category A, let $\mathcal{M}A$ be the following category. The objects are finite sequences $\langle a_i \rangle_{i \in [n]}$ with $n \in \mathbf{N}$ and $a_i \in A$. The morphisms

$$_{305} \qquad \langle a_i \rangle_{i \in [n]} \to \langle a'_j \rangle_{j \in [m]}$$

consist of a map $\phi : [m] \to [n]$ and for each $j \in [m]$ a map $a_{\phi(j)} \to b_j$ in A. The identity and composition are evident.

³⁰⁸ \mathcal{M} extends readily to a 2-functor on **CAT** and it has the structure of a 2-monad where ³⁰⁹ $\eta^{\mathcal{M}}: A \to \mathcal{L}A$ takes *a* to the singleton $\langle a \rangle$ and $\mu^{\mathcal{M}}: \mathcal{M}^2A \to \mathcal{M}A$ acts on objects by ³¹⁰ concatenation of sequences.

Each $\mathcal{M}A$ has the structure of a category with strict products: the terminal object is the empty sequence and product is given by concatenation. Again, one can check directly that $A \xrightarrow{\eta^{\mathcal{M}}} \mathcal{M}A$ makes $\mathcal{M}A$ the free category with strict products on A. Again, to equip A with the structure of a category with strict products is to give A a \mathcal{M} -algebra structure. Maps and 2-cells are as expected so we identify \mathcal{M} -Alg_s as the 2-category of categories with strict products, functors preserving these strictly and appropriate 2-cells.

317 3.3 The 2-monad for linear-non-linear substitution

There is a map $\lambda : \mathcal{L} \to \mathcal{M}$ which on objects takes $\langle a_i \rangle_{i \in [n]} \in \mathcal{L}A$ to $\langle a_i \rangle_{i \in [n]} \in \mathcal{M}A$ and includes the maps in $\mathcal{L}A$ into those in $\mathcal{M}A$ in the obvious way. It accounts for the evident fact that every category with strict product is a symmetric strict monoidal category. We describe the 2-monad \mathcal{Q} obtained from this by λ by our colimit construction.

For a category A, $\mathcal{Q}A$ is the following category. The objects are $\langle a_i^{\epsilon_i} \rangle_{i \in [n]}$ with $n \in [n]$, $a_i \in A$ and the indices ϵ_i chosen from the set $\{\mathcal{L}, \mathcal{M}\}$ (\mathcal{L} indicates linear and \mathcal{M} non-linear). For $a = \langle a_i^{\epsilon_i} \rangle_{i \in [n]}$, write \mathcal{L}_a for $\{i \mid \epsilon_i = \mathcal{L}\}$. Then a morphism

325
$$\langle a_i \rangle_{i \in [n]} \to \langle a'_j \rangle_{j \in [m]}$$

 $_{\mbox{\tiny 326}}$ is given by first a map $\phi:[m]\to[n]$ satisfying the condition

$$_{327} \qquad \phi^{-1}(\mathcal{L}_a) \subseteq \mathcal{L}_b \quad \text{and} \quad \phi_{|\phi^{-1}(\mathcal{L}_a)} : \phi^{-1}(\mathcal{L}_a) \to \mathcal{L}_a \text{ is a bijection};$$

and secondly by for each $j \in [m]$, a map $a_{\phi(j)} \to b_j$ in A.

³²⁹ \mathcal{Q} extends readily to a 2-functor on **CAT** and it has the structure of a 2-monad as follows. ³³⁰ The unit $\eta^{\mathcal{Q}} : A \to \mathcal{Q}A$ takes $a \in A$ to $\langle a^{\mathcal{L}} \rangle$. The multiplication $\mu^{\mathcal{Q}} : A \to \mathcal{Q}A$ acts by ³³¹ concatenating the objects and with the following behaviour on indices: objects of $\mathcal{Q}^2 A$ have ³³² shape

333
$$\langle \langle \dots \rangle \rangle \dots \langle \dots a^{\epsilon} \dots \rangle^{\eta} \dots \langle \dots \rangle \rangle$$

so that each $a \in A$ has two indices; in the concatenated string in $\mathcal{Q}A a$ has index \mathcal{L} just when both ϵ and η are \mathcal{L} .

336 One can now readily see the structure on QA involved in its definition.

 $\mathcal{Q}A$ is clearly an \mathcal{L} -algebra and $k: \mathcal{L}A \to \mathcal{Q}A$ sends $\langle a_1, \ldots, a_n \rangle$ to $\langle a_1^{\mathcal{L}}, \ldots, a_n^{\mathcal{L}} \rangle$

³³⁸ = $\ell : \mathcal{M}A \to \mathcal{Q}A$ sends $\langle a_1, \dots, a_n \rangle$ to $\langle a_1^{\mathcal{M}}, \dots, a_n^{\mathcal{M}} \rangle$ given by the identity on [n] and is ³³⁹ evidently an \mathcal{L} -algebra map

 $a_{240} = \alpha : \ell \lambda \to k \text{ is given for each } \langle a_1, \dots, a_n \rangle \in \mathcal{L}A \text{ by the map } \langle a_1^{\mathcal{M}}, \dots, a_n^{\mathcal{M}} \rangle \to \langle a_1^{\mathcal{L}}, \dots, a_n^{\mathcal{L}} \rangle$ $given by the identity on [n] and identities a_i \to a_i \text{ for each } i.$

It is also easy to see $h: \mathcal{Q}A \to \mathcal{M}A$: it sends $\langle a_1^{\epsilon_1}, \ldots, a_n^{\epsilon_n} \rangle$ to $\langle a_1, \ldots, a_n \rangle$. It should now be straightforward for the reader to identify the 2-cell β and deduce that $\mu^{\mathcal{Q}}$ is just as

described. Finally it is worth mulling over the content of our main theorem in this case.

23:12 Colimit of 2-monads.

345 **4** Conclusion

Starting from the observation that the 2-monad \mathcal{L} for strict monoidal categories and the 2-monad \mathcal{M} for categories with strict products can be combined into a 2-monad \mathcal{Q} mixing the two related structures, we have introduce a new notion for combining 2-monads as the colimit of a map of monads. We have proved that our construction gives rise to a 2-monad in Theorem 22 and characterised its algebras in Theorem 25.

Our next step will be to give conditions under which Q admits an extension to a pseudomonad on **Prof** [12]. That will give a basis for describing the substitution monoidal structure at play in differential λ -calculus [13].

We draw attention to the following issue which we need to address. It is clear from [12] that the 2-monad \mathcal{L} for symmetric strict monoidal categories and \mathcal{M} for categories with strict products admit extensions to pseudomonads on **Prof**. However, we cannot use our colimit construction at this level as we only have access to bicolimits. All the same, the characterisation of Theorem 25 will be useful to describe pseudo \mathcal{Q} -algebras. Then one can show that the presheaf construction has a lifting to pseudo \mathcal{Q} -algebras and so deduce by [12] the wanted extension of \mathcal{Q} to **Prof**.

361 — References -

362	1	J. Bénabou. Introduction to bicategories. In Reports of the Midwest Category Seminar,
363		volume 47, pages 1–77. Springer, 1967.
364	2	J. Bénabou. Les distributeurs. rapport 33, Université Catholique de Louvain, Institut de
365		Mathématique Pure et Appliquée, 1973.
366	3	G.J. Bird, G.M. Kelly, A.J. Power, and R.H. Street. Flexible limits for 2-categories. Journal of
367		Pure and Applied Algebra, 61(1):1-27, 1989. URL: http://www.sciencedirect.com/science/
368		article/pii/0022404989900650, doi:https://doi.org/10.1016/0022-4049(89)90065-0.
369	4	R. Blackwell, GM Kelly, and AJ Power. Two-dimensional monad theory. Journal of Pure and
370		Applied Algebra, 59(1):1–41, 1989.
371	5	R. Blute, R. Cockett, and R. Seely. Differential categories. <i>Mathematical structures in computer</i>
372		science, 16(06): 1049-1083, 2006.
373	6	F. Borceux, G.C. Rota, B. Doran, P. Flajolet, T.Y. Lam, E. Lutwak, and M. Ismail. <i>Handbook</i>
374		of Categorical Algebra: Volume 1, Basic Category Theory. Encyclopedia of Mathematics and
375		its Applications. Cambridge University Press, 1994. URL: https://books.google.fr/books?
376		id=YfzImoopB-IC.
377	7	Eduardo J. Dubuc. $Completeness\ concepts,$ pages 7–59. Springer Berlin Heidelberg, Berlin,
378		Heidelberg, 1970. URL: https://doi.org/10.1007/BFb0060487, doi:10.1007/BFb0060487.
379	8	T. Ehrhard and L. Regnier. The differential lambda-calculus. Theor. Comput. Sci., 309(1),
380		2003.
381	9	M. Fiore. On the structure of substitution. Invited address for MFPSXXII, 2006.
382	10	M. Fiore. Differential structure in models of multiplicative biadditive intuitionistic linear logic.
383		Lecture Notes in Computer Science, 4583:163, 2007.
384	11	M. Fiore, N. Gambino, M. Hyland, and G. Winskel. The cartesian closed bicategory of
385		generalised species of structures. J. London Math. Soc., 77(1), 2008.
386	12	Marcelo Fiore, Nicola Gambino, Martin Hyland, and Glynn Winskel. Relative pseudomonads,
387		kleisli bicategories, and substitution monoidal structures. Selecta Mathematica, $24(3):2791-$
388		2830, 2018.
389	13	Marcelo P. Fiore. Mathematical models of computational and combinatorial structures. In
390		Vladimiro Sassone, editor, Foundations of Software Science and Computational Structures,
391		pages 25–46, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

M. Hyland and C. Tasson

- Richard Garner. The vietoris monad and weak distributive laws. Applied Categorical Structures,
 pages 1–16, 2019.
- A. Hirschowitz and M. Maggesi. Modules over monads and linearity. Lecture Notes in Computer Science, 4576:218, 2007.
- M. Hyland. Elements of a theory of algebraic theories. *Theor. Comput. Sci.*, 546, 2014. URL:
 https://doi.org/10.1016/j.tcs.2014.03.005, doi:10.1016/j.tcs.2014.03.005.
- 398
 17
 M. Hyland. Classical lambda calculus in modern dress. Math. Struct. Comput. Sci., 27(5), 2017.
 399
 URL: https://doi.org/10.1017/S0960129515000377, doi:10.1017/S0960129515000377.
- G.M. Kelly. A unified treatment of transfinite constructions for free algebras, free monoids,
 colimits, associated sheaves, and so on. Bulletin of the Australian Mathematical Society,
 22(1):1-83, 1980. doi:10.1017/S0004972700006353.
- G.M. Kelly and A.J. Power. Adjunctions whose counits are coequalizers, and presentations of finitary enriched monads. *Journal of Pure and Applied Algebra*, 89(1):163 – 179, 1993. URL: http://www.sciencedirect.com/science/article/pii/0022404993900928, doi:https://doi.org/10.1016/0022-4049(93)90092-8.
- Stephen Lack. A 2-Categories Companion, pages 105–191. Springer New York, New York, NY, 2010. URL: https://doi.org/10.1007/978-1-4419-1524-5_4, doi:10.1007/978-1-4419-1524-5_4.
- 410 21 J. Power and M. Tanaka. Binding signatures for generic contexts. In TLCA, 2005.