
Schedule Agnostic Semantics for
Reactive Probabilistic Programming

GUILLAUME BAUDART, Inria, France
LOUIS MANDEL, IBM Research, USA
CHRISTINE TASSON, ISAE Supaero, France

Synchronous languages are now a standard industry tool for critical embedded systems. Designers write high-
level specifications by composing streams of values using block diagrams. These languages have been recently
extended with Bayesian reasoning to program state-space models which compute a stream of distributions
given a stream of observations. Yet, the semantics of probabilistic models is only defined for scheduled
equations – a significant limitation compared to dataflow synchronous languages and block diagrams.

In this paper we propose two schedule agnostic semantics for a probabilistic synchronous language. The key
idea is to interpret probabilistic expressions as a stream of un-normalized density functions whichmaps random
variable values to a result and positive score. The co-iterative semantics extends the original semantics to
interpret mutually recursive equations using a fixpoint operator. The relational semantics directly manipulates
streams and is thus a better fit to reason about program equivalence. We use the relational semantics to prove
the correctness of a program transformation required to run an optimized inference algorithm for state-space
models with constant parameters.

1 INTRODUCTION
Synchronous programming languages [6] were introduced for the design of critical embedded
systems. In dataflow languages such as Lustre [36], system designers write high-level specifications
by composing infinite streams of values, called flows. Flows progress synchronously, paced on a
global logical clock. Specialized compilers generate efficient and correct-by-construction embedded
code with strong guarantees on execution time and memory consumption. This approach was
inspired by block diagrams, a popular notation to describe control systems [37]. Built on these
ideas, Scade is now a standard tool in automotive and avionic industries to program safety critical
embedded software [18]. The synchronous model of computation is also central for the discrete-time
subset of Matlab/Simulink [40].

Probabilistic languages extend general purpose programming languages with probabilistic con-
structs for Bayesian reasoning [7, 23, 33, 34]. Following a Bayesian approach, a program describes
a probability distribution, the posterior distribution, using initial beliefs on random variables, the
prior distributions, that are conditioned on observations.
At the intersection of these two lines of research, ProbZelus [4] is a probabilistic extension

of the synchronous dataflow language Zelus [13]. ProbZelus combines, in a single source pro-
gram, deterministic controllers and probabilistic models that can interact with each other to
perform inference-in-the-loop. A classic example is the Simultaneous Localization and Mapping
problem (SLAM) [45] where an autonomous agent tries to infer both its position and a map of its
environment to adapt its trajectory.
The probabilistic model of the SLAM involves two kinds of parameters. The position is a state

parameter represented by a stream of random variables. At each instant, a new position must
be estimated from the previous position and the observations. The map is a constant parameter
represented by a random variable whose value is progressively refined from the prior distribution
with each new observation. This type of problem mixing constant parameters and state parameters
are instances of State-Space Models (SSM) [16]. Any ProbZelus program can be expressed as a SSM.

Probabilistic semantics and scheduling.Theoriginal ProbZelus semantics is defined in a co-iterative
framework where expressions are interpreted as state machines [4]. Following [48], a probabilistic

2 Guillaume Baudart, Louis Mandel, and Christine Tasson

expression computes a stream of measures. The semantics of an expression with a set of local
declarations integrates the semantics of the main expression over all possible values of the local
variables. Unfortunately, this semantics yields nested integrals that are only well defined if the
declarations are scheduled, i.e., ordered according to data dependencies.
This is a significant limitation compared to synchronous dataflow languages where sets of

mutually recursive equations are not ordered: a key requirement for commercial synchronous data-
flow languages where programs are written using a block diagram graphical interface. Scheduling
should not depend on the placement of the blocks which motivate their definition as mutually
recursive equations. Besides, the compiler implements a series of source-to-source transformations
which often introduces new variables in arbitrary order. Scheduling local declarations is one of the
very last compilation passes [13]. The semantics of ProbZelus is thus far from what is exposed to
the programmer and prevents reasoning about most program transformations and compilation
passes.

In this paper, we show how to extend the schedule agnostic semantics of dataflow synchronous
languages [9, 15] for probabilistic programming. We first define a new probabilistic co-iterative
semantics where sets of equations in arbitrary order can be interpreted with a fixpoint oper-
ator. Unfortunately, classic probabilistic fixpoint definitions used to interpret loops and recur-
sions [31, 41, 50] yields incorrect results for the interpretation of mutually recursive equations. The
key idea of our approach is to interpret probabilistic expressions as a stream of un-normalized
density functions which maps random variable values to a result and positive score. Like its deter-
ministic counterpart [15], this density-based co-iterative semantics is executable and has the same
structure as the compiled code. A drawback of this semantics is that, at each step, probabilistic
state machines compute measures. Proofs of program equivalence must relate measures of states
through successive integrations by exhibiting a bisimulation [46]. We introduce an alternative
relational semantics which abstracts away the state machines and directly manipulates streams
which simplifies reasoning about program equivalence. This semantics is based on the deterministic
relational semantics used in the Vélus project to prove an end-to-end compiler for the synchronous
language Lustre [9–11].

Filtering and constant parameters. As a case study we prove the correctness of a program trans-
formation that is required to run an optimized inference algorithm. To estimate state parameters,
Sequential Monte Carlo (SMC) techniques rely on random simulations and filtering to approximate
the posterior distribution, i.e., voluntarily dropping information to re-center the inference on the
most significant estimations. Unfortunately, this information loss negatively impacts constant
parameters estimations.
Inspired by the Assumed Parameter Filter algorithm [32], we can split the inference into two

steps: 1) estimate state parameters, and 2) update constant parameters. This technique requires a
program transformation to explicitly separate constant from state parameters. A specialized static
analysis identifies the constant parameters and their prior distributions. A compilation pass then
transforms these parameters into additional inputs of the model. We use the relational semantics to
prove the correctness of this transformation, i.e., the transformation preserves the ideal semantics
of the program.

Contributions. In this paper, we present the following main contributions:
• We introduce in Section 4 a new density-based co-iterative semantics and show that sets of
mutually recursive equations can be interpreted using a fixpoint operator. We prove that
this semantics is equivalent to the original ProbZelus semantics.
• We introduce in Section 5 an alternative relational semantics which abstracts away the

state machines and directly manipulates streams which simplifies reasoning about program

Schedule Agnostic Semantics for Reactive Probabilistic Programming 3

1 proba tracker(y_obs) = x where

2 rec init x = x_init

3 and x = sample(gaussian(f(last x), sx))

4 and y = g(x)

5 and () = observe(gaussian(y, sy), y_obs)

7 node main(y_obs) = u where

8 rec x_dist = infer (tracker (y_obs))

9 and u = controller(x_dist)

1

αt
αt+1

δt

xt

xt+1

θ

Fig. 1. Tracking a moving boat with a marine radar in ProbZelus. GC is the position of the boat in Cartesian
coordinates. We assume a linear motion model 5 (GC−1) = GC−1 + \ , and 6(GC) = (UC , XC) returns the radar
angle UC = atan(GC [1]/GC [0]), and the echo delay XC = 2 ∗ ‖GC ‖/2 where 2 is the speed of light.

equivalence. We prove that this semantics is equivalent to the density-based co-iterative
semantics and thus to the original semantics.
• We define in Section 6 a program transformation required to run an optimized inference

algorithm for state-space models with constant parameters. We use the relational semantics
to prove the correctness of the transformation.

2 EXAMPLE
Tomotivate our approach, consider the ProbZelus model of Figure 1 adapted from [16][Section 2.4.1].
The goal is to estimate at each instant the position of a moving boat given noisy observations from a
marine radar. A rotating antenna sweeps a beam of microwaves and detects the boat when the beam
is reflected back to the antenna. The radar then estimates the position from noisy measurements of
its angle and of the echo delay.

The keyword proba indicates the definition of a probabilistic stream function. Line 1, the model
tracker takes as input a stream of observations y_obs and returns a stream of positions x. The
model uses a function f to estimate the current position (e.g., using a linear motion model), and
a function g to compute the observable quantities from the state (e.g., angle and echo delay).
Line 3 uses sample to specify that x is Gaussian distributed around f(last x) where last x
refers to the previous position of the boat initialized Line 2 with the init keyword. Line 5 uses
observe to condition the model assuming that the observations y_obs are Gaussian distributed
around y = g(x). The initial position x_init and the noise parameters sx and sy are global
constants.

2.1 Kernel-based co-iterative semantics
The original ProbZelus semantics [4] is a co-iterative semantics where expressions are interpreted
as state machines characterized by an initial state and a transition function. Given the current state,
the transition function of deterministic expression returns the next state and a value. Following [48],
the transition function of a probabilistic expression returns a measure over all possible pairs (next
state, value).

For instance, if f and g are deterministic and stateless, the transition function of tracker is the
following (omitting empty states for stateless expressions) where N is the normal distribution,

4 Guillaume Baudart, Louis Mandel, and Christine Tasson

X the Dirac delta distribution, and pdf 3 the probability density function of 3 .

⦃tracker(y_obs)⦄
step
W (?G) =

∫
N(5 (?G), BG)(3G)

∫
X6 (G) (3~) pdf N(~,BG) (~obs) ∗ XG,G

=

∫
N(5 (?G), BG)(3G) pdf N(6 (G),BG) (~obs) ∗ XG,G (1)

Given the initial context W (mapping variable names to values) and the current state ?G (the previous
value of x), the transition function integrates over all possible values for x, then all possible values
for y, weights each execution by the likelihood of the observation (i.e., the value of the density
function on y_obs), and returns a measure over the new state G (that will be used as the previous
position in the next step), and the results G .

Inference. The explicit infer operator computes the stream of distributions described by a model.
The state of infer is a measure over current states. The transition function integrates the semantics
of the model over all possible states, normalizes the resulting measure, and splits the result into a
distribution of next states and a distribution of values. The runtime iterates this process from a
distribution of initial states to compute a stream of distributions. Line 9 is an example of inference-
in-the-loop where the distribution x_dist is used to compute the command u that propels the boat
which thus changes the next observation.1

Scheduling. The original co-iterative semantics for dataflow synchronous languages [15] inter-
prets mutually recursive equations in arbitrary order with a fixpoint operator in a flat complete
partial order (CPO) where variables are either undefined or set to a value. Numerous works define a
probabilistic fixpoint operator to interpret loops and recursions [31, 41, 50] in a CPO over measures.
Unfortunately, with these definitions the semantics of a set of equations is always the null measure.

To avoid this problem, the ProbZelus semantics defined in [4] thus focuses on a kernel language
where local declarations are all scheduled. Local declarations such as x and y yield nested integrals
in Equation (1) that are ordered according to data dependencies and therefore well-defined. But
imposing a valid schedule is a significant limitation compared to synchronous dataflow languages
which manipulate mutually recursive equations in arbitrary order. In this paper, we propose a
solution to overcome this limitation.

2.2 Density-based co-iterative semantics
We first propose a new density-based co-iterative semantics for ProbZelus inspired by existing
probabilistic semantics [8, 35, 42] where a program defines an un-normalized density function over
the random variables. Instead of manipulating measures via integration, probabilistic expressions
are now similar to deterministic expressions, but the transition function takes one additional
argument — a random element for all random variables — and returns one additional output — a
positive score, or weight, which measures the quality of the output w.r.t. the model.

On the example of Figure 1 we have:

⦅tracker(y_obs)⦆
step
W (?G , A) = let `G = N(5 (?G), BG) in

let G = icdf `G (A) in
let `~ = N(6(G), B~) in
G, G, pdf `~ (~obs)

(2)

The additional argument A corresponds to the random element for the sample operator, i.e., an
element of the interval [0, 1] mapped to a sample of a distribution 3 using inverse transform
1A more complex motion model could also use the value of the command inside the tracker.

Schedule Agnostic Semantics for Reactive Probabilistic Programming 5

sampling [29]. The model computes the sample G associated to the random element (icdf 3 is the
generalized inverse cumulative distribution function of 3), and returns the new state G , the result G ,
and a weight capturing the likelihood of the observation (the density of the distributionN(6(G), B~)
at ~obs).

Inference. At each step, the infer operator first computes the un-normalized measure which
associates each pair (state, result) to its weight, i.e., for a model 4 , if ⦅4⦆W (<, A) =<′, E,F , infer(4)
computes the measure

∫
[0,1]? F ∗ X<′,E 3A where ? is the number of random variables in 4 . On

the example of Figure 1, we can check that this measure corresponds to the original semantics of
Equation (1).∫

[0,1]
let G, G,F = ⦅tracker(y_obs)⦆

step
W (?G , A) in F ∗ XG,G 3A

=

∫
[0,1]

let G = icdf N(5 (?G),BG) (A) in pdf N(6 (G),B~) (~obs) ∗ XG,G 3A

=

∫
N(5 (?G), BG) (3G) pdf N(6 (G),B~) (~obs) ∗ XG,G

The semantics of infer is then similar to its interpretation in the original kernel-based semantics,
i.e., 1) integrate over all possible states, 2) normalize the measure, 3) split the result into a distribution
of next states and a distribution of values. We prove in Section 4.2 that this semantics is equivalent
to the kernel-based semantics, i.e., the infer operator yields the same stream of distributions.

Mutually recursive equations. In the density-based semantics, the transition functions of prob-
abilistic equations are similar to their deterministic counterparts with additional inputs/outputs.
Compared to the kernel-based semantics, there are no longer nested integrals and a deterministic
fixpoint operator can be used to interpret sets of equations.

Consider a variant of the example of Figure 1 where we swap Lines 3 and 4. For a state ?G and a
random element A , the semantics of the local declarations in tracker is the fixpoint of the following
function � starting from the least element [G ← ⊥, ~ ← ⊥].

� (d) = let ~ = 6(d (x)) in
let `G = N(5 (?G), BG) in
let G = icdf `G (A) in
[x← G, y← ~]

d0 = [G ← ⊥, ~ ← ⊥]
d1 = [G ← icdf `G (A), ~ ← ⊥]
d2 = [G ← icdf `G (A), ~ ← 6(icdf `G (A))]
d3 = [G ← icdf `G (A), ~ ← 6(icdf `G (A))]

The fixpoint converges after 3 iterations. Using the resulting environment, the semantics of tracker
then computes the next state, the resulting value, and the weight which, after simplification, yields
the same results as Equation (2).

⦅tracker(y_obs)⦆
step
W (?G , A) = let d = [G ← icdf `G (A), ~ ← 6(icdf `G (A))] in

let G = d (x) in
let `~ = N(d (y), B~) in
d (x), d (x), pdf `~ (~obs)

(3)

Program equivalence. Since deterministic expressions are interpreted as state machines, to prove
program equivalence one must exhibit a bisimulation [46], i.e., a relation between the states of the
two state machines. Two deterministic expressions are equivalent if there exists a relation such
that 1) the initial states are in relation, and 2) given two states in relation the transition function

6 Guillaume Baudart, Louis Mandel, and Christine Tasson

produces new states in relation and the same output. The proof is done by unfolding the definition
of the transition function.
Two probabilistic expressions are equivalent if they describe the same stream of measures

obtained by integrating at each step the transition function over all possible states computed at the
previous step. The bisimulation must thus relate measures of states through successive integrations.

2.3 Density-based relational semantics
An alternative to the co-iterative semantics is to directly manipulate streams of values. This is the
approach used in the Vélus project2 to prove an end-to-end compiler for the dataflow synchronous
language Lustre [9–11]. The semantics of a stream function is defined as a relation between input
streams and output streams. In Vélus, most of the compilation passes are proven correct using this
relational semantics. The translation to state machines is one of the very last passes and focuses on
a normalized, scheduled subset of the language.
We extend this relational semantics to probabilistic streams. The key idea is to lift the density-

based semantics to streams. Given a context � mapping variable names to streams of values, and
an array ' of random streams, the semantics of an expression returns a stream of pairs (value,
weight): �, ' ` 4 ⇓ (E,F).

In the example of Figure 1, ' is a single stream of independent random elements '0 ·'1 ·'2 · ... in
[0, 1] (the operator · represents the concatenation of stream elements). We can interpret tracker
in a context � that contains the observations y_obs:

[y_obs← ~obs], ' ` tracker(y_obs) ⇓ (G0,F0) · (G1,F1) · (G2,F2) · ...

where `G = N(5 (Ginit), BG) · N (5 (G0), BG) · N (5 (G1), BG) · ...
G = icdf `G 0

('0) · icdf `G 1
('1) · icdf `G 2

('2) · ...
~ = 6(G0) · 6(G1) · 6(G2) · ...
`~ = N(~0, BG) · N (~1, BG) · N (~2, BG) · ...
F = pdf `~ 0

(~obs0) · pdf `~ 1
(~obs1) · pdf `~ 2

(~obs2) · ...

The semantics now directly manipulates streams. At each step, the result is similar to the expression
in Equation (2), but states are abstracted away. The result is a stream of pairs (value, weight).

Inference. The semantics of infer now operates on a stream of pairs (value, weight): (E0,F0) ·
(E1,F1) · (E2,F2) · The infer operator 1) associates to each value E: the total weight of its prefix
using a cumulative productF: = Π:

8=0F8 , 2) computes the un-normalized measure which associates
each pair (state, result) to its total weight, and 3) normalizes it to obtain a distribution of values.
The key difference with the density-based co-iterative semantics is that the integral is now over
the infinite domain of streams. We prove in Section 5.3 that this semantics is equivalent to the
co-iterative density-based semantics, i.e., the infer operator yields the same stream of distributions.

Mutually recursive equations. Given the random streams ', the semantics of a set of probabilistic
mutually recursive equations �, ' ` � : , checks that a context � mapping variable names to
stream of values is compatible with all the equations in �, and that the combined weight of all
sub-expressions is the stream, . Since variables in a context are not ordered, there is nothing
special to do to interpret mutually recursive equations. By construction the order of equations
does not matter which greatly simplifies reasoning about compilation passes that introduce new
equations in arbitrary order. Of course, compared to the state machines of the co-iterative semantics,
the relational semantics is not executable since equations are only checked a posteriori for a given
context.
2https://velus.inria.fr

https://velus.inria.fr

Schedule Agnostic Semantics for Reactive Probabilistic Programming 7

3 ::= let G = 4 | node 5 G = 4 | proba 5 G = 4 | 3 3

4 ::= 2 | G | (4,4) | op(4) | last G | 5 (4) | 4 where rec �

| present 4 → 4 else 4 | reset 4 every 4

| sample(4) | factor(4) | infer(4)

� ::= G = 4 | init G = 4 | � and �

Fig. 2. ProbZelus Syntax.

Program equivalence. In the relational semantics, states are abstracted away and a probabilistic
expression computes a stream of pairs (value, weight) where each element only depends on the
random streams. Two probabilistic expressions are equivalent if they describe the same stream of
measures obtained by integrating at each step the result of the relational semantics over all possible
random streams. If we can map the random streams of one expression to the random streams of
the other, program equivalence can be reduced to the comparison of the streams of pairs (value,
weight) computed by each expression.

3 BACKGROUND
In this section we briefly summarize the key elements of the co-iterative semantics of ProbZelus.
Importantly, this semantics is only defined if all equations are ordered according to data dependen-
cies. We then recall the original co-iterative semantics of synchronous dataflow languages where
sets of mutually recursive equations in arbitrary order are interpreted using a fixpoint operator.

3.1 Syntax
The syntax of ProbZelus is presented in Figure 2. A program is a series of declarations 3 . A
declaration can be a global variable let, a deterministic stream function node, or a probabilistic
model proba. Each declaration has a unique name. An expression can be a constant 2 , a variable G ,
a pair, an operator application op(4), the previous value of a variable last G , a function call
5 (4), a local declaration 4 where rec � where � is a set of mutually recursive equations, a lazy
conditional present 2 → 41 else 42, or a reset construct reset 41 every 42. An equation is
either a simple definition G = 4 , an initialization init G = 4 (the delay operator last G can only be
used on initialized variables), or a set of equations �1 and �2. In a set of equations, every initialized
variable must be defined by another equation.

We add the classic probabilistic constructs to the set of expressions: sample(3) creates a random
variable with distribution 3 , factor(B) increments the log-density of the model, and infer(<)
computes the posterior distribution of a model<. If 3 is a distribution with a density function, we
use the syntactic shortcut observe(3,G) for factor(pdf 3 (G)) which conditions the model on
the assumption that G was sampled from 3 . Recursion, loops, and nested inference are not allowed
in the language [1].

3.2 Co-iterative semantics
The semantics of ProbZelus presented in [4] extends the co-iterative semantics of dataflow synchro-
nous languages [15, 20]. The main advantage of the co-iterative semantics is that the state machine
interpretation is executable. Recent works demonstrated an interpreter from this semantics that
can be used to test and validate a compiler against a reference semantics [17].
A type system statically identifies deterministic and probabilistic expressions [4, Section 3.2]

which have different interpretations. In an environment W mapping variable names to values, a

8 Guillaume Baudart, Louis Mandel, and Christine Tasson

⦃4⦄
init
W = È4ÉinitW

⦃4⦄
step
W (<) = let <′, E = È4ÉstepW (<) in X<′,E if 4 is deterministic

⦃sample(4)⦄init
W = È4ÉinitW

⦃sample(4)⦄step
W (<) = let <′, ` = È4ÉstepW (<) in

∫
` (3E) X<′,E

⦃factor(4)⦄init
W = È4ÉinitW

⦃factor(4)⦄step
W (<) = let <′, E = È4ÉstepW (<) in E ∗ X<′,()

⦃

4 where rec init G = 2
and G = 4G
and ~ = 4~

⦄init

W

= 2,

(
⦃4⦄

init
W ,⦃4G⦄

init
W ,

⦃

4~
⦄init
W

)
⦃

4 where rec init G = 2
and G = 4G
and ~ = 4~

⦄step

W

(?G , (<,<G ,<~)) =

∫
⦃4G⦄

step
W+[G.last←?G] (<G) (3<′G , 3EG)∫

⦃

4~
⦄step
W+[G.last←?G ,G←EG] (<~) (3<′~, 3E~)∫

⦃4⦄
step
W+[G.last←?G ,G←EG ,~←E~] (<) (3<

′, 3E)
X (EG ,(<′,<′G ,<′~)),E

Èinfer(4)ÉinitW = È4ÉinitW

Èinfer(4)ÉstepW (f) = let a =

∫
f (3<) ⦃4⦄step

W (<) in
let a = a/a (>) in
(c1∗ (a), c2∗ (a))

Fig. 3. A simplified excerpt of the original ProbZelus co-iterative probabilistic semantics [4].

deterministic expression 4 is interpreted as a state machine characterized by an initial state È4ÉinitW

of type (and a transition function È4ÉstepW of type (→ (×+ which given the current state returns
the next step and a value. A stream of values is then obtained by iteratively applying the transition
function from the initial state.

(È4ÉinitW0
=<0)

È4ÉstepW1−−−−−→ <1

E1

È4ÉstepW2−−−−−→ <2

E2

È4ÉstepW3−−−−−→ <3

E3

→ ...

Following [48], the semantics of a probabilistic expression is a state machine which computes
a stream of kernels. Given the current state, the transition function ⦃4⦄

step
W of type (→ Σ(×+ →

[0,∞) returns a measure over pairs (next state, value),3 i.e., a function mapping measurable sets of
pairs (next state, value) to a score.

3Σ� denotes the Borel f-algebra over values of type �.

Schedule Agnostic Semantics for Reactive Probabilistic Programming 9

Figure 3 shows a simplified excerpt of the semantics of probabilistic expressions from [4]. In a
probabilistic context, a deterministic expression is interpreted as the Dirac delta4 measure on the
pair (state, value) returned by the deterministic semantics. sample evaluates its argument into a
new state<′ and a distribution of values `, and returns a measure over pairs (new state, value).
factor evaluates its argument into a new state<′ and a real value E , and returns a Dirac delta
measure on the pair (<′, ()) weighted by E . To simplify the semantics, the type system ensures that
the arguments of the probabilistic operators are always deterministic expressions. To illustrate
local declarations, Figure 3 shows the semantics of a simple expression with two local variables
x and y. The state captures the previous value of the initialized variable G , and the state of all
sub-expressions. The transition function starts in a context where the previous value of G is bound
to a special variable G .last, and integrates over all possible executions of the sub-expressions to
compute the main expression.

Inference. So far, probabilistic expressions describe a stream of un-normalized measures over
pairs (state, value). At each step, the infer operator normalizes the measure to obtain a distribution
(> denotes the entire space), that is then split into a distribution of next states, and a distribution
of values. The corresponding stream of distributions is obtained by iteratively integrating the
transition function along the distribution of states.

(⦃4⦄init
W0

= f0)
∫
f0 (3<)⦃4⦄step

W1 (<)−−−−−−−−−−−−−−−−→ f1
`1

∫
f1 (3<)⦃4⦄step

W2 (<)−−−−−−−−−−−−−−−−→ f2
`2

∫
f2 (3<)⦃4⦄step

W3 (<)−−−−−−−−−−−−−−−−→ f3
`3

→ ...

If the model is ill-defined, the normalization constant can be 0 or∞, which triggers an exception
and stops the execution. It is the programmer’s responsibility to avoid such error cases when
defining the model.

3.3 Equations and fixpoints
In the interpretation of local declarations in Figure 3, the nested integrals are only well defined if
equations are ordered according to data dependencies. The original semantics in [4] thus focuses
on a kernel language where local declarations are all scheduled : initializations are grouped at the
beginning and an equation ~ = 4~ must appear after G = 4G if G appears in 4~ outside a last. In the
compiler, a specialized type system, the causality analysis statically checks that a program is causal,
i.e., that all local declarations can be scheduled [22]. The kernel-based semantics is commutative,
i.e., yields the same results for any valid schedule [48], but imposing a scheduled order on equations
is a significant limitation compared to block diagrams or synchronous dataflow languages which
manipulate set of equations in arbitrary order.

Deterministic equations. The original co-iterative semantics [15] and recent works [17] interpret
mutually recursive equations using a fixpoint operator. Values E ∈ + are interpreted in a flat domain
+⊥ = + + {⊥} with ⊥ as the minimal element and the flat order ≤: ∀E ∈ + . ⊥ ≤ E . (+⊥,⊥, ≤) is
a complete partial order (CPO). This flat CPO is lifted to environments defining the same set of
variables: ∀d1, d2 such that dom(d1) = dom(d2) = - , d1 ≤ d2 iff ∀G ∈ -, d1 (G) ≤ d2 (G) and the
least element is ⊥ = [G ← ⊥]G∈- .

Figure 4 shows the semantics rules for deterministic equations adapted from [20]. The initial state
of an equation is the initial state of its defining expression. Given a state< and and environment W ,
the transition function returns a new state and an environment containing the variables defined by
the equation. The initial state of the composition of two sets of equations �1 and �2 is the union of
the states of �1 and �2. The transition function evaluates �1 and �2 on their respective parts of the
4XG (*) = 1 if G ∈ * and 0 otherwise.

10 Guillaume Baudart, Louis Mandel, and Christine Tasson

ÈG = 4ÉinitW = È4ÉinitW

ÈG = 4ÉstepW (<) = let <′, E = È4ÉstepW (<) in<′, [G ← E]

È�1 and �2ÉinitW = let "1 = È�1ÉinitW in

let "2 = È�2ÉinitW in

("1, "2)
È�1 and �2ÉstepW ("1, "2) = let " ′1, W1 = È�1É

step
W ("1) in

let " ′2, W2 = È�2É
step
W ("2) in

(" ′1, " ′2), W1 + W2

È4 where rec �ÉinitW = let < = È4ÉinitW in

let " = È�ÉinitW in

(<,")

È4 where rec �ÉstepW (<,") = let � (d) =
(
let " ′, d ′ = È�ÉstepW+d (") in d ′

)
in

let d = fix (�) in
let " ′, d = È�ÉstepW+d (") in
let <′, E = È4ÉstepW+d (<) in
(<′, " ′), E

Fig. 4. Co-iterative semantics of deterministic equations (adapted from [20]).

state but on the same environment W . This function returns the updated state and the environment
containing the variables defined in both sets of equations.

To interpret an expression with a set of local declarations 4 where rec �, the transition function
first computes the environment defined by � with a fixpoint operator. Given a state" , the function
� (d) = let " ′, d ′ = È�ÉstepW+d (") in d ′ is continuous and has a minimal fixpoint d = fix (�) =
lim=→∞ (�= (⊥)). After convergence, the transition function evaluates È�ÉstepW+d (") once more to
compute the next state" ′ (leaving d unchanged by definition of the fixpoint) and finally evaluates
the main expression 4 in the environment W + d . If the program is causal a valid schedule exists
for �, and by monotonicity, each fixpoint iteration computes the value of at least one variable, the
fixpoint is thus reached after a finite number of iterations [20].

Probabilistic equations. In a probabilistic context, the semantics operates on measures. Existing
works define a fixpoint operator to interpret loops and recursions in probabilistic lambda calculi [31,
41, 50]. The least element is the null measure, i.e., for all measurable set * , ⊥(*) = 0, and the
partial order is `1 ≤ `2 iff ∀* .`1 (*) ≤ `2 (*). Unfortunately, using this CPO the semantics of a set
of equations is always the null measure. Therefore, we cannot directly define a schedule agnostic
kernel semantics. We show in the next section how to recover mutually recursive equations in a
probabilistic context with the density-based co-iterative semantics

4 DENSITY-BASED CO-ITERATIVE SEMANTICS
In this section we detail a new density-based co-iterative semantics for probabilistic expressions.
We show that, in this semantics we can now interpret sets of mutually recursive equations with a

Schedule Agnostic Semantics for Reactive Probabilistic Programming 11

⦅4⦆
init
W = È4ÉinitW , 0

⦅4⦆
step
W (<, []) = let <′, E = È4ÉstepW (<) in<′, E, 1 if 4 is deterministic

⦅sample(4)⦆initW = let < = È4ÉinitW in<, 1

⦅sample(4)⦆stepW (<, [A]) = let <′, ` = È4ÉstepW (<) in<′, icdf ` (A), 1

⦅factor(4)⦆initW = let < = È4ÉinitW in<, 0

⦅factor(4)⦆stepW (<, []) = let <′, E = È4ÉstepW (<) in<′, (), E

⦅5 (4)⦆initW = let <5 , ? 5 = W (5 .init) in
let <4 , ?4 = ⦅4⦆

init
W in

(<5 ,<4), ? 5 + ?4
⦅5 (4)⦆stepW ((<5 ,<4), [A 5 : A4]) = let <′4 , E4 ,F4 = ⦅4⦆

step
W (<4 , A4) in

let <′
5
, E,F 5 = W (5 .step) (E4 ,<5 , A 5) in

(<′
5
,<′4), E,F4 ∗F 5

Fig. 5. Density-based co-iterative semantics of expressions (full version in Figure 13 of the appendix).

fixpoint operator as in the original co-iterative semantics. We then prove that the density-based
semantics is equivalent to the kernel-based semantics, i.e., describes the same stream of distributions.

4.1 Probabilistic semantics with fixpoint
The key idea of the density-based semantics is to externalize all sources of randomness. Compared
to the deterministic case, the transition function of a probabilistic expression takes one additional
argument: an array of random elements with one random element for each random variable
introduced by sample. To capture the effect of the factor operator, the transition function also
returns a weight which measures the quality of the result w.r.t. the model.

Expressions. More formally, the initialization function of a probabilistic expression 4 , ⦅4⦆initW : (×N
returns the initial state and the number of random variables in 4 . Since loops and recursive calls are
not allowed in the language of Figure 2, the number of calls to sample can be statically computed.
Given the current state and a value for all random elements (an array of ? values in [0, 1] where ?
is the number of random variables computed by the initialization function) the transition function
⦅4⦆

step
W : (× [0, 1]? → (×+ × [0,∞) returns a triple (next state, value, weight).
An excerpt of the density-based co-iterative semantics is presented in Figure 5. If 4 is deterministic,

there is no random variable and no conditioning. The transition function takes an empty array of
random elements, evaluates the expression, and returns the next state, the value, and a weight of 1.
sample defines one random variable. The transition function takes an array containing one random
element, evaluates the argument into a distribution, converts the random element into a sample
of the distribution, and returns the next state, the sample, and a weight of 1. factor updates the
weight. The transition function evaluates it arguments into a real value E , and returns the next
state, an empty value (), and the score E . The initialization of a function call 5 (4) evaluates the
initialization functions of 5 and of 4 , combines the initial states and sums the numbers of random

12 Guillaume Baudart, Louis Mandel, and Christine Tasson

variables. The transition function takes an array containing the random elements for 4 and 5 ,5
evaluates the argument 4 into a value E4 and a weightF4 , uses the value to evaluate the transition
function of 5 which returns a result E and a weightF 5 , and returns the combined next states, the
result, and the total weightF4 ∗F 5 .

Mutually recursive equations. The semantics of probabilistic equations is presented in Figure 6. As
for probabilistic expressions, the initialization function returns the initial state, and the number of
random variables. Given a state and an array of random elements, the transition function returns a
tuple (next state, environment, weight). The equation G = 4 defines a single variable. The transition
function evaluates the defining expression 4 into a tuple (next state, value, weight), and returns
the next state, an environment where G is bound to the value, and the weight. The init G = 4

equation manages the special variable last G which refers to the value of G at the previous time
step. Compared to the original ProbZelus semantics, we do not require initial values to be constants.
The state contains the previous value of G initialized with an undefined value of the correct type nil,
and the initial state<0 of the expression 4 . There are two cases for the transition function. At the
first time step, or after a reset, the state contains nil and the transition function evaluates 4 using
<0 to compute the initial value 8 and the corresponding weight, and returns a new state containing
the current value of G , an environment where G .last is bound to 8 , and the weight. In any other
case, the previous value E of G stored in the state is defined. The transition function returns a new
state containing the current value of G , an environment where G .last is bound to E , and a weight
of 1.
Compared to the original kernel-based semantics described in Section 3.2 which combines

measures via integration, the density-based semantics only manipulates deterministic values for
which the flat CPO on environments described in Section 3.3 is well defined. The initialization
function of an expression with a set of local declarations 4 where rec � combines the initial states
of 4 and � and returns the total number of random variables. The transition function takes an array
containing the random elements for 4 and �, computes the environment d defined by � with a
fixpoint operator, evaluates ⦅�⦆W+d (", A) once more to compute the next state" ′ and the weight
, , evaluates the main expression 4 in the environment W + d which returns a value E and a weight
F , and returns the combined next states, the value E , and the total weightF ∗, . The only difference
with the deterministic case is that the transition functions of 4 and � now take the random elements
as arguments and return the weights.

Scheduling. To compare the density-based semantics with the kernel-based semantics, it is useful
to define an alternative semantics for a scheduled language without a fixpoint operator. This
alternative semantics ⦅4⦆s step exactly matches the density-based semantics except for the two
following rules:

⦅�1 and �2⦆
s step
W (("1, "2), [A1 : A2]) = let " ′1, d1,F1 = ⦅�1⦆

s step
W ("1, A1) in

let " ′2, d2,F2 = ⦅�2⦆
s step
W+d1 ("2, A2) in

(" ′1, " ′2), d1 + d2,F1 ∗F2

⦅4 where rec �⦆
s step
W ((<,"), [A4 : A�]) = let " ′, d,, = ⦅�⦆

s step
W (", A�) in

let <′, E,F = ⦅4⦆
s step
W+d (<, A) in

(<′, " ′1, " ′2), E,F ∗,

5We note [A1 : A2] the concatenation of two arrays.

Schedule Agnostic Semantics for Reactive Probabilistic Programming 13

⦅G = 4⦆initW = ⦅4⦆
init
W

⦅G = 4⦆
step
W (<, A) = let <′, E,F = ⦅4⦆

step
W (<, A) in<′, [G ← E],F

⦅init G = 4⦆initW = let <0, ? = ⦅4⦆
init
W in (nil,<0), ?

⦅init G = 4⦆
step
W ((nil,<0), A) = let <′, 8,F = ⦅4⦆

step
W (<0, A) in (W (G),<0), [G .last← 8],F

⦅init G = 4⦆
step
W ((E,<0), A) = (W (G),<0), [G .last← E], 1

⦅�1 and �2⦆
init
W = let "1, ?1 = ⦅�1⦆

init
W in

let "2, ?2 = ⦅�2⦆
init
W in

("1, "2), ?1 + ?2
⦅�1 and �2⦆

step
W (("1, "2), [A1 : A2]) = let " ′1, d1,F1 = ⦅�1⦆

step
W ("1, A1) in

let " ′2, d2,F2 = ⦅�2⦆
step
W ("2, A2) in

(" ′1, " ′2), d1 + d2,F1 ∗F2

⦅4 where rec �⦆
init
W = let <, ?4 = ⦅4⦆

init
W in

let ", ?� = ⦅�⦆
init
W in

(<,"), ?4 + ?�
⦅4 where rec �⦆

step
W ((<,"), [A4 : A�]) = let � (d) =

(
let " ′, d,F = ⦅�⦆W+d (", A�) in d

)
in

let d = fix (�) in
let " ′, d,, = ⦅�⦆

step
W+d (", A�) in

let <′, E,F = ⦅4⦆
step
W+d (<, A4) in

(<′, " ′), E,F ∗,

Fig. 6. Density-based co-iterative semantics of equations.

Since all equations are scheduled, the environment produced by a set of equations can be computed
incrementally and there is no need for a fixpoint operator to interpret local declarations.

Proposition 4.1. For an expression where all equations are scheduled, the scheduled density-based
semantics is equal to the density-based semantics with a fixpoint.

Proof. This result is a consequence of the following lemma:

Lemma 4.2. For all scheduled equations set �, the scheduled semantics yields the same environment
as the fixpoint operator, i.e., for an environment W , a state" and an array of random elements A :

fix (_d. let " ′, d ′,F = ⦅�⦆
step
W+d (", A) in d ′) = let " ′, d,F = ⦅�⦆

s step
W (", A) in d

The proof is by induction on �. It is sufficient to focus on the case �1 and �2. Since equations are
scheduled, �1 does not depend on variables defined in �2 and we have for an environment W , a state
("1, "2) and an array of random elements [A1 : A2]:

14 Guillaume Baudart, Louis Mandel, and Christine Tasson

fix (_(d1 + d2). let " ′1, d ′1,F1 = ⦅�1⦆
step
W+d1+d2 ("1, A1) in

let " ′2, d
′
2,F2 = ⦅�2⦆

step
W+d1+d2 ("2, A2) in d ′1 + d ′2)

= fix (_(d1 + d2). let " ′1, d ′1,F1 = ⦅�1⦆
step
W+d1 ("1, A1) in

let " ′2, d
′
2,F2 = ⦅�2⦆

step
W+d1+d2 ("2, A2) in d ′1 + d ′2)

= let d ′′1 = fix (_d1. let " ′1, d ′1,F1 = ⦅�1⦆
step
W+d1 ("1, A1) in d ′1) in

let d ′′2 = fix (_d2. let " ′2, d ′2,F2 = ⦅�2⦆
step
W+d ′′1 +d2

("2, A2) in d ′2) in d ′′1 + d ′′2
= let " ′1, d

′
1,F1 = ⦅�1⦆

s step
W ("1, A1) in

let " ′2, d
′
2,F2 = ⦅�2⦆

s step
W+d ′1
("2, A2) in d ′1 + d ′2

�

4.2 Inference
The infer operator first turns the result of the density-based semantics into an un-normalized
measure, and then performs the same operation as in the kernel-based semantics: 1) integrate over
all possible states, 2) normalize the measure, 3) split the result into a distribution of next states and
a distribution of values.

Èinfer(4)Éd initW = let <, ? = ⦅4⦆
init
W in X<, ?

Èinfer(4)Éd stepW (f, ?) = let k (<) =
∫
[0,1]?

let <′, E,F = ⦅4⦆
step
W (<, A) in F ∗ X (<′,E) 3A in

let a =

∫
f (3<) k (<) in

let a = a/a (>) in
(c1∗ (a), ?), c2∗ (a)

(4)
The state of the infer operator contains the number of random variables in the model ? (which
remains constant) and a distribution of possible states. The initial distribution of states is a Dirac
delta measure over the initial state of the model. The transition function first computes a function
k mapping a state to the un-normalized measure which associates each pair (next state, value) to
its weight. The infer operator then integrates this function along all possible values of the state,
normalizes it, and splits it into a pair of distributions.

Correctness. The previous definition is very similar to its kernel-based semantics counterpart
where the function k (<) in Equation (4) plays the role of the semantics of the model. We now
show that these two notions coincide.

Proposition 4.3. For all probabilistic expression 4 with ? random variables where all equations are
scheduled, the density-based semantics is the density of the measure computed by the kernel semantics,
i.e., for all environment W and state<:(∫

[0,1]?
let <′, E,F = ⦅4⦆

step
W (<) in F ∗ X<′,E 3A

)
= ⦃4⦄

step
W (<)

Proof. The kernel-based semantics is only defined for a scheduled language. We first prove
by induction on the structure of 4 that the scheduled density-based semantics coincide with the
kernel-based semantics. We can then conclude with Proposition 4.1.
The case sample(`) is a simple variable substitution G = icdf ` (A) where icdf ` is the inverse

of the cumulative function of `. Indeed, any real continuous distribution ` is the pushforward by

Schedule Agnostic Semantics for Reactive Probabilistic Programming 15

icdf ` of the uniform distribution over [0, 1] denoted _:

∫
[0,1]

Xicdf ` (A) 3A =

∫
Xicdf ` (A) _(3A) =

∫
XG icdf `∗ (_) (3G) =

∫
XG ` (3G) = `

This property generalizes to discrete distributions, multivariate distributions, and any distributions
over Polish spaces. By analogy, we use the notation icdf ` in all cases.

16 Guillaume Baudart, Louis Mandel, and Christine Tasson

The case �1 and �2 is a consequence of Fubini’s theorem.∫
⦃�1⦄

step
W ("1) (3" ′1, 3d1)

∫
⦃�2⦄

step
W+d1 ("2) (3" ′2, 3d2) X (" ′1," ′2),d1+d2

=
∫ (∫

[0,1]?1 let "
′
1, d1,F1 = ⦅�1⦆

step
W ("1) in F1 ∗ X"1,d1 3A1

)
(3" ′1, 3d1)∫ (∫

[0,1]?2 let "
′
1, d2,F1 = ⦅�2⦆

step
W+d1 ("2) in F2 ∗ X"2,d2 3A2

)
(3" ′2, 3d2)

X (" ′1," ′2),d1+d2

=
∫
[0,1]?1

∫
[0,1]?2

∫ (
let " ′1, d1,F1 = ⦅�1⦆

step
W ("1) in F1 ∗ X"1,d1

)
(3" ′1, 3d1)∫ (

let " ′1, d2,F1 = ⦅�2⦆
step
W+d1 ("2) in F2 ∗ X"2,d2

)
(3" ′2, 3d2) 3A13A2

X (" ′1," ′2),d1+d2

=
∫
[0,1]?1+?2 let " ′1, d1,F1 = ⦅�1⦆

step
W ("1) in

let " ′2, d2,F2 = ⦅�2⦆
step
W+d1 ("2) in

F1 ∗F2 ∗ X (" ′1," ′2),d1+d2 3A13A2
Other cases are similar. �

We can now state the main correctness theorem, i.e., the infer operator yields the same stream
of distributions in the density-based semantics and in the kernel based semantics.

Theorem 4.4 (Co-iterative semantics correctness). For every probabilistic model 4 where all
equations sets are scheduled, for all distribution of states f :

∀W, Èinfer(4)Éd initW = Èinfer(4)ÉinitW , ?

∀W, Èinfer(4)Éd stepW (f, ?) = Èinfer(4)ÉstepW (f)

Proof. By construction, in the density-based semantics, the first element of the initial state of
infer is a Dirac delta measure on the initial state of the model which corresponds to the initial
state of infer in the kernel-based semantics.

By Proposition 4.3 the un-normalized measure defined by the density-based semantics matches
the measure computed by the kernel-based semantics. Given this measure, the rest of the transition
function of infer is the same in both cases. �

4.3 Program equivalence
Two expressions are equivalent if they compute the same stream of output values. The semantics is
defined with an initial state and a transition function. To prove equivalence of two state machines
one must exhibit a bisimulation [46] that relates the states and ensure the equality of output values.

Definition 4.5. Deterministic expressions are equivalent if there is a bisimulation, that is a relation
on states P ⊆ (× (such that:
• ∀W, (<0

1,<
0
2) ∈ P where<0

1 = È41É
init
W and<0

2 = È42É
init
W

• ∀W, if (<1,<2) ∈ P, then (<′1,<′2) ∈ P and E1 = E2 where

<′1, E1 = È41É
step
W (<1)

<′2, E2 = È42É
step
W (<2)

Two probabilistic expressions are equivalent if they describe the same output measures obtained
by integrating at each step the pairs (value, weight) computed by the density-based co-iterative
semantics.

Schedule Agnostic Semantics for Reactive Probabilistic Programming 17

Definition 4.6. Two probabilistic expressions 41 and 42 are equivalent if there is a bisimulation P
on measures of states such that:

• ∀W , (X<0
1
, X<0

2
) ∈ P where<0

1, ?1 = ⦅41⦆
init
W and<0

2, ?2 = ⦅42⦆
init
W

• ∀W , if (f1, f2) ∈ P, then (f ′1, f ′2) ∈ P and `1 = `2 where

f ′1, `1 = let k1 (<1) =
∫
[0,1]?1

let <′1, E1,F1 = ⦅41⦆
step
W (<1, A1) in F1 ∗ X (<′1,E1) 3A1 in

let a1 =

∫
f1 (3<1) k1 (<1) in

c1∗ (a1), c2∗ (a1)

f ′2, `2 = let k2 (<2) =
∫
[0,1]?2

let <′2, E2,F2 = ⦅42⦆
step
W (<2, A2) in F2 ∗ X (<′2,E2) 3A2 in

let a2 =

∫
f2 (3<2) k2 (<2) in

c1∗ (a2), c2∗ (a2)

In the co-iterative density semantics, for a given context, each triplet (state, value, weight) is a
function of the previous state and of the random elements. If we can map states of 41 to states of 42
and random elements of 41 to the random elements of 42 (while preserving uniform distributions),
then program equivalence can be reduced to the comparison of the stream of pairs (value, weight).

Proposition 4.7 (Probabilistic eqivalence). Probabilistic expressions 41 and 42, with ?1 the
number of random variables in 41 and ?2 the number of random variables in 42, are equivalent if there
is a pair of measurable functions q : (→ (and 5 : [0, 1]?1 → [0, 1]?2 such that:

• The Lebesgue measure over [0, 1]?2 , _?2 is the pushforward of _?1 along 5 , i.e., _?2 = 5∗_?1

• ∀W , q (<0
1) =<0

2 where<
0
1, ?1 = ⦅41⦆

init
W and<0

2, ?2 = ⦅42⦆
init
W

• ∀W , if q (<1) =<2 and 5 (A1) = A2, then q (<′1) =<′2, E1 = E2 andF1 = F2, where

<′1, E1,F1 = ⦅41⦆
step
W (<1, A1)

<′2, E2,F2 = ⦅42⦆
step
W (<2, A2)

Proof. We define the bisimulation using the pushforward measure along q : (f1, f2) ∈ P iff f2 =

q∗f1.
Since X<0

2
= Xq (<0

1) = q∗X<0
1
we have (X<0

1
, X<0

2
) ∈ P.

At each step, we have:

a1 =

∫
f1 (3<1) F1 ∗ X<′1,E1 3A1

a2 =

∫
f2 (3<2) F2 ∗ X<′2,E2 3A2

If (f1, f2) ∈ P, that is f2 = q∗f1 we can apply the changes of variables A2 = 5 (A1) and<2 = q (<1)
in a2.

a2 =

∫
q∗f1 (3<2) F2 ∗ X<′2,E2 5∗_

?1 (3A2) =
∫

f1 (3<1) F1 ∗ Xq (<′1),E13A1

18 Guillaume Baudart, Louis Mandel, and Christine Tasson

We can check that (f ′1, f ′2) ∈ P and `1 = `2:

f ′2 = c1∗a2 =

∫
f1 (3<1) F1 ∗ Xq (<′1)3A1 = q∗ (c1∗a1) = q∗f

′
1

`2 = c2∗a2 =

∫
f1 (3<1) F1 ∗ XE13A1 = c2∗a1 = `1

�

Finding such a mapping is in general difficult. A useful simple case is when the two programs
involve the same random variables in different orders, e.g., a program and its compiled version
after a source-to-source transformation. Then, the measurable function is a permutation of the
random elements, and two expressions are equivalent if they compute the same stream of pairs
(value, weight).

Example. If G and ~ are not free variables in 41 and 42:

sample(41) + sample(42) ∼ G + ~ where rec G = sample(42) and ~ = sample(41)

We define the following:

<0
1, 1 = ⦅41⦆

init
W <′1, E1, 1 = ⦅41⦆

step
W (<1, A1) E~ = icdf E1 (A1)

<0
2, 1 = ⦅42⦆

init
W <′2, E2, 1 = ⦅42⦆

step
W (<2, A2) EG = icdf E2 (A2)

The left hand side term 4ℓ = sample(41) + sample(42) is interpreted by the state machine:

⦅4ℓ⦆
init
W = (<0

1,<
0
2), 2

⦅4ℓ⦆
step
W ((<1,<2), [A1 : A2]) = (<′1,<′2), E~ + EG , 1

The right hand side term 4A = G +~ where rec G = sample(42) and ~ = sample(41) is interpreted
by the state machine:

⦅4A⦆
init
W = (((), ((), ())), (<0

2,<
0
1)), 2

⦅4A⦆
step
W ((((), ((), ())), (<2,<1)), [A2 : A1]) = (((), ((), ())), (<′2,<′1)), EG + E~, 1

With q : (<1,<2) ↦→ (((), ((), ())), (<2,<1)) and 5 : [A1 : A2] ↦→ [A2 : A1] we have:
• 5 preserves the uniform distribution 5∗_?1 = _?2

• q relates initial states q (<0
1,<

0
2) = (((), ((), ())), (<0

2,<
0
1))

• if q relates the current states q (<1,<2) = (((), ((), ())), (<2,<1)) and the random elements
are permuted, then q relates the next states q (<′1,<′2) = (((), ((), ())), (<′2,<′1)), and the
two state machines yield the same pairs of values E~ + EG = EG + E~ and weights 1 = 1.

We can thus apply Proposition 4.7 to conclude that the two probabilistic expressions are equivalent.

5 DENSITY-BASED RELATIONAL SEMANTICS
An alternative to the operational view of the co-iterative semantics where expressions are in-
terpreted as state machines is to define a relational semantics where expressions directly return
streams of values [19]. This formalism has been used in the Vélus project to prove an end-to-end
dataflow synchronous compiler within the Coq proof assistant [9–11].
In this section, we first present a relational semantics for the deterministic expressions of our

language. We then define a relational density-based semantics for probabilistic expressions and
prove that this semantics is equivalent to the co-iterative density-based semantics, i.e., the infer
operator yields the same stream of distributions.

Schedule Agnostic Semantics for Reactive Probabilistic Programming 19

�,� ` 2 ↓ 2 �, � ` G ↓ � (G)
G ∉ �

�,� ` G ↓ � (G)
�,� ` 41 ↓ B1 �,� ` 42 ↓ B2

�,� ` (41,42) ↓ (B1, B2)

�,� ` 4 ↓ B
�, � ` op(4) ↓ op(B)

� (G .last) = B

�, � ` last G ↓ B

�, � ` 4 ↓ B4 � (5) = node 5 G = 45 �, [G ← B4] ` 45 ↓ B
�, � ` 5 (4) ↓ B

�, � + �� ` � �,� + �� ` 4 ↓ B
�, � ` 4 where rec � ↓ B

�, � ` 4 ↓ � (G)
�,� ` G = 4

�,� ` 4 ↓ 8 · B � (G .last) = 8 · � (G)
�,� ` init G = 4

�,� ` �1 �,� ` �2
�,� ` �1 and �2

Fig. 7. Deterministic relational semantics (full version in Figure 16 of the appendix).

Notations. In the following, +l is the type of infinite streams of values of type + . The infix
operator (·) : + → +l → +l is the stream constructor (e.g., 1 · 2 · 3 · ...). Constants are lifted to
constant streams (e.g., 1 = 1 · 1 · 1 · ...) and when the context is clear we write 5 (B) = 5 (B0) · 5 (B1) · ...
for map 5 B , and (B, C) = (B1, C1) · (B2, C2) · ... to cast a pair of streams into a stream of pairs.

5.1 Deterministic relational semantics
In the relational semantics, deterministic expressions compute streams of values. In a context
� which maps variables names to stream of values, the semantics of a deterministic expression
4 returns a stream B: �,� ` 4 ↓ B . The additional context � stores global declarations (global
constants and function definitions). The semantics of a set of equations � checks that the context �
is compatible with all the equations: �,� ` �. The semantics of a set of equations thus defines a
relation between the streams stored in the context. Compared to the co-iterative semantics, the
relational semantics is not executable since the context must be guessed a priori and validated
against the equations.

Figure 7 presents the relational semantics for deterministic expressions and equations. A constant
is interpreted as a constant stream, and a variable returns the corresponding stream in the context.
The semantics of a pair evaluates each component independently and packs the results into a stream
of pairs. The application of an operator evaluates its argument into a stream of values and maps
the operator on the result. last G fetches a special variable G .last in the context. A function call
first evaluates its argument, and then evaluates the body of the function in a context where the
parameter is bound to the argument value.
To interpret the expression 4 where rec �, equations � are evaluated in a new context �� that

is also used to evaluate the main expression 4 . The semantics of a simple equation checks that a
variable is associated to the stream computed by its defining expression. The initialization operator
init G = 4 prepends an initial value 8 to the stream associated to G and checks that the special
variable G .last is bound to this delayed version of G . In the relational semantics, contexts are
un-ordered maps and scheduling equations does not change the semantics.

20 Guillaume Baudart, Louis Mandel, and Christine Tasson

5.2 Probabilistic relational semantics
The key idea of the probabilistic relational semantics is similar to the density-based co-iterative
semantics: instead of manipulating streams of measures, probabilistic expressions compute streams
of pairs (value, score) using external streams of random elements, and integration is deferred to the
infer operator.

Figure 8 presents the density-based relational semantics for probabilistic expressions and equa-
tions. In a context� whichmaps variables names to stream of values, the semantics of a probabilistic
expression 4 takes an array of random streams ' and returns a stream of pairs (value, weight):
�,�, ' ` 4 ⇓ (B,F). The semantics of a set of equations � takes an array containing the random
streams of all sub-expressions, checks that the context � is compatible with all the equations, and
returns the total weightF� of all sub-expressions: �,�, ' ` � : F� .
The semantics of deterministic expressions (e.g., constant or variable) returns the expected

stream of values associated to a constant weight of 1. The semantics of sample takes an array
containing one random stream ', evaluates its argument into a stream of distributions B` , and
uses the random stream ' to compute a stream of samples associated to the constant weight 1:
(icdf B` 0 ('0), 1) · (icdf B` 1 ('1), 1) · ... The semantics of factor evaluates its arguments into a stream
of valuesF which is used as the weight associated to a stream of empty values: ((),F0) · ((),F1) · ...
The semantics of a function call is similar to the deterministic case, but the random streams are
split between the argument and the function body, and the total weight captures the weight of
the argument and the weight of the function body. Similarly, for an expression with a set of local
definitions the random streams are split between sub-expressions and the weight is the total weight
of all sub-expressions.
By construction, for any probabilistic expression 4 , the size of the array of random streams is

the number of random variables defined in 4 , i.e., the number of sample. This information can be
computed statically (as in the initialization functions of the co-iterative semantics in Section 4.1),
and in the following RV(4) returns the number of random variables in an expression 4 .

5.3 Inference
As in the density-based co-iterative semantics, the infer operator is defined by integrating at each
step an un-normalized density function over all possible values of the streams of random elements.
The semantics of a probabilistic model returns a pair of stream functions (value, weight) which
both depend on the random streams. Given the random streams, at each time step, the semantics
of infer first computes the total weight of the prefix to capture all the conditioning since the
beginning of the execution:F = Π F = F0 · (F0 ∗F1) · (F0 ∗F1 ∗F2) · ... Then the function integ
1) turns the current value E= and the total weightF= into an un-normalized measure by integrating
over all possible values of the random streams, and 2) normalizes the result to obtain a stream of
distributions of values. If ? = RV(4) is the number of random variables in the model and _?l is the
uniform measure over the cube of random streams ([0, 1]l)? , then:

integ? (F= ·FB) (E · EB) =
(
let ` =

∫
F= (�, ')XE (�,') _

?
l (3') in `/` (>)

)
· (integ FB EB) (5)

Cube of random streams. The uniform measure over the cube of random streams is defined as
follows. Let [0, 1]l be the countable product of the measurable spaces on the interval [0, 1] endowed
with the Lebesgue f-algebra, i.e., the coarsest f-algebra such that projections are measurable. We
define _l as the uniform distribution on the continuous cube defined by a Kolmogorov extension
such that for any : ∈ N, the pushforward measure of _l along the projection c≤: : [0, 1]l → [0, 1]:
on the first : coordinates is the Lebesgue measure on [0, 1]: : _≤: = c≤: ∗ (_l). For any measurable

Schedule Agnostic Semantics for Reactive Probabilistic Programming 21

�,� ` 4 ↓ B
�, �, [] ` 4 ⇓ (B, 1)

�,� ` 4 ↓ B`
�,�, ['] ` sample(4) ⇓ (icdf B` ('), 1)

�,� ` 4 ↓ F
�,�, [] ` factor(4) ⇓ ((),F)

�,�, '4 ` 4 ↓ (B4 ,F4) � (5) = proba 5 G = 45 �, [G ← B4], '5 ` 45 ⇓ (B,F)
�,�, ['4 : '5] ` 5 (4) ⇓ (B,F ∗F4)

�,� + ��, '� ` � : F� �,� + ��, '4 ` 4 ⇓ (B,F)
�,�, ['4 : '�] ` 4 where rec � ⇓ (B,F ∗F�)

�,�, ' ` 4 ⇓ (� (G),F)
�,�, ' ` G = 4 : F

�,�, ' ` 4 ⇓ (8 · B,F8 ·F) � (G .last) = 8 · � (G)
�,�, ' ` init G = 4 : F8 · 1

�,�, '1 ` �1 : F1 �,�, '2 ` �2 : F2

�,�, ['1 : '2] ` �1 and �2 : F1 ∗F2

? = RV(4) [�,�, ' ` 4 ⇓ (B,F) F = Π F]'∈ ([0,1]l)?
�,� ` infer(4) ↓ integ? F B

Fig. 8. Probabilistic relational semantics (full version in Figure 17 of the appendix).

function 6 : [0, 1]: → + we have the following change of variable formula:∫
6(c≤: (')) _l (3') =

∫
6('≤:) _≤: (3'≤:)

Integrating a function which only depends on the : first coordinates of ' can thus be reduced to
integrating over these coordinates. We can then define the uniform measure on the cube of random
streams _?l as the ?-ary product measure of _l , and lift the change of variable formula.

Correctness. For a probabilistic expression 4 , we first relate the co-iterative semantics of Section 4.1
and the relational semantics of Section 5.1. If � is a context mapping variables names to streams
of values, �: is the context where streams are projected on their :-th coordinate and �≤: is the
context where streams are truncated at : . We define similarly '≤: , and ': for an array of random
streams '. The following proposition states that if a program is causal, i.e., if all equations can be
scheduled, the co-iterative semantics and the relational semantics coincide.

Proposition 5.1. For a causal model 4 , if�,�, ' ` 4 ⇓ (B,F), then there is a co-iterative execution
trace<0 = ⦅4⦆

init
� and ∀: > 0, (<:+1, E:+1,F

′
:+1) = ⦅4⦆

step
�:+1
(<: , ':+1) such that ∀: > 0, <: , E: , F ′:

only depend on �≤: and '≤: , B: (�, ') = E: (�≤: , '≤:) andF: (�, ') = F ′
:
(�≤: , '≤:).

Proof Sketch. Probabilistic constructs aside, the kernel language of Figure 2 is a subset of
the language defined in [12]. We compile the model to this language. Probabilistic nodes become
deterministic nodes with additional inputs (the random streams) and one additional output (the
score). The sample operator is also compiled to a function call with one additional input for the
random stream, and the factor operator simply updates the score. Following the semantics of
Figure 8, the distribution of random streams in sub-expressions is performed by the compilation
function. We can then apply the correctness theorem of [9, 12] : if a relational semantics exists, there
exists a compiled state machine whose execution matches the relational semantics.

22 Guillaume Baudart, Louis Mandel, and Christine Tasson

The execution of the compiled state machine is deterministic and corresponds to the co-iterative
semantics of the normalized scheduled program which does not require any fixpoint computation.
Since, the normalization and scheduling passes preserve the co-iterative semantics [20], the execu-
tion of the state machine also corresponds to the co-iterative semantics of the original unscheduled
program.

The property also states that at each instant, the output of a causal model only depends on past
inputs and states which is proved by induction on the structure of the program. �

As in Section 4.2, we can now state the main correctness theorem, i.e., the infer operator yields
the same stream of distributions in the co-iterative semantics and in the relational semantics.

Theorem 5.2 (Relational semantics correctness). For a causal model 4 , and for all contexts � ,
if �,� ` infer(4) ↓ ` then the co-iterative execution trace yields the same stream of distributions,
i.e., f0, ? = Èinfer(4)Éd init� and ∀: > 0, (f:+1, ?), `:+1 = Èinfer(4)Éd step

�:+1
(f: , ?).

Proof. If ? is the number of random variables in the model, we show ∀: > 0:

f:+1 (�:+1, f:) ∝
∫
([0,1]:)?

F: (�≤: , '≤:) ∗ X<: (�≤: ,'≤:)_
?

≤: (3'≤:)

`:+1 (�:+1, f:) ∝
∫
([0,1]:)?

F: (�≤: , '≤:) ∗ XE: (�≤: ,'≤:)_
?

≤: (3'≤:)

By the induction hypothesis, ∀: , � , ', B (�, '): = E: (�≤: , '≤:) and F (�, '): = F ′
:
(�≤: , '≤:).

From the definition ofk in Equation (4) and Fubini’s theorem we have:

a:+1 =

∫
f: (3<) k (<)

∝
∫
([0,1]:)?

F: (�≤: , '≤:) ∗k (<: (�≤: , '≤:)) _=≤: (3'≤:)

∝
∫
([0,1]:)?

∫
[0,1]?

F: (�≤: , '≤:) ∗F:+1 (�:+1, ':+1)
∗ X<:+1 (�≤:+1,'≤:+1),E:+1 (�≤:+1,'≤:+1) _

? (3':+1)_?≤: (3'≤:)

∝
∫
([0,1]:+1)?

F:+1 (�≤:+1, '≤:+1) ∗ X<:+1 (�≤:+1,'≤:+1),E:+1 (�≤:+1,'≤:+1) _
?

≤:+1 (3'≤:+1)

The normalization and marginalization by c1∗ and c2∗ concludes the inductive case. Then using the
change of variable formula on the cube of random streams we get:

`: ∝
∫

F: (')XB: (')_
?
l (3')

which corresponds to Equation (5) and concludes the proof. �

5.4 Program equivalence
Compared to the co-iterative semantics where proving the equivalence between two state machines
requires a bisimulation, in the relational semantics, to prove the equivalence between two programs
one need only to check that they define the same streams.

Definition 5.3. Deterministic expressions 41 and 42 are equivalent if for any context� and ∀: > 0,
B1: (�) = B2: (�), where �,� ` 41 ↓ B1 and �,� ` 42 ↓ B2.

Two probabilistic expressions are equivalent if they describe the same stream of measures
obtained by integrating at each step the streams of pairs (value, weight) computed by the density-
based relational semantics.

Schedule Agnostic Semantics for Reactive Probabilistic Programming 23

Definition 5.4. Probabilistic expressions 41 and 42 with RV(41) = ?1 and RV(42) = ?2 are equiva-
lent if for all contexts � , and ∀: > 0,∫

F1: (�, '1) ∗ XB1: (�,'1) 3_
?1
l ('1) =

∫
F2: (�, '2) ∗ XB2: (�,'2) 3_

?2
l ('2)

where �,�, '1 ` 41 ⇓ (B1,F1) and �,�, '2 ` 42 ⇓ (B2,F2).

In the relational semantics, for a given context, each pair (value, weight) is a function of the
random streams. Since, random streams are uniformly distributed, if we canmap the random streams
of 41 to the random streams of 42 while preserving uniform distributions, program equivalence can
be reduced to the comparison of the streams of pairs (value, weight) computed by each expression.

Proposition 5.5 (Probabilistic eqivalence). Probabilistic expressions 41 and 42 with RV(41) =
?1 and RV(42) = ?2 are equivalent if there is 5 : ([0, 1]l)?1 → ([0, 1]l)?2 measurable such that,

• _
?2
l is the pushforward of _?1l along 5 , i.e., _?2l = 5∗ (_?1l)

• for all contexts � and arrays of random streams ', ∀: > 0,
B1: (�, ') = B2: (�, 5 (')) and F1: (�, ') = F2: (�, 5 (')), where �,�, ' ` 41 ⇓ (B1,F1) and
�,�, 5 (') ` 42 ⇓ (B2,F2).

Proof. For all � , ∀: > 0, by the change of variable formula:∫
F1: (�, ') ∗ XB1: (�,') 3_

?1
l (') =

∫
F2: (�, 5 (')) ∗ XB2: (�,5 (')) 3_

?1
l (')

=

∫
F2: (�, ') ∗ XB2: (�,') 3 5∗ (_?1l) (')

We conclude as 5∗ (_?1l) = _
?2
l . �

Finding such a mapping is in general difficult. As in Section 4.3, a useful simple case is when
the two programs involve the same random variables in different orders. Then, the measurable
function is a permutation of the random streams.
The relational semantics of an expression is described by a derivation tree where each relation

is a consequence of smaller relations on all the sub-expressions, up to atomic expressions. Two
expressions compute the same streams if from the derivation tree of the first, one can build a
derivation tree for the second and vice-versa.

Example. If G and ~ are not free variables in 41 and 42:

sample(41) + sample(42) ∼ G + ~ where rec G = sample(42) and ~ = sample(41)

Let '8 be the array of random streams associated to the expressions sample(48). For all contexts � ,
if �,� ` 48 ↓ `8 , then we define B8 = icdf `8 ('8). Then, the derivation tree for the lhs expression is:

�,�, '1 ` sample(41) ⇓ (B1, 1) �,�, '2 ` sample(42) ⇓ (B2, 1)
�,�, ['1 : '2] ` sample(41) + sample(42) ⇓ (B1 + B2, 1)

With �� = [G ← B2, ~ ← B1], the derivation tree for the rhs expression is:

�,� + ��, [] ` G + ~ ⇓ (B2 + B1, 1)

�,� + ��, '2 ` sample(42) ⇓ (B2, 1)
�,� + ��, '2 ` G = sample(42) : 1

�,� + ��, '1 ` sample(41) ⇓ (B1, 1)
�,� + ��, '1 ` ~ = sample(41) : 1

�,� + ��, ['2 : '1] ` G = sample(42) and ~ = sample(41) : 1

�,�, ['2 : '1] ` G + ~ where rec G = sample(42) and ~ = sample(41) ⇓ (B2 + B1, 1)

24 Guillaume Baudart, Louis Mandel, and Christine Tasson

Since both programs compute the same stream of pairs (value, weight) and the permutation
5 (['1 : '2]) = ['2 : '1] preserves the uniform distribution, the two programs are equivalent.

6 APPLICATION: ASSUMED PARAMETER FILTER
In ProbZelus, state-space models can involve two kinds of random variables. State parameters are
represented by a stream of random variables which evolve over time depending on the previous
values and the observations. Constant parameters are represented by a random variable whose
value is progressively refined from the prior distribution with each new observation.

Example. Consider the example of Section 2 where the boat is drifting at a constant speed \ . We
want to estimate the moving position (state parameter), and the drift speed (constant parameter).
The motion model f is now defined as follows (where the noise parameter st is a global constant):

let proba f(pre_x) = pre_x + theta where

rec init theta = sample(gaussian(zeros, st))

and theta = last theta

Filtering. To estimate state parameters, Sequential Monte Carlo (SMC) inference algorithms rely
on filtering techniques [16, 27]. Filtering is an approximate method which consists of deliberately
losing information on the current approximation to refocus future estimations on the most signifi-
cant information. These methods are particularly well suited to the reactive context where a system
in interaction with its environment never stops and must execute with bounded resources. All
ProbZelus inference methods are SMC algorithms [2, 4, 5]. Unfortunately, this loss of information
is harmful for the estimation of constant parameters which do not change over time.
The most basic SMC algorithm, the particle filter, approximates the posterior distribution by

launching a set of independent executions, called particles. At each step, each particle returns a
value associated to a score which measures the quality of the value w.r.t. the model. To recenter the
inference on the most significant particles, the inference runtime periodically resamples the set of
particles according to their weights. The most significant particles are then duplicated while the
least interesting ones are dropped.

Unfortunately, constant parameters are only sampled at the beginning of the execution of each
particle. After each resampling step, the duplicated particles share the same value for theta. The
quantity of information used to estimate constant parameters thus strictly decreases over time
until eventually, there is only one possible value left. The upper part of the Figure 9 graphically
illustrates this phenomenon.

Assumed Parameter Filter. To mitigate this issue, the Assumed Parameter Filter (APF) maintains a
symbolic distribution for the constant parameters and splits the inference into two steps: 1) estimate
the state parameters distributions, and 2) update the constant parameters distributions [32]. The
lower part of Figure 9 illustrates the results of APF on the estimation of the drift speed for our radar
example.

The APF algorithm assumes that constant parameters are an input of the model, and their prior
distributions an input of a new inference operator APF.infer (the APF algorithm is described in
Appendix B.1). In this section, we present a program transformation which generates models that
are exploitable by the APF algorithm. First, a static analysis identifies the constant parameters
and their prior distributions. Then a compilation pass transforms these parameters into additional
inputs of the model. We use the relational semantics of Section 5 to prove the correctness of this
transformation, i.e., the transformation preserves the ideal semantics of the program.

Schedule Agnostic Semantics for Reactive Probabilistic Programming 25

pf

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5

−0.2

0.0

0.2

0.4

0.6

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ap
f

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

(a) C = 0

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5

−0.2

0.0

0.2

0.4

0.6

(b) C = 30

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(c) C = 50

Fig. 9. Estimates of the theta parameter of the radar example over time with a particle filter (PF at the top)
and assumed parameter filter (APF at the bottom) . The true drift speed is indicated by a green cross. The
color gradient represents the dot density. The scale shrinks over time. Results may differ in between runs.

Example. The radar model (see Figure 1) is compiled into the following model for APF. The
constant parameter theta is an argument of the model and the corresponding prior distribution is
defined outside the model.

let f_prior = gaussian(zeros, st)

proba f_model(theta, pre_x) = pre_x + theta

let tracker_prior = f_prior

proba tracker_model(theta, y_obs) = x where

rec init x = x_init

and x = sample(gaussian(f_model(theta, last x), sx))

and y = g(x)

and () = observe(gaussian(y, sy), y_obs)

node main(y_obs) = msg where

rec x_dist = APF.infer(tracker_model, tracker_prior, y_obs)

and msg = controller(x_dist)

6.1 Static Analysis
The goal of the static analysis is to identify the constant parameters of each probabilistic node,
i.e., initialized random variables (init G = sample(4)) that are also constant (G = last G). For
a program prog the judgement ∅, ∅ ` prog : Φ,� builds the environment Φ which associates to
each probabilistic node a type q which maps constant parameters to their prior distributions.
The environment � contains the global constant variables that can be used to define the prior
distributions. An excerpt of the type system is given in Figure 10.
Constants: The auxiliary judgement � `2 � : �′ identifies constant streams �′ in the set of

equations � given the constant variables � . A stream G is constant if it is always equal to its

26 Guillaume Baudart, Louis Mandel, and Christine Tasson

� `2 4
Φ,� ` let G = 4 : Φ,� + {G}

� ` 4 : q
Φ,� ` proba 5 G = 4 : Φ + {5 ← q},�

� ` 42 : q
� ` reset 41 every 42 : q � ` 5\(4) : {\ ← 5 .prior}

� ` 4 : q4 � `2 � : � �, � ` � : q�

� ` 4 where rec � : q4 + q�
G ∈ � � `2 4

�, � ` init G = sample(4) : {G ← 4}

� ` 4 : q
�, � ` G = 4 : q

�, � ` �1 : q1 �, � ` �2 : q2

�, � ` �1 and �2 : q1 + q2

Fig. 10. Extract constant parameters and associated prior distributions (full type system in Appendix B.2).

� `2 2
G ∈ �
� `2 G

� `2 41 � `2 42
� `2 (41,42)

� `2 4
� `2 op(4)

� + dom(�) `2 4 � `2 � : dom(�)
� `2 4 where rec � � `2 init G = 4 : ∅ � `2 G = last G : {G}

� `2 4
� `2 G = 4 : {G}

� 02 4

� `2 G = 4 : ∅
� +�2 `2 �1 : �1 � +�1 `2 �2 : �2

� `2 �1 and �2 : �1 +�2

Fig. 11. Constant expressions and equations

previous value (G = last G) or if it is defined by a constant expression. The auxiliary judgement
� `2 4 checks that an expression defines a constant stream. An expression with a set of local
declarations is constant if all the equations define constant streams.
Declarations: A global declaration let G = 4 typed in the environment Φ,� adds the name G

to the global constant set � if the expression 4 is constant. A probabilistic node proba 5 G = 4 is
associated to the map q computed by the judgement � ` 4 : q .
Expressions: Typing an expression collects the constant parameters of the sub-expressions. To

simplify the analysis, we associate a unique instance name \ to each function call and we assume
that all variables and instances names are unique, e.g., 5 (1) + 5 (2) becomes 5\1 (1) + 5\2 (2). The rule
for 5\(4) associates to \ the prior distribution of the constant parameters of the body of 5 : 5 .prior
which is defined as a global variable by the compilation pass. The rule for reset 41 every 42 focuses
only on the condition 42 because 41 can be re-initialized and thus is not constant.

Schedule Agnostic Semantics for Reactive Probabilistic Programming 27

CΦ (proba 5 G = 4) = let 5 .prior = im(q) with q = Φ(5)
proba 5 .model (dom(q),G) = Cq (4)

Cq (4 where rec �) = Cq (4) where rec Cq (�)

Cq (init G = 4) =

{
∅ if G ∈ dom(q)
init G = Cq (4) otherwise

Cq (G = 4) =

{
∅ if G ∈ dom(q)
G = Cq (4) otherwise

Cq (5\(4)) =

5 (Cq (4)) if 5 is deterministic

5 .model(\, Cq (4)) if \ ∈ dom(q)
5 .model(\, Cq (4)) where otherwise
rec init \ = sample(5 .prior)
and \ = last \

Cq (infer(5 (4))) = APF.infer(5 .model, 5 .prior, Cq (4))

Fig. 12. APF compilation (full definition in Appendix B.3).

Equations: The typing of 4 where rec � identifies the set � of constant variables in � then types
the equations with the judgement �, � ` � : q where � is the set of constant free variables in �. If
a variable G is introduced by the equation init G = sample(4) and is constant (G ∈ �), then G is a
constant parameter and the result type maps G to the distribution 4 .

Example. On our example, the variable theta is identified as a constant parameter of the node f
and is propagated through the node tracker that calls f. The final environment is:

Φ = {f← {theta← gaussian(...)}, tracker← {\ ← f.prior}}

6.2 Compilation
To run the APF algorithm, constant parameters must become additional inputs of the model. The
inference runtime can thus execute the model multiple times with different values of the constant
parameters to update their distributions. The compilation function is defined in Figure 12 by
induction on the syntax and relies on the result of the static analysis. The compilation function C
is thus parameterized by the typing environment Φ for declarations and the type q for expressions.

A model proba 5 G = 4 such that Φ(5) = q (i.e.,� ` 4 : q) is compiled into two statements: 1) the
prior distribution of the constant parameters in 4 , let 5 .prior = im(q), and 2) a new model that
takes the constant parameters dom(q) as additional arguments, proba 5 .model (dom(q), G) = Cq (4).

The compilation function of an expression Cq removes the definitions of the constant parameters
G ∈ dom(q). The where/rec case effectively removes the constant parameters by keeping only
the equations defining variables G ∉ dom(q). The main difficulty is to handle constant parameters
introduced by a function call.
• If the node is deterministic, there is no constant parameter.
• If the constant parameters of the callee are also constant parameters of the caller, we have
\ ∈ dom(q) and we just replace the call to 5\ with a call to 5 .model using the instance name
for the constant parameters.

28 Guillaume Baudart, Louis Mandel, and Christine Tasson

• Otherwise, the constant parameters of the callee are not constant for the caller because the
instance 5\ is used inside a reset/every or a present/else. In this case, we redefine these
parameters locally by sampling their prior distribution 5 .prior.

Finally, the call to infer(5 (4)) is replaced by a call to APF.infer(5 .model, 5 .prior, 4).

6.3 Correctness
We use the relational semantics to prove the correctness of the APF compilation pass. First, we
prove that any probabilistic expression is equivalent to its compiled version computed in an
environment which already contains the definition of the constant parameters. The main theorem
which relates infer(5 (4)) and APF.infer(5 .model, 5 .prior, 4) then corresponds to the case
5\ (4) in Figure 12.

Definition 6.1. For a model 5 that is compiled into 5 .prior and 5 .model, the ideal semantics of
APF.infer externalizes the definition of the constant parameters: APF.infer(5 .model, 5 .prior, 4)
denotes the expression:

infer(5 .model(\, 4) where rec init \ = sample(5 .prior))

We first prove the two following correctness lemmas for expressions and equations in parallel.

Lemma 6.2. For all probabilistic functions 5 such that Φ(5) = q , for all expressions 4 in the body of
5 such that � ` 4 : q4 , there is a permutation ' → ['′ : '?] such that

�,�, ' ` 4 ⇓ (B,F) ⇐⇒ �+, � + �5 , '
′ ` Cq (4) ⇓ (B,F).

where ®? = dom(q4) is the list of constant parameters in 4 , ®̀ = im(q4) are the corresponding prior
distributions and �5 is the context that already contains the definitions of all the constant parameters
in 5 including ®? , i.e., �5 (®?) = icdf ®̀('

?

0).

Lemma 6.3. For all equations � in the body of 5 such that �, � ` � : q� , there is a permutation
' → ['′ : '?] such that

�,�, ' ` � :, ⇐⇒ �+, � + �5 , '
′ ` Cq (�) :, .

Proof. The proof is by induction on the expression and the size of the context, i.e., the number
of declarations before the expression. For each induction case, we give the mapping between ' and
'′ + '? , and show that a semantics derivation for 4 in a context�,�, ' is equivalent to a semantics
derivation for Cq (4) in the context �+, � + �5 , '

′. We focus on the most interesting cases, i.e.,
expressions altered by the compilation function.

Case init G = sample(3) and G = last G where G ∈ dom(q). The permutation is ['G] → [] :
['G] and with EG = icdf ` ('G 0)

�,� ` 3 ↓ ` · B`
�,� + [G ← EG], ['G] ` init G = sample(3) : 1 �,� + [G ← EG], [] ` G = last G : 1

�,� + [G ← EG], ['G] ` init G = sample(3) and G = last G : 1

On the other hand, because G is a constant parameter, Cq (3) = ∅ and �5 (G) = EG .

�5 (G) = EG �+, � + �5 , [] ` ∅ : 1
�+, � + �5 , [] ` Cq (init G = sample(3) and G = last G) : 1

This results can then be generalized to arbitrary sets of equations where the two equations are not
necessarily grouped together at the cost of an additional permutation.

Schedule Agnostic Semantics for Reactive Probabilistic Programming 29

Case 6\(4). By induction we have the two permutations '4 → ['′4 : '?
4] and '6 → ['′6, '

?
6].

With proba 6 G = 46 and � ` 46 : q6, we can apply the induction hypothesis on 46 because there is
no possible recursive call. The callee context for 46 is thus strictly smaller than the caller context.
We also have �6 = [®?6 ← ®E?] with ®?6 = dom(q6), ®̀6 = im(q6), and ®E? = icdf ®̀6 ('

?
6 0).

�+, � + �5 , '
′
4 ` Cq (4) ⇓ (B4 ,F4)

�,�, '4 ` 4 ⇓ (B4 ,F4)
�+, [G ← B4] + [®?6 ← ®E?], '′6 ` Cq6 (46) ⇓ (B,F)

�, [G ← B4], '6 ` 46 ⇓ (B,F)
�,�, ['4 : '6] ` 6\(4) ⇓ (B,F4 ∗F)

On the other end, by construction we have � (6.model) = proba 6.model (®?6,G) = Cq6 (46) and
there are two cases. If \ ∈ dom(q), then the constant parameters are already in the context and
�5 (\) = ®E? . The permutation is ['4 : '6] → ['′4 : '′6] : ['

?
4 : '?

6] and we have:

�+, � + �5 , [] ` \ ⇓ (®E? , 1) �+, � + �5 , '
′
4 ` Cq (4) ⇓ (B4 ,F4)

�+, � + �5 , '
′
4 ` (\,Cq (4)) ⇓ ((®E? , B4),F4) �+, [G ← B4 , ®?6 ← ®E?], '′6 ` Cq6 (46) ⇓ (B,F)

�+, � + �5 , ['′4 , '′6] ` 6.model(\, Cq (4)) ⇓ (B,F4 ∗F)

�+, � + �5 , ['′4 , '′6] ` Cq (6\ (4)) ⇓ (B,F4 ∗F)

Finally if \ ∉ dom(q), the constant parameters are not in the context and the compilation adds a
defining equation for \ . The permutation is ['4 : '6] → ['′4 : '′6 : '

?
6] : ['

?
4], and we have:

...

�+, � + �5 + [\ ← ®E?], ['′4 , '′6] ` 6.model(\, Cq (4)) ⇓ (B,F)

�+ (6.prior) = ®̀6

�+, � + �5 , '
?
6 ` sample(6.prior) ⇓ (®E? , 1)

�+, � + �5 + [\ ← ®E?], '?6 ` init \ = sample(6.prior) : 1

�+, � + �5 , ['′4 , '′6, '
?
6] ` 6.model(\, Cq (4)) where rec init \ = sample(6.prior) ⇓ (B,F)

�+, � + �5 , ['′4 , '′6, '
?
6] ` Cq (6\(4)) ⇓ (B,F)

�

We can now state and prove the correctness of the APF compilation pass.

Theorem 6.4 (APF compilation). For all probabilistic nodes 5 ,

�,� ` infer(5 (4)) ↓ 3 ⇐⇒ �+, � ` APF.infer(5 .model, 5 .prior, 4) ↓ 3

Proof. From Definition 6.1, we need to show that for all random streams ':

�,�, ' ` 5\(4) ⇓ (B,F) ⇐⇒ �+, � + [\ ← ®E?], '′ ` 5 .model(\, 4) ⇓ (B,F)

with�+ (5 .prior) = ®̀ and ®E? = icdf ®̀('
?

0). This corresponds to the case 5\(4)with \ ∈ dom(q). �

7 RELATEDWORK
Probabilistic Semantics. In the seminal work [42], two semantics are introduced for a probabilistic

imperative language. The first one is already sampling semantics that first picks an infinite stack
of random numbers and then executes the program deterministically. In the second semantics,
programs are interpreted as distribution transformer: input distributions are transformed to an
output sub-probability distribution. This second semantics is defined using measurable functions
and kernels.

30 Guillaume Baudart, Louis Mandel, and Christine Tasson

Probabilistic Coherent Spaces is a generalization of this idea to higher-order types but for discrete
probability [25]. This setting has been extended to continuous distributions with models based on
positive cones [24, 31], a variation on Banach spaces with positive scalars [47]. To interpret the
sampling operation, cones have to be equipped with a measurability structure such that measures
and integration can be defined for any types [30].

Quasi-Borel spaces (QBS) define an alternative semantics of higher-order probabilistic programs
with conditioning [38, 49] based on measurable spaces and kernels. A probabilistic expression is
interpreted as a quasi-Borel measure, i.e., an equivalence class of pairs [U, `] where ` is a measure
over R, and U is a measurable function from R to values. Intuitively, the corresponding distribution
is obtained as the pushforward of ` along U . Recent work extends this formalism to capture lazy
data structures and streams in a functional probabilistic language [26].
Our density-based semantics rely on a similar representation: probabilistic expressions are

interpreted by pushingforward a uniform measure over [0, 1]= along a measurable function. The
main difference is that we focus on a domain specific dataflow synchronous language. The set
of random variables can be computed statically, and integration is entirely deferred to the infer
operator. Importantly, we recover the fact that equations sets can be interpreted in any order, a key
property for dataflow synchronous languages.
The density-based semantics are also closely related to the sampling semantics of [8] for a

higher-order lambda calculus where a sequence of random draws is a parameter of the evaluation
rules. The main difference is that we focus on a stream based reactive language. On the one hand,
we show how to lift the sampling semantics to the reactive setting. On the other hand, we show how
to adapt the reactive semantics (co-iterative and relational) to the probabilistic setting. In addition,
there is no recursion and no loop in our language. We thus don’t need to define the semantics using
step-indexing.

Other works [21, 51, 52] define a similar semantics using [0, 1]l as the entropy which describes
an idealized random numbers generator. The stream head returns a random element, and a stream
can be split (e.g., filtering odd/even indices) to generate two new entropies. This technique is used
to interpret programs where random variables can be dynamically created (e.g., in recursive calls).
An originality of our language is that we can statically compute the number of streams of random
variables in a program, i.e., the calls to sample. The random streams exactly correspond to these
sample sites and there is no need for a splittable entropy source. This is reminiscent of the Stan
language [14] where all random variables must be declared in the parameters block, except that
in our case, parameters are streams of random variables.

Mutually recursive equations. Positive cones and lQBS are endowed with a structure of CPO
resulting in adequate denotational semantics for probabilistic programming with sampling from
continuous distributions, recursive types and term recursion [31, 50]. Although our language does
not support term recursion, fixpoint operators in positive cones or lQBS might be adapted to
give a probabilistic semantics of mutually recursive equations related to our density co-iterative
semantics. We leave for future investigations these connections.

Program Equivalence. Probabilistic bisimulation has been introduced for testing equivalence of
discrete probabilistic systems [44] and generalized to study Labelled Markov Process (continuous
systems) [28]. Following [43] which defines a notion of bisimulation for a (higher-order) probabilistic
lambda calculus, we could define a notion of probabilistic bisimulation for the co-iterative semantics
and compare it to the equivalence of probabilistic expressions we defined.

Schedule Agnostic Semantics for Reactive Probabilistic Programming 31

Probabilistic coupling, is an alternative classic proof technique for probabilistic programs equiv-
alence [3, 39]. A coupling describes correlated executions by associating pairs of samples. Proposi-
tion 5.5 that we use to prove the correctness of the APF compilation pass, is a coupling where the
relation is made explicit through a measurable function.
A logical relation is proposed in [21, 51, 52] to reason about contextual equivalence for prob-

abilistic programs. In particular [51] uses this framework to prove that reordering declarations
preserves the semantics with a permutation of the entropy stream. This reasoning is reminiscent of
the proof of Lemma 6.2 (APF Correctness). We thus show that we can apply similar techniques
with the relational semantics which manipulates infinite streams and mutually recursive equations.
Extending these works to define an equational theory to reason about reactive program equivalence
beyond permutations of the random variables streams is a promising future work.

8 CONCLUSION
In this paper we proposed two semantics for a reactive probabilistic programming languages: a
density-based co-iterative semantics and a density-based relational semantics. Both semantics are
schedule agnostic, i.e., sets of mutually recursive equations can be interpreted in arbitrary order,
a key property of synchronous dataflow languages. We defined for both semantics equivalence
of programs. The coiterative semantics manipulates state machines and equivalence reasoning
requires the description of bisimulations on states. The relational semantics directly manipulates
streams, which can lighten program equivalence reasoning for probabilistic expressions. We then
defined a program transformation required to run an optimized inference algorithm for state-space
models with constant parameters and used the relational semantics to prove the correctness of the
transformation.

REFERENCES
[1] Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin. 2021. Statically bounded-memory

delayed sampling for probabilistic streams. Proc. ACM Program. Lang. 5, OOPSLA (2021), 1–28.
[2] Eric Atkinson, Charles Yuan, Guillaume Baudart, Louis Mandel, and Michael Carbin. 2022. Semi-symbolic inference

for efficient streaming probabilistic programming. Proc. ACM Program. Lang. 6, OOPSLA2 (2022), 1668–1696.
[3] Gilles Barthe, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. 2017. Coupling proofs are probabilistic product

programs. In POPL. ACM, 161–174.
[4] Guillaume Baudart, Louis Mandel, Eric Atkinson, Benjamin Sherman, Marc Pouzet, and Michael Carbin. 2020. Reactive

Probabilistic Programming. In PLDI.
[5] Guillaume Baudart, Louis Mandel, and Reyyan Tekin. 2022. JAX Based Parallel Inference for Reactive Probabilistic

Programming. In LCTES.
[6] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs, Paul Le Guernic, and Robert de Simone. 2003.

The synchronous languages 12 years later. Proc. IEEE 91, 1 (2003), 64–83.
[7] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit

Singh, Paul A. Szerlip, Paul Horsfall, and Noah D. Goodman. 2019. Pyro: Deep Universal Probabilistic Programming. J.
Mach. Learn. Res. 20 (2019), 28:1–28:6.

[8] Johannes Borgström, Ugo Dal Lago, Andrew D. Gordon, and Marcin Szymczak. 2016. A lambda-calculus foundation
for universal probabilistic programming. In ICFP. ACM, 33–46.

[9] Timothy Bourke, Lélio Brun, Pierre-Évariste Dagand, Xavier Leroy, Marc Pouzet, and Lionel Rieg. 2017. A formally
verified compiler for Lustre. In PLDI.

[10] Timothy Bourke, Lélio Brun, and Marc Pouzet. 2020. Mechanized semantics and verified compilation for a dataflow
synchronous language with reset. Proc. ACM Program. Lang. 4, POPL (2020), 44:1–44:29.

[11] Timothy Bourke, Paul Jeanmaire, Basile Pesin, and Marc Pouzet. 2021. Verified Lustre Normalization with Node
Subsampling. ACM Trans. Embed. Comput. Syst. 20, 5s (2021), 98:1–98:25.

[12] Timothy Bourke, Basile Pesin, and Marc Pouzet. 2023. Verified Compilation of Synchronous Dataflow with State
Machines. ACM Trans. Embed. Comput. Syst. 22, 5s (2023), 137:1–137:26.

[13] Timothy Bourke and Marc Pouzet. 2013. Zélus: a synchronous language with ODEs. In HSCC.

32 Guillaume Baudart, Louis Mandel, and Christine Tasson

[14] Bob Carpenter, Andrew Gelman, MatthewDHoffman, Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus Brubaker,
Jiqiang Guo, Peter Li, and Allen Riddell. 2017. Stan: A probabilistic programming language. J. Statistical Software 76, 1
(2017), 1–37.

[15] Paul Caspi and Marc Pouzet. 1998. A Co-iterative Characterization of Synchronous Stream Functions. In CMCS
(Electronic Notes in Theoretical Computer Science, Vol. 11). Elsevier.

[16] Nicolas Chopin and Omiros Papaspiliopoulos. 2020. An introduction to sequential Monte Carlo. Springer.
[17] Jean-Louis Colaço, Michael Mendler, Baptiste Pauget, and Marc Pouzet. 2023. A Constructive State-based Semantics

and Interpreter for a Synchronous Data-flow Language with State machines. In EMSOFT.
[18] Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet. 2017. SCADE 6: A formal language for embedded critical software

development. In TASE.
[19] Jean-Louis Colaço and Marc Pouzet. 2003. Clocks as First Class Abstract Types. In EMSOFT (Lecture Notes in Computer

Science, Vol. 2855). Springer, 134–155.
[20] Jean-Louis Colaco, Michael Mendler, Baptiste Pauget, and Marc Pouzet. 2023. A Constructive State-based Semantics

and Interpreter for a Synchronous Data-flow Language with State machines. In EMSOFT. ACM.
[21] Ryan Culpepper and Andrew Cobb. 2017. Contextual Equivalence for Probabilistic Programs with Continuous Random

Variables and Scoring. In ESOP (Lecture Notes in Computer Science, Vol. 10201). Springer, 368–392.
[22] Pascal Cuoq and Marc Pouzet. 2001. Modular Causality in a Synchronous Stream Language. In ESOP (Lecture Notes in

Computer Science, Vol. 2028). Springer, 237–251.
[23] Marco F. Cusumano-Towner, Feras A. Saad, Alexander K. Lew, and Vikash K. Mansinghka. 2019. Gen: a general-purpose

probabilistic programming system with programmable inference. In PLDI.
[24] Fredrik Dahlqvist and Dexter Kozen. 2020. Semantics of higher-order probabilistic programs with conditioning. Proc.

ACM Program. Lang. 4, POPL (2020), 57:1–57:29.
[25] Vincent Danos and Thomas Ehrhard. 2011. Probabilistic coherence spaces as a model of higher-order probabilistic

computation. Inf. Comput. 209, 6 (2011), 966–991.
[26] Swaraj Dash, Younesse Kaddar, Hugo Paquet, and Sam Staton. 2023. Affine Monads and Lazy Structures for Bayesian

Programming. Proc. ACM Program. Lang. 7, POPL (2023), 1338–1368.
[27] Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. 2006. Sequential Monte Carlo samplers. J. Royal Statistical Society:

Series B (Statistical Methodology) 68, 3 (2006), 411–436.
[28] Josée Desharnais, Abbas Edalat, and Prakash Panangaden. 2002. Bisimulation for Labelled Markov Processes. Inf.

Comput. 179, 2 (2002), 163–193.
[29] Luc Devroye. 2006. Nonuniform random variate generation. Handbooks in operations research and management science

13 (2006), 83–121.
[30] Thomas Ehrhard and Guillaume Geoffroy. 2023. Integration in cones. Technical Report. IRIF.
[31] Thomas Ehrhard, Michele Pagani, and Christine Tasson. 2018. Measurable cones and stable, measurable functions: a

model for probabilistic higher-order programming. Proc. ACM Program. Lang. 2, POPL (2018), 59:1–59:28.
[32] Yusuf Bugra Erol, Yi Wu, Lei Li, and Stuart Russell. 2017. A Nearly-Black-Box Online Algorithm for Joint Parameter

and State Estimation in Temporal Models. In AAAI.
[33] Hong Ge, Kai Xu, and Zoubin Ghahramani. 2018. Turing: A Language for Flexible Probabilistic Inference. In Proceedings

of Machine Learning Research.
[34] Noah D. Goodman and Andreas Stuhlmüller. 2014. The Design and Implementation of Probabilistic Programming

Languages. http://dippl.org
[35] Maria I. Gorinova, Andrew D. Gordon, and Charles Sutton. 2019. Probabilistic programming with densities in SlicStan:

efficient, flexible, and deterministic. Proc. ACM Program. Lang. 3, POPL (2019), 35:1–35:30.
[36] Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. 1991. The Synchronous Dataflow Programming

Language Lustre. Proc. of the IEEE 79, 9 (September 1991), 1305–1320.
[37] David Harel. 1987. Statecharts: A Visual Formalism for Complex Systems. Sci. Comput. Program. 8, 3 (1987), 231–274.
[38] Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. 2017. A convenient category for higher-order

probability theory. In LICS.
[39] Justin Hsu. 2017. Probabilistic Couplings for Probabilistic Reasoning. Ph. D. Dissertation. University of Pennsylvania.
[40] The MathWorks Inc. 2022. Simulation and Model-Based Design (R2024a). Natick, Massachusetts, United States.

https://www.mathworks.com/products/simulink.html
[41] Claire Jones and Gordon D. Plotkin. 1989. A Probabilistic Powerdomain of Evaluations. In LICS. IEEE Computer

Society, 186–195.
[42] Dexter Kozen. 1981. Semantics of Probabilistic Programs. J. Comput. Syst. Sci. 22, 3 (1981), 328–350.
[43] Ugo Dal Lago and Francesco Gavazzo. 2019. On Bisimilarity in Lambda Calculi with Continuous Probabilistic Choice.

In MFPS (Electronic Notes in Theoretical Computer Science, Vol. 347). Elsevier, 121–141.

http://dippl.org
https://www.mathworks.com/products/simulink.html

Schedule Agnostic Semantics for Reactive Probabilistic Programming 33

[44] Kim Guldstrand Larsen and Arne Skou. 1989. Bisimulation Through Probabilistic Testing. In POPL. ACM Press,
344–352.

[45] Michael Montemerlo, Sebastian Thrun, Daphne Koller, and Ben Wegbreit. 2002. FastSLAM: A Factored Solution to the
Simultaneous Localization and Mapping Problem. In AAAI.

[46] David Michael Ritchie Park. 1981. Concurrency and Automata on Infinite Sequences. In Theoretical Computer Science.
[47] Peter Selinger. 2004. Towards a semantics for higher-order quantum computation.. In QPL.
[48] Sam Staton. 2017. Commutative Semantics for Probabilistic Programming. In ESOP.
[49] Sam Staton, Hongseok Yang, Frank D. Wood, Chris Heunen, and Ohad Kammar. 2016. Semantics for probabilistic

programming: higher-order functions, continuous distributions, and soft constraints. In LICS.
[50] Matthijs Vákár, Ohad Kammar, and Sam Staton. 2019. A domain theory for statistical probabilistic programming. Proc.

ACM Program. Lang. 3, POPL (2019), 36:1–36:29.
[51] Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb. 2018. Contextual equivalence for a

probabilistic language with continuous random variables and recursion. Proc. ACM Program. Lang. 2, ICFP (2018),
87:1–87:30.

[52] Yizhou Zhang and Nada Amin. 2022. Reasoning about ”reasoning about reasoning”: semantics and contextual
equivalence for probabilistic programs with nested queries and recursion. Proc. ACM Program. Lang. 6, POPL (2022),
1–28.

34 Guillaume Baudart, Louis Mandel, and Christine Tasson

⦅4⦆
init
W = È4ÉinitW , 0

⦅4⦆
step
W (<, []) = let <′, E = È4ÉstepW (<) in<′, E, 1 if 4 is deterministic

⦅sample(4)⦆initW = let < = È4ÉinitW in<, 1

⦅sample(4)⦆stepW (<, [A]) = let <′, ` = È4ÉstepW (<) in<′, icdf ` (A), 1

⦅factor(4)⦆initW = let < = È4ÉinitW in<, 0

⦅factor(4)⦆stepW (<, []) = let <′, E = È4ÉstepW (<) in<′, (), E

⦅5 (4)⦆initW = let <5 , ? 5 = W (5 .init) in
let <4 , ?4 = ⦅4⦆

init
W in

(<5 ,<4), ? 5 + ?4
⦅5 (4)⦆stepW ((<5 ,<4), [A 5 : A4]) = let <′4 , E4 ,F4 = ⦅4⦆

step
W (<4 , A4) in

let <′
5
, E,F 5 = W (5 .step) (E4 ,<5 , A 5) in

(<′
5
,<′4), E,F4 ∗F 5

⦅present 4 → 41 else 42⦆
init
W = let <1, ?1 = ⦅41⦆

init
W in

let <2, ?2 = ⦅42⦆
init
W in

(È4ÉinitW ,<1,<2), ?1 + ?2
⦅present 4 → 41 else 42⦆

step
W ((<,<1,<2), [A1 : A2]) = let <′, E = È4ÉstepW (<) in

if E then let (<′1, E1,F) = ⦅41⦆
step
W (<1, A1)

in (<′,<′1,<2), E1,F
else let (<′2, E2,F) = ⦅42⦆

step
W (<2, A2)

in (<′,<1,<
′
2), E2,F

⦅reset 41 every 42⦆
init
W = let <1, ? = ⦅41⦆

init
W in (<1,<1, È42ÉinitW), ?

⦅reset 41 every 42⦆
step
W ((<0,<1,<2),F, A) = let <′2, E2 = È42É

step
W (<2) in

let <′1, E1,F = ⦅41⦆
step
W (if E2 then<0 else<1, A) in

(<0,<
′
1,<

′
2), E1,F

Fig. 13. Density-based co-iterative semantics for ProbZelus probabilistic expressions.

A SEMANTICS
A.1 Density-based co-iterative semantics
The density-based co-iterative semantics is presented in Section 4. Figures 13 and 14 presents the
full semantics for expressions and equations. The additional rules are for present and reset.
The initialization of present 4 → 41 else 42 allocates memory for 4 , 41 and 42 and count the

number of random variables in 41 and 42 (4 is deterministic and does not have any random variable).
The step function first executes 4 and depending on its value executes 41 or 42. The initialization
of reset 41 every 42 duplicates the memory needed to execute 41. That way, in the step function,
only the second copy is updated by the transition and if 41 is reset, the execution restarts from the
initial memory state.

Schedule Agnostic Semantics for Reactive Probabilistic Programming 35

⦅G = 4⦆initW = ⦅4⦆
init
W

⦅G = 4⦆
step
W (<, A) = let <′, E,F = ⦅4⦆

step
W (<, A) in<′, [G ← E],F

⦅init G = 4⦆initW = let <0, ? = ⦅4⦆
init
W in (nil,<0), ?

⦅init G = 4⦆
step
W ((nil,<0), A) = let <′, 8,F = ⦅4⦆

step
W (<0, A) in (W (G),<0), [G .last← 8],F

⦅init G = 4⦆
step
W ((E,<0), A) = (W (G),<0), [G .last← E], 1

⦅�1 and �2⦆
init
W = let "1, ?1 = ⦅�1⦆

init
W in

let "2, ?2 = ⦅�2⦆
init
W in

("1, "2), ?1 + ?2
⦅�1 and �2⦆

step
W (("1, "2), [A1 : A2]) = let " ′1, d1,F1 = ⦅�1⦆

step
W ("1, A1) in

let " ′2, d2,F2 = ⦅�2⦆
step
W ("2, A2) in

(" ′1, " ′2), d1 + d2,F1 ∗F2

⦅4 where rec �⦆
init
W = let <, ?4 = ⦅4⦆

init
W in

let ", ?� = ⦅�⦆
init
W in

(<,"), ?4 + ?�
⦅4 where rec �⦆

step
W ((<,"), [A4 : A�]) = let � (d) =

(
let " ′, d,F = ⦅�⦆W+d (", A�) in d

)
in

let d = fix (�) in
let " ′, d,, = ⦅�⦆

step
W+d (", A�) in

let <′, E,F = ⦅4⦆
step
W ′ (<, A4) in

(<′, " ′), E,F ∗,

Fig. 14. Density-based co-iterative semantics for ProbZelus equations.

A.2 Density-based relational semantics
Stream functions. The density-based relational semantics is presented in Section 5. The definition

of this semantics relies on a few stream functions presented Figure 15
The function tl drops the first element of a stream (tl= drops the = first elements). The function
map 5 B applies 5 to each element of the stream B . merge 2B 0B 1B merges the streams 0B and 1B
according to the condition 2B . 0B when 2B keeps the values of 0B only when the condition 2B is true.
The function slicer BB 2B is used to define the semantics of reset 41 every 42. The first argument BB
is a stream of streams where each stream represents 41 restarted at each time step, and 2B the the
reset condition. When the condition is false, the first value of the first stream of BB is returned and
the second stream of BB is discarded. We progress by one step in 41 and the stream representing 41
restarted at the current iteration is not useful since the expression was not reset. When the condition
is true, the first stream of BB which represents the current state of 41 is discarded and the execution
restarts with the first value of the second stream of BB which represents 41 restarted at the current
step.

Environment. An environment � is a map from variable names to streams of values, for any
bound variable G ∈ dom(�), � (G) : �l . When the context is clear, we write 5 � for map 5 � , e.g.,
for all G ∈ dom(�), (tl �) (G) = tl (� (G)).

Relational semantics. The full deterministic and probabilistic density-based relational semantics
including the rules for present and reset are given in Figures 16 and 17. The semantics of the

36 Guillaume Baudart, Louis Mandel, and Christine Tasson

tl : �l → �l

tl (0 · 0B) = 0B

map : (�→ �) → (�l → �l)
map 5 (0 · 0B) = 5 (0) · (map 5 0B)

merge : Bl → �l → �l → �l

merge () · 2B) (0 · 0B) 1B = 0 · (merge 2B 0B 1B)
merge (� · 2B) 0B (1 · 1B) = 1 · (merge 2B 0B 1B)

when : Al → Bl → �l

(0 · 0B) when () · 2B) = 0 · (0B when 2B)
(0 · 0B) when (� · 2B) = 0B when 2B

slicer : (�l)l → Bl → �l

slicer ((0 · 0B) · 1B · BB) (� · 2B) = 0 · (slicer (0B · BB) 2B)
slicer (0B · (1 · 1B) · BB) () · 2B) = 1 · (slicer (1B · BB) 2B)

Fig. 15. Stream functions for the density-based relational semantics.

�,� ` 2 ↓ 2 �, � ` G ↓ � (G)
G ∉ �

�,� ` G ↓ � (G)
�,� ` 41 ↓ B1 �,� ` 42 ↓ B2

�,� ` (41,42) ↓ (B1, B2)

�,� ` 4 ↓ B
�, � ` op(4) ↓ op(B)

� (G .last) = B

�, � ` last G ↓ B

�, � ` 4 ↓ B4 � (5) = node 5 G = 45 �, [G ← B4] ` 45 ↓ B
�, � ` 5 (4) ↓ B

�, � + �� ` � �,� + �� ` 4 ↓ B
�, � ` 4 where rec � ↓ B

�, � ` 4 ↓ B2 �, (� when B2) ` 41 ↓ B1 �, (� when not B2) ` 42 ↓ B2
�,� ` present 4 → 41 else 42 ↓ merge B2 B1 B2

[�, (tl = �) ` 41 ↓ B=]=∈N �,� ` 42 ↓ B2
�,� ` reset 41 every 42 ↓ slicer (B0 · B0 · B1 · B2 · ...) B2

�,� ` 4 ↓ � (G)
�,� ` G = 4

�,� ` 4 ↓ E8 · B8 � (G .last) = E8 · � (G)
�,� ` init G = 4

�,� ` �1 �,� ` �2
�,� ` �1 and �2

Fig. 16. Deterministic relational semantics.

Schedule Agnostic Semantics for Reactive Probabilistic Programming 37

�,�, [] ` 2 ⇓ (2, 1) �,�, [] ` G ⇓ (� (G), 1)
G ∉ �

�,�, [] ` G ⇓ (� (G), 1)

�,�, '4 ` 4 ↓ (B4 ,F4) � (5) = proba 5 G = 45 �, [G ← B4], '5 ` 45 ⇓ (B,F)
�,�, ['4 : '5] ` 5 (4) ⇓ (B,F ∗F4)

�,� + ��, '� ` � : F� �,� + ��, '4 ` 4 ⇓ (B,F)
�,�, ['4 : '�] ` 4 where rec � ⇓ (B,F ∗F�)

�,�, '4 ` 4 ↓ B2 �, (�, '1 when B2) ` 41 ⇓ BF1 �, (�, '2 when not B2) ` 42 ⇓ BF2

�,�, ['1 : '2] ` present 4 → 41 else 42 ⇓ merge B2 BF1 BF2

[�, (tl = �, '1) ` 41 ⇓ BF=]=∈N
�,�, '2 ` 42 ↓ B2 (B,F) = slicer (BF0 · BF0 · BF1 · BF2 · ...) B2

�,�, ['1 : '2] ` reset 41 every 42 ⇓ (B,F)

�,� ` 4 ↓ B`
�,�, ['] ` sample(4) ⇓ (icdf B` ('), 1)

�,� ` 4 ↓ F
�,�, [] ` factor(4) ⇓ ((),F)

�,�, ' ` 4 ⇓ (� (G),F)
�,�, ' ` G = 4 : F

�,�, ' ` 4 ⇓ (8 · B,F8 ·F) � (G .last) = 8 · � (G)
�,�, ' ` init G = 4 : F8 · 1

�,�, '1 ` �1 : F1 �,�, '2 ` �2 : F2

�,�, ['1 : '2] ` �1 and �2 : F1 ∗F2

? = RV(4) [�,�, ' ` 4 ⇓ (B,F) F = Π F]'∈ ([0,1]l)?
�,� ` infer(4) ↓ integ? F B

Fig. 17. Probabilistic relational semantics.

control structure present 4 → 41 else 42 uses the when function on the environment� such that
the execution of 41 and 42 respectively progress only when the condition is true or false. Then the
value of these two streams are merged using themerge function.The semantics of reset 41 every 42
is based on the slicer function. [�, (tl = �) ` 41 ↓ B=]=∈N represents the stream of streams where B=
is the stream of values computed by 41 restarted at time step =. In the slicer, the stream B0 is
duplicated because reset 41 every 42 returns the same value whether or not 42 is true at the initial
step.

B APPLICATION: ASSUMED PARAMETERS FILTERING
B.1 Algorithm
The inference methods proposed by ProbZelus [2, 4, 5] belong to the family of SMC algorithms.
These methods rely on a set of independent simulations, called particles. Each particle returns an

38 Guillaume Baudart, Louis Mandel, and Christine Tasson

Data: probablisitic model model, observation ~C , and previous result `C−1.
Result: `C an approximation of the distribution of ?C .

for each particle 8 = 1 to # do
?8C−1 = sample()
?8C ,F

8
C = model(~C | ?8C−1)

`C =M({F 8
C , ?

8
C }1≤8≤#)

return `C

Algorithm 1: Particle Filter.

output value associated with a score. The score represents the quality of the simulation. A large
number of particles makes it possible to approximate the desired distribution.

More concretely, the sample(d) construct randomly draws a value from the d distribution, and
the factor(x) construct multiplies the current score of the particle by x. At each instant, the
infer operator accumulates the values calculated by each particle weighted by their scores to
approximate the posterior distribution.
If the model calls on the operator sample at each instant, for example to estimate the position

of the boat in the radar example (Section 2), the previous method implements a simple random
walk for each particle. As time progresses, it becomes increasingly unlikely that one of the random
walks will coincide with the stream of observations. The score associated with each particle quickly
goes down towards 0.
To solve this issue, sequential Monte Carlo methods (SMC) add a filtering step. Algorithm 1

describes the execution of one instant for a particle filter, the most basic SMC algorithm. At each
instant C , a particle 1 ≤ 8 ≤ # corresponds to a possible value of the parameters (i.e., random
variables) ?8C of the model. We begin by sampling a new set of particles in the distribution obtained
at the previous step. The most probable particles are thus duplicated and the less probable ones are
eliminated. This refocuses the inference around the most significant information while maintaining
the same number of particles throughout the execution. Knowing the previous state ?8C−1, each
particle then executes a step of the model to obtain a sample of the parameters ?8C associated with a
scoreF 8

C . At the end of the instant, we construct a distribution `C where each particle is associated
with its score.M({F 8

C , ?
8
C }1≤8≤#) is a multinomial distribution, where the value ?8C is associated

with the probabilityF 8
C/
∑#

8=1F
8
C .

Unfortunately, this approach generates a loss of information for the estimation of constant
parameters. On our radar example, at the first instant, each particle draws a random value for the
parameter theta. At each instant, the duplicated particles share the same value for theta. The
quantity of information useful for estimating theta therefore decreases with each new filtering
and, after a certain time, only one possible value remains.

Rather than sampling at the start of execution a set of values for the constant parameters that will
impoverish with each filtering, in the APF algorithm, each particle computes a symbolic distribution
of constant parameters. At runtime, the inference then alternates between a sampling pass to
estimate the state parameters, and an optimization pass which updates the constant parameters.
This avoids impoverishment for the estimation of the constant parameters.
More formally, Algorithm 2 describes the execution of one step of APF. At each instant C , a

particle 1 ≤ 8 ≤ # corresponds to a possible value of the state parameters G8C and a distribution
of constant parameters Θ8

C . As for the particle filter, we begin by sampling a set of particles in
the distribution obtained at the previous instant. We then sample a value \ 8 in Θ8

C−1. Knowing
the value of the constant parameters \ 8 and the previous state G8C−1, we can execute a step of

Schedule Agnostic Semantics for Reactive Probabilistic Programming 39

Data: probabilistic model model, observation ~C , and previous result `C−1.
Result: `C an approximation of the distributions of state parameter GC and constant

parameter \ .

for each particle 8 = 1 to # do
G8C−1,Θ

8
C−1 = sample()

\ 8 = sample()
G8C ,F

8
C = model(~C | \ 8 , G8C−1)

Θ8
C = Udpate(Θ8

C−1, _\ . model(~C | \, G8C−1, G8C))
`C =M({F 8

C , (G8C ,Θ8
C)}1≤8≤#)

return `C

Algorithm 2: Assumed Parameter Filter [32].

� `2 4
Φ,� ` let G = 4 : Φ,� + {G} Φ,� ` node 5 G = 4 : Φ + {5 ← ∅},�

� ` 4 : q
Φ,� ` proba 5 G = 4 : Φ + {5 ← q},�

Φ,� ` 31 : Φ1,�1 Φ1,�1 ` 32 : Φ′,�′

Φ,� ` 31 32 : Φ′,�′

� ` 2 : ∅ � ` G : ∅
� ` 41 : q1 � ` 42 : q2

� ` (41,42) : q1 + q2

� ` 4 : q
� ` op(4) : q

� ` 4 : q
� ` sample(4) : q

� ` 4 : q
� ` factor(4) : q � ` last G : ∅

� ` 41 : q
� ` present 41 → 42 else 43 : q

� ` 42 : q
� ` reset 41 every 42 : q � ` 5\(4) : {\ ← 5 .prior}

� ` 4 : q4 � `2 � : � �, � ` � : q�

� ` 4 where rec � : q4 + q�
G ∈ � � `2 4

�, � ` init G = sample(4) : {G ← 4}

� ` 4 : q
�, � ` init G = 4 : q

� ` 4 : q
�, � ` G = 4 : q

�, � ` �1 : q1 �, � ` �2 : q2

�, � ` �1 and �2 : q1 + q2

Fig. 18. Extract constant parameters and associated prior distributions.

the model to obtain a sample of the state parameters G8C associated with a scoreF 8
C . We can then

update Θ8
C by exploring the other possible values for \ knowing that the particle has chosen the

transition G8C−1 → G8C . At the end of the instant, we construct a distribution `C where each particle
is associated with its score.M({F 8

C , (G8C ,Θ8
C)}1≤8≤#) is a multinomial distribution where the pair of

values (G8C ,Θ8
C) is associated to the probabilityF 8

C/
∑#

8=1F
8
C .

B.2 Static Analysis
The full type system is given in Figures 18 and 19. The interesting cases are presented in Section 6.1.

40 Guillaume Baudart, Louis Mandel, and Christine Tasson

� `2 2
G ∈ �
� `2 G

� `2 41 � `2 42
� `2 (41,42)

� `2 4
� `2 op(4)

� + dom(�) `2 4 � `2 � : dom(�)
� `2 4 where rec � � `2 init G = 4 : ∅ � `2 G = last G : {G}

� `2 4
� `2 G = 4 : {G}

� 02 4

� `2 G = 4 : ∅
� +�2 `2 �1 : �1 � +�1 `2 �2 : �2

� `2 �1 and �2 : �1 +�2

Fig. 19. Constant expressions and equations.

Cq (2) = 2

Cq (G) = G

Cq ((41,42)) = (Cq (41),Cq (42))
Cq (op(4)) = op(Cq (4))
Cq (last G) = last G

Cq (present 41 → 42 else 43) = present Cq (41) → Cq (42) else Cq (43)
Cq (reset 41 every 42) = reset Cq (41) every Cq (42)
Cq (sample(4)) = sample(Cq (4))
Cq (factor(4)) = factor(Cq (4))
Cq (4 where rec �) = Cq (4) where rec Cq (�)

Cq (init G = 4) =

{
∅ if G ∈ dom(q)
init G = Cq (4) otherwise

Cq (G = 4) =

{
∅ if G ∈ dom(q)
G = Cq (4) otherwise

Cq (5\(4)) =

5 (Cq (4)) if 5 is deterministic
5 .model(\, Cq (4)) if \ ∈ dom(q)
5 .model(\, Cq (4)) where otherwise

rec init \ = sample(5 .prior)
and \ = last \

Cq (infer(5 (4))) = APF.infer(5 .model, 5 .prior, Cq (4))

Cq (�1 and �2) = Cq (�1) and Cq (�2)

CΦ (let G = 4) = let G = 4

CΦ (node 5 G = 4) = node 5 G = C∅ (4)
CΦ (proba 5 G = 4) = let 5 .prior = im(q) with q = Φ(5)

proba 5 .model (dom(q),G) = Cq (4)

Fig. 20. APF Compilation.

Schedule Agnostic Semantics for Reactive Probabilistic Programming 41

B.3 Compilation
The complete compilation function to transformation a ProbZelus model into a model compatible
with APF.infer is given in Figure 20. Most cases simply call the compilation functions on all
sub-expressions. The interesting cases are presented in Section 6.2.

	Abstract
	1 Introduction
	2 Example
	2.1 Kernel-based co-iterative semantics
	2.2 Density-based co-iterative semantics
	2.3 Density-based relational semantics

	3 Background
	3.1 Syntax
	3.2 Co-iterative semantics
	3.3 Equations and fixpoints

	4 Density-based co-iterative semantics
	4.1 Probabilistic semantics with fixpoint
	4.2 Inference
	4.3 Program equivalence

	5 Density-Based Relational Semantics
	5.1 Deterministic relational semantics
	5.2 Probabilistic relational semantics
	5.3 Inference
	5.4 Program equivalence

	6 Application: Assumed Parameter Filter
	6.1 Static Analysis
	6.2 Compilation
	6.3 Correctness

	7 Related work
	8 Conclusion
	References
	A Semantics
	A.1 Density-based co-iterative semantics
	A.2 Density-based relational semantics

	B Application: Assumed Parameters Filtering
	B.1 Algorithm
	B.2 Static Analysis
	B.3 Compilation

