
Under consideration for publication in Math. Struct. in Comp. Science

Transport of �niteness structures and

applications

CHRIST INE TASSON1† and L IONEL VAUX2‡

1 Preuves, Programmes et Systèmes, CNRS UMR 7126, Paris, France.
2 Institut de Mathématiques de Luminy, CNRS UMR 6206, Marseille, France.

Received April 13, 2010

We describe a general construction of �niteness spaces which subsumes the

interpretations of all positive connectors of linear logic. We then show how to apply this

construction to prove the existence of least �xpoints for particular functors in the

category of �niteness spaces: these include the functors involved in a relational

interpretation of lazy recursive algebraic datatypes along the lines of the coherence

semantics of system T.

1. Introduction

Finiteness spaces were introduced by Ehrhard (Ehr05), re�ning the purely relational

model of linear logic. A �niteness space is a set equipped with a �niteness structure,

i.e. a particular set of subsets which are said to be �nitary; and the model is such

that the relational denotation of a proof in linear logic is always a �nitary subset of

its conclusion. Applied to the �nitary relational model of linear logic, the usual co-

Kleisli construction provides a cartesian closed category, hence a model of the simply

typed λ-calculus. The de�ning property of �niteness spaces is that the intersection of

two �nitary subsets of dual types is always �nite. This feature allows to reformulate

Girard's quantitative semantics (Gir88) in a standard algebraic setting, where morphisms

interpreting typed λ-terms are analytic functions between the topological vector spaces

generated by vectors with �nitary supports. This provided the semantic foundations of

Ehrhard-Regnier's di�erential λ-calculus (ER03) and motivated the general study of a

di�erential extension of linear logic (ER05; ER06; EL07; Tra08; Vau09b; Tas09; PT09,

etc.).

The fact that �niteness spaces form a model of linear logic can be understood as a

property of the relational interpretation: as we have already mentionned, the relational

semantics of a proof is always �nitary. The present paper studies the connexion between

the category Rel of sets and relations and the category Fin of �niteness spaces and �nitary

† This work has been partially funded by the French ANR projet blanc �Curry Howard pour la Con-
currence� CHOCO ANR-07-BLAN-0324.
‡ id.

C. Tasson and L. Vaux 2

relations, while maintaining a similar standpoint: we investigate whether and how some

of the most distinctive features of Rel can be given counterparts in Fin.
Our primary contribution is a very general construction of �niteness spaces: given a

relation from a set A to a �niteness space such that the relational image of every element

is �nitary, we can form a new �niteness space on A whose �nitary subsets are exactly

those with �nitary image. We refer to this result as the transport lemma. Although simple

in its formulation, the transport lemma subsumes many constructions in �niteness spaces

and in particular those interpreting the positive connectives of linear logic (multiplicative

�⊗�, additive �⊕� and exponential � !�) whose action on sets is given by the corresponding

relational interpretations. We moreover provide su�cient conditions for a functor in Rel
to give rise to a functor in Fin via the transport lemma: again, this generalizes the

functoriality of the positive connectives of linear logic.

The category Rel, endowed with inclusion on sets and relations, is enriched on complete

partial orders (cpo). This structure was studied in a more general 2-categorical setting

(CKS84; CKW91) and the properties of monotonic functors allowed for an abstract

description of datatypes (BH03; BdBH+91). In particular, this provided the basis of a

categorical account of container types (HDM00). In such a setting, it is standard to

de�ne recursive datatypes, such as lists or trees, as the least �xpoints of particular Scott-

continuous functors. This prompted us to consider two orders on �niteness spaces derived

from set inclusion: the most restrictive one, �niteness extension, was used by Ehrhard to

provide an interpretation of second order linear logic (Ehr05, unpublished preliminary

version), while the largest one, �niteness inclusion, is a cpo on �niteness spaces. We

study various notions of continuity for functors in �niteness spaces, and relate them

with the existence of �xpoints. A striking feature of this development is that we are led

to consider the properties of functors w.r.t. both orders simultaneously: continuity for

�niteness inclusion, and monotonicity for �niteness extension. We prove in particular

that every functor obtained by applying the transport lemma to a continuous relational

functor satis�es these properties, and admits a least �xpoint for �niteness inclusion.

The remaining of the paper is dedicated to the application of these results to the

relational semantics of functional programming with recursive datatypes. Indeed, the

co-Kleisli construction applied to the relational model of linear logic gives rise to the

cartesian closed category Rel!. The fact that the already mentionned co-Keisli Fin! of

Fin provides a model of the λ-calculus can again be understood as a property of the

interpretation in Rel!: the relational semantics of a simply typed λ-term is always �nitary.

It is however worth noticing that, whereas the relational model can accomodate untyped

λ-calculi (dC08; BEM07), �niteness spaces are essentially a model of termination. The

whole point of the �niteness construction is to reject in�nite computations, ensuring

that the intermediate sets involved in the relational interpretation of a cut are all �nite.

In particular, the relational semantics of �xpoint combinators is �nitary only on empty

types: general recursion is ruled out from this framework. This is to be related with the

fact that �nitary relations are not closed under arbitrary unions: in contrast with the cpo

on objects, the category Fin! (and thus Fin) is not enriched on complete partial orders.

Despite this restrictive design, Ehrhard was able to de�ne a �nitary interpretation of

tail-recursive iteration (Ehr05, Section 3): this indicates that the �niteness semantics can

Transport of �niteness structures and applications 3

accomodate a form of typed recursion. This interpretation, however, is not completely

satisfactory: tail recursive iteration is essentially linear, thus it does not provide a type

of natural numbers (Thi82; LS88) in the associated model of the λ-calculus. This is

essentially due to the fact that the interpretation of natural numbers is �at (in the

sense of domains). In fact, a similar e�ect was already noted by Girard in the design

of his coherence semantics of system T (GTL89): his solution was to propose a lazy

interpretation of natural numbers, where laziness refers to the possibility of pattern

matching on non normal terms. The second author remarked (Vau09c) that the same

solution could be adapted in the relational model and provided a type of natural numbers

with �nitary recursor, hence a model of system T .

Our previous developments allow us to generalize this construction: after introducing

a �nitary relational interpretation of sum types, we consider the �xpoints of particular

functors and show they provide a relational semantics of the typed λ-calculus with lazy

recursive algebraic datatypes by exhibiting their constructors and destructors. Adapt-

ing the techniques already employed by the second author in the case of system T , we

moreover show these operators are �nitary.

Related and future work. Our �rst interest in the semantics of datatypes in �niteness

spaces was the possibility of extending the quantitative semantics of the simply typed

λ-calculus in vectorial �niteness spaces to functional programming with base types. This

would broaden the scope of the already well developped proof theory of di�erential linear

logic: the quantitative semantics provides more precise information on cut elimination,

and is thus a better guide in the design of syntax than the plain relational interpretation.

Earlier achievements in this direction include the �rst author's extension of the algebraic

λ-calculus (Vau09a) with a type of booleans, together with a semantic characterization

of total terms which is proved to be complete on boolean functions (Tas09). In previous

unpublished work, we also proposed a quantitative semantics of tail recursive iteration.

As we mentionned before, this did not provide a semantics of system T , which prompted

us to investigate the general structure of standard datatypes in �niteness spaces. In this

regard, our present contribution is an important step.

Notice that another standard approach to recursive datatypes is to consider the im-

predicative encoding of inductive datatypes in system F . In an unpublished preliminary

version of his paper on �niteness spaces, Ehrhard proposed an interpretation of second

order linear logic. This is based on a class of functors which, in particular, are mono-

tonic for the �niteness extension order. Notice however that this does not provide a

denotational semantics stricto sensu: in general, the interpretation decreases under cut

elimination. Moreover, possibility of a quantitative semantics in this setting is not clear.

Other accounts of type �xpoints in linear logic include the system of linear logic proof

nets with recursion boxes of Gimenez (Gim09), which allows to interpret, e.g., PCF. As

such this system can be seen as a graphical syntax for general recursion. Along similar

lines, Mackie et al. have proposed a system of interaction nets which models iteration

on recursive datatypes (FMSW09). In both cases, no particular denotational semantics

is considered. Let us also mention Baelde�Miller's µMALL (BM07) which replaces the

exponential modalities of linear logic with least and greatest �xpoints: less close to our

C. Tasson and L. Vaux 4

contribution, this work is mainly oriented towards proof search. It however introduces the

system µLJ of intuitionistic logic with �xpoints, for which Clairambault later proposed a

cut elimination procedure allowing to encode system T , together with a game semantics

accounting for typed recursion (Cla10).

The notion of transport functor we use to describe how functors in Fin can be derived

from functors in Rel is strikingly similar to the categorical characterization of container

types by Hoogendijk and De Moor we already mentionned (HDM00). These authors

characterize containers as relators with membership: relators are functors in Rel which are
monotonic for inclusion; membership relations are particular lax natural transformations

associated with these functors. The hypotheses we consider on tranport functors are

weaker than those on relators with membership. On the other hand, in order to ensure

functoriality in Fin, we are led to refer to a shape relation: it might be the case that

restricting transport functors to relators with �nite membership will allow us to drop

this somewhat inelegant side condition.

Outline of the paper and main results. In section 2, we review the structure and properties

of Rel. We establish the transport lemma in section 3, and derive the interpretations of

the positive connectives of linear logic in Fin from those in Rel. Section 4 introduces two

orders on �niteness spaces and associated properties. In particular we provide su�cient

conditions for the existence of �xpoints of functors. We moreover prove these conditions

are automatically satis�ed by transport functors. The last two sections are dedicated to

the �nitary relational semantics of λ-calculi: we �rst recall the semantics of the simply

typed λ-calculus in section 5, and detail the semantics of recursive algebraic datatypes

in section 6.

2. Sets and relations

2.1. Notations

We write N for the set of all natural numbers. Let A and B be sets. We write A ⊆ B if

A is a subset of B (not necessarily a strict one), and A ⊆f B if moreover A is �nite. We

write #A for the cardinality of A, P (A) for the powerset of A and Pf (A) for the set of
all �nite subsets of A. We identify multisets of elements of A with functions A −→ N.

If µ is such a multiset, we write supp (µ) for its support set {α ∈ A; µ(α) 6= 0}. A �nite

multiset is a multiset with a �nite support. We write Mf (A) for the set of all �nite

multisets of elements of A. Whenever (α1, . . . , αn) ∈ An, we write [α1, . . . , αn] for the
corresponding �nite multiset: α ∈ A 7→ # {αi; αi = α}. We also write # [α1, . . . , αn] = n

for the cardinality of multisets. The empty multiset is [] and we use the additive notation

for multiset union, i.e. µ+ µ′ : α ∈ A 7→ µ(α) + µ′(α).
Since we will often consider numerous notions associated with a �xed set, we introduce

the following typographic conventions: we will in general use latin majuscules for reference

sets (e.g. A), greek minuscules for their elements (e.g. α, α′ ∈ A), latin minuscules for

subsets (e.g. a ⊆ A), gothic majuscules for sets of subsets (e.g. A ⊆ P (A)), and script

majuscules for �niteness spaces (e.g. A = (A,A)). In general, if T is an operation on sets

Transport of �niteness structures and applications 5

we derive the notations for elements, subsets, etc. of TA from those for elements, subsets,

etc. of A by the use of various overscripts (e.g. α̃ ∈ ã ⊆ TA). We reserve overlining for

multisets (e.g. α = [α1, . . . , αn] ∈Mf (A)).
We will also consider families of objects (sets, elements, �niteness spaces, etc.) and

thus introduce the following conventions. Unless stated otherwise, all families considered

in the same context are based on a common set of indices, say I. We then write e.g.
−→
A

for the family (Ai)i∈I . We moreover use obvious notations for componentwise operations

on families: for instance if
−→
A and

−→
B are two families of sets, we may write

−−−−→
A ∪B for

(Ai ∪Bi)i∈I , and
−−−→
P (A) for (P (Ai))i∈I . We may also write, e.g.,

−−−−→
A ⊆ B for Ai ⊆ Bi for

all i ∈ I.
Assume

−→
A is a family of sets. We write

∏−→
A for the cartesian product of the Ai's and∑−→

A for their coproduct (I-indexed disjoint union):
∏−→
A = {−→α ; ∀i ∈ I, αi ∈ Ai} and∑−→

A = {(i, α); i ∈ I ∧ α ∈ Ai}. We may of course denote �nite products and coproducts

of sets as usual, e.g. A×B and A+B: in that case we assume indices are natural numbers

starting from 1, e.g. A+B = {(1, α); α ∈ A} ∪ {(2, β); β ∈ B}.

2.2. The category of sets and relations

Let A and B be sets and f be a relation from A to B: f ⊆ A × B. We then write tf

for the reverse relation {(β, α) ∈ B ×A; (α, β) ∈ f}. For all subset a ⊆ A, we write f · a
for the direct image of a by f : f · a = {β ∈ B; ∃α ∈ a, (α, β) ∈ f}. If α ∈ A, we will

also write f · α for f · {α}. We say that a relation f is quasi-functional if f · α is �nite

for all α. If b ⊆ B, we de�ne the division of b by f as f \ b = {α ∈ A; f · α ⊆ b}. This
is the greatest subset of A that f maps to a subset of b: f \ b =

⋃
{a ⊆ A; f · a ⊆ b}.

Notice that in general f · (f \ b) may be a strict subset of b, and f \ (f · a) may be a strict

superset of a.

When f ⊆ A×B and g ⊆ B ×C, we denote by g ◦ f their composite: (α, γ) ∈ g ◦ f i�

there exists β ∈ B such that (α, β) ∈ f and (β, γ) ∈ g. The identity relation on A is just

the diagonal: idA = {(α, α); α ∈ A} ⊆ A×A. Equipped with this notion of composition,

relations form a category Rel whose objects are sets: f ∈ Rel(A,B) i� f ⊆ A × B.

Notice that our presentation goes against standard de�nitions of categories such as Mac

Lane's (Lan98), where homsets are supposed to be pairwise disjoint or, equivalently, every

morphism has exactly one source and one target. This has non-trivial consequences since

it makes the following de�nition of functors stronger than usual.†

De�nition 2.1. A functor T in Rel is the data of a set TA for all set A and a relation

Tf for all relation f , such that Tf ⊆ TA×TB as soon as f ⊆ A×B, preserving identities
and composition: T idA = idTA for all set A, and T (f ◦ g) = Tf ◦ Tg for all relations

f ⊆ A×B and g ⊆ B × C.

Notice that a functor in that de�nition is a functor in the usual sense, subject to the

† As an exercise, the playful reader may try and exhibit a functor in the usual sense which does not �t
our de�nition: counter-counter-examples are easy to come with. . .

C. Tasson and L. Vaux 6

additional property that the image of a morphism does not depend on its type. The

reason why we depart from standard terminology is that this condition is veri�ed by all

the constructions we use, and it has many useful implications that we would otherwise

need to add as separate hypotheses in our results. For instance, functors are always

monotonic for set inclusion: if A ⊆ B, then idA ⊆ B ×B and T idA = idTA ⊆ TB × TB,
hence TA ⊆ TB.
A functor T is said to be symmetric if T tf = tTf for all f . A functor which is

monotonic for relation inclusion is called a relator. Relators were the object of sev-

eral works on the theory of datatypes (BdBH+91; HDM00; BH03). Notice that they

are automatically symmetric. A relator is said to be continuous if it preserves directed

unions of sets and relations: T
⋃−→
A =

⋃−→
TA (resp. T

⋃−→
f =

⋃−→
Tf) for all family

of sets
−→
A (resp. of relations

−→
f) which is directed for inclusion. Of course, the iden-

tity functor is a continuous relator, as is the (contravariant) reverse functor, which is

the identity on sets and sends every relation f to its reverse tf . Another standard

example is the multiset functor given by !A = Mf (A) and, for all relation f , !f =
{([α1, . . . , αn] , [β1, . . . , βn]); n ∈ N ∧ ∀k, (αk, βk) ∈ f}. When a ⊆ A, we write a! =
Mf (a) ∈ !A (rather that !a ∈ !A) in order to avoid confusion with the corresponding

operation on relations.

Let T and U be two functors from Rel to Rel, and let f be the data of a relation fA

from TA to UA for all set A: we say f is a lax natural transformation from T to U , if, for

all relation g from A to B, fB ◦ (Tg) ⊆ (Ug) ◦ fA. We say f is a natural transformation

when this inclusion is always an equality. In general we omit the annotation and simply

write f for fA when A is clear from the context. Of course, the identities id on sets of

the form TA constitute a natural transformation from T to itself. For all set A, consider

the only relation supp from !A to A such that supp · α = supp (α) for all α ∈ !A. This
de�nes a natural transformation from ! to the identity functor: notice that in that case,

the inclusion supp ◦ !g ⊆ g ◦ supp may be strict. Sometimes, it is useful to relate fA with

fB where A ⊆ B.

Lemma 2.1. Let f be a lax natural transformation from T to U . Then, if A ⊆ B:
� for all ã ⊆ TA, fA · ã = fB · ã;
� for all b̂ ⊆ UB, fA \ b̂ = TA ∩ fB \ b̂.

Proof. By applying the naturality condition to the identity idA both as a relation

from A to B and as a relation from B to A, we obtain fB ◦ idTA ⊆ idUA ◦ fA and

fA ◦ idTA ⊆ idUA ◦ fB , hence fA = fB ◦ idTA = fB ∩ (TA × UB), from which both

properties follow.

We now generalize these notions to families of relations: if
−→
A and

−→
B are families of

sets, we call relation from
−→
A to

−→
B any family

−→
f of componentwise relations: for all i ∈ I,

fi ⊆ Ai×Bi. We denote by RelI the category of families of sets and families of relations,

with componentwise identities and composition. Again, morphisms are not typed a priori,

and componentwise identities are preserved so that all functors are increasing for set

inclusion: if
−−−−→
A ⊂ B then T

−→
A ⊂ T

−→
B . We denote by Πi the i-th projection functor from

RelI to Rel: for all family of sets
−→
A , Πi

−→
A = Ai and, for all relation

−→
f from

−→
A to

−→
B ,

Transport of �niteness structures and applications 7

Πi
−→
f = fi. We say a functor T from RelI to Rel is symmetric if T

−→
tf =

t(
T
−→
f
)
for all

−→
f ; we say it is a relator if

−−−→
f ⊆ g implies T

−→
f ⊆ T−→g .

In order to de�ne the continuity of I-ary relators, we introduce the following useful

conventions. By
−→−→
A , we denote an I-indexed family

(−→
A i

)
i∈I

of families of sets, where

each
−→
A i = (Ai,j)j∈Ji

takes indices in some variable set Ji. If
−−−→
j ∈ J (i.e. ji ∈ Ji for all

i ∈ I), we also write
−→
A−→

j
for the I indexed family (Ai,ji)i∈I . We say

−→−→
A is componentwise

directed if each
−→
A i is directed for inclusion. We write

−−→⋃−→
A for

(⋃−→
A i

)
i∈I

and call

this family of unions the componentwise union of
−→−→
A . Finally, if T is a functor from

RelI to Rel, we write
−−→
T
−→
A for the

∏−→
J -indexed family

(
T
−→
A−→

j

)
−−→
j∈J

. Then we say T is

continuous if it commutes to componentwise directed unions: T
−−→⋃−→
A =

⋃−−→
T
−→
A as soon as

−→−→
A is componentwise directed. For instance, projection functors are continuous relators.

Other standard examples include: the cartesian product functor, given by
⊗−→

A =
∏−→
A

and
⊗−→

f =
{(−→α ,−→β); ∀i ∈ I, (αi, βi) ∈ fi

)}
; and the disjoint union functor, given by⊕−→

A =
∑−→

A and
⊕−→

f = {((i, α), (i, β)) ; i ∈ I ∧ (α, β) ∈ fi}. Notice that
⊕

de�nes

both products and coproducts in Rel: we may also write it
˘

when we refer to it as the

functor of products.

Let T and U be two functors from RelI to Rel, and let f be the data of a relation f
−→
A

from T
−→
A to U

−→
A for all

−→
A : we say f is a lax natural transformation from T to U , if, for all

relation −→g from
−→
A to

−→
B , f

−→
B ◦ (T−→g) ⊆ (U−→g)◦f

−→
A . We say f is a natural transformation

if moreover this inclusion is always an equality. Again, the identities id on sets of the

form T
−→
A de�ne a natural transformation from T to itself. For all i ∈ I, we denote by

proji the i-th projection relation from
⊗−→

A to Ai: proji =
{

(−→α , αi); −→α ∈
⊗−→

A
}
. Also,

we denote by resti the restriction relation from
⊕−→

A to Ai: resti = {((i, α), α); α ∈ Ai},
and by indx the index relation from

⊕−→
A to I: {((i, α), i); i ∈ I ∧ α ∈ Ai}. Each proji is

a natural transformation from
⊗

to Πi, and each resti is a natural transformation from⊕
to Πi; moreover indx is a natural transformation from

⊕
to EI , which is the constant

functor EI
−→
A = I and EI

−→
f = idI .

Finally, notice that, by the same argument as in Lemma 2.1, if f is a natural transfor-

mation from T to U , and
−−−−→
A ⊆ B then:

� for all ã ⊆ T
−→
A , f

−→
A · ã = f

−→
B · ã;

� for all b̂ ⊆ U
−→
B , f

−→
A \ b̂ = T

−→
A ∩ f

−→
B \ b̂.

3. On the transport of �niteness structures

3.1. Finiteness spaces

Let A and B be sets, we write A ⊥f B if A ∩ B is �nite. If A ⊆ P (A), we de�ne the

predual of A on A as A⊥A = {a′ ⊆ A; ∀a ∈ A, a ⊥f a
′}. By a standard argument, we

C. Tasson and L. Vaux 8

have the following properties: Pf (A) ⊆ A⊥A ; A ⊆ A⊥⊥A ; if A′ ⊆ A, then A⊥A ⊆ A′⊥A .

By the last two, we get A⊥A = A⊥⊥⊥A . A �niteness structure on A is a set A of subsets

of A such that A⊥⊥A = A. Then a �niteness space is a dependant pair A = (|A| ,F (A))
where |A| is the underlying set, called the web of A, and F (A) is a �niteness structure

on |A|. We write A⊥ for the dual �niteness space:
∣∣A⊥∣∣ = |A| and F

(
A⊥
)

= F (A)⊥|A| .
The elements of F (A) are called the �nitary subsets of A.
For all set A, (A,Pf (A)) is a �niteness space and (A,Pf (A))⊥ = (A,P (A)). In partic-

ular, each �nite set A is the web of exactly one �niteness space: (A,Pf (A)) = (A,P (A)).
We introduce the empty �niteness space > with web ∅, the singleton �niteness space 1
with web {∅} and the space of �at natural numbers N = (N,Pf (N)).
The following property is easily established.

Lemma 3.1. For all �niteness structure A on A, Pf (A) ⊆ A, and A is downwards closed

for inclusion and closed under �nite unions.

It is however not su�cient to characterize �niteness structures, as shown by the fol-

lowing counter-example, communicated to us by Laurent Regnier.

Counter-example 3.1. We say t ⊆ N is thin if the sequence
(

t∩{0,...,n−1}
n

)
n∈N

converges to 0. Let T be the set of all thin subsets of N. Examples of in�nite thin subsets

are
{
n2; n ∈ N

}
and {nn; n ∈ N}. Notice that Pf (N) ⊆ T, and that T is downwards

closed for inclusion and closed under �nite unions. Moreover, every in�nite subset a ⊆ N
contains an in�nite thin subset: let (αn)n∈N be the ordered sequence of the elements of

a; then, for instance, {αn2 ; n ∈ N} ∈ T. We obtain that T⊥⊥N = P (N).

All along the text, we tried to provide relevant counter-examples in order to motivate

the various notions we introduce, and also to emphasize the complex structure of �nite-

ness spaces. These will often refer to a situation like the above one, where A ⊆ P (A)
is downwards closed for inclusion, closed under �nite unions, and contains Pf (A), but
A (A⊥⊥A . In that case, we say A is a fake �niteness structure on A. Below we present

another fake �niteness structure, the properties of which will be useful in some of our

arguments.

Counter-example 3.2. For all n ∈ N, write †n = {(p, q); p = n ∨ q = n}. Then, for all
n ∈ N, write Cn = {†p; p ≥ n}⊥N×N . Being a dual set, each Cn is a �niteness structure on

N×N. Moreover, Cn ⊆ Cn′ as soon as n ≤ n′. As a consequence, C =
⋃−→

C is downwards

closed for inclusion, closed under �nite unions and contains all �nite subsets. But one

can check that C⊥N×N = Pf (N×N) whose dual is P (N×N).

3.2. Transport of �niteness structures

The following lemma will be used throughout the paper. It allows to transport a �niteness

structure on set B, along any relation f from A to B, provided f maps �nite subsets of

A to �nitary subsets of B.

Transport of �niteness structures and applications 9

Lemma 3.2 (Transport). Let A be a set, B a �niteness space and f a relation from

A to |B| such that f · α ∈ F (B) for all α ∈ A. Then FB,f = {a ⊆ A; f · a ∈ F (B)} is a
�niteness structure on A and FB,f = {f \ b; b ∈ F (B)}⊥⊥A .

Proof. Write A = {f \ b; b ∈ F (B)}. The �rst inclusion is easy: FB,f ⊆ A⊥⊥A because,

for all a ∈ FB,f and a′ ∈ A⊥A , a∩ a′ is �nite. Indeed, f · a ∈ F (B) hence a′ ∩ (f \ (f · a))
is �nite; moreover a ⊆ f \ (f · a).
We now prove the reverse inclusion: let a ∈ A⊥⊥A , we establish that a ∈ FB,f , i.e.

f · a ∈ F (B). It is su�cient to show that, for all b′ ∈ F
(
B⊥
)
, b′′ = (f · a) ∩ b′ is �nite.

Since b′′ ⊆ f · a, for all β ∈ b′′ there is α ∈ a such that β ∈ f · α: by the axiom of

choice, we obtain a function φ : b′′ −→ a such that β ∈ f · φ(β) for all β ∈ b′′, which
entails b′′ ⊆ f · φ(b′′). Now it is su�cient to show that φ(b′′) is �nite. Indeed, in that

case, f ·φ(b′′) =
⋃
α∈φ(b′′) f ·α is a �nite union of �nitary subsets of B: recall that by our

hypothesis on f , f · α ∈ F (B) for all α ∈ A. Hence b′′ ∈ F (B) and, since we also have

b′′ ⊆ b′ ∈ F
(
B⊥
)
, b′′ is �nite.

Since φ(b′′) ⊆ a ∈ A⊥⊥A , it will be su�cient to prove that φ(b′′) ∈ A⊥A also. For that

purpose, we consider b ∈ F (B) and prove that a′′ = φ(b′′)∩ f \ b is �nite. If α ∈ a′′, there
exists β ∈ b′′ such that α = φ(β) and moreover f · α ⊆ b; since β ∈ f · φ(β) = f · α, we
obtain that β ∈ b′′ ∩ b. Hence a′′ ⊆ φ(b′′ ∩ b), which is �nite because φ is a function and

b′′ ∩ b ⊆ b′ ∩ b is �nite as b′ ∈ F
(
B⊥
)
and b ∈ F (B).

The following example shows how to construct the exponential of a �niteness space thanks

to the transport lemma applied to the support relation.

Example 3.3. Let A = (A,A) be a �niteness space, and recall that suppA is the only

relation from !A to A such that suppA · α = supp (α) for all α ∈ !A. Notice in particular

that supp (α) ∈ Pf (A) ⊆ A. By the transport lemma, (!A,FA,suppA
) is a �niteness space

that we denote by !A. We moreover have that suppA \ a = Mf (a) = a!: we obtain

F (!A) =
{
a!; a ∈ F (A)

}⊥⊥A
.

The transport lemma is easily generalized to families of �niteness structures. If we write
−→
f \
−→
b for

⋂−−→
f \ b =

⋂
i∈I (fi \ bi), we obtain:

Corollary 3.4. Let A be a set,
−→
B a family of �niteness spaces and

−→
f a family of

relations such that, for all α ∈ A and all i ∈ I, fi · α ∈ F (Bi). Then F−→B ,
−→
f

=
{a ⊆ A; ∀i ∈ I, fi · a ∈ F (Bi)} is a �niteness structure on A and, more precisely, F−→B ,−→f ={−→
f \
−→
b ;
−−−−−−→
b ∈ F (B)

}⊥⊥A

.

Proof. By Lemma 3.2, each FBi,fi
is a �niteness structure on A. As bidual closure

commutes to intersections, F−→B ,
−→
f

=
⋂
i∈I FBi,fi

is a �niteness structure and F−→B ,
−→
f

=(⋂
i∈I {fi \ bi; bi ∈ F (Bi)}

)⊥⊥A
. Let us prove that F−→B ,

−→
f

=
{⋂

i∈I (fi \ bi) ;
−−−−−−→
b ∈ F (B)

}⊥⊥A

.

Let a ∈ F−→B ,
−→
f
: for all i ∈ I, a ∈ FBi,fi , hence setting bi = fi · a we obtain bi ∈ F (Ai) and

a ⊆ fi \ bi. We have thus found
−−−−−−→
b ∈ F (B) such that a ⊆

⋂
i∈I (fi \ bi), which proves one

inclusion. For the reverse, let
−−−−−−→
b ∈ F (B): for all j ∈ I,

⋂
i∈I(fi \ bi) ⊆ fj \ bj . Now, observe

C. Tasson and L. Vaux 10

that fj \ bj ∈ FBj ,fj
which is downwards closed for inclusion, hence

⋂
i∈I(fi \ bi) ∈ FBj ,fj

.

We have just proved that
{⋂

i∈I (fi \ bi) ; ∀i ∈ I, bi ∈ F (Bi)
}
⊆ F−→B ,

−→
f
, and we conclude

since bidual closure is monotonic and idempotent.

Example 3.5. For all family
−→
A of �niteness spaces, we denote by

⊗−→
A the �niteness

space
(∏−→
|A|,F−→A,−→proj

)
: for all ã ⊆

∏−→
|A|, ã ∈ F

(⊗−→
A
)
i� proji · ã ∈ F (Ai) for all i ∈ I.

We moreover obtain F
(⊗−→
A
)

=
{∏−→a ;

−−−−−−→
a ∈ F (A)

}⊥⊥Q−→|A|
.

Similarly, let
˘−→
A be the �niteness space

(∑−→
|A|,F−→A ,−→rest

)
: for all ã ⊆

∑−→
|A|, ã ∈

F
(˘−→
A
)

i� resti · ã ∈ F (Ai) for all i ∈ I. Notice that this implies F
(˘−→
A
)

={∑−→a ;
−−−−−−→
a ∈ F (A)

}
, hence the bidual closure is optional in that case.

If we write I = (I,Pf (I)), we can moreover de�ne the �niteness space
⊕−→
A by(∑−→

|A|,F
(
−→
A,I),(

−→
rest,indx)

)
: ã ∈ F

(⊕−→
A
)
i� indx · ã is �nite and resti · ã ∈ F (Ai) for all

i ∈ I. We obtain F
(⊕−→
A
)

=
{∑

i∈J ai; J ⊆f I ∧ ∀i ∈ J, a ∈ F (Ai)
}
, the bidual closure

being optional. We have
(⊕−→
A
)⊥

=
˘−→
A⊥, and moreover

⊕−→
A =

˘−→
A when I is �nite.

Finally we introduce two other constructions on �niteness spaces which are not directly

obtained by transport. If
−→
A is a family of �niteness spaces, we set

˙−→
A =

(⊗−→
A⊥
)⊥

.

From this, we derive A(B = A⊥ ` B =
(
A
⊗
B⊥
)⊥

for all �niteness spaces A and B.

3.3. Finitary relations

Let A and B be two �niteness spaces: we say a relation f from |A| to |B| is �nitary from

A to B if: for all a ∈ F (A), f · a ∈ F (B), and for all b′ ∈ F
(
B⊥
)
, tf · b′ ∈ F

(
A⊥
)
. The

following characterization of �nitary relations is easily established (Ehr05, Section 1.1).

Lemma 3.3. Let f ⊆ |A| × |B|. The following propositions are equivalent:

(a) f is �nitary from A to B;
(b) tf is �nitary from B⊥ to A⊥;
(c) for all a ∈ F (A), f · a ∈ F (B) and, for all β ∈ |B|, tf · β ∈ F

(
A⊥
)
;

(d) f ∈ F (A(B).

Notice that, whenever A ⊂ |B|, the identity relation idA is �nitary from B to itself,

and �nitary relations compose: we thus introduce the category Fin whose objects are

�niteness spaces and morphisms are relations, so that f ∈ Fin(A,B) i� f is �nitary from

A to B, i.e. Fin(A,B) = F (A(B). Similarly to Rel, morphisms are a priori untyped

and homsets need not be disjoint: notice in particular that a relation from A to B is

always �nitary from (A,Pf (A)) to (B,P (B)). We moreover require functors in Fin to

be de�ned from functors in Rel. More precisely:

De�nition 3.6. A functor T in Fin is the data of a functor T = |T | in Rel (the web

of T) and of a �niteness structure FT (A) on T |A| for all �niteness space A, so that

Transport of �niteness structures and applications 11

T A = (T |A| ,FT (A)) is a �niteness space, moreover subject to the condition that T f =
Tf ∈ Fin(T A, T B) as soon as f ∈ Fin(A,B).

Again, this is a stronger requirement than usual: when f ⊂ A×B, Tf must be �nitary

from T (A,A) to T (B,B) whatever �niteness structure A and B we impose on A and B.

If
−→
A is a family of �niteness spaces, we say relation

−→
f from

−→
|A| to

−→
|B| is �nitary from

−→
A to

−→
B if fi is �nitary from Ai to Bi for all i ∈ I. The category FinI of families of

�niteness spaces and families of relations is then derived from Fin in the same way as

RelI is derived from Rel: notice that FinI
(−→
A ,
−→
B
)

=
∏
i∈I Fin(Ai,Bi) ∼= F

(˘−−−−→
A(B

)
.

An I-ary functor in Fin is a functor from FinI to Fin, in accordance with the obvious

generalisation of the above de�nition. We then import the vocabulary from Rel to Fin: a
functor T is said to be symmetric if |T | is; it is a �nitary relator if |T | is a relator. We will

discuss the continuity of �niteness relators in section 4. The following section explains

how functors in Fin can be derived from functors in Rel via the transport lemma.

On a side note, remark that the construction of a �niteness spaces by the transport

lemma is not initial, in the sense that the relation f from A to B through which we

transport the �niteness structure of B is not �nitary from (A,FB,f) to B in general.

Counter-example 3.7. The relation suppA from |!A| to |A| is not �nitary from !A to

A whenever |A| is non-empty: let α ∈ |A|, then suppA \ {α} = {α}! ∈ F (!A) is in�nite
and cannot be in F (!A)⊥|A| ; we conclude by Lemma 3.3.

3.4. Transport functors

Let T be a functor from RelI to Rel. We call ownership relation on T the data of a quasi-

functional lax natural transformation owni from T to the projection functor Πi, for all

i ∈ I. Notice that any ownership relation on T satis�es the hypotheses of Corollary 3.4.

Indeed, since owni is quasi-functional, owni ·α̃ is �nite for all α̃ ∈ T
−→
|A|, hence it is �nitary

in Ai whatever F (Ai). Therefore, F−→A ,−−→own
is always a �niteness structure on T

−→
|A|. We call

transport situation the data of a funtor T and an ownership relation −−→own on T . In such

a situation, for all family
−→
A of �niteness spaces, we write T−−→ownA for the �niteness space(

T
−→
|A|,F−→A,−−→own

)
and, for all �nitary relation

−→
f from

−→
A to

−→
B , we write T−−→own

−→
f = T

−→
f .

Notice that this de�nes a functor from FinI to Fin i� T
−→
f is �nitary from T−−→own

−→
A to

T−−→own

−→
B as soon as

−→
f is �nitary from

−→
A to

−→
B . In that case, we say T−−→own is the transport

functor deduced from the transport situation (T,−−→own).
We now provide su�cient conditions for a transport situation to give rise to a transport

functor. A shape relation on (T,−−→own) is the data of a �xed set S of shapes and a quasi-

functional lax natural transformation shp from T to the constant functor ES which sends

every set to S and every relation to idS , subject to the following additional condition:

for all ã ⊆ T
−→
A , if shp · ã is �nite and, for all i ∈ I, owni · ã is �nite, then ã is itself �nite.

In other words, with every T -element α̃ ∈ T
−→
A is associated a set of shapes shp · α̃,

which is �nite (because shp is quasi-functionnal). Moreover shapes are preserved by T -

relations; more precisely, if (α̃, β̃) ∈ T
−→
f then every shape of β̃ is a shape of α̃ (because

C. Tasson and L. Vaux 12

shp is a lax natural transformation). Notice that when T is symmetric,
t
T
−→
f = T

−→
tf , and

we actually obtain shp · α̃ = shp · β̃. The additional condition states that any T -subset

ã ⊆ T
−→
A which involves �nitely many shapes and has a �nite support in each components

is itself �nite.

Lemma 3.4. A transport situation on a symmetric functor de�nes a transport functor

as soon as it admits a shape relation.

Proof. Let (T,−−→own) be a transport situation with T a symmetric functor, and let shp

be a shape relation for this situation. By the above discussion on transport situations,

we only have to prove that f̃ = T
−→
f is a �nitary relation from T−−→own

−→
A to T−−→own

−→
B as soon

as, for all i ∈ I, fi is a �nitary relation from Ai to Bi.
First, let us show that if ã ∈ F

(
T−−→own

−→
A
)
, then f̃ · ã ∈ F

(
T−−→own

−→
B
)
. Indeed, for all i ∈ I,

owni · f̃ · ã ⊆ fi · owni · ã because owni is a lax natural transformation from T to Πi.

Moreover, by the de�nition of F
(
T−−→own

−→
A
)
, owni · ã ∈ F (Ai) and then fi ·owni · ã ∈ F (Bi),

because fi is a �nitary relation.

We are left to prove that for all β̃ ∈
∣∣∣T−−→own

−→
B
∣∣∣, ã′ =

t
f̃ · β̃ ∈ F

((
T−−→own

−→
A
)⊥)

, i.e. for

all ã ∈ F
(
T−−→own

−→
A
)
, ã ∩ ã′ is �nite. By the properties of shape relations, it is su�cient

to prove that shp · (ã ∩ ã′) is �nite and, for all i ∈ I, owni · (ã ∩ ã′) is �nite. Notice that
T being symmetric, we have

t
f̃ = T

−→
tf . Then, since shp is a lax natural transformation,

shp◦
t
f̃ ⊆ shp. We obtain that shp · (ã ∩ ã′) ⊆ shp · ã′ = shp ·

t
f̃ · β̃ ⊆ shp · β̃ which is �nite,

since shp is quasi-functional. Similarly, for all i ∈ I, owni is a lax natural transformation

from T to Πi, hence owni ◦
t
f̃ ⊆ tfi ◦ owni: we obtain owni · ã′ ⊆ tfi · owni · β̃. Since

owni is quasi-functional owni · β̃ is �nite and in particular owni · β̃ ∈ F
(
B⊥i
)
: fi being

a �nitary relation, we obtain that tfi · owni · β̃ ∈ F
(
A⊥i
)
, and thus owni · ã′ ∈ F

(
A⊥i
)
.

By the de�nition of F
(
T−−→own

−→
A
)
, we also have owni · ã ∈ F (Ai), and we conclude that

owni · (ã ∩ ã′) ⊆ (owni · ã) ∩ (owni · ã′) is �nite.

Notice that the use of the shape relation is crucial, since some transport situations

with symmetric functor do not preserve �nitary relations:

Counter-example 3.8. Consider the symmetric functor S of N-indexed sequences: for

all setA, SA = AN and, for all relation f ⊆ A×B, Sf =
{

(−→α ,
−→
β); ∀n ∈ N, (αn, βn) ∈ f

}
.

The relation s = {(−→α , α); ∃n ∈ N, αn = α} is an ownership relation on S. Now con-

sider the unique �niteness space 2 with web {0, 1}. Then S |2| = {0, 1}N and F2,s =
{−→α ; s · −→α ∈ F (2)} = P (S |2|); in particular F⊥2,s = Pf (S |2|). Now let f = {(0, 0), (1, 0)}
which is a �nitary relation from 2 to 2: Sf is not �nitary because tSf · (0)n∈N = S |2|
which is in�nite.

Example 3.9. The transport functor ! in Fin is derived from the transport situation

(!, supp), with shape relation cardA = {(α,#α); α ∈ !A}. The I-ary transport functor
˘

(resp.
⊕

) in Fin is derived from the transport situation
(⊕

,
−→
rest
)
(resp.

(⊕
,
−→
rest, indx

)
)

with shape relation indx (resp. ∅). Finally, we only consider �nite tensor products: the

Transport of �niteness structures and applications 13

binary functor⊗ in Fin is derived from the transport situation (⊗, proj1, proj2) with empty

shape relation. Indeed, in�nitary tensor products do not de�ne functors: the functor S

in the above counter-example is an instance of
⊗

with I = N.

4. Continuity and �xpoints

It is well known that Rel endowed with the inclusion order is a complete lattice. Besides

the �xpoint of any n+ 1-ary functor exists and is an n-ary functor in Rel. The situation
in Fin is more complex as the transport of �niteness structures and �nitary relations is

far from automatic. First, we describe the di�erent orders that can endow Fin and the

continuity notions that come with. Then, we apply the transport lemma to address the

problem of �xpoints of continuous functor in Fin. Actually, we prove that any transport

functor admits a �xpoint which is a �niteness space. However we do not know at the

time of the redaction if the �xpoint of any n + 1-ary (transport) functor is an n-ary

(transport) functor in Fin.

4.1. Three order relations on �niteness spaces

We can consider two natural orders on �niteness spaces, both based on the inclusion of

webs:

� �niteness inclusion: write A v B if |A| ⊆ |B| and F (A) ⊆ F (B) ;
� �niteness extension: write A � B if |A| ⊆ |B| and F (A) = F (B) ∩P (|A|).
Notice that the dual construction is increasing for the extension order: A � B i� A⊥ �
B⊥. In general, this does not hold for �niteness inclusion: we may have A v B and

A⊥ 6v B⊥. When |A| = |B| we even obtain A v B i� B⊥ v A⊥ (whereas, in that case,

A � B i� A = B). Thus we could equivalently consider the order given by the dual

inclusion, A ⊥v B if A⊥ v B⊥, in place of v. On a side note, observe that A � B i� we

have A v B and A ⊥v B simultaneously. Moreover > is the minimum of each of these

orders. From now on, we consider only v and �: the properties of ⊥v are exactly those

of v up to �niteness duality.

Lemma 4.1. Every family
−→
A of �niteness spaces admits a least upper bound

⊔−→
A

(their �niteness supremum) and a greatest upper bound
d−→
A (their �niteness in�mum)

for the �niteness inclusion order. They are given by
∣∣∣⊔−→A ∣∣∣ =

⋃−→
|A|,

∣∣∣d−→A ∣∣∣ =
⋂−→
|A|,

F
(⊔−→
A
)

=
(⋃−−−→

F (A)
)⊥⊥S−→|A|

and F
(d−→
A
)

=
⋂−−−→

F (A). Hence �niteness spaces form a

complete lattice w.r.t. v.

Proof. This is a general fact for �xpoints of closure operators.

In the following, unless otherwise stated, suprema and in�ma are always relative to the

inclusion order v, as described in the previous lemma. Notice that, in general,
⋃−−−→

F (A)
is not a �niteness structure on |

⊔
A| by itself, hence the bidual closure in F

(⊔−→
A
)
:

C. Tasson and L. Vaux 14

Counter-example 4.1. Let F be any fake �niteness structure on some set A, that is

such that F (F⊥⊥A . For all f ∈ F, let Af = (f,P (f)). Then
⋃
f∈F F (Af) = F, but

F
(⊔

t∈TAt
)

= F⊥⊥A .

When however
⋃−−−→

F (A) is a �niteness strucutre, we have that F (
⊔
A) =

⋃−−−→
F (A) and we

say
⊔−→
A is an exact supremum.

Suprema and in�ma for � do not exist in general, even considering the variant up to

bijections: A - B if there is A′ ∼= A such that A′ � B.‡

Counter-example 4.2. Let
−→
F = (Fn)n∈N be the unique sequence of �niteness spaces

such that, for all n ∈ N, |Fn| = {0, . . . , n− 1}: then any �niteness space of web N is a

�-upper bound of all the Fn's, hence a --upper bound; but, e.g., N and N⊥ have no

common --lower bound.

Notice however that in that case
⊔−→
F = N is an exact supremum. This remark is actually

an instance of a more general fact. We call extension sequence any �-increasing sequence
of �niteness spaces. Then:

Lemma 4.2. If
−→
A is an extension sequence then

⊔−→
A is exact.

Proof. Apply the transport lemma to the following ({∗} ∪ N)-indexed family
−→
f of

relations: f∗ = {(α, n); α 6∈ |An|} and for all n ∈ N, fn = id|An|. Then the reader can

easily check that
⋃−−−→

F (A) = F−→
f
.

Notice that this relies heavily on both the linear ordering of the family and the extension

order as is shown by the following counter-examples.

Counter-example 4.3 (A directed family for �niteness extension). Notice that

the family of �niteness spaces in Counter-example 4.1 is directed for �.

Counter-example 4.4 (An increasing sequence for �niteness inclusion). Con-

sider the sequence of �niteness structures (Cn)n∈N of Counter-example 3.2: it is increas-

ing for inclusion. We then form the sequence (Cn)n∈N where Cn = (N×N,Cn), which is

increasing for v.

Lemma 4.2, emphasizes the fact that we should not focus on �niteness inclusion or

�niteness extension separately, but rather investigate how they can interact. Notice for

instance that, as a corollary of Lemma 4.2, for all �-increasing functor T from Fin to Fin,
µT =

⊔
n∈N Tn> is exact. In the following we show that this de�nes the least �xpoint of

T up to some hypotheses on T w.r.t. both �niteness inclusion and �niteness extension.

‡ This preorder is considered in the unpublished preliminary version of (Ehr05), where it is used to
describe the interpretation of second order quanti�cation of linear logic. The counter example is given
there.

Transport of �niteness structures and applications 15

4.2. Exact continuity and direct continuity

A directed supremum is the v-supremum of a v-directed family. We say a v-monotonic

functor T in Fin is:

� weakly continuous if T commutes to directed suprema when they are exact;

� exactly continuous if T commutes to exact directed suprema;

� directly continuous if T commutes to all directed suprema.

Let us precise the second case: T is exactly continuous i� it is weakly continuous and,

T
⊔−→
A =

⊔−→
TA is exact for all exact directed supremum

⊔−→
A . In particular, both direct

continuity and exact continuity imply weak continuity, but there is no a priori implication

between direct continuity and exact continuity: a continuous functor may not preserve

exactness; an exactly continuous functor may not preserve non-exact suprema. Moreover,

notice that exactly continuous (resp. directly continuous) functors compose, but weakly

continuous ones may not: if T and U are weakly continous functors and
⊔−→
A is an exact

directed supremum, we do not know whether
⊔−→
TA is exact, hence we can not deduce

that U commutes to this supremum.

The main property we shall use about weakly continuous functors (and a fortiori

exactly continuous or directly continous ones) is that they admit least �xpoints, as soon

as they preserve �niteness extensions.

Lemma 4.3. If T is a weakly continuous functor, which is moreover �-increasing, then
µT =

⊔
n∈N Tn> is the (v-)least �xpoint of T .

Proof. We have already remarked in section 4.1 that µT is an exact directed supre-

mum: hence TµT =
⊔
n∈N Tn+1> = µT because > is minimum. Now let Y be any

�xpoint of T : by iterating the application of T to the inequation > � Y, we obtain

Tn> � TnY = Y, hence Tn> v Y for all n ∈ N, and �nally µT v Y.

In order to generalize the de�nitions of continuity to I-ary functors, we adapt the

conventions described in the relational setting to suit the �niteness spaces. By
−→−→
A , we

denote an I-indexed family
(−→
A i
)
i∈I

of families of �niteness spaces, where each
−→
A i =

(Ai,j)j∈Ji
takes indices in some variable set Ji. We say

−→−→
A is componentwise directed if

every
−→
A i is directed. We write

−−→⊔−→
A for

(⊔−→
A i
)
i∈I

and call this family of suprema the

componentwise supremum of
−→−→
A : we say this supremum is exact if each

⊔−→
Ai is. Finally,

if T is a functor from FinI to Fin, we write
−−→
T
−→
A for

(
T (Ai,ji)i∈I

)
−−→
j∈J . Then we say T

commutes to a componentwise supremum
−−→⊔−→
A when

T

(−−−→⊔−→
A
)

=
⊔−−→
T
−→
A . (1)

De�nition 4.5. Let T be a v-monotonic functor from FinI to Fin. We say T is:

� exactly continuous if it commutes to all exact componentwise directed suprema, i.e.

C. Tasson and L. Vaux 16

⊔−−→
T
−→
A is exact and Equation 1 holds and as soon as

−→−→
A is componentwise directed

and
−−→⊔−→
A is exact;

� directly continuous if it commutes to all componentwise directed suprema, i.e. Equa-

tion 1 holds as soon as
−→−→
A is componentwise directed.

The following result follows from the associativity of suprema:

Lemma 4.4. Directly continuous (resp. exactly continuous) functors compose: if T is a

directly continuous (resp. exactly continuous) functor from FinI to Fin and, for all i ∈ I,
each Ui is a directly continuous (resp. exactly continuous) functor from FinJi to Fin then

T ◦
−→
U is a directly continuous (resp. exactly continuous) functor from Fin

P−→
J to Fin.

We do not detail the proof as it amounts to a futile exercise in formality: we have

consider families of families of families of �niteness spaces, then simply check that the

above de�nitions apply, up to some juggling with indices.

4.3. Continuity of transport

Lemma 4.5. Transport functors are monotonic for both � and v.

Proof. Let T be a transport functor with ownership relation −−→own and assume
−−−−→
A v B.

First recall that
∣∣∣T −→A ∣∣∣ ⊆ ∣∣∣T −→B ∣∣∣ as a general fact (see Section 2.2). Then let ã ∈

∣∣∣T −→A ∣∣∣.
We have ã ∈ F

(
T
−→
A
)
i� for all i ∈ I, own

−→
|A|
i · ã ∈ F (Ai). Since

−−−−−−→
|A| ⊆ |B| and owni is

a lax natural transformation, own
−→
|A|
i · ã = own

−→
|B|
i · ã. Moreover, F (Ai) ⊆ F (Bi), hence

own
−→
|B|
i · ã ∈ F (Bi). We thus obtain ã ∈ F

(
T
−→
B
)
.

If we moreover assume that
−−−−→
A � B then transformation, own

−→
|A|
i · ã ∈ F (Ai) i� own

−→
|A|
i ·

ã ∈ F (Bi) and we obtain ã ∈ F
(
T
−→
A
)
i� ã ∈ F

(
T
−→
B
)
.

Lemma 4.6. A transport functor is exactly continuous as soon as its underlying web

functor is continuous.

Proof. Let T be a transport functor from FinI to Fin, with ownership −−→own and under-

lying continuous web functor T . Let
−→−→
A be directed and such that each

⊔−→
A i is exact.

We prove that T
−−→⊔−→
A =

⊔−−→
T
−→
A . First notice that the webs

∣∣∣∣T −−→⊔−→A ∣∣∣∣ = T
−−−→⋃−→
|A| and∣∣∣∣⊔−−→T −→A ∣∣∣∣ =

⋃−−→
T
−→
|A| are equal because T is continuous. We are left to prove the equality

of �niteness structure, that is F

(
T
−−→⊔−→
A
)

= F

(⊔−−→
T
−→
A
)
or equivalently F

(
T
−−→⊔−→
A
)⊥

=

F

(⊔−−→
T
−→
A
)⊥

. Let's make explicit that by de�nition:

(a) ã′ ∈ F

(
T
−−→⊔−→
A
)⊥

i� for all −→a such that ai ∈ F
(⊔−→
A i
)
for all i ∈ I, ã′ ⊥f

−−→own \ −→a ;

Transport of �niteness structures and applications 17

(b) ã′ ∈ F

(⊔−−→
T
−→
A
)⊥

i� for all
−−−→
j ∈ J and all ã ∈ F

(
T
−→
A−→

j

)
, ã′ ⊥f ã.

We prove both characterizations are equivalent.

Assume the condition in (a) holds and let
−−−→
j ∈ J and ã ∈ F

(
T
−→
A−→

j

)
. For all i ∈ I,

let ai = own

˛̨̨−→
A−→

j

˛̨̨
i · ã: ai ∈ F (Ai,ji) ⊆

⋃−−−−→
F (Ai) ⊆ F

(⊔−→
A i
)
. Since ã ⊆ −−→own \ −→a and by

condition (a), we deduce that ã′ ∩ ã ⊆ ã′ ∩
(−−→own \ −→a

)
is �nite.

Now assume the condition in (b) holds and let −→a be such that ai ∈ F
(⊔−→
A i
)
for all

i ∈ I. Since each of these suprema is exact, i.e. F
(⊔−→
Ai
)

=
⋃−−−−→

F (Ai), there exists
−−−→
j ∈ J

such that ai ∈ F (Ai,ji) for all i ∈ I. Hence
−−→own \ −→a ∈ F

(
T
−→
A−→

j

)
and we conclude.

It remains only to prove that
⊔−−→
T
−→
A is exact. Let ã ⊆ T

−−−→⋃−→
|A|. We have just proved that

ã ∈ F

(⊔−−→
T
−→
A
)
i� ã ∈ F

(
T
⊔−→−→
A
)
i� for all i ∈ I, own

−−−→S−→
|A|

i · ã ∈ F
(⊔−→
Ai
)
. Now, because⊔−→

Ai is exact, F
(⊔−→
Ai
)

=
⋃−−−−→

F (Ai). Thus ã ∈ F

(⊔−−→
T
−→
A
)

i� for all i ∈ I, there exists

j ∈ Ji such that own

−−−→S−→
|A|

i · ã ∈ F (Ai,ji) i� ã ∈ F
(
T
−→
A−→

j

)
, since own

−−−→˛̨̨
A−→

j

˛̨̨
i · ã ⊆ own

−−−→S−→
|A|

i · ã
for all i ∈ I.

Example 4.6. The web functors of products, sums and �nite multisets are all continu-

ous, hence
˘
,
⊕

, ! and binary ⊗ are exactly continuous.

We say the ownership relation −−→own is local if, for all family
−→
A and all i ∈ I:

� owni · (owni \ ai) = ai for all ai ⊆ Ai;
� ownj · (owni \ ai) = Aj for all ai ⊆ Ai and all j 6= i;

� owni preserves intersections, i.e. owni ·
⋂−→
ã =

⋂−−−−−→
owni · ã for all

−−−−−→
ã ∈ T

−→
A .

Intuitively, an ownership relation is local if its components do not interact with each

other. In particular, if −−→own is local then owni ·
(−−→own \ −→a

)
= ai for all i ∈ I.

Lemma 4.7. A transport functor is directly continuous as soon as its underlying web

functor is continuous and its ownership relation is local.

Proof. The proof di�ers from the previous one only in the direction (b) to (a), where we

used the exactness condition, which is no longer available. So, assuming (b) and in order

to establish (a), we �rst prove the following intermediate result: owni · ã′ ∈ F
(⊔−→
A i
)⊥

=(⋃−−−−→
F (Ai)

)⊥
for all i ∈ I. Indeed, let

−−−→
j ∈ J and

−−−−−−−−→
a ∈ F

(
A−→
j

)
(in particular we chose ji to

be any index in Ji and ai to be any �nitary subset of Ai,ji): then
−−→own \ −→a ∈ F

(
T
−→
A−→

j

)
and thus ã = ã′∩

(−−→own \ −→a
)
is �nite. Moreover, for all i ∈ I, owni ·−−→own\−→a = ai, because

−−→own is local. Hence (owni · ã′)∩ai = (owni · ã′)∩
(
owni · −−→own \ −→a

)
= owni · ã because owni

preserves intersections. Since ã is �nite and owni is quasi-functional, we conclude that

owni · ã′ ⊥f ai. Since this holds for all ai ∈
⋃−−−−→

F (Ai), we obtain owni · ã′ ∈ F
(⊔−→
A i
)⊥

.

C. Tasson and L. Vaux 18

Then let −→a be such that ai ∈ F
(⊔−→
A i
)
for all i ∈ I. We must show that ã′′ =

ã′ ∩
(−−→own \ −→a

)
is �nite. For all i ∈ I, a′′i = owni · ã′′ ⊆ (owni · ã′) ∩ ai is �nite: hence

a′′i ∈ F (Ai,j) for any j ∈ Ji such that a′′i ⊆ |Ai,j |. Fix ji to be one such j for all i ∈ I.
We obtain ã′′ ∈ F

(
T
−→
A−→

j

)
. We conclude since ã′ ⊥f ã

′′ and thus ã′ ∩ ã′′ = ã′′ is �nite.

Example 4.7. Since
−→
rest, indx and supp are local,

˘
,
⊕

and ! are directly continuous.

Notice that the conditions under which we prove direct continuity of transport functors

are not minimal, for instance
−−→
proj is not local even for I = {1, 2}: since A × ∅ = ∅,

(proj1, proj2) \ a = ∅ for all a ⊆ A and then proj1 · ∅ = ∅ 6= a in general. However:

Lemma 4.8. Finite tensor products are directly continuous.

Proof. It is su�cient to consider binary tensor products and prove continuity w.r.t.

one of the parameters. Let
−→
B = (Bj)j∈J be a directed supremum of �niteness spaces:

we prove A ⊗
⊔−→
B =

⊔
(A⊗ Bj)j∈J or, equivalently, A ⊗

⊔−→
B⊥ =

⊔
(A⊗ Bj)⊥j∈J . Let

c′ ⊆ |A| ×
⋃−→
|B|. That c′ ∈ F

(
A⊗

⊔−→
B
)⊥

implies c′ ∈ F
(⊔

(A⊗ Bj)j∈J
)⊥

goes by the

same argument as in Lemma 4.6. Assume that c′ ∈ F
(⊔

(A⊗ Bj)j∈J
)⊥

: we prove that

c′ ∈ F
(
A⊗

⊔−→
B
)⊥

= F
(
A(

⊔−→
B⊥
)
. If a ∈ F (A) then c′ · a ∈ F

(⊔−→
B⊥
)
. Indeed,

for all j ∈ J and b ∈ F (Bj), we have a × b ∈ F (A⊗ Bj) ⊆ F
(⊔

(A⊗ Bj)j∈J
)
, hence

c′ ⊥f a× b: then c′ · a ⊥f b. In the other direction, let β ∈
∣∣∣⊔−→B ∣∣∣ =

⋃−→
|B|: let j ∈ J such

that β ∈ |Bj |. Then, for all a ∈ F (A), a× {β} ∈ F (A⊗ Bj), hence c′ ⊥f a× {β} and we

obtain
t
c′ ·β ⊥f a. We have thus proved that

t
c′ ·β ∈ F

(
A⊥
)
, which concludes the proof.

It is still unclear to us if this argument can be adapted to lift the condition on the locality

of −−→own in Lemma 4.7, and thus generalize direct continuity to all transport functors with

continuous web functors.

5. The �nitary relational model of the λ-calculus

It is a well known fact that Rel is a model of classical linear logic, and even of di�erential

linear logic where:

� linear negation is the contravariant functor which is the identity on sets and sends

every relation f to tf ;

� multiplicatives are interpreted by cartesian products;

� additives are interpreted by disjoint unions;

� exponentials are interpreted by �nite multisets.§

§ The reader not familiar with this folklore construction may refer to the appendix of (Ehr05) where it
is explicitly described.

Transport of �niteness structures and applications 19

The category of �niteness spaces and �nitary relations Fin is also a model of classical

linear logic, which is the subject of the �rst part of Ehrhard's seminal paper (Ehr05,

Section 1). This result could actually be stated as follows: for all �niteness structure

we impose on the relational interpretation of atomic formulas, the relational semantics

of a proof is always �nitary in the �niteness space denoted by its conclusion. In other

words, that Fin is a model of linear logic can be stated as a property of the interpretation

of linear logic in Rel. This viewpoint �ts very well with the previous developments of

our paper, in which we explore how distinctive constructions and properties of Rel can
be transported to Fin. In the present section, we extend this stand to the study of the

λ-calculus, which will allow us to discuss datatypes in the next section.

From the relational model of linear logic, we can derive an extensional model of the

simply typed λ-calculus by the co-Kleisli construction: this gives rise to a cartesian closed

category Rel!. Objects in Rel! are sets and morphisms from A to B are subsets of A ⇒
B = Mf (A)×B, which we call multirelations. Composition of multirelations is given by

g ◦! f =

{(
n∑
i=1

αi, γ

)
; ∃β = [β1, . . . , βn] ∈Mf (B) , (β, γ) ∈ g ∧ ∀i (αi, βi) ∈ f

}

as soon as f ∈ Rel!(A,B) and g ∈ Rel!(B,C). The identity multirelation on A is the

dereliction: derA = {([α] , α); α ∈ A}. The cartesian product is given by the disjoint

union of sets
˘−→

A , with projections −→π =
−−−−−−→
rest ◦ der. If, for all i ∈ I, fi ∈ Rel!(A,Bi),

then the unique morphism
〈−→
f
〉
from A to

˘−→
B such that proji ◦!

〈−→
f
〉

= fi for all

i is {(α, (i, β)) ; (α, β) ∈ fi, i ∈ I}. The terminal object is the empty set ∅, the unique

multirelation from A to ∅ being empty. The adjunction for closedness is Rel!(A+B,C) ∼=
Rel!(A,Mf (B)× C) which boils down to the bijection !A&B ∼= !A⊗ !B.

5.1. Relational interpretation and �niteness property

In this section, we give an explicit description of the interpretation in Rel! of the basic
constructions of typed λ-calculi with products. Type and term expressions are given by:

A,B = X | A⇒ B | A×B | > and s, t = x | a | λx s | s t | 〈s, t〉 | π1s | π2s | 〈〉

where X ranges over a �xed set A of atomic types, x ranges over term variables and a

ranges over term constants. To each variable or constant, we associate a type, and we

write CA for the collection of constants of type A. A typing judgement is an expression

Γ ` s : A derived from the rules in Figure 1 where contexts Γ and ∆ range over lists

(x1 : A1, . . . , xn : An) of typed variables. The operational semantics of a typed λ-calculus

is given by a contextual equivalence relation ' on typed terms: if s ' t, then s and t

have the same type, say A; we then write Γ ` s ' t : A for any suitable Γ. We write '0

for the least one such that π1〈s, t〉 '0 s, π2〈s, t〉 '0 t and (λx s) t '0 s [x := t] (with the

obvious assumptions ensuring typability).

Assume a set JXK is given for each base type X; then we interpret type construc-

tions by JA⇒ BK = JAK ⇒ JBK, JA&BK = JAK & JBK and J>K = ∅. Further as-

sume that with every constant a ∈ CA is associated a subset JaK ⊆ JAK. The rela-

C. Tasson and L. Vaux 20

(Var)
Γ, x : A,∆ ` x : A

(Unit)
Γ ` 〈〉 : >

a ∈ CA (Const)
Γ ` a : A

Γ, x : A ` s : B
(Abs)

Γ ` λx s : A⇒ B

Γ ` s : A⇒ B Γ ` t : A (App)
Γ ` s t : B

Γ ` s : A Γ ` t : B (Pair)
Γ ` 〈s, t〉 : A&B

Γ ` s : A&B (Left)
Γ ` π1s : A

Γ ` s : A&B (Right)
Γ ` π2s : B

Figure 1. Rules of typed λ-calculi with products

JVarK
Γ[], x[α] : A,∆[] ` xα : A

a ∈ CA α ∈ JaK
JConstK

Γ[] ` aα : A

Γ, xα : A ` sβ : B
JAbsK

Γ ` λx s(α,β) : A⇒ B
Γ0 ` s([α1,...,αk],β) : A⇒ B Γ1 ` tα1 : A · · · Γk ` tαk : A JAppKPk

j=0 Γj ` s tβ : B

Γ ` sαi : Ai JPairiK
Γ ` 〈s1, s2〉(i,α) : A1 &A2

Γ ` s(1,α) : A&B JLeftK
Γ ` π1s

α : A

Γ ` s(2,β) : A&B JRightK
Γ ` π2s

β : B

Figure 2. Computing points in the relational semantics

tional semantics of a derivable typing judgement x1 : A1, . . . , xn : An ` s : A will

be a relation JsKx1:A1,...,xn:An
⊆ JA1 ⇒ · · · ⇒ An ⇒ AK. We �rst introduce the deduc-

tive system of Figure 2, which is a straightforward adaptation of de Carvalho's system

R to the simply typed case (dC08). In this system, derivable judgements are seman-

tic annotations of typing judgements: xα1
1 : A1, . . . , x

αn
n : An ` sα : A stands for

(α1, . . . , αn, α) ∈ JsKx1:A1,...,xn:An
where each αi ∈ JAiK

!
and α ∈ JAK. In rules JVarK

and JConstK, Γ[] denotes an annotated context of the form x
[]
1 : A1, . . . , x

[]
n : An. In rule

JAppK, the sum of annotated contexts is de�ned pointwise:
(
xα1

1 : A1, . . . , x
αn
n : An

)
+(

x
α′1
1 : A1, . . . , x

α′n
n : An

)
=
(
x
α1+α′1
1 : A1, . . . , x

αn+α′n
n : An

)
. The semantics of a term is

given by: JsKx1:A1,...,xn:An
=
{

(α1, . . . , αn, α); xα1
1 : A1, . . . , x

αn
n : An ` sα : A

}
. Notice

there is no rule for 〈〉 in Figure 2, because J〈〉KΓ = ∅.
Since we followed the standard interpretation of typed λ-calculi in cartesian closed

categories, in the particular case of Rel!, we obtain:

Lemma 5.1 (Invariance). If Γ ` s '0 t : A then JsKΓ = JtKΓ.

For all �niteness spaces A and B, write A ⇒ B = !A(B. As a straightforward

consequence of Lemma 3.3 and the characterization of !A, we obtain:

Lemma 5.2. Let f be a multirelation from |A| to |B|. Then f ∈ F (A ⇒ B) i�, for all

a ∈ F (A), f · a! ∈ F (B) and for all β ∈ |B|, tf · β ⊥f a
!.

We call �nitary multirelations from A to B the elements of F (A ⇒ B). Then the cate-

gory Fin! of �niteness spaces and �nitary multirelations is none by the co-Kleisli category

derived from Fin. The relational interpretation thus de�nes a semantics in Fin! as fol-

Transport of �niteness structures and applications 21

lows. Assume a �niteness structure F (X) is given for all atomic type X, so that X∗ =
(JXK ,F (X)) is a �niteness space, and set (A⇒ B)∗ = A∗ ⇒ B∗, (A&B)∗ = A∗ & B∗

and >∗ = >. Then, further assuming that, for all a ∈ CA, JaK ∈ F (A∗), we obtain:

Lemma 5.3 (Finiteness). If x1 : A1, . . . , xn : An ` s : A then JsKx1:A1,...,xn:An
∈

F (A∗1⇒ · · · ⇒A∗n⇒A∗).

5.2. On the relations denoted by λ-terms

Pure typed λ-calculi are those with no additional constant or conversion rule: �x a set

A of atomic types, and write ΛA
0 for the calculus where CA = ∅ for all A, and s ' t i�

s '0 t. This is the most basic case and we have just shown that Rel! and Fin! model '0.

Be aware that if we introduce no atomic type, then the semantics is actually trivial: in

Λ∅0, all types and terms are interpreted by ∅.
By contrast, we can consider the internal language ΛRel of Rel! in which all relations

can be described as terms: �x the atomic types A as the collection of all sets (or a �xed

set of sets) and the constants CA = P (JAK). Then set s 'Rel t i� JsKΓ = JtKΓ, for any

suitable Γ. The point in de�ning such a monstrous language is to enable very natural

notations for relations: in general, we will identify closed terms in ΛRel with the relations

they denote in the empty context. For instance, we write idA = λxx with x of type A;

and if f ∈ Rel!(A,B) and g ∈ Rel!(B,C), we have g ◦! f = λx (g (f x)). More generally,

if s and t are terms in ΛRel of type A in context Γ, we may simply write Γ ` s = t : A
for JsKΓ = JtKΓ ∈ JAK. Similarly, the internal language ΛFin of Fin!, where A is the

collection of all �niteness spaces and CA = F (A∗), allows to denote conveniently all

�nitary relations and equations between them.

Before we address the problem of algebraic types, we review some basic properties of

the semantics. First, Rel! and Fin! being cartesian closed categories, they actually model

typed λ-calculi with extensionality: s : A ⇒ A ` λx (sx) = s as soon as x is not free in

s. Moreover, they admit all products, and they are models of λ-calculi with surjective

tuples of arbitrary arity: t :
˘−→

A ` 〈πit〉i∈I = t. In accordance with this last remark,

we may identify any variable of type
˘−→

A with the corresponding tuple and write, e.g.,

πi = λ−→x xi.
Being cpo-enriched, Rel! admits �xpoints at all types and the least �x point operator

on A is given by fix =
⋃
n∈N fixn ⊆ (A⇒ A)⇒ A where fix0 = ∅ and

fixn+1 =

{(
[([α1, . . . , αp] , α)] +

p∑
k=1

φk, α

)
; p ∈ N ∧ ∀k ∈ {1, . . . , p} ,

(
φk, αk

)
∈ fixn

}
.

Indeed, fixn+1 = λf (f (fixn f)) so fix is the least multirelation such that fix = λf (f (fixn f)).
Notice that, for all n ∈ N and all �niteness space A, fix|A|n ∈ F ((A ⇒ A)⇒ A). But in
general, fix is not �nitary: Ehrhard details a counter-example (Ehr05, Section 3), but we

can actually show that the �xpoint operator is never �nitary on non-empty webs.

Lemma 5.4. If |A| 6= ∅, then fix|A| 6∈ F ((A ⇒ A)⇒ A).

Proof. Let α ∈ |A| and f = {([] , α)} ∪ {([α] , α)} ∈ Pf (A ⇒ A) ⊆ F (A ⇒ A). Ob-

C. Tasson and L. Vaux 22

serve that ([([] , α)] , α) ∈ fix1, ([([] , α), ([α] , α)] , α) ∈ fix2, and more generally ([([] , α)] +
n [([α] , α)] , α) ∈ fixn+1. Hence f

! ∩
(
tfix · α

)
is in�nite although f ∈ F (A ⇒ A).

More informally, this result indicates that the �nitary semantics strongly refuses in�nite

computations and will not accomodate general recursion. It is thus very natural to in-

vestigate the nature of the algorithms that can be studied in a �nitary setting. It was

already known from Ehrhard's original paper (Ehr05) that one can model a restricted

form of tail-recursive iteration. In recent work (Vau09c), the second author showed that

the �nitary relational model of the λ-calculus can actually be extended to Gödel's system

T , i.e. typed recursion on integers. The remaining of the paper provides a generalization

of this result to recursive algebraic datatypes.

6. Lazy recursive algebraic datatypes

Intuitively, an algebraic datatype is a composite of products and sums of base types:

products are equipped with projections and a tupling operation (i.e. pairing, in the

binary case), while sums are equipped with injections and a case de�nition operator

(which is essentially a conditional, or more generally a pattern matching operator). Of

course, datatype constructors are meant to be polymorphic: in other words they are

particular functors. In a cartesian closed category, it is only natural to interpret products

as categorical products. On the other hand, coproducts are not always available, hence

the interpretation of sums might not be as canonical.

In this concluding section of our paper, we �rst discuss the status of sums in Rel! and
Fin!. We are then led to investigate the semantics of algebraic datatypes we obtain: in

particular, we remark that the relational interpretation gives rise to a lazy semantics. For

instance the web of the datatype of trees is not a set of trees but a set of paths in trees:

this generalizes a similar feature of the coherences semantics of system T (GTL89) and

its relational variant (Vau09c). We �nish the paper by providing an explicit description

of the relational interpretation of the constructors and destructors of recursive algebraic

datatypes, which enables us to prove them �nitary.

6.1. Sums

By contrast with the cartesian structure, the cocartesian structure is ruled out by the

co-Kleisli construction from Rel to Rel! (as in the one from Fin to Fin!): Rel! does not
have coproducts.

Counter-example 6.1. There is no coproduct for the pair of sets (∅, ∅) in Rel!. Indeed,
assume there exists a set A and multirelations i0 and i1 from ∅ to A, such that for all set

B and all multirelations f0 and f1 from ∅ to B there exists a unique h ∈ Rel!(A,B) such
that h◦! ik = fk for k = 0, 1. Necessarily, there exist α0 and α1, such that ([] , αk) ∈ ik but
([] , αk) 6∈ i1−k for k = 0, 1. Now consider h′ = {([α0] , 0), ([α1] , 0)} and h′′ = {([] , 0)}: we
have h′ ◦! ik = h′′ ◦! ik for k = 0, 1 but h′ 6= h′′, which contradicts the unicity property

of the coproduct.

Transport of �niteness structures and applications 23

We can however provide an adequate interpretation of sum types, adapting Girard's

interpretation of intuitionnistic logic in coherence spaces (GTL89). We write A
•
⊕ B for

the lifted sum {1, 2}∪A⊕B of A and B, and more generally:
•⊕−→
A = I∪

⊕−→
A .¶ The idea

is that indices stand for tokens without associated value: where (i, α) can be read as �the

element α in Ai�, i represents some undetermined element of which we only know it is in

Ai. Then, for all i ∈ I, we set inj
−→
A
i = {([] , i)}∪{([α] , (i, α)); α ∈ Ai}. Moreover, if

−→
f is a

relation from
−→
A to

−→
B , we set

•⊕−→
f =

⊕−→
f ∪ idI so that

•⊕
is a continuous I-ary functor

from Rel to Rel. Now let
−→
f be a family of multirelations such that fi ∈ Rel!(Ai, B) for

all i ∈ I: we de�ne{−→
f
}

= {([i, (i, α1), . . . , (i, αn)] , β); ([α1, . . . , αn] , β) ∈ fi}

and obtain, for all i ∈ I,
{−→
f
}
◦! inji = fi. Notice however that

{−→
f
}
is not characterized

by this property, since we have already remarked that
•⊕
is not a coproduct in Rel!. For

instance, {([i, i, (i, α1), . . . , (i, αn)] , β); ([α1, . . . , αn] , β) ∈ fi} behaves similarly (we just

added a copy of the token i ∈ I). This �case de�nition� construction can be internalized

as a multirelation:

case−→
A,B

=
r
λ
−→
f
{−→
f
}z

= {([i] + iα, [(i, (α, β))] , β) ; i ∈ I ∧ α ∈ !Ai ∧ β ∈ B}

⊆
•⊕−→
A ⇒

¯
i∈I

(Ai ⇒ B)⇒ B

For all i ∈ I, the restriction rest
−→
A
i is a quasi-functional lax natural transformation

from
•⊕

to Πi. The same holds for the index relation indx ∪ idI . We thus have a trans-

port situation, which moreover de�nes a functor
•⊕

from FinI to Fin, because it ad-

mits a shape relation: indx itself (see Lemma 3.4). We obtain

∣∣∣∣ •⊕−→A ∣∣∣∣ =
•⊕−→
|A| and

F

(•⊕−→
A
)

=
{
J ∪

∑
i∈K ai; J ∪K ⊆f I ∧ ∀i ∈ K, ai ∈ F (Ai)

}
. This de�nes a functor

suitable to interpret sum types in Fin! (although not a coproduct) because injections and

the case de�nition operator are �nitary:

Lemma 6.1. For all �niteness spaces
−→
A and B:

−→
f :

¯
i∈I

(Ai ⇒ B)], a : Ai ` case
−→
f (injia) = fia

and moreover inji ∈ F

(
Ai ⇒

•⊕−→
A
)
and case ∈ F

(•⊕−→
A ⇒

˘
i∈I (Ai ⇒ B)⇒ B

)
.

¶ Another possibility for interpreting sums is to consider A⊕! B = !A⊕ !B which is preferred by Girard
to interpret intuitionistic disjunction because it enjoys an extensionality property. There is no doubt
we could adapt the following sections of our paper to this notion of sum.

C. Tasson and L. Vaux 24

Proof. This is a direct application of the de�nitions.

We call algebraic datatype, any functor build from projections, >,
˘

and
•⊕
. The most

basic example of composite datatype is that of booleans, Bool = >
•
⊕ >: assuming this

lifted sum is indexed by the two point set {tt, ff}, Bool is the only �niteness space with

|Bool| = {tt, ff}. The injections inj
(∅,∅)
tt = {([] , tt)} and inj

(∅,∅)
ff = {([] , ff)} are constant

multirelations: up to the isomorphism ∅ ⇒ |Bool| ∼= |Bool|, we thus consider their respec-
tive images true = {tt} ∈ F (Bool) and false = {ff} ∈ F (Bool) as the constructors of Bool.
Similarly, the case de�nition case(∅,∅),A = {([xx] , [(xx, ([] , α))] , α) ; xx ∈ {tt, ff} ∧ α ∈ A}
corresponds with the conditional ifA = {([tt] , [α] , [] , α); α ∈ A}∪{([tt] , [] , [α] , α); α ∈ A}
up to the isomorphisms ∅ ⇒ A ∼= A and A & A ⇒ A ∼= A ⇒ A ⇒ A, so that if|A| ∈
F (Bool⇒ A⇒ A⇒ A) for all �niteness space A. Of course, we obtain iftrue = λxλy x

and iffalse = λxλy y.

6.2. Fixpoints of power series functors

We now explore the interpretation of recursive algebraic datatypes that we obtain, by a

careful inspection of the structure of tree types. First consider the following construction

of a �niteness space of trees:

Counter-example 6.2. Let A and B be �niteness spaces. The functor T : X 7→ A ⊕
(X ⊗ B ⊗ X) in Fin is clearly a transport functor. By Lemma 4.3, its �xpoint µ T is a

�niteness space, which we describe as follows:

� |µ T | is the set of all �nite binary trees, with nodes labelled by elements of |A| and
leaves labelled by elements of |B|;

� a set t of trees is �nitary in µ T when the set of all the labels of nodes (resp. leaves)

of trees in t is �nitary in A (resp. B) and moreover the height of trees in t is bounded.

Moreover, µ T is functorial in variables A and B because, by the above description, it

can be de�ned directly as a transport functor. It should not however be considered as

the datatype of binary trees with nodes of type A and leaves of type B. Indeed, due
to the fact that ⊕ does not de�ne a sum, we would fail to de�ne a suitable relational

interpretation of pattern matching for this type of trees. Notice this is not related with

a �niteness argument: the same would hold for the relational model (or the coherence

model for that matter).

In light of this example, the discussion on sums and previous work on the semantics of

system T , we are led to study the �niteness properties of the datatype of trees, obtained

as �xpoints of power series functors. Let I be a set of indices,
−→
A a family of �niteness

spaces and
−→
J a family of sets of indices.

Proposition 6.3. The functor T : X 7→
•⊕
i∈I Ai & X&ji is exactly continuous, �-

increasing and has a least �xpoint µ T which is a �niteness space.

Transport of �niteness structures and applications 25

Proof. As the functor T is the composite of exactly continuous and �-increasing func-
tors, it is also exactly continuous (see Lemma 4.4) and �-increasing. The existence of

the least �xpoint in Fin is then a direct consequence of Lemma 4.3.

Intuitively µ T is the datatype of trees, in which nodes of sort i ∈ I are of arity Ji and

bear labels in Ai: this will be made formal in the next section. We denote µ T by L
I,
−→
J

−→
A

or, shortly L
−→
A .

Let us �rst describe the associated web functor L
I,
−→
J

=
∣∣∣L
I,
−→
J

∣∣∣: L
I,
−→
J

−→
A =

⋃
n∈N Tn∅

where T : X 7→
•⊕
i∈I Ai &X&Ji . Again, we will simply write L

−→
A in general.

By its de�nition, L
−→
A is the least set such that: I ⊆ L

−→
A , (i, (1, α)) ∈ L

−→
A for all

i ∈ I and α ∈ Ai, and (i, (2, (j, τ))) ∈ L
−→
A for all i ∈ I, j ∈ Ji and τ in L

−→
A . Hence

the general form of an element τ ∈ L
−→
A is: τ = (i0, (2, (j1, (i1, (2, . . . (jn, in) · · ·))))) or

τ = (i0, (2, (j1, (i1, (2, . . . (jn, (in, (1, α))) · · ·))))) where jk+1 ∈ Jik for all k < n and, in

the second case, α ∈ Ain . We introduce the following conventions for the sole purpose of

making this description of the elements L
−→
A more reasonable. We denote �nite sequences

of indices by plain concatenation:
−→
i = i1 · · · in. If i0 ∈ I, we call addresses of type

i0 all �nite sequences
−→
ji = j1i1j2 · · · jnin such that jk+1 ∈ Jik for all k < n. We call

typed address the data π of an index i and an address
−→
ji of type i, which we write

i
−→
ji , or simply i if

−→
ji is the empty sequence. If π = i0j1i1 · · · jnin we write ωπ = in; in

particular ωi = i. We call value of type i any element of Ai ∪ {∗} (we suppose this union
is always disjoint): we use starred letters such as α∗ for values. A path is the data πα∗

of a typed address π and a value of type ωπ. We write Ai for the set of addresses of

type i, and A for the set of all typed addresses. We may factor pre�xes out of multisets

of paths or addresses: for instance, if τ = [τ1, . . . , τn] ∈ !Ai is a multiset of paths, we

may write ijτ = [ijτ1, . . . , ijτn]. Notice that L
−→
A is in bijection with the set of all paths

{πα∗; π ∈ A ∧ α∗ ∈ Aωπ ∪ {∗}}. From now on we consider L
−→
A , and thus L

−→
A , up to this

bijection.

Notice that the relation between paths and values of type i given by

val
−→
A
i = {(πα, α); π ∈ A ∧ ωπ = i ∧ α ∈ Ai}

is a quasi-functional lax natural transformation from L to the projection functor Πi for

all i ∈ I. Moreover, the length relation

len
−→
A =

{
(i0j1i1 · · · jninα∗, n); i0

−→
jiα∗ ∈ L

−→
A
}

is a quasi-functional lax natural transformation from L to EN where N is the set of

shapes made of natural numbers (see Section 3.4). Now, because T is exact and L
−→
A is

de�ned as the least �xpoint of T , we can characterize its action on �niteness structures:

Lemma 6.2. t ∈ F
(
L
−→
A
)
i� vali · t ∈ F (Ai) and len · t ∈ Pf (N).

C. Tasson and L. Vaux 26

We could thus have presented L equivalently as the functor‖ of paths, with web functor

L, �niteness transported by
−→
val and len, and equipped with the shape relation len (see

Lemma 3.4).

6.3. The �nitary datatype of trees

We are now ready to describe the interpretation of the datatype of tree. In particular, in

this section we show that:

� L provides a lazy implementation of the datatype of trees where nodes of type i bear

labels in Ai and have arity Ji;

� this implementation is �nitary in the sense that constructors, destructors and iterators

on trees are �nitary relations.

Remark that a similar description would be feasible for �xpoints of algebraic functors

other that power series, although we cannot simply rely on some simple distributivity

argument: in general (A
•
⊕ B) & C 6∼= (A & C)

•
⊕ (B & C). But even when we consider

arbitrary algebraic functors, we always end up with sets of addresses, where �nitary

subsets are those with bounded length and �nitary support: the only di�erence is the

form of the addresses. A general presentation would thus be overly technical, without

any new idea involved.

The lazy tree constructor nodei ⊆ Ai ⇒
(
L
−→
A
)&Ji

⇒ L
−→
A is given by:

nodei = {([] , [] , i∗)} ∪ {([α] , [] , iα); α ∈ |Ai|} ∪
{

([] , [(j, τ)] , ijτ); j ∈ Ji ∧ τ ∈ L
−→
A
}

which is actually an instance of inji ⊆
(
Ai &

(
L
−→
A
)&Ji

)
⇒ L
−→
A up to our notations of

addresses and the cartesian adjunction in Rel!.

Example 6.4. We consider the functor T : X 7→ A
•
⊕ (B & (X & X)) de�ning the data

structure of binary trees with leaves labelled by A and nodes labelled by B: write BT =
L(A,B). We set I = {F,N}, JF = ∅ and JN = {G,D}. Since no confusion is possible,

we simply write G (resp. D) for the ordered pair NG (resp. ND). Notice that nodeF ⊆
A → ∅ → BT and nodeN ⊆ B → (BT & BT) → BT : up to standard isomorphisms, we

consider the binary tree constructors leaf = λxA λ_ (nodeFx) ⊆ A → BT and node =
λyB λtBT λuBT (nodeNy 〈t, u〉) ⊆ B → BT → BT → BT . Now, let a, a′, a′′ ⊆ A and

b, b′ ⊆ B the tree:

‖ Notice that we have proved with bare hand that the �xpoint L of the transport functor T is also a
transport functor. It will be interesting to build a transport situation and a shape relation for every
�xpoint of transport functor. We could then deduce that the �xpoint is a transport functor.

Transport of �niteness structures and applications 27

b

b'

a�a'

a

corresponds to

node b (leaf a) (node b′ (leaf a′) (leaf a′′)) = {N∗} ∪ {Nβ; α ∈ b}
∪ {GF∗} ∪ {GFα; α ∈ a}
∪ {DN∗} ∪ {DNβ; β ∈ b′}
∪ {DGF∗} ∪ {DGFα; α ∈ a′}
∪ {DDF∗} ∪ {DDFα; α ∈ a′′} .

Similarly, the pattern matching operator is given by:

match = {([i∗] + iα+
∑n
k=1 [ijkτk] , [(i, α, [(j1, τ1), . . . , (jn, τn)] , β)] , β) ;

i ∈ I ∧ β ∈ B ∧ α ∈ !Ai ∧ ∀k, jk ∈ Ji ∧ τk ∈ L
−→
A
}

⊆ L
−→
A ⇒

˘
i∈I

(
Ai ⇒

(
L
−→
A
)&Ji

⇒ B

)
⇒ B

which is an instance of case ⊆ L
−→
A ⇒

˘
i∈I

((
Ai &

(
L
−→
A
)&Ji

)
⇒ B

)
⇒ B up to our

notations of addresses and the cartesian adjunction in Rel!. As such, both are �nitary

relations: for all �niteness spaces
−→
A and B,

nodei ∈ F

(
Ai ⇒

(
L
−→
A
)&Ji

⇒ L
−→
A
)

match ∈ F

(
L
−→
A ⇒

¯
i∈I

(
Ai ⇒

(
L
−→
A
)&Ji

⇒ B
)
⇒ B

)
.

As an application of Lemma 6.1, we thus obtain
r

match
−→
f
(

nodeia
−→
t
)z

=
r
fia
−→
t

z
.

We can then construct the iterator on trees:

iter = fix

(
λF λt λ

−→
f match t

〈
λaλ
−→
t fia

〈
F
−→
f tj

〉
j∈Ji

〉
i∈I

)
⊆ L

−→
A ⇒

˘
i∈I
(
Ai ⇒ B&Ji ⇒ B

)
⇒ B

which automatically satis�es
r

iter
(

nodeia
−→
t
)−→
f

z
=

s
fia
〈

iter
−→
f tj

〉
j∈Ji

{
. The following

lemma makes the structure of iter explicit:

Lemma 6.3. Let iter0 = ∅ and, for all n ∈ N, let

itern+1 =
{(

[i∗] + iα+
∑p
k=1 ijkτk, [(i, α,

∑p
k=1 [(jk, βk)] , β)] +

∑p
k=1 φk, β

)
;

i ∈ I ∧ p ∈ N ∧ ∀k, jk ∈ Jk ∧ (φk, τk, βk) ∈ itern
}
.

Then (itern)n∈N is increasing for inclusion and iter =
⋃
n∈N itern. Moreover, if ι =

(φ, τ , β) ∈ iter, then ι ∈ itermax(len·supp(τ))+1.

C. Tasson and L. Vaux 28

Proof. That the equation iter =
⋃
n∈N itern is just an unfolding of the de�nitions: if

we write f =
s(

λF λt λ
−→
f match t

〈
λaλ
−→
t fia

〈
F
−→
f tj

〉
j∈Ji

〉
i∈I

){
then iter = fixf =⋃

n∈N fn∅ and we just have to check that fn∅ = itern by induction on n. The additional

result is straightforwardly deduced from this explicitation.

We now relate precisely the indices and values in the input paths of iter with those

used in the associated instance of iterated functions. First, if τ = i0j1i1 · · · jninα∗ ∈ L
−→
A ,

we write ind(τ) = {i0, j1, i1, . . . jnin} and val(τ) =
⋃
i∈I vali · τ which is �nite. More-

over, if φ = (i, α,
∑n
k=1 [(jk, βk)] , β) ∈

˘
i∈I
(
Ai ⇒ B&Ji ⇒ B

)
, we set ind(φ) = {i} ∪

{jk; 1 ≤ k ≤ n} and val(φ) = supp (α). We extend these to multisets by taking the union

of images as in indτ =
⋃
τ∈supp(τ) ind(τ). Recall that if α ∈Mf (A), #α denotes the mul-

tiset cardinality of α. When φ =
∑n
k=1 [(ik, αk, τk, βk)] ∈Mf

(∑
i∈I
(
Ai ⇒ B&Ji ⇒ B

))
,

we write ##(φ) =
∑n
k=1 #αk.

Lemma 6.4. For all ι = (τ , φ, β) ∈ iter, we have:

� ι ∈ itermax(len·supp(τ))+1;

� ind(τ) = ind(φ);
� val(τ) = val(φ);
� # τ = #φ+ ##φ.

Lemma 6.5. Iteration is �nitary: iter ∈ F
(
L
−→
A ⇒

˘
i∈I
(
Ai ⇒ B&Ji ⇒ B

)
⇒ B

)
.

Proof. If t ∈ F
(
L
−→
A
)
, then len · t is �nite: we write n = max(len · t). As a conse-

quence iter ·Mf (t) = itern+1 ·Mf (t) ∈ F
(˘

i∈I
(
Ai ⇒ B&Ji ⇒ B

)
⇒ B

)
because itern+1

is �nitary. Now �x (φ, β) ∈
∣∣˘

i∈I
(
Ai ⇒ B&Ji ⇒ B

)
⇒ B

∣∣ and let t
′ = titer · (φ, β): we

prove t
′ ⊥f Mf (t) is �nite. By the previous lemma, for all τ ∈ t′, val(τ) = val(φ),

ind(τ) = ind(φ), # τ = #φ + ##φ. Paths in supp
(
t
′
)
∩ t have addresses of length at

most n with indices taken in a �xed �nite set; moreover they hold values taken in a �xed

�nite set. We deduce supp (t′) ∩ t is �nite. Moreover, multisets in t ∩Mf (t′) are of �xed
size: hence t ∩Mf (t′).

Summing up the results in section 6.2 and the current section, we obtain:

Theorem 6.5. For all choice of sets of indices I and
−→
J , L

−→
A is the �niteness spaces of

paths whose �niteness is transported by
−→
val and len. Moreover, there are multirelations

nodei and iter such that:

� nodei ∈ F

(
Ai ⇒

(
L
−→
A
)&Ji

⇒ L
−→
A
)
;

� iter ∈ F
(
L
−→
A ⇒

˘
i∈I
(
Ai ⇒ B&Ji ⇒ B

)
⇒ B

)
;

�
r

iter
(

nodeia
−→
t
)−→
f

z
=

s
fia
〈

iter
−→
f tj

〉
j∈Ji

{
.

Hence L
−→
A is the datatype of trees whose nodes of sort i ∈ I are labelled with values in

Ai and of arity Ji.

Transport of �niteness structures and applications 29

As an example of application of this theorem, consider the case where I = {0, 1},
J0 = 0, # J1 = 1 and A0 = A1 = >. Then L ∼= Nl where |Nl| = N ∪N>, F (Nl) =
Pf (|Nl|) and N> = {n>; n ∈ N} is just a disjoint copy of N: n ∈ N (resp. n> ∈ N>)

corresponds with the only address π such that len ·π = n and ωπ = 0 (resp. ωπ = 1). The
�niteness space Nl is intuitively that of lazy natural numbers: n stands for �exactly n�

whereas n> stands for �strictly more that n�. From inj0 and inj1, we derive zero = {0} ∈
F (Nl) and succ = {([] , 0>)}∪{([ν] , ν+); ν ∈ |Nl|} ∈ F (Nl ⇒ Nl) where n+ = n+1 and

n>
+ = (n + 1)>. Up to some standard isomorphisms, we derive a variant natiter of iter

such that:

� natiter ∈ F (Nl ⇒ (A ⇒ A)⇒ A⇒ A);
� natiter zero = λf λxx;
� λn (natiter (succn)) = λnλf λx (f (natiter nfx)).

This provides a �nitary relational semantics of Gödel's system T , which shows that Fin!

can accomodate the standard notion of computational iteration. This was the subject of

a previous article by the second author (Vau09c) which moreover shows that the same

can be done for the recursor variant of system T .

The same applies here, actually: we could very well reproduce the results of this section,

replacing iter with

rec = fix

(
λF λt λ

−→
f

(
match t

〈
λaλ
−→
t

(
fia
−→
t
〈
F
−→
f tj

〉
j∈Ji

)
i∈I

〉))
which automatically satis�es

rec
(

nodeia
−→
t
)−→
f = fia

−→
t
〈

iter
−→
f tj

〉
j∈Ji

.

We would then obtain that rec ∈ F

(
L
−→
A ⇒

˘
i∈I

(
Ai ⇒ L

−→
A

&Ji

⇒ B&Ji ⇒ B
)
⇒ B

)
for all �niteness spaces

−→
A and B.

References

Roland Carl Backhouse, Peter J. de Bruin, Paul F. Hoogendijk, Grant Malcolm, Ed Voermans,

and Jaap van der Woude. Polynomial relators. In Maurice Nivat, Charles Rattray, Teodor Rus,

and Giuseppe Scollo, editors, AMAST, Workshops in Computing, pages 303�326. Springer,

1991.

Antonio Bucciarelli, Thomas Ehrhard, and Giulio Manzonetto. Not enough points is enough. In

Computer Science Logic, volume 4646 of Lecture Notes in Computer Science, pages 298�312.
Springer Berlin, 2007.

Roland Carl Backhouse and Paul F. Hoogendijk. Generic properties of datatypes. In Roland Carl

Backhouse and Jeremy Gibbons, editors, Generic Programming, volume 2793 of Lecture Notes
in Computer Science, pages 97�132. Springer, 2003.

David Baelde and Dale Miller. Least and greatest �xed points in linear logic. In Nachum

Dershowitz and Andrei Voronkov, editors, LPAR, volume 4790 of Lecture Notes in Computer
Science, pages 92�106. Springer, 2007.

Aurelio Carboni, Stefano Kasangian, and Ross Street. Bicategories of spans and relations.

Journal of Pure and Applied Algebra, 33(3):259 � 267, 1984.

C. Tasson and L. Vaux 30

A. Carboni, G. M. Kelly, and R. J. Wood. A 2-categorical approach to change of base and

geometric morphisms. I. Cahiers Topologie Géom. Di�érentielle Catég., 32(1):47�95, 1991.
International Category Theory Meeting (Bangor, 1989 and Cambridge, 1990).

Pierre Clairambault. Logique et Interaction : une Étude Sémantique de la Totalité. Thèse

d'université, Université Paris 7, 2010.
Pierre-Louis Curien, editor. Typed Lambda Calculi and Applications, 9th International Confer-

ence, TLCA 2009, Brasilia, Brazil, July 1-3, 2009. Proceedings, volume 5608 of Lecture Notes
in Computer Science. Springer, 2009.

Daniel de Carvalho. Execution time of lambda-terms via denotational semantics and intersection

types. Technical report, 2008. Rapport de recherche INRIA n◦ 6638.
Thomas Ehrhard. Finiteness spaces. Mathematical Structures in Computer Science, 15(4):615�
646, 2005.

Thomas Ehrhard and Olivier Laurent. Interpreting a �nitary pi-calculus in di�erential inter-

action nets. In Luis Caires and Vasco T. Vasconcelos, editors, Concurrency Theory (CON-
CUR '07), volume 4703 of Lecture Notes in Computer Science, pages 333�348. Springer,

September 2007.
Thomas Ehrhard and Laurent Regnier. The di�erential lambda-calculus. Theoretical Computer

Science, 309:1�41, 2003.
Thomas Ehrhard and Laurent Regnier. Di�erential interaction nets. Electr. Notes Theor.

Comput. Sci., 123:35�74, 2005.
Thomas Ehrhard and Laurent Regnier. Böhm trees, Krivine's machine and the Taylor expansion

of λ-terms. In Arnold Beckmann, Ulrich Berger, Benedikt Löwe, and John V. Tucker, editors,

CiE, volume 3988 of Lecture Notes in Computer Science, pages 186�197. Springer, 2006.
Maribel Fernández, Ian Mackie, Shinya Sato, and Matthew Walker. Recursive functions with

pattern matching in interaction nets. Electr. Notes Theor. Comput. Sci., 253(4):55�71, 2009.
Stéphane Gimenez. Programmer, Calculer et Raisonner avec les Réseaux de la Logique Linéaire.
Thèse d'université, Université Paris 7, 2009.

Jean-Yves Girard. Normal functors, power series and lambda-calculus. Annals of Pure and
Applied Logic, 37(2):129�177, 1988.

Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and types. CUP, Cambridge, 1989.
Paul Hoogendijk and Oege De Moor. Container types categorically. J. Funct. Program., 10:191�
225, March 2000.

Saunders Mac Lane. Categories for the Working Mathematician. Springer, 1998.
J. Lambek and P. J. Scott. Introduction to higher order categorical logic. Cambridge University
Press, New York, NY, USA, 1988.

Michele Pagani and Christine Tasson. The inverse Taylor expansion problem in Linear Logic.

In Andrew M. Pitts, editor, Proceedings of the 24th Annual IEEE Symposium on Logic in
Computer Science, LICS 2009, pages 222�231. IEEE Computer Society, 2009.

Christine Tasson. Algebraic totality, towards completeness. In Curien (Cur09), pages 325�340.
Marie-France Thibault. Pre-recursive categories. Journal of Pure and Applied Algebra, 24:79�93,
1982.

Paolo Tranquilli. Intuitionistic di�erential nets and lambda-calculus. To appear in Theor.

Comput. Sci, 2008.
Lionel Vaux. The algebraic lambda calculus. Mathematical Structures in Computer Science,
19(5):1029�1059, 2009.

Lionel Vaux. Di�erential linear logic and polarization. In Curien (Cur09), pages 371�385.
Lionel Vaux. A non-uniform �nitary relational semantics of system T. In Ralph Matthes

and Tarmo Uustalu, editors, Proceedings of the 6th Workshop on Fixed Points in Computer
Science. Institute of Cybernetics at Tallinn University of Technology, 2009.

	Introduction
	Sets and relations
	Notations
	The category of sets and relations

	On the transport of finiteness structures
	Finiteness spaces
	Transport of finiteness structures
	Finitary relations
	Transport functors

	Continuity and fixpoints
	Three order relations on finiteness spaces
	Exact continuity and direct continuity
	Continuity of transport

	The finitary relational model of the -calculus
	Relational interpretation and finiteness property
	On the relations denoted by -terms

	Lazy recursive algebraic datatypes
	Sums
	Fixpoints of power series functors
	The finitary datatype of trees

	References

