
Linearity, from Mathematics to Computer Science

Christine Tasson
tasson@pps.jussieu.fr

Laboratoire Preuves Programmes Systèmes
Université Paris Diderot

France

Kurims’s Computer Science Seminar
25 July 2008

Introduction

1987 : Girard introduces Linear Logic.

1988 : Girard links denotational semantics to power series.

2001 : Ehrhard and Regnier introduce differential
lambda-calculus.

2005 : Ehrhard and Regnier present differential nets.

2 / 31

Summary

1 Linearity : an analogy
Linearity in Computer Science
The Analogy
Mathematical Tools

2 Differential Lambda Calculus
Syntax
Reduction
Taylor expansion

3 Differential Proofs Nets
Definition
Taylor expansion

4 Semantics
The seminal semantics : Finiteness Spaces
A generalization : Lefschetz Spaces

3 / 31

The Question

How many times a program uses its argument ?

Let’s look at an example :

Power :
{

R × N → R

x , n 7→ xn

let rec power x n =

match n with

| 0 -> 1

| n -> x * (power x (n-1))

Power uses its first argument several times and its second one only
once.

4 / 31

Semantics

Model
A program is interpreted using mathematical objects.

[Prog] : A⇒ B

Linear Logic

Every program can be decomposed into an exponential part (!
which means the ressource is infinite) and a linear part (⊸ which
means the program consults its ressource only once).

[Prog] : !A⊸ B

For instance, Power :

!R ⊗ N ⊸ R

(x , n) 7→ xn

5 / 31

An Analogy

Mathematical Linearity

A linear function is a first degree polynomial function.

Every regular function can be approximated by a linear function :

f (x) ≃
x→0

f (0) + f ′(0) x

Computer Science Linearity

A linear program is a program which uses its argument at most
once, that is a lambda term λx · t where the variable x appears
only once in x .

D(λx · t)(s) = t[x\s]linear

6 / 31

Differential analysis

Taylor expansion

An analytic function can be decomposed into a sum of degree n

polynomial functions :

f (x) =
∑

n

f (n)(0)

n!
xn

Computer Science version

How can we decompose a program into n-linear ones (which
respectively uses its argument exactly n times) ?

7 / 31

Summary

1 Linearity : an analogy
Linearity in Computer Science
The Analogy
Mathematical Tools

2 Differential Lambda Calculus
Syntax
Reduction
Taylor expansion

3 Differential Proofs Nets
Definition
Taylor expansion

4 Semantics
The seminal semantics : Finiteness Spaces
A generalization : Lefschetz Spaces

8 / 31

An extension of λ-Calculus

Syntax

s, t := x |λx .s | (s)t |Ds.t | 0 | as + bt

a, b ∈ R where R is a ring.

New ingredients

• 0 means a deadlock has been reached.

• Differentiation operator Ds.t means the linear application of s

to t.

• Sums similar to non determinism.

9 / 31

Linear Analogy and Sums

λx .(s + t) = λx .s + λx .t (1)

(s + t)u = (s)u + (t)u (2)

(s)(u + v) 6= (s)u + (s)v (3)

Mathematics linearity

Linearity means commutation with sums. The point (3) has to be
related with analytic functions semantics.

10 / 31

Linear Analogy and Sums

λx .(s + t) → λx .s + λx .t (1)

(s + t)u → (s)u + (t)u (2)

(s)(u + v) 6→ (s)u + (s)v (3)

Non-deterministic quasi-reduction

Intuitively, s + s ′ reduces on both s and s ′. The point (3) comes
from s can need its argument several times.
For instance :

(λx .(x)x)(λx .x + λx .y) → λx .x + λx .y + 2y

Notice that y appears two times in the result.

10 / 31

Substitutions and Differentiation

Differential reduction

D(λx .t).u → λx .

(

∂t

∂x
.u

)

(4)

Linear substitution :
The term ∂t

∂x
.u means one occurence of x has been substituted by

u in t. It is a non deterministic operation since there are several
occurencies that can be substituted.

11 / 31

Substitutions and Differentiation

Differential reduction

D(λx .t).u → λx .

(

∂t

∂x
.u

)

(4)

Linear substitution :
The term ∂t

∂x
.u means one occurence of x has been substituted by

u in t. It is a non deterministic operation since there are several
occurencies that can be substituted.

∂y

∂x
.u = δxyu

11 / 31

Substitutions and Differentiation

Differential reduction

D(λx .t).u → λx .

(

∂t

∂x
.u

)

(4)

Linear substitution :
The term ∂t

∂x
.u means one occurence of x has been substituted by

u in t. It is a non deterministic operation since there are several
occurencies that can be substituted.

∂(s)t

∂x
.u =

(

∂s

∂x
.u

)

t + Ds.

(

∂t

∂x
.u

)

11 / 31

Substitutions and Differentiation

Differential reduction

D(λx .t).u → λx .

(

∂t

∂x
.u

)

(4)

Linear substitution :
The term ∂t

∂x
.u means one occurence of x has been substituted by

u in t. It is a non deterministic operation since there are several
occurencies that can be substituted.

∂(s)t

∂x
.u =

(

∂s

∂x
.u

)

t + Ds.

(

∂t

∂x
.u

)

→ (f ◦ g) ′(x) = f ′(g(x)) · g ′(x)

11 / 31

Substitutions and Differentiation

Differential reduction

D(λx .t).u → λx .

(

∂t

∂x
.u

)

(4)

Linear substitution :
The term ∂t

∂x
.u means one occurence of x has been substituted by

u in t. It is a non deterministic operation since there are several
occurencies that can be substituted.

∂s[x1, x2 ← x]

∂x
.u =

(

∂s

∂x1
.u

)

[x1, x2 ← x] +

(

∂s

∂x2
.u

)

[x1, x2 ← x])

11 / 31

Substitutions and Differentiation

Differential reduction

D(λx .t).u → λx .

(

∂t

∂x
.u

)

(4)

Linear substitution :
The term ∂t

∂x
.u means one occurence of x has been substituted by

u in t. It is a non deterministic operation since there are several
occurencies that can be substituted.

∂s[x1, x2 ← x]

∂x
.u =

(

∂s

∂x1
.u

)

[x1, x2 ← x] +

(

∂s

∂x2
.u

)

[x1, x2 ← x])

→ (f .g) ′ = f ′.g + f .g ′

11 / 31

Reduction

Definition
The smallest reduction closed by context and by sums that
contains both :

β-reduction (λx .s)u → s[x/u]

Differential reduction D(λx .t).u → λx .(∂t
∂x

.u)

Theorem (Ehrhard, Régnier 2001)

This reduction is confluent and if the ring is N, simply typed terms

are strongly normalizing.

12 / 31

Taylor expansion

Definition
Usual application can be encoded using differential application :

(s)u =

∞∑

n=0

1

n!
(Dns.un)0 (5)

Theorem (Ehrhard, Régnier 2006)

Purely λ-calculus can be encoded through Taylor Expansion in the

purely differential λ-calculus.

13 / 31

Summary

1 Linearity : an analogy
Linearity in Computer Science
The Analogy
Mathematical Tools

2 Differential Lambda Calculus
Syntax
Reduction
Taylor expansion

3 Differential Proofs Nets
Definition
Taylor expansion

4 Semantics
The seminal semantics : Finiteness Spaces
A generalization : Lefschetz Spaces

14 / 31

Linear Logic Nets

A programming language :

`

A` B

A B

⊗

A ⊗ B

A B

?

?A

?

?A

A

?

?A

?A ?A

!

N

A
?B1

... ?Bk

!A ?B1
... ?Bk

15 / 31

Differential Nets

A Linearized programming language :

`

A` B

A B

⊗

A ⊗ B

A B

?

?A

?

?A

A

?

?A

?A ?A

!

N

A
?B1

... ?Bk

!A ?B1
... ?Bk

16 / 31

Differential Nets

A Linearized programming language :

`

A` B

A B

⊗

A ⊗ B

A B

?

?A

?

?A

A

?

?A

?A ?A

!

!A

!

!A

A

!

!A

!A !A

16 / 31

Taylor and Computer Science

The principle :

To every linear net N and for every n, corresponds a differential net
that appears in the taylor expansion.

!

N

A
?B1 ?B2

!A ?B1 ?B2

∞∑

n=0

1

n!

! ? ?

! ! !

!A ?B1 ?B2

N∗

n

. . .n

... ...

N∗

1

...

where N∗
k in Taylor expansion of N.

17 / 31

Differential Nets vs. Differential λ-Calculus

Theorem (Ehrhard, Régnier 2006)

Differential λ-calculus can be encoded in Differential nets in such a

manner that the first reduction is simulated by the second.

Advantages of Differential nets

• An extension conservative of differential λ-calculus.

• Symmetry between ?- and !-cells that is the monad and the
comonad.

• Links with concurrence : π-calculus can be encoded in
differential nets.

18 / 31

Summary

1 Linearity : an analogy
Linearity in Computer Science
The Analogy
Mathematical Tools

2 Differential Lambda Calculus
Syntax
Reduction
Taylor expansion

3 Differential Proofs Nets
Definition
Taylor expansion

4 Semantics
The seminal semantics : Finiteness Spaces
A generalization : Lefschetz Spaces

19 / 31

History of linear models

Linear Logic
A |A| [A] = k

|A|

⊥ A⊥ |A| L([A],k)

⊕,& A ⊕ B |A| + |B | [A] ⊕ [B]

⊗ A ⊗ B |A| × |B | [A] ⊗ [B]

⊸ A⊸ B |A| × |B | L([A], [B])

! !A Mf (|A|) ??

Models

• The simplest is the model of sets and relations.

• Taking sets as bases and relations as matrices support, we get
the model of linear spaces.

• Because of exponential, infinite dimension is needed.

20 / 31

Bibliography

Infinite dimension problems

• Which basis notion ?

• How to ensure reflexivity ?

In order to solve them, we need some topology.

[Blute] Linear Lauchli semantics, Annals of Pure and Applied
Logic, 1996

[Girard] Coherent Banach spaces, Theoretical Computer
Science, 1999

[Ehrhard] On Köthe sequence spaces and linear logic,
Mathematical Structures in Computer Science, 2002

[Ehrhard] Finiteness spaces, Mathematical Structures in
Computer Science, 2005

21 / 31

Finiteness Spaces

The relational model view point.

Definition
Let |X | be countable, for each F ⊆ P(|X |), let us denote

F⊥ = {u ′ ⊆ |X | |∀u ∈ F , u ∩ u ′ finite} .

A finiteness space is a pair X = (|X |,F(X)) such that
F(X)⊥⊥ = F(X).

Example : Integers.

22 / 31

Finiteness Spaces

The linear spaces view point.

For every x ∈ k
|X |, the support of x is |x | = {a ∈ |X ||xa 6= 0}.

Definition
The linear space associated to X = (|X |,F(X)) is :

k〈X 〉 = {x ∈ k
|X | | |x | ∈ F(X)}.

endowed by the topology generated by the basis at zero :
{VJ |J ∈ F⊥} where

VJ = {x ∈ k〈X 〉 | |x | ∩ J = ∅}.

Example : Integers.

23 / 31

Finiteness Spaces
A Linear Logic Model

X⊥
 k〈X 〉 ′

0 {0}
X&Y

X ⊕ Y

}
 k〈X 〉 ⊕ k〈Y 〉

1 k

X ⊸ Y Lc(X ,Y)

X ⊗ Y k〈X 〉 ⊗ k〈Y 〉

!X k〈!X 〉

where
|!X | = Mfin(|X |)

F(!X) = {A ⊆ Mfin(|X |) |
⋃

m∈A

|m| ∈ FX }

24 / 31

Finiteness Spaces
A Linear Logic Model

X⊥
 k〈X 〉 ′ ⇒ Reflexivity

0 {0}
X&Y

X ⊕ Y

}
 k〈X 〉 ⊕ k〈Y 〉

1 k

X ⊸ Y Lc(X ,Y)

X ⊗ Y k〈X 〉 ⊗ k〈Y 〉

!X k〈!X 〉 ⇒ Infinite dimension

where
|!X | = Mfin(|X |)

F(!X) = {A ⊆ Mfin(|X |) |
⋃

m∈A

|m| ∈ FX }

24 / 31

Finiteness Spaces

Theorem
Finiteness spaces are a model of differential nets.

Taylor expansion

A program of type : A⇒ B is interpreted by an analytic function.

25 / 31

Finiteness Spaces

Theorem
Finiteness spaces are a model of differential nets.

Differential nets have been designed to correspond to this
semantics.

Taylor expansion

A program of type : A⇒ B is interpreted by an analytic function.

This analytic function embodies the analogy between mathematics
linearity and computer science linearity.

25 / 31

Lefschetz and al

Linearized topological vector spaces have been introduced by
S. Lefschetz in 1942.

They appear in

[Barr] ⋆-autonomous Categories, Lecture Notes in
Mathematics, 1979

[Blute] Linear Lauchli semantics, Annals of Pure and Applied
Logici, 1996

[Ehrhard] Finiteness spaces, Mathematical Structures in
Computer Science, 2005

26 / 31

Lefschetz spaces

Definition
Let E ,T be topological k-vector space.
E is said to be a Lefschetz space if :

• k is discrete.

• There is a filter basis at zero V which generates T and which
is made of linear subspaces.

•
⋂

V = {0} ⇒ Hausdorff topology.

Example : Finiteness spaces with the basis topology.
Finite sequences k

(ω) with finite codimension topology.

27 / 31

Lefschetz spaces

Definition
Let E ,T be topological k-vector space.
E is said to be a Lefschetz space if :

• k is discrete.

• There is a filter basis at zero V which generates T and which
is made of linear subspaces.

•
⋂

V = {0} ⇒ Hausdorff topology.

Example : Finiteness spaces with the basis topology.
Finite sequences k

(ω) with finite codimension topology.

This topology is counter intuitive

• A finite dimension Lefschetz space is discrete.

• Open bowls are affine subspaces.

• Open linear subspaces are closed.

27 / 31

Function spaces and Orthogonal

Definition (Linear compactness)

A subspace K of a Lefschetz Space is said linearly compact when
for every closed affine filter F = {Fα} satisfying the intersection
property (∀Fα, Fα ∩ K 6= ∅),

(∩F) ∩ K 6= ∅.

Definition (Compact open topology)

This is the topology of uniform convergence on linearly compact
subspaces.

Bases at zero

• Functionals Lc(E ,F) : W (K ,V) = {f | f (K) ⊂ V } with K

linear compact and V open subspace.

• Dual space E ′ : K⊥ = {x ′ |∀x ∈ K , x ′(x) = 0} with K linearly
compact subspace.

28 / 31

Function spaces and Orthogonal

Definition (Linear compactness)

A subspace K of a Lefschetz Space is said linearly compact when
for every closed affine filter F = {Fα} satisfying the intersection
property (∀Fα, Fα ∩ K 6= ∅),

(∩F) ∩ K 6= ∅.

Definition (Compact open topology)

This is the topology of uniform convergence on linearly compact
subspaces.

Bases at zero

• Functionals Lc(E ,F) : W (K ,V) = {f | f (K) ⊂ V } with K

linear compact and V open subspace.

• Dual space E ′ : K⊥ = {x ′ |∀x ∈ K , x ′(x) = 0} with K linearly
compact subspace.

28 / 31

Function spaces and Orthogonal

Definition (Linear compactness)

A subspace K of a Lefschetz Space is said linearly compact when
for every closed affine filter F = {Fα} satisfying the intersection
property (∀Fα, Fα ∩ K 6= ∅),

(∩F) ∩ K 6= ∅.

Definition (Compact open topology)

This is the topology of uniform convergence on linearly compact
subspaces.

Bases at zero

• Functionals Lc(E ,F) : W (K ,V) = {f | f (K) ⊂ V } with K

linear compact and V open subspace.

• Dual space E ′ : K⊥ = {x ′ |∀x ∈ K , x ′(x) = 0} with K linearly
compact subspace.

28 / 31

Reflexivity problems

Linear Logic model ?

Reflexivity is not ensured in general.

It is preserved by quotient, product.

This model generalizes Finiteness spaces. But we need more
constraints to ensure reflexivity.

29 / 31

Conclusion

• From semantics to programming languages and vice versa.

• Application of differential nets (concurrency, ...).

• Work in progress : Interpretation of Polymorphic
Lambda-Calculus using Lefschetz Linear Spaces.

30 / 31

Bibliography

[Girard] Linear Logic, Theoretical Computer Science, 1987

[Ehrhard and Regnier] The differential λ-calculus, Theoretical
Computer Science, 2003

[Ehrhard and Regnier] Differential Interaction Nets, Electronic
Notes in Theoretical Computer Science, 2005

[Ehrhard] Finiteness spaces, Mathematical Structures in
Computer Science, 2005

31 / 31

	Linearity: an analogy
	Linearity in Computer Science
	The Analogy
	Mathematical Tools

	Differential Lambda Calculus
	Syntax
	Reduction
	Taylor expansion

	Differential Proofs Nets
	Definition
	Taylor expansion

	Semantics
	The seminal semantics: Finiteness Spaces
	A generalization: Lefschetz Spaces

