Totality, towards completeness

Christine TASSON
tasson@pps.jussieu.fr
Laboratoire Preuves Programmes Systèmes
Université Paris Diderot
France

November 12, 2008

Contents

Totality
C. Tasson

Totality
(1) The barycentric boolean lambda-calculus

- The calculus, its reduction, its semantics
- Boolean polynomials and completeness
(2) Totality, a quantitative model of lambda-calculus
- Finiteness spaces
- Totality spaces
- Back to barycentric boolean calculus

The barycentric boolean calculus

Totality
C. Tasson

BB λ-calculus
Definition
Completeness
Totality

Definition

For all $n \in \mathcal{N}$, we define inductively the terms of $\boldsymbol{\Lambda}_{\mathcal{B} n}$ by

$$
\begin{aligned}
& \mathbf{R}, \mathbf{S}::=\sum_{i=1}^{m} a_{i} \mathbf{s}_{i} \quad \text { with } \sum_{i=1}^{m} a_{i}=1, \text { and } \\
& \mathbf{s}, \mathbf{s}_{i}::=\lambda \mathbf{x}_{1} \ldots \mathbf{x}_{n} \cdot \mathbf{x}_{i}|\mathbf{T}| \mathbf{F} \mid \text { if } \mathbf{s} \text { then } \mathbf{S} \text { else } \mathbf{R} .
\end{aligned}
$$

Notice, that every barycentric boolean term is of type $\mathcal{B}^{n} \Rightarrow \mathcal{B}$

$$
\sum a_{i}\left(\lambda \overline{\mathbf{x}} \cdot \mathbf{s}_{i}\right) \simeq \lambda \overline{\mathbf{x}} . \sum a_{i} \mathbf{s}_{i}
$$

$$
\mathbf{T} \simeq \lambda \overline{\mathbf{x}} . \mathbf{T}, \quad \mathbf{F} \simeq \lambda \overline{\mathbf{x}} . \mathbf{F}
$$

$$
\text { if }(\lambda \overline{\mathbf{x}} \mathbf{s}) \text { then }(\lambda \overline{\mathbf{x}} \mathbf{S}) \text { else }(\lambda \overline{\mathbf{x}} \mathbf{R}) \simeq \lambda \overline{\mathbf{x}} \text { if } \mathbf{s} \text { then } \mathbf{S} \text { else } \mathbf{R}
$$

Semantics of $\boldsymbol{\Lambda}_{\mathcal{B} n}$

Totality
C. Tasson

BB λ-calculus

Every $\mathbf{S} \in \boldsymbol{\Lambda}_{\mathcal{B} n}$, is interpreted by a pair

$$
\left(\llbracket \mathbf{S} \rrbracket_{t}, \llbracket \mathbf{S} \rrbracket_{f}\right) \in \mathbb{k}\left[X_{1}, \ldots, X_{2 n}\right] \times \mathbb{k}\left[X_{1}, \ldots, X_{2 n}\right]
$$

inductively defined by

$$
\begin{aligned}
& \llbracket \sum a_{i} \mathbf{s}_{i} \rrbracket=\sum a_{i} \llbracket \mathbf{s}_{i} \rrbracket, \\
& \llbracket \mathbf{T} \rrbracket=(1,0), \quad \llbracket \mathbf{F} \rrbracket=(0,1), \\
& \llbracket \lambda \mathbf{x}_{1} \ldots \mathbf{x}_{n} \cdot \mathbf{x}_{i} \rrbracket=\left(X_{2 i-1}, X_{2 i}\right), \\
& \llbracket \text { if } \mathbf{P} \text { then } \mathbf{Q} \text { else } \mathbf{R} \rrbracket=\left(\llbracket \mathbf{P} \rrbracket_{t} \llbracket \mathbf{Q} \rrbracket_{t}+\llbracket \mathbf{P} \rrbracket_{f} \llbracket \mathbf{R} \rrbracket_{t},\right. \\
& \left.\qquad \llbracket \mathbf{P} \rrbracket_{t} \llbracket \mathbf{Q} \rrbracket_{f}+\llbracket \mathbf{P} \rrbracket_{f} \llbracket \mathbf{R} \rrbracket_{f}\right) .
\end{aligned}
$$

Reduction

Totality
C. Tasson

The reduction

$$
\text { if }(a \mathbf{T}+b \mathbf{F}) \text { then } \mathbf{R} \text { else } \mathbf{S} \rightarrow a \mathbf{R}+b \mathbf{S}
$$

Proposition (Soundeness) Let $\mathbf{S} \in \boldsymbol{\Lambda}_{\mathcal{B}}$. If $\mathbf{S} \rightarrow \mathbf{T}$, then $\llbracket S \rrbracket=\llbracket T \rrbracket$.

Theorem (Computational adequacy)

Let $\mathbf{S} \in \boldsymbol{\Lambda}_{\mathcal{B}}$. If $\llbracket \mathbf{S} \rrbracket=(a, b)$, then $\mathbf{S} \rightarrow a \mathbf{T}+b \mathbf{F}$.

Boolean polynomials and completeness

Totality
C. Tasson

BB λ-calculus

Definition

Boolean polynomials are the pairs of polynomials (P, Q) such that there is $\mathbf{S} \in \boldsymbol{\Lambda}_{\mathcal{B} n}$ such that $\llbracket \mathbf{S} \rrbracket=(P, Q)$.

Boolean polynomials can be algebraically characterized.

Proposition

Let $\mathbf{S} \in \boldsymbol{\Lambda}_{\mathcal{B} n}$ and $\left(x_{i}\right) \in \mathbb{k}^{2 n}$.

$$
\left(\forall i, x_{2 i-1}+x_{2 i}=1\right) \Rightarrow \llbracket \mathbf{S} \rrbracket_{t}\left(x_{i}\right)+\llbracket \mathbf{S} \rrbracket_{f}\left(x_{i}\right)=1
$$

Reciprocally,

Theorem (Completeness)

For every $P, Q \in \mathbb{k}\left[X_{1}, \ldots, X_{2 n}\right]$ such that
$P+Q-1$ vanishes on the common zeros of $X_{2 i-1}+X_{2 i}-1$, there is $\mathbf{S} \in \mathbf{\Lambda}_{\mathcal{B} n}$ with $\llbracket \mathbf{S} \rrbracket=(P, Q)$.

Proof of completeness (1)

Totality
C. Tasson

BB λ-calculus
Definition
Completeness
Totality

Some notations:

$$
\begin{aligned}
\neg \mathbf{S} & =\text { if } \mathbf{S} \text { then } \mathbf{F} \text { else } \mathbf{T} \\
\mathbf{S}^{+} & =\text {if } \mathbf{S} \text { then } \mathbf{T} \text { else } \mathbf{T} \\
\mathbf{S}^{-} & =\text {if } \mathbf{S} \text { then } \mathbf{F} \text { else } \mathbf{F} \\
\boldsymbol{\Pi}_{i} & =\lambda \mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \cdot \mathbf{x}_{i}
\end{aligned}
$$

Lemma (Basic pairs)

The pairs of polynomials $\left(X_{2 i}, X_{2 i-1}\right),\left(X_{2 i-1}+X_{2 i}, 0\right)$, $\left(1-X_{2 i-1}, X_{2 i-1}\right)$ and $\left(1-X_{2 i}, X_{2 i}\right)$ are booleans.

$$
\begin{aligned}
\left(X_{2-1}, X_{2 i}\right) & =\llbracket \boldsymbol{\Pi}_{i} \rrbracket \\
\left(X_{2 i}, X_{2 i-1}\right) & =X_{2 i-1} \cdot(1,0)+X_{2 i} \cdot(0,1) \\
& =\llbracket \text { if } \boldsymbol{\Pi}_{i} \text { then } \mathbf{T} \text { else } \mathbf{F} \rrbracket \\
& =\llbracket \neg \boldsymbol{\Pi}_{i} \rrbracket .
\end{aligned}
$$

Proof of completeness (2)

Totality
C. Tasson

BB λ-calculus

Lemma (Affine pairs)

For every polynomial $P \in \mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$, the pair of polynomials $(1-P, P)$ is boolean.

Let d be the degree of P. If $d=0$, then $(1-P, P)=(1-a, a)=\llbracket(1-a) \mathbf{T}+a \mathbf{F} \rrbracket$.
If $d>0$ and $X^{\mu}=\prod X_{i}^{\mu_{i}}$ with $\mu_{1} \geq 1$, then

$$
\begin{aligned}
\left(1-X^{\mu}, X^{\mu}\right)= & \left(1-X_{1}\right) \cdot(1,0)+ \\
& X_{1} \cdot\left(1-X_{1}^{\mu_{1}-1} \prod_{i \neq 1} X_{i}^{\mu_{i}}, X_{1}^{\mu_{1}-1} \prod_{i \neq 1} X_{i}^{\mu_{i}}\right) \\
= & \llbracket \text { if } \Xi_{1} \text { then } \mathbf{T} \text { else } \Xi_{d-1} \rrbracket=\llbracket \Xi_{\mu} \rrbracket .
\end{aligned}
$$

If $P=\sum a_{\mu} \Pi X_{i}^{\mu_{i}}$, then

$$
\begin{aligned}
(1-P, P) & =\left(1-\sum a_{\mu}\right)(1,0)+\left(\sum a_{\mu}\right)\left(1-X^{\mu}, X^{\mu}\right) \\
& =\llbracket\left(1-\sum a_{\mu}\right) \mathbf{T}+\left(\sum a_{\mu}\right) \Xi_{\mu} \rrbracket .
\end{aligned}
$$

Proof of completeness (3)

Totality
C. Tasson

BB λ-calculus

Definition

Completeness

Totality

Lemma (Spanning polynomials)

Let $P \in \mathbb{k}\left[X_{1}, \ldots, X_{2 n}\right]$. If P vanishes on the zeros common to $X_{2 i-1}+X_{2 i}-1$, then there are $Q_{i} \in \mathbb{k}\left[X_{1}, \ldots, X_{2 n}\right]$ such that $P=\sum_{i=1}^{n} Q_{i}\left(X_{2 i-1}+X_{2 i}-1\right)$.
Change of variables

$$
\left.\begin{array}{rl}
Y_{i} & =X_{2 i-1}+X_{2 i}-1 \\
Y_{i+n} & =X_{2 i}
\end{array}\right\} \Rightarrow P_{Y}\left(0, \ldots, 0, y_{n+1}, \ldots, y_{2 n}\right)=0
$$

Since $\mathbb{k}\left[Y_{2}, \ldots, Y_{2 n}\right]\left[Y_{1}\right]$ is an euclidean ring, there are $\left.Q \in \mathbb{k}^{[} Y_{1}, \ldots, Y_{2 n}\right], R \in \mathbb{k}\left[Y, \ldots, Y_{2 n}\right]$ such that

$$
P_{Y}=Q_{1} Y_{1}+
$$

$\forall\left(y_{i}\right) \in \mathbb{k}^{n}, R_{n}\left(y_{n+1}, \ldots, y_{2 n}\right)=0$, hence if \mathbb{k} is infinite

$$
P_{Y}=\sum_{i=1}^{n} Q_{i} Y_{i}
$$

Proof of completeness (3)

Totality
C. Tasson

BB λ-calculus

Definition

Completeness

Totality

Lemma (Spanning polynomials)

Let $P \in \mathbb{k}\left[X_{1}, \ldots, X_{2 n}\right]$. If P vanishes on the zeros common to $X_{2 i-1}+X_{2 i}-1$, then there are $Q_{i} \in \mathbb{k}\left[X_{1}, \ldots, X_{2 n}\right]$ such that $P=\sum_{i=1}^{n} Q_{i}\left(X_{2 i-1}+X_{2 i}-1\right)$.
Change of variables

$$
\left.\begin{array}{rl}
Y_{i} & =X_{2 i-1}+X_{2 i}-1 \\
Y_{i+n} & =X_{2 i}
\end{array}\right\} \Rightarrow P_{Y}\left(0, \ldots, 0, y_{n+1}, \ldots, y_{2 n}\right)=0
$$

Since $\mathbb{k}\left[Y_{2}, \ldots, Y_{2 n}\right]\left[Y_{1}\right]$ is an euclidean ring, there are $Q_{1} \in \mathbb{k}^{[}\left[Y_{1}, \ldots, Y_{2 n}\right], R_{1} \in \mathbb{k}^{[}\left[Y_{2}, \ldots, Y_{2 n}\right]$ such that

$$
P_{Y}=Q_{1} Y_{1}+R_{1}
$$

$\forall\left(y_{i}\right) \in \mathbb{k}^{n}, R_{n}\left(y_{n+1}, \ldots, y_{2 n}\right)=0$, hence if \mathbb{k} is infinite

$$
P_{Y}=\sum_{i=1}^{n} Q_{i} Y_{i}
$$

Proof of completeness (3)

Totality
C. Tasson

BB λ-calculus

Definition

Completeness

Totality

Lemma (Spanning polynomials)

Let $P \in \mathbb{k}\left[X_{1}, \ldots, X_{2 n}\right]$. If P vanishes on the zeros common to $X_{2 i-1}+X_{2 i}-1$, then there are $Q_{i} \in \mathbb{k}\left[X_{1}, \ldots, X_{2 n}\right]$ such that $P=\sum_{i=1}^{n} Q_{i}\left(X_{2 i-1}+X_{2 i}-1\right)$.
Change of variables

$$
\left.\begin{array}{rl}
Y_{i} & =X_{2 i-1}+X_{2 i}-1 \\
Y_{i+n} & =X_{2 i}
\end{array}\right\} \Rightarrow P_{Y}\left(0, \ldots, 0, y_{n+1}, \ldots, y_{2 n}\right)=0
$$

Since $\mathbb{k}\left[Y_{2}, \ldots, Y_{2 n}\right]\left[Y_{1}\right]$ is an euclidean ring, there are $Q_{i} \in \mathbb{k}\left[Y_{1}, \ldots, Y_{2 n}\right], R_{2} \in \mathbb{k}\left[Y_{i+1}, \ldots, Y_{2 n}\right]$ such that

$$
P_{Y}=Q_{1} Y_{1}+Q_{2} Y_{2}+R_{2}
$$

$\forall\left(y_{i}\right) \in \mathbb{k}^{n}, R_{n}\left(y_{n+1}, \ldots, y_{2 n}\right)=0$, hence if \mathbb{k} is infinite

$$
P_{Y}=\sum_{i=1}^{n} Q_{i} Y_{i}
$$

Proof of completeness (3)

Totality
C. Tasson

BB λ-calculus

Definition

Completeness

Totality

Lemma (Spanning polynomials)

Let $P \in \mathbb{k}\left[X_{1}, \ldots, X_{2 n}\right]$. If P vanishes on the zeros common to $X_{2 i-1}+X_{2 i}-1$, then there are $Q_{i} \in \mathbb{k}\left[X_{1}, \ldots, X_{2 n}\right]$ such that $P=\sum_{i=1}^{n} Q_{i}\left(X_{2 i-1}+X_{2 i}-1\right)$.
Change of variables

$$
\left.\begin{array}{rl}
Y_{i} & =X_{2 i-1}+X_{2 i}-1 \\
Y_{i+n} & =X_{2 i}
\end{array}\right\} \Rightarrow P_{Y}\left(0, \ldots, 0, y_{n+1}, \ldots, y_{2 n}\right)=0
$$

Since $\mathbb{k}\left[Y_{2}, \ldots, Y_{2 n}\right]\left[Y_{1}\right]$ is an euclidean ring, there are $Q_{i} \in \mathbb{k}\left[Y_{1}, \ldots, Y_{2 n}\right], R_{n} \in \mathbb{k}\left[Y_{n+1}, \ldots, Y_{2 n}\right]$ such that

$$
P_{Y}=Q_{1} Y_{1}+Q_{2} Y_{2}+\cdots+Q_{n} Y_{n}+R_{n}
$$

$\forall\left(y_{i}\right) \in \mathbb{k}^{n}, R_{n}\left(y_{n+1}, \ldots, y_{2 n}\right)=0$, hence if \mathbb{k} is infinite

$$
P_{Y}=\sum_{i=1}^{n} Q_{i} Y_{i} .
$$

Proof of completeness (the end)

Totality
C. Tasson

BB λ-calculus

Theorem (Completeness)

For every $P, Q \in \mathbb{k}\left[X_{1}, \ldots, X_{2 n}\right]$ such that $P+Q-1$ vanishes on the common zeros of $X_{2 i-1}+X_{2 i}-1$, there is $t \in \boldsymbol{\Lambda}_{\mathcal{B}}$ with $\llbracket t \rrbracket=(P, Q)$.

Proof of completeness (the end)

Totality
C. Tasson

BB λ-calculus

Theorem (Completeness)

For every $P, Q \in \mathbb{k}\left[X_{1}, \ldots, X_{2 n}\right]$ such that
$P+Q-1$ vanishes on the common zeros of $X_{2 i-1}+X_{2 i}-1$, there is $t \in \boldsymbol{\Lambda}_{\mathcal{B}}$ with $\llbracket t \rrbracket=(P, Q)$.

Spanning: $P+Q-1=\sum_{i=1}^{n} Q_{i}\left(X_{2 i-1}+X_{2 i}-1\right)$.

$$
\begin{aligned}
(P, Q)= & \sum_{i=1}^{n}\left[\left(1-Q_{i}\right) \cdot(1,0)+Q_{i} \cdot\left(X_{2 i-1}+X_{2 i}, 0\right)\right] \\
& +(1-Q, Q)-n(1,0)
\end{aligned}
$$

Basic pairs: $\llbracket \boldsymbol{\Pi}_{i}^{+} \rrbracket=\left(X_{2 i-1}+X_{2 i}, 0\right)$, Affine pairs: $\llbracket \mathbf{Q} \rrbracket=(1-Q, Q)$.

$$
\begin{aligned}
(P, Q)= & \llbracket \sum_{i=1}^{n}\left(\text { if } \mathbf{Q}_{i} \text { then } \mathbf{T} \text { else } \boldsymbol{\Pi}_{i}^{+}\right) \\
& +\mathbf{Q}-n \mathbf{T} \rrbracket
\end{aligned}
$$

Where does it come from?

Totality
C. Tasson

BB λ-calculus
Thesis subject
To define a linear space model of linear logic.
Totality
Finiteness spaces
Totality spaces
Back to BB λ

Where does it come from?

Totality

Thesis subject

To define a linear space model of linear logic.

- Interest? Lots of intuitions of linear logic come from linear algebra.

Where does it come from?

Totality
C. Tasson

BB λ-calculus

Totality

Finiteness spaces
Totality spaces
Back to BB λ

Thesis subject

To define a linear space model of linear logic.

- Interest? Lots of intuitions of linear logic come from linear algebra.
- Difficulty? Because of exponential, infinite dimension appears, hence problem of reflexivity solved with topology.

Where does it come from?

Totality
C. Tasson

BB λ-calculus

Thesis subject

To define a linear space model of linear logic.

- Interest? Lots of intuitions of linear logic come from linear algebra.
- Difficulty? Because of exponential, infinite dimension appears, hence problem of reflexivity solved with topology.
- Other attempts?

嗇 [Blute96] Linear Laüchli semantics,
嗇 [Girard99] Coherent Banach spaces,
[Ehrhard02] On Köthe sequence spaces and LL,
[[Ehrhard05] Finiteness spaces.

Where does it come from?

Totality
C. Tasson

BB λ-calculus

Thesis subject

To define a linear space model of linear logic.

- Interest? Lots of intuitions of linear logic come from linear algebra.
- Difficulty? Because of exponential, infinite dimension appears, hence problem of reflexivity solved with topology.
- My attempt: Linearly topologized spaces (Lefschetz),
- a generalization of finiteness spaces,
- a natural notion of totality.

The boolean polynomials corresponds to the totality space associated to $!\mathcal{B} \multimap \mathcal{B}$.

Denotational semantics.

Totality
C. Tasson
$B B \lambda$-calculus

Totality

Finiteness spaces
Totality spaces Back to BB λ

Linear Logic
$A, B:=$
$\left.\begin{array}{c|c|c}0 & A \oplus B & A \& B \\ 1 & A \otimes B & A \not 又 B \\ & A^{\perp} & !A\end{array}\right] ? A$.

Reflexivity
$A^{\perp \perp}=A$.
Linear implication $A \multimap B=A^{\perp 8} B$.
Intuitionistic implication
$A \Rightarrow B=!A \multimap B$.

Finiteness space
A is interpreted by a linear space $\mathbb{k}\langle A\rangle$.
$\pi \vdash A$ is interpreted by a vector $\llbracket \pi \rrbracket \in \mathbb{k}\langle A\rangle$.
Totality space
A is interpreted by an affine subspace $\mathcal{T}(A)$ of $\mathbb{k}\langle A\rangle$.
$\pi \vdash A$ is interpreted by a vector $\llbracket \pi \rrbracket \in \mathcal{T}(A)$.

Relational Finiteness Spaces

Totality
C. Tasson

BB λ-calculus
Totality

Let \mathcal{I} be countable, for each $\mathcal{F} \subseteq \mathcal{P}(\mathcal{I})$, let us denote

$$
\mathcal{F}^{\perp}=\left\{u^{\prime} \subseteq \mathcal{I} \mid \forall u \in \mathcal{F}, u \cap u^{\prime} \text { finite }\right\}
$$

Definition

A relational finiteness space is a pair $A=(|A|, \mathcal{F}(A))$ where the web $|A|$ is countable and the collection $\mathcal{F}(A)$ of finitary subsets satisfies $(\mathcal{F}(A))^{\perp \perp}=\mathcal{F}(A)$.

Example

Booleans.

$$
\mathcal{B}=(\mathbb{B}, \mathcal{P}(\mathbb{B})) \text { with }\left\{\begin{aligned}
\mathbb{B} & =\{\mathbf{T}, \mathbf{F}\} \\
\mathcal{P}(\mathbb{B}) & =\{\emptyset,\{\mathbf{T}\},\{\mathbf{F}\},\{\mathbf{T}, \mathbf{F}\}\}
\end{aligned}\right.
$$

Integers.

$$
\mathcal{N}=\left(\mathbb{N}, \mathcal{P}_{\text {fin }}(\mathbb{N})\right) \text { and } \mathcal{N}^{\perp}=(\mathbb{N}, \mathcal{P}(\mathbb{N}))
$$

Linear Finiteness Spaces

Totality
C. Tasson

For every $x \in \mathbb{k}^{|A|}$, the support of x is $|x|=\left\{a \in|A| \mid x_{a} \neq 0\right\}$.

Definition

The linear finiteness space associated to $A=(|A|, \mathcal{F}(A))$ is

$$
\mathbb{k}\langle A\rangle=\left\{x \in \mathbb{k}^{|A|}| | x \mid \in \mathcal{F}(A)\right\} .
$$

The linearized topology is generated by the neighborhoods of 0

$$
V_{J}=\{x \in \mathbb{k}\langle A\rangle| | x \mid \cap J=\emptyset\}, \quad \text { with } J \in \mathcal{F}(A)^{\perp}
$$

Example

Booleans. $\quad \mathbb{k}\langle\mathcal{B}\rangle=\mathbb{k}^{2}$.
Integers. $\quad \mathbb{k}\langle\mathcal{N}\rangle=\mathbb{k}^{(\omega)} \quad$ and $\quad \mathbb{k}\left\langle\mathcal{N}^{\perp}\right\rangle=\mathbb{k}^{\omega}$.

Totality
C. Tasson
$\mathrm{BB} \lambda$-calculus
Totality
Finiteness spaces
Totality spaces Back to BB λ

A Linear Logic Model

$$
\begin{array}{cll}
A^{\perp} & \rightsquigarrow & \mathbb{k}\langle A\rangle^{\prime} \\
0 & \rightsquigarrow & \{0\} \\
\left.\begin{array}{c}
A \& B \\
A \oplus B
\end{array}\right\} & \rightsquigarrow & \mathbb{k}\langle A\rangle \oplus \mathbb{k}\langle B\rangle \\
1 & \rightsquigarrow & \mathbb{k}^{2} \\
A \multimap B & \rightsquigarrow & \mathcal{L}_{\mathrm{c}}(A, B) \\
A \otimes B & \rightsquigarrow & \mathbb{k}\langle A\rangle \otimes \mathbb{k}\langle B\rangle \\
!A & \rightsquigarrow & \mathbb{k}\langle!A\rangle
\end{array}
$$

Finiteness Spaces

Totality
C. Tasson

BB λ-calculus
Totality
Finiteness spaces
Totality spaces Back to BB λ

A Linear Logic Model

$$
\begin{aligned}
& A^{\perp} \quad \rightsquigarrow \mathbb{k}\langle A\rangle^{\prime} \quad \Rightarrow \text { Reflexivity } \\
& 0 \rightsquigarrow\{0\} \\
& \left.\begin{array}{c}
A \& B \\
A \oplus B
\end{array}\right\} \rightsquigarrow \mathbb{k}\langle A\rangle \oplus \mathbb{k}\langle B\rangle \\
& \begin{array}{cll}
1 & \rightsquigarrow & \mathbb{k}^{n} \\
A \multimap B & \rightsquigarrow & \mathcal{L}_{\mathrm{c}}(A, B) \\
A \otimes B & \rightsquigarrow & \mathbb{k}_{k}\langle A\rangle \otimes \mathbb{k}\langle B\rangle
\end{array} \\
& !A \quad \mathfrak{k}\langle!A\rangle \quad \Rightarrow \text { Infinite dimension }
\end{aligned}
$$

Exponentials

Totality
C. Tasson

BB λ-calculus
Totality
Finiteness spaces
Totality spaces
Back to BB λ

The relational finiteness space associated with ! A is

$$
\begin{aligned}
|!A| & =\mathcal{M}_{\mathrm{fin}}(|A|) \\
\mathcal{F}(!A) & =\left\{M \subseteq \mathcal{M}_{\mathrm{fin}}(|A|)\left|\bigcup_{\mu \in M}\right| \mu \mid \in \mathcal{F}(A)\right\}
\end{aligned}
$$

Exponentials

Totality
C. Tasson

BB λ-calculus
Totality
Finiteness spaces
Totality spaces
Back to BB λ

The relational finiteness space associated with ! A is

$$
\begin{aligned}
|!A| & =\mathcal{M}_{\mathrm{fin}}(|A|) \\
\mathcal{F}(!A) & =\left\{M \subseteq \mathcal{M}_{\mathrm{fin}}(|A|)\left|\bigcup_{\mu \in M}\right| \mu \mid \in \mathcal{F}(A)\right\}
\end{aligned}
$$

Example

$$
|\mathcal{B}|=\{\mathbf{T}, \mathbf{F}\} \quad \mathcal{F}(\mathcal{B})=\mathcal{P}(\{\mathbf{T}, \mathbf{F}\})
$$

Exponentials

Totality
C. Tasson

BB λ-calculus
Totality
Finiteness spaces Totality spaces Back to BB λ

The relational finiteness space associated with ! A is

$$
\begin{aligned}
|!A| & =\mathcal{M}_{\mathrm{fin}}(|A|) \\
\mathcal{F}(!A) & =\left\{M \subseteq \mathcal{M}_{\mathrm{fin}}(|A|)\left|\bigcup_{\mu \in M}\right| \mu \mid \in \mathcal{F}(A)\right\} .
\end{aligned}
$$

$$
\text { Example } \quad|\mathcal{B}|=\{\mathbf{T}, \mathbf{F}\} \quad \mathcal{F}(\mathcal{B})=\mathcal{P}(\{\mathbf{T}, \mathbf{F}\})
$$

$$
\left|? \mathcal{B}^{\perp}\right|=|!\mathcal{B}|=\mathcal{M}_{\mathrm{fin}}(\mathbf{T}, \mathbf{F}) \simeq \mathbb{N}^{2}
$$

$$
\mathcal{F}(!\mathcal{B})=\left\{M \subseteq \mathcal{M}_{\mathrm{fin}}(\mathbf{T}, \mathbf{F})\left|\cup_{\mu \in M}\right| \mu \mid \in \mathcal{F}(\mathcal{B})\right\}=\mathcal{P}\left(\mathbb{N}^{2}\right)
$$

$$
\mathcal{F}\left(? \mathcal{B}^{\perp}\right)=\left\{M \subseteq \mathbb{N}^{2} \mid \forall M^{\prime} \subseteq \mathbb{N}^{2}, M \cap M^{\prime} \text { fin. }\right\}=\mathcal{P}_{\text {fin }}\left(\mathbb{N}^{2}\right)
$$

Exponential

Totality
C. Tasson

BB λ-calculus
Totality

The linear finiteness space associated with $!A$ is

$$
\mathbb{k}\langle!A\rangle=\left\{z \in \mathbb{k}^{\mathcal{M}_{\mathrm{fin}}(|A|)}\left|\cup_{\mu \in|z|}\right| \mu \mid \in \mathcal{F}(A)\right\}
$$

Example

$$
|\mathcal{B}|=\{\mathbf{T}, \mathbf{F}\} \quad \mathcal{F}(\mathcal{B})=\mathcal{P}(\{\mathbf{T}, \mathbf{F}\})
$$

$$
\left|? \mathcal{B}^{\perp}\right|=|!\mathcal{B}|=\mathcal{M}_{\mathrm{fin}}(\mathbf{T}, \mathbf{F}) \simeq \mathbb{N}^{2}
$$

$$
\mathcal{F}(!\mathcal{B})=\left\{M \subseteq \mathcal{M}_{\mathrm{fin}}(\mathbf{T}, \mathbf{F})\left|\cup_{\mu \in M}\right| \mu \mid \in \mathcal{F}(\mathcal{B})\right\}=\mathcal{P}\left(\mathbb{N}^{2}\right)
$$

$$
\mathcal{F}\left(? \mathcal{B}^{\perp}\right)=\left\{M \subseteq \mathbb{N}^{2} \mid \forall M^{\prime} \subseteq \mathbb{N}^{2}, M \cap M^{\prime} \text { fin. }\right\}=\mathcal{P}_{\text {fin }}\left(\mathbb{N}^{2}\right)
$$

$$
\begin{aligned}
\mathbb{k}\langle!\mathcal{B}\rangle & =\left\{z \in \mathbb{k}^{\mathbb{N}^{2}}| | z \mid \in \mathcal{P}\left(\mathbb{N}^{2}\right)\right\} \\
\mathbb{k}\left\langle ? \mathcal{B}^{\perp}\right\rangle & =\left\{\mathbb{k}\left(X_{t}, X_{f}\right)\right. \\
\left.z \in \mathbb{k}^{\mathbb{N}^{2}}| | z \mid \in \mathcal{P}_{\text {fin }}\left(\mathbb{N}^{2}\right)\right\} & =\mathbb{k}\left[X_{t}, X_{f}\right]
\end{aligned}
$$

Finiteness Spaces

Totality
C. Tasson
$\mathrm{BB} \lambda$-calculus
Totality
Finiteness spaces Totality spaces Back to BB λ

Theorem (Taylor expansion)

For every $f \in \mathcal{L}_{\mathrm{c}}(\mathbb{k}\langle!A\rangle, \mathbb{k}\langle B\rangle)$, there is an analytic function ϕ such that $\forall x \in \mathbb{k}\langle A\rangle, \phi(x) \in \mathbb{k}\langle B\rangle$.

$$
\forall b \in|B|, \phi_{b}(x)=\sum_{\mu} f_{\mu, b} x^{\mu} \quad \text { with } x^{\mu}=\prod_{a} x_{a}^{\mu(a)}
$$

Example

$$
\begin{aligned}
\mathbb{k}\langle!\mathcal{B} \multimap 1\rangle & =\mathbb{k}\left\langle ? \mathcal{B}^{\perp}\right\rangle=\mathbb{k}\left[X_{t}, X_{f}\right] \\
\mathbb{k}\langle!\mathcal{B} \multimap \mathcal{B}\rangle & =\mathbb{k}\langle!\mathcal{B} \multimap 1 \oplus 1\rangle=\mathbb{k}\langle!\mathcal{B} \multimap 1\rangle^{2} \\
& =\mathbb{k}\left[X_{t}, X_{f}\right] \times \mathbb{k}\left[X_{t}, X_{f}\right] .
\end{aligned}
$$

What is totality ?

Totality
C. Tasson

BB λ-calculus
Totality

A way to refine the semantics of a calculus and a hope to have completeness.

Let A be a finiteness space $A=(|A|, \mathcal{F}(A))$.
The associate linear space is $\mathbb{k}\langle A\rangle=\left\{x \in \mathbb{k}^{|A|} \| x \mid \in \mathcal{F}(A)\right\}$.

Definition

A totality candidate is an affine subspace \mathcal{T} of $\mathbb{k}\langle A\rangle$ such that $\mathcal{T}^{\bullet \bullet}=\mathcal{T}$ with

$$
\mathcal{T}^{\bullet}=\left\{x^{\prime} \in \mathbb{k}\langle A\rangle^{\prime} \mid \forall x \in \mathcal{T},\left\langle x^{\prime}, x\right\rangle=1\right\}
$$

A totality space is a pair $(A, \mathcal{T}(A))$ with $\mathcal{T}(A)^{\bullet \bullet}=\mathcal{T}(A)$.

A model of linear logic

Totality
C. Tasson

A refinement of finiteness spaces.
Let $A \in \mathrm{LL}$ and $\pi: A$ an affine linear logic proof.

$$
\llbracket \pi \rrbracket \in \mathbb{k}\langle A\rangle .
$$

We define by induction a totality candidate $\mathcal{T}(A)$ such that

$$
\llbracket \pi \rrbracket \in \mathcal{T}(A)
$$

A model of linear logic

Totality
C. Tasson

A refinement of finiteness spaces.
Let $A \in \mathrm{LL}$ and $\pi: A$ an affine linear logic proof.

$$
\llbracket \pi \rrbracket \in \mathbb{k}\langle A\rangle .
$$

We define by induction a totality candidate $\mathcal{T}(A)$ such that

$$
\llbracket \pi \rrbracket \in \mathcal{T}(A) .
$$

Some constructions

$$
A^{\perp} \rightsquigarrow\left(\mathbb{k}\langle A\rangle^{\prime}, \mathcal{T}(A)^{\bullet}\right),
$$

with $\mathcal{T}(A)^{\bullet}=\left\{x^{\prime} \in \mathbb{k}\langle A\rangle^{\prime} \mid \forall x \in \mathcal{T}(A),\left\langle x^{\prime}, x\right\rangle=1\right\}$.

A model of linear logic

Totality
C. Tasson

A refinement of finiteness spaces.
Let $A \in \mathrm{LL}$ and $\pi: A$ an affine linear logic proof.

$$
\llbracket \pi \rrbracket \in \mathbb{k}\langle A\rangle .
$$

We define by induction a totality candidate $\mathcal{T}(A)$ such that

$$
\llbracket \pi \rrbracket \in \mathcal{T}(A) .
$$

Some constructions

$$
A \oplus B \rightsquigarrow(\mathbb{k}\langle A\rangle \oplus \mathbb{k}\langle B\rangle, \overline{\operatorname{aff}}(\mathcal{T}(A) \times\{0\} \cup\{0\} \times \mathcal{T}(B))) .
$$

Example

$$
\begin{aligned}
\mathcal{T}\langle\mathcal{B}\rangle & =\left\{\left(x_{t}, y_{t}\right) \in \mathbb{k}^{2} \mid x_{t}+y_{t}=1\right\} \\
\mathcal{T}\left\langle\mathcal{B}^{\perp}\right\rangle & =\mathcal{T}\langle 1 \& 1\rangle=(1,1)
\end{aligned}
$$

A model of linear logic

Totality
C. Tasson

A refinement of finiteness spaces.
Let $A \in \mathrm{LL}$ and $\pi: A$ an affine linear logic proof.

$$
\llbracket \pi \rrbracket \in \mathbb{k}\langle A\rangle .
$$

We define by induction a totality candidate $\mathcal{T}(A)$ such that

$$
\llbracket \pi \rrbracket \in \mathcal{T}(A) .
$$

Some constructions

$$
A \multimap B \rightsquigarrow\left(\mathcal{L}_{\mathrm{c}}(A, B),\{f \mid f(\mathcal{T}(A)) \subseteq \mathcal{T}(B)\}\right) .
$$

Example

$$
\begin{aligned}
\mathcal{T}\langle\mathcal{B} \multimap \mathcal{B}\rangle= & \left\{f \in \mathcal{L}_{\mathrm{c}}\left(\mathbb{k}^{2}, \mathbb{k}^{2}\right) \mid\right. \\
& \left.x_{t}+y_{t}=1 \Rightarrow f\left(x_{t}, x_{f}\right) \in \mathcal{T}(\mathcal{B})\right\} \\
= & \left\{f_{t}, f_{f} \in \mathcal{L}\left(\mathbb{k}^{2}, \mathbb{k}\right) \mid\right. \\
& \left.x_{t}+y_{t}=1 \Rightarrow f_{t}\left(x_{t}, x_{f}\right)+f_{f}\left(x_{t}, x_{f}\right)=1\right\}
\end{aligned}
$$

A model of linear logic

Totality
C. Tasson

A refinement of finiteness spaces.
Let $A \in \mathrm{LL}$ and $\pi: A$ an affine linear logic proof.

$$
\llbracket \pi \rrbracket \in \mathbb{k}\langle A\rangle .
$$

We define by induction a totality candidate $\mathcal{T}(A)$ such that

$$
\llbracket \pi \rrbracket \in \mathcal{T}(A) .
$$

Some constructions

$$
!A \rightsquigarrow\left(\mathbb{k}\langle!A\rangle, \overline{\operatorname{aff}}\left\{x^{!} \mid x \in \mathcal{T}(A)\right)\right\} .
$$

Example

$$
\begin{aligned}
\mathcal{T}\langle!\mathcal{B}\rangle & =\overline{\operatorname{aff}}\left\{\left(x_{t} \mathbf{T}+y_{f} \mathbf{F}\right)^{!} \mid x_{t}+y_{f}=1\right\} \\
& =\overline{\operatorname{aff}}\left\{\sum_{p, q} x_{t}^{p} x_{f}^{q} \mid x_{t}+y_{f}=1\right\} .
\end{aligned}
$$

Totality
C. Tasson
$B B \lambda$-calculus
Totality
Finiteness spaces
Totality spaces
Back to BB λ

Theorem (Taylor expansion)

For every $f \in \mathcal{T}\langle!A \multimap B\rangle$, the associated an analytic function $\phi: \mathbb{k}\langle A\rangle \Rightarrow \mathbb{k}\langle B\rangle$ satisfies

$$
x \in \mathcal{T}\langle A\rangle \Rightarrow \phi(x) \in \mathcal{T}\langle B\rangle
$$

Example

$$
\begin{aligned}
\mathbb{k}\langle!\mathcal{B} \multimap \mathcal{B}\rangle= & \mathbb{k}\left[X_{t}, X_{f}\right] \times \mathbb{k}\left[X_{t}, X_{f}\right] \\
\mathcal{T}\langle!\mathcal{B} \multimap \mathcal{B}\rangle= & \left\{(P, Q) \in \mathbb{k}\left[X_{t}, X_{f}\right]^{2} \mid\right. \\
& \left.x_{t}+y_{t}=1 \Rightarrow P\left(x_{t}, y_{t}\right)+Q\left(x_{t}, y_{t}\right)=1\right\}
\end{aligned}
$$

Back to barycentric boolean lambda-calculus

Totality
C. Tasson
$B B \lambda$-calculus
Totality
Finiteness spaces
Totality spaces
Back to BB λ

Definition

We define inductively the terms of $\Lambda_{\mathcal{B}}$ by

$$
\begin{aligned}
& \mathbf{R}, \mathbf{S}::=\sum_{i=1}^{m} a_{i} \mathbf{s}_{i} \quad \text { with } \sum_{i=1}^{m} a_{i}=1 \text {, and } \\
& \mathbf{s}, \mathbf{s}_{i}::=\mathbf{x} \in \mathcal{V}|\lambda \mathbf{x . s}|(\mathbf{s}) \mathbf{S}|\mathbf{T}| \mathbf{F} \mid \text { if } \mathbf{s} \text { then } \mathbf{S} \text { else } \mathbf{R} .
\end{aligned}
$$

Types

We consider only simply typed lambda-term with

$$
\begin{aligned}
& \sum a_{i} \mathbf{s}_{i}^{A}: A, \quad \mathbf{T}, \mathbf{F}: \mathcal{B}, \\
& \text { if }(-) \text { then }(-) \text { else }(-):\left(\mathcal{B}^{n} \Rightarrow \mathcal{B}\right)^{3} \Rightarrow\left(\mathcal{B}^{n} \Rightarrow \mathcal{B}\right) .
\end{aligned}
$$

Notice that term of $\Lambda_{\mathcal{B} n}$ is a term of $\boldsymbol{\Lambda}_{\mathcal{B}}$ with type $\mathcal{B}^{n} \Rightarrow \mathcal{B}$.

Semantics

Totality
C. Tasson

We use the translation of the intuitionist implication into linear logic

$$
A \Rightarrow B \simeq!A \multimap B
$$

To each typed barycentric boolean term is associated a proof of affine linear logic.
$\llbracket \mathbf{S} \rrbracket$ is the semantics of the proof associated to \mathbf{S}.

[^0]
Soundness and partial completeness

Totality
C. Tasson
$B B \lambda$-calculus
Totality
Finiteness spaces
Totality spaces Back to BB λ

Corollary

For every term $\mathbf{S}: \mathcal{B} \Rightarrow \mathcal{B} \simeq!\mathcal{B} \multimap \mathcal{B}$,
$\llbracket \mathbf{S} \rrbracket \in \mathcal{T}\langle!\mathcal{B} \multimap \mathcal{B}\rangle$ which is equal to
$\left\{(P, Q) \in \mathbb{k}\left[X_{t}, X_{f}\right]^{2} \mid x_{t}+y_{t}=1 \Rightarrow P\left(x_{t}, y_{t}\right)+Q\left(x_{t}, y_{t}\right)=1\right\}$

Reciprocally, we have already seen

Theorem

For every pair of polynomials $(P, Q) \in \mathcal{T}\langle!\mathcal{B} \multimap \mathcal{B}\rangle$, there is $\mathbf{S} \in \boldsymbol{\Lambda}_{\mathcal{B}}$ such that $\llbracket \mathbf{S} \rrbracket=(P, Q)$.

This is a completeness theorem for first order boolean terms which has even been proved for $\otimes^{n}!\mathcal{B} \multimap \mathcal{B}$.

Conclusion

Totality
C. Tasson

Completeness

- Total completeness for LL ? no, it is not even complete for MALL: $(\mathcal{B} \multimap \mathcal{B}) \multimap \mathcal{B}$
- Total completeness for higher order hierarchy $\boldsymbol{\Lambda}_{\mathcal{B}}$?
- How to complete $\boldsymbol{\Lambda}_{\mathcal{B}}$ to get completeness ?

Totality

Totality spaces constitute an elegant affine model of linear logic where linear logic construction are algebraically defined and completeness also seem to have an algebraic characterization.

[^0]: Theorem
 Let $\mathbf{S} \in \mathbf{\Lambda}_{\mathcal{B}}$. If \mathbf{S} of type A, then $\llbracket \mathbf{S} \rrbracket \in \mathcal{T}\langle A\rangle$.

