Totality, towards completeness

Christine TASSON

tasson@pps.jussieu.fr

Laboratoire Preuves Programmes Systèmes Université Paris Diderot France

June 27, 2009

Contributions

Totality

C. Tasson

Intro

 $\Lambda_{\mathcal{B}}$ -calculus

Totality, towards completeness

- Total finiteness spaces $(A, \mathcal{T}(A))$, a semantics for classical linear logic.
- Barycentric boolean calculus, a parallel syntax which is total:

$$\begin{array}{rcl} \mathbf{s} & ::= & \mathbf{x} \in \mathcal{V} \ \mid \ \lambda \mathbf{x}.\mathbf{s} \ \mid \ (\mathbf{s})\mathbf{S} \\ & \mid & \mathbf{T} \ \mid \ \mathbf{F} \ \mid \ \text{if \mathbf{s} then \mathbf{R} else \mathbf{S}} \end{array}$$
$$\mathbf{R}, \mathbf{S} & ::= \ \sum_{i=1}^{m} a_i \, \mathbf{s}_i \qquad \text{where } \sum_{i=1}^{m} a_i = 1 \end{array}$$

Sull completeness at the first order boolean type.

Theorem (Completeness)

Every total function of $T(\mathcal{B}^n \Rightarrow \mathcal{B})$ is the interpretation of a term of the boolean barycentric calculus.

Context

Totality

C. Tasson

Intro

 $\Lambda_{\mathcal{B}}$ -calculus

Totality, towards completeness

Linear Logic et differential lambda-calculus

80's Linear logic and linear algebra.

2000's Finiteness spaces.

Syntax Differential syntaxes.

Denotational semantics

70's-90's The quest for sequentiality, through the full adequacy issue.

2000's The quest for non-determinism passing by differential lambda-calculus.

Contents

Totality

C. Tasson

Intro

 $\Lambda_{\mathcal{B}}\text{-calculus}$

Totality, towards completeness

• Algebraic λ -calculus

- The barycentric boolean calculus
- Syntax
- Semantics and non-determinism
- Finiteness spaces

- Totality, towards completeness
- Totality
- Completeness

What about parallel algorithm

Totality

C. Tasson

Intro Parralel CHoCo

 $\Lambda_{\mathcal{B}}\text{-calculus}$

Totality, towards completeness **Non-deterministic algorithm** are made of different programs of the same type that are reduced in parallel.

We use **algebraic** λ -calculus which is equipped with sums and scalar coefficients which give account of the number of way to compute a result (cf. Boudol, Vaux, Ehrhard-Regnier).

We tackle the **full completeness** question from both traditional viewpoint and

- vary the model to fit a language,
- vary the language to fit the model.

Algebraic λ -Calculus

Totality

C. Tasson

Intro Parralel CHoCo

 $\Lambda_{\mathcal{B}}$ -calculus

Totality, towards completeness

Simply typed λ -calculus:

$$\begin{array}{c} \Gamma, \, x : A \vdash x : A \quad (\text{var}) \\ \hline \Gamma \vdash \lambda x . \mathbf{s} : A \Rightarrow B \quad (\text{abs}) \\ \hline \Gamma \vdash (\mathbf{s})\mathbf{r} : B \end{array}$$

Algebraic extension:

$$\frac{\overline{\Gamma \vdash \mathbf{0} : A} (\mathbf{0})}{\overline{\Gamma \vdash \mathbf{s}_1 : \mathbf{a} \ \Gamma \vdash \mathbf{s}_2 : A}} (\operatorname{sum}) \quad \frac{\overline{\Gamma \vdash \mathbf{s} : A} \ a \in \mathbb{k}}{\overline{\Gamma \vdash \mathbf{as} : A}} (\operatorname{scal})$$

Zero proves any formula, it stands for non *total proof* like the Daimon \clubsuit of Girard

The barycentric boolean calculus

Totality

C. Tasson

Intro

$\Lambda_{\mathcal{B}}$ -calculus

Syntax

Semantics and non-determinism Finiteness spaces

Totality, towards completeness Let \Bbbk be a infinite field and $\mathcal V$ be a countable set of variables.

Definition (λ +

Atomic terms \boldsymbol{s} and barycentric terms $\boldsymbol{\mathsf{T}}$ are inductively defined

$$\mathbf{s}$$
 ::= $\mathbf{x} \in \mathcal{V} \mid \lambda \mathbf{x}.\mathbf{s} \mid (\mathbf{s})\mathbf{s}$

The barycentric boolean calculus

Totality

C. Tasson

Intro

$\Lambda_{\mathcal{B}}$ -calculus

Syntax

Semantics and non-determinism Finiteness spaces

Totality, towards completeness Let \Bbbk be a infinite field and $\mathcal V$ be a countable set of variables.

Definition (λ + Barycentric +

Atomic terms \boldsymbol{s} and barycentric terms $\boldsymbol{\mathsf{T}}$ are inductively defined

$$\mathbf{s}$$
 ::= $\mathbf{x} \in \mathcal{V} \mid \lambda \mathbf{x}.\mathbf{s} \mid (\mathbf{s})\mathbf{S}$

$$\mathbf{R}, \mathbf{S} \quad ::= \quad \sum_{i=1}^{m} a_i \, \mathbf{s}_i \qquad \text{where } \begin{cases} \forall i \leq m, \ a_i \in \mathbb{k} \,, \\ \sum_{i=1}^{m} a_i = 1 \,. \end{cases}$$

The barycentric boolean calculus

Totality

C. Tasson

Intro

$\Lambda_{\mathcal{B}}$ -calculus

- Syntax
- Semantics and non-determinism Finiteness spaces
- Totality, towards completeness

Let \Bbbk be a infinite field and $\mathcal V$ be a countable set of variables.

Definition (λ + Barycentric + Boolean)

Atomic terms \mathbf{s} and barycentric terms \mathbf{T} are inductively defined

$$\mathbf{s}$$
 ::= $\mathbf{x} \in \mathcal{V} \mid \lambda \mathbf{x}.\mathbf{s} \mid (\mathbf{s})\mathbf{S}$

 $| \ \mathbf{T} : \mathcal{B} \ | \ \mathbf{F} : \mathcal{B} \ | \ \mathbf{f} \ \mathbf{s} \ \text{then} \ \mathbf{R} \ \text{else} \ \mathbf{S} : \mathcal{B} \Rightarrow A \Rightarrow A \Rightarrow A$

 $\mathbf{R}, \mathbf{S} \quad ::= \quad \sum_{i=1}^{m} a_i \, \mathbf{s}_i \qquad \text{where } \begin{cases} \forall i \leq m, \ a_i \in \mathbb{k} \\ \sum_{i=1}^{m} a_i = 1 \\ . \end{cases}$

The booleans are affine combinations of true (T) and false (F) and $\mathcal{B} = 1 \oplus 1$ from linear logic.

Semantics of $\pmb{\Lambda}_{\mathcal{B}}$

Totality

C. Tasson

Intro

- $\Lambda_{\mathcal{B}}$ -calculus
- Syntax
- Semantics and non-determinism Finiteness spaces

Totality, towards completeness

- Webbed model enriched with coefficients and sums, hence **vector spaces**.
- Boolean type leads to finite dimensional vector spaces:

$$\begin{bmatrix} \mathbf{T} \end{bmatrix} = (1,0), \qquad \begin{bmatrix} \mathbf{F} \end{bmatrix} = (0,1),$$

[if $(a\mathbf{T} + b\mathbf{F})$ then \mathbf{Q} else $\mathbf{R} \end{bmatrix} = a \begin{bmatrix} \mathbf{Q} \end{bmatrix} + b \begin{bmatrix} \mathbf{R} \end{bmatrix},$
 $\begin{bmatrix} \sum a_i \, \mathbf{s}_i \end{bmatrix} = \sum a_i \begin{bmatrix} \mathbf{s}_i \end{bmatrix}.$

Functional type leads to infinite dimensional vector spaces:

The web of exponential isn't finite, hence we need topology!

Non-determinism

Totality

C. Tasson

Intro

Λ_B-calculus Syntax Semantics and non-determinism Finiteness spaces

Totality, towards completeness For every proof π and π' of linear logic formulæ,

$$\frac{\pi \vdash A \quad \pi' \vdash A \multimap B}{[\pi \ ; \ \pi'] \vdash B} \operatorname{Cut} \quad \llbracket \pi \ ; \ \pi' \rrbracket = \left(\sum_{a \in |A|} \llbracket \pi \rrbracket_a \, \llbracket \pi' \rrbracket_{a,b} \right)_{b \in |B|}$$

The sum

- allows non-determinism, since result of different computations are added;
- is controlled since, in the simple typed case, it is finite.

Finiteness spaces use *orthogonality* between $\pi \vdash A$ and $\pi' \vdash A^{\perp}$

 $|\llbracket \pi \rrbracket| \cap |\llbracket \pi' \rrbracket|$ finite.

to make explicit the controlled non-determinism.

Relational Finiteness Spaces

Totality

C. Tasson

Intro

Λ_B-calculus Syntax Semantics and non-determinism Finiteness spaces

Totality, towards completeness Let $\mathcal I$ be countable, for each $\mathcal F\subseteq \mathcal P(\mathcal I)$, let us denote

$$\mathcal{F}^{\perp} = \{ u' \subseteq \mathcal{I} \; ; \; \forall u \in \mathcal{F}, \; u \cap u' \; \mathsf{finite} \} \, .$$

Definition

A relational finiteness space is a pair $A = (|A|, \mathcal{F}(A))$ where the web |A| is countable and the collection $\mathcal{F}(A)$ of finitary subsets satisfies $(\mathcal{F}(A))^{\perp \perp} = \mathcal{F}(A)$.

Example

Booleans.

 $\mathcal{B} = (\mathbb{B}, \mathcal{P}(\mathbb{B})) \text{ with } \begin{cases} \mathbb{B} = \{\mathsf{T}, \mathsf{F}\} \\ \mathcal{P}(\mathbb{B}) = \{\emptyset, \{\mathsf{T}\}, \{\mathsf{F}\}, \{\mathsf{T}, \mathsf{F}\}\} \end{cases}.$

Integers.

 $\mathcal{N} = (\mathbb{N}, \mathcal{P}_{\textit{fin}}(\mathbb{N})) \text{ and } \mathcal{N}^{\perp} = (\mathbb{N}, \mathcal{P}(\mathbb{N})).$

Linear Finiteness Spaces

Totality

C. Tasson

Intro

Λ_B-calculus Syntax Semantics and non-determinism Finiteness spaces

Totality, towards completeness Let k be an infinite discrete field. For every sequence $x \in k^{|A|}$, the *support* of x is $|x| = \{a \in |A| ; x_a \neq 0\}$.

Definition

The *linear finiteness space* associated to $A = (|A|, \mathcal{F}(A))$ is

 $\mathbb{k}\langle A \rangle = \{ x \in \mathbb{k}^{|A|} ; |x| \in \mathcal{F}(A) \}.$

The linearized topology is generated by the neighborhoods of 0

 $V_J = \{x \in \mathbb{k} \langle A \rangle \ ; \ |x| \cap J = \emptyset\}, \text{ with } J \in \mathcal{F}(A)^{\perp}.$

Example

Booleans. $\mathbb{B} = \{\mathbf{T}, \mathbf{F}\}$ $\Bbbk \langle \mathcal{B} \rangle = \Bbbk^2$. Integers. $|\mathcal{N}| = \mathbb{N}$ $\Bbbk \langle \mathcal{N} \rangle = \Bbbk^{(\omega)}$ and $\Bbbk \langle \mathcal{N}^{\perp} \rangle = \Bbbk^{\omega}$.

Finiteness Spaces, Functions.

Totality

C. Tasson

Intro

Λ_B-calculus Syntax Semantics and non-determinism Finiteness spaces

Totality, towards completeness

Theorem (Taylor-Ehrhard expansion)

Every program $P : A \Rightarrow B$ is interpreted by an analytic function $\llbracket P \rrbracket : \Bbbk \langle A \rangle \to \Bbbk \langle B \rangle$

$$P=\sum_{n\in\mathbb{N}}P^{(n)}(0)\ x^{\otimes n}.$$

Example

$$\begin{split} & \mathbb{k} \langle !\mathcal{B} \multimap 1 \rangle &= \mathbb{k} \left[X_t, X_f \right], \\ & \mathbb{k} \langle !\mathcal{B} \multimap \mathcal{B} \rangle &= \mathbb{k} \langle !\mathcal{B} \multimap 1 \oplus 1 \rangle = \mathbb{k} \langle !\mathcal{B} \multimap 1 \rangle^2 \\ &= \mathbb{k} \left[X_t, X_f \right] \times \mathbb{k} \left[X_t, X_f \right]. \end{split}$$

Towards completeness

Totality

C. Tasson

Intro

- Λ_B-calculus Syntax Semantics and non-determinism Finiteness spaces
- Totality, towards completeness

- Introduction : Full Completeness for parallelism • Full completeness and non determinism
 - Algebraic λ -calculus
- The barycentric boolean calculus
- Syntax
- Semantics and non-determinism
- Finiteness spaces
- 3
 - Totality, towards completeness
 - Totality
 - Completeness

What is totality ?

Totality

C. Tasson

Intro

 $\Lambda_{\mathcal{B}}\text{-calculus}$

Totality, towards completeness

Totality Completeness A way to refine the semantics and step to full completeness. For every proof π and π' of linear logic formulæ,

$$rac{\pidash A}{[\pi\,;\,\pi']dash \bot} ext{Cut} \qquad \left[\!\!\left[\pi\,;\,\pi'
ight]\!\!\right] = \langle \left[\!\!\left[\pi
ight]\!\!\right], \left[\!\!\left[\pi'
ight]\!\!\right]
angle = 1$$

Let A be a finiteness space $A = (|A|, \mathcal{F}(A))$. The associate linear space is $\mathbb{k}\langle A \rangle = \{ x \in \mathbb{k}^{|A|} ; |x| \in \mathcal{F}(A) \}.$

Definition

A totality candidate is an affine subspace ${\cal T}$ of $\Bbbk\langle A\rangle$ such that ${\cal T}^{\bullet\bullet}={\cal T}$ with

$$\mathcal{T}^{ullet} = \left\{ x' \in \Bbbk \langle A
angle' \; ; \; orall x \in \mathcal{T}, \; \langle x', x
angle = 1
ight\}.$$

A totality space is a pair $(A, \mathcal{T}(A))$ with $\mathcal{T}(A)^{\bullet \bullet} = \mathcal{T}(A)$.

An algebraic description

Totality

C. Tasson

Intro

 $\Lambda_{\mathcal{B}}$ -calculus

Totality, towards completeness

Totality Completeness Every construction of linear logic has an algebraic description as a closed affine subspace.

 $\mathcal{B} = 1 \oplus 1$ Affine combinations:

 $f \in \mathcal{T}(A \multimap B)$ whenever $\forall x \in \mathcal{T}(A), f(x) \in \mathcal{T}(B);$ $F \in \mathcal{T}(A \Rightarrow B)$ whenever $\forall x \in \mathcal{T}(A), F(x) \in \mathcal{T}(B).$

Example $(\mathcal{B} \Rightarrow \mathcal{B} = !\mathcal{B} \multimap \mathcal{B})$ $\Bbbk \langle \mathcal{B} \Rightarrow \mathcal{B} \rangle = \Bbbk [X_t, X_f] \times \Bbbk [X_t, X_f],$ $(P_T, P_F) \in \mathcal{T}(\mathcal{B} \Rightarrow \mathcal{B}) \Leftrightarrow$ $\forall (x_T, x_F) \in \mathcal{T}(\mathcal{B}), \ P_T(x_T, x_F) + P_F(x_T, x_F) = 1.$

Full Completeness at the first order boolean type.

Totality

C. Tasson

Intro

 $\Lambda_{\mathcal{B}}\text{-calculus}$

Totality, towards completeness

Totality Completeness

Syntax of $\Lambda_{\mathcal{B}}$: $\mathbf{s} ::= \mathbf{x} \in \mathcal{V} \mid \lambda \mathbf{x}.\mathbf{s} \mid (\mathbf{s})\mathbf{S}$ $\mid \mathbf{T} \mid \mathbf{F} \mid \text{ if s then } \mathbf{R} \text{ else } \mathbf{S}$

R, **S** ::= $\sum_{i=1}^{m} a_i \mathbf{s}_i$ where $\sum_{i=1}^{m} a_i = 1$.

Proposition

For every term $\mathbf{S} \in \mathbf{\Lambda}_{\mathcal{B}}$ of type $\mathcal{B}^n \Rightarrow \mathcal{B}$, the semantics is total $[\![\mathbf{S}]\!] \in \mathcal{T} \langle \mathcal{B}^n \Rightarrow \mathcal{B} \rangle$.

Theorem (Completeness)

Every total function of $T(\mathcal{B}^n \Rightarrow \mathcal{B})$ is the interpretation of a term of the boolean barycentric calculus.

Algebraic proof: Euclidean division and affine combinations.

Around

Totality

C. Tasson

Intro

 $\Lambda_{\mathcal{B}}\text{-calculus}$

Totality, towards completeness

Totality Completeness

Corollary

Parallel functions such as

- Parallel-Or
- Berry function

can be encoded in $\Lambda_{\mathcal{B}}$.

Generalisations

- \bullet Possible for finitary types built over 1 and $\oplus.$
- \bullet Impossible for infinite types such as $\mathcal{N}.$
- Generalisation to higher order boolean type ?