Totality, towards completeness

Christine TASSON
tasson@pps.jussieu.fr
Laboratoire Preuves Programmes Systèmes
Université Paris Diderot
France

June 27, 2009

Contributions

Totality
C. Tasson

Intro

$\boldsymbol{\Lambda}_{\mathcal{B}}$-calculus
Totality, towards completeness
(1) Total finiteness spaces $(A, \mathcal{T}(A))$, a semantics for classical linear logic.
(2) Barycentric boolean calculus, a parallel syntax which is total:

$$
\begin{aligned}
& \mathbf{s}::=\mathbf{x} \in \mathcal{V}|\lambda \mathbf{x . s}|(\mathbf{s}) \mathbf{S} \\
&|\mathbf{T}| \mathbf{F} \mid \text { if } \mathbf{s} \text { then } \mathbf{R} \text { else } \mathbf{S} \\
& \mathbf{R}, \mathbf{S} \quad::=\sum_{i=1}^{m} a_{i} \mathbf{s}_{i} \quad \text { where } \sum_{i=1}^{m} a_{i}=1 .
\end{aligned}
$$

(3) Full completeness at the first order boolean type.

Theorem (Completeness)

Every total function of $\mathcal{T}\left(\mathcal{B}^{n} \Rightarrow \mathcal{B}\right)$ is the interpretation of a term of the boolean barycentric calculus.

Context

Totality
C. Tasson

Intro

$\Lambda_{\mathcal{B}}$-calculus
Totality, towards completeness

Linear Logic et differential lambda-calculus

80's Linear logic and linear algebra.
2000's Finiteness spaces.
Syntax Differential syntaxes.

Denotational semantics

70 's-90's The quest for sequentiality, through the full adequacy issue.

2000's The quest for non-determinism passing by differential lambda-calculus.

Contents

Totality
C. Tasson

Intro
$\wedge_{\mathcal{B}}$-calculus
Totality,
(1) Introduction: Full Completeness for parallelism

- Full completeness and non determinism
- Algebraic λ-calculus
(2) The barycentric boolean calculus
- Syntax
- Semantics and non-determinism
- Finiteness spaces

3 Totality, towards completeness

- Totality
- Completeness

What about parallel algorithm

Totality
C. Tasson

Intro

Non-deterministic algorithm are made of different programs of the same type that are reduced in parallel.

We use algebraic λ-calculus which is equipped with sums and scalar coefficients which give account of the number of way to compute a result (cf. Boudol, Vaux, Ehrhard-Regnier).

We tackle the full completeness question from both traditional viewpoint and

- vary the model to fit a language,
- vary the language to fit the model.

Algebraic λ-Calculus

Totality
C. Tasson

Intro
Parralel
CHoCo
$\wedge_{\mathcal{B}}$-calculus
Totality,
towards
completeness

Simply typed λ-calculus:

$$
\begin{gathered}
\Gamma \Gamma, x: A \vdash x: A(\operatorname{var}) \\
\frac{\Gamma, x: A \vdash \mathbf{s}: B}{\Gamma \vdash \lambda x . \mathbf{s}: A \Rightarrow B}(\mathrm{abs}) \quad \frac{\Gamma \vdash \mathbf{s}: A \Rightarrow B \quad \Gamma \vdash \mathbf{r}: A}{\Gamma \vdash(\mathbf{s}) \mathbf{r}: B}(\mathrm{app})
\end{gathered}
$$

Algebraic extension:

$$
\begin{gathered}
\overline{\Gamma \vdash 0: A}(0) \\
\frac{\Gamma \vdash \mathbf{s}_{1}: A \quad \Gamma \vdash \mathbf{s}_{2}: A}{\Gamma \vdash \mathbf{s}_{1}+\mathbf{s}_{2}: A}(\text { sum }) \quad \frac{\Gamma \vdash \mathbf{s}: A \quad a \in \mathbb{k}}{\Gamma \vdash a \mathbf{s}: A}(\text { scal })
\end{gathered}
$$

Zero proves any formula, it stands for non total proof like the Daimon of Girard

The barycentric boolean calculus

Totality
C. Tasson

Intro

$\Lambda_{\mathcal{B}}$-calculus

Syntax

Semantics and
non-determinism
Finiteness spaces
Totality,
towards completeness

Let \mathbb{k} be a infinite field and \mathcal{V} be a countable set of variables.

Definition $(\lambda+\quad+\quad)$ Atomic terms s and barycentric terms \mathbf{T} are inductively defined

$$
\mathbf{s}::=\mathbf{x} \in \mathcal{V}|\lambda \mathbf{x} . \mathbf{s}|(\mathbf{s}) \mathbf{S}
$$

The barycentric boolean calculus

Totality
C. Tasson

Intro

$\Lambda_{\mathcal{B}}$-calculus

Syntax

Semantics and
non-determinism
Finiteness spaces
Totality,
towards completeness

Let \mathbb{k} be a infinite field and \mathcal{V} be a countable set of variables.

Definition $(\lambda+$ Barycentric +

Atomic terms \mathbf{s} and barycentric terms \mathbf{T} are inductively defined

$$
\begin{gathered}
\mathbf{s} \quad:=\mathbf{x} \in \mathcal{V}|\lambda \mathbf{x} . \mathbf{s}|(\mathbf{s}) \mathbf{S} \\
\mathbf{R}, \mathbf{S} \quad::=\sum_{i=1}^{m} a_{i} \mathbf{s}_{i} \quad \text { where }\left\{\begin{array}{l}
\forall i \leq m, a_{i} \in \mathbb{k}, \\
\sum_{i=1}^{m} a_{i}=1 .
\end{array}\right.
\end{gathered}
$$

The barycentric boolean calculus

Totality
C. Tasson

Intro

$\wedge_{\mathcal{B}}$-calculus

Syntax

Semantics and non-determinism Finiteness spaces
Totality,
towards completeness

Let \mathbb{k} be a infinite field and \mathcal{V} be a countable set of variables.

Definition ($\lambda+$ Barycentric + Boolean $)$

Atomic terms \mathbf{s} and barycentric terms \mathbf{T} are inductively defined

$$
\begin{aligned}
& \mathbf{s}::=\mathbf{x} \in \mathcal{V}|\lambda \mathbf{x} . \mathbf{s}|(\mathbf{s}) \mathbf{S} \\
&|\mathbf{T}: \mathcal{B}| \mathbf{F}: \mathcal{B} \mid \\
& \mathbf{R}, \mathbf{S} \quad: \text { if } \mathbf{s} \text { then } \mathbf{R} \text { else } \mathbf{S}: \mathcal{B} \Rightarrow A \Rightarrow A \Rightarrow A \\
& \sum_{i=1}^{m} a_{i} \mathbf{s}_{i} \quad \text { where }\left\{\begin{array}{l}
\forall i \leq m, a_{i} \in \mathbb{k}, \\
\sum_{i=1}^{m} a_{i}=1 .
\end{array}\right.
\end{aligned}
$$

The booleans are affine combinations of true (\mathbf{T}) and false (\mathbf{F}) and $\mathcal{B}=1 \oplus 1$ from linear logic.

Semantics of $\boldsymbol{\Lambda}_{\mathcal{B}}$

Totality
C. Tasson

Intro

$\wedge_{\mathcal{B}}$-calculus

Syntax

- Webbed model enriched with coefficients and sums, hence vector spaces.
- Boolean type leads to finite dimensional vector spaces:

$$
\begin{gathered}
\llbracket \mathbf{T} \rrbracket=(1,0), \quad \llbracket \mathbf{F} \rrbracket=(0,1), \\
\llbracket \text { if }(a \mathbf{T}+b \mathbf{F}) \text { then } \mathbf{Q} \text { else } \mathbf{R} \rrbracket=a \llbracket \mathbf{Q} \rrbracket+b \llbracket \mathbf{R} \rrbracket, \\
\llbracket \sum a_{i} \mathbf{s}_{i} \rrbracket=\sum a_{i} \llbracket \mathbf{s}_{i} \rrbracket .
\end{gathered}
$$

- Functional type leads to infinite dimensional vector spaces:

The web of exponential isn't finite, hence we need topology!

Non-determinism

Totality
C. Tasson

Intro
$\wedge_{\mathcal{B}}$-calculus
Syntax

For every proof π and π^{\prime} of linear logic formulæ,

$$
\frac{\pi \vdash A \quad \pi^{\prime} \vdash A \multimap B}{\left[\pi ; \pi^{\prime}\right] \vdash B} \text { Cut } \llbracket \pi ; \pi^{\prime} \rrbracket=\left(\sum_{a \in|A|} \llbracket \pi \rrbracket_{a} \llbracket \pi^{\prime} \rrbracket_{a, b}\right)_{b \in|B|}
$$

The sum

- allows non-determinism, since result of different computations are added;
- is controlled since, in the simple typed case, it is finite.

Finiteness spaces use orthogonality between $\pi \vdash A$ and $\pi^{\prime} \vdash A^{\perp}$

$$
|\llbracket \pi \rrbracket| \cap\left|\llbracket \pi^{\prime} \rrbracket\right| \text { finite }
$$

to make explicit the controlled non-determinism.

Relational Finiteness Spaces

Totality
C. Tasson

Intro
$\wedge_{\mathcal{B}}$-calculus
Syntax
Semantics and non-determinism
Finiteness spaces
Totality,
towards completeness

Let \mathcal{I} be countable, for each $\mathcal{F} \subseteq \mathcal{P}(\mathcal{I})$, let us denote

$$
\mathcal{F}^{\perp}=\left\{u^{\prime} \subseteq \mathcal{I} ; \forall u \in \mathcal{F}, u \cap u^{\prime} \text { finite }\right\} .
$$

Definition

A relational finiteness space is a pair $A=(|A|, \mathcal{F}(A))$ where the web $|A|$ is countable and the collection $\mathcal{F}(A)$ of finitary subsets satisfies $(\mathcal{F}(A))^{\perp \perp}=\mathcal{F}(A)$.

Example

Booleans.

$$
\mathcal{B}=(\mathbb{B}, \mathcal{P}(\mathbb{B})) \text { with }\left\{\begin{aligned}
\mathbb{B} & =\{\mathbf{T}, \mathbf{F}\} \\
\mathcal{P}(\mathbb{B}) & =\{\emptyset,\{\mathbf{T}\},\{\mathbf{F}\},\{\mathbf{T}, \mathbf{F}\}\}
\end{aligned}\right.
$$

Integers.

$$
\mathcal{N}=\left(\mathbb{N}, \mathcal{P}_{\text {fin }}(\mathbb{N})\right) \text { and } \mathcal{N}^{\perp}=(\mathbb{N}, \mathcal{P}(\mathbb{N}))
$$

Linear Finiteness Spaces

Totality
C. Tasson

Intro

$\wedge_{\mathcal{B}}$-calculus

Syntax

Semantics and non-determinism
Finiteness spaces
Totality,
towards completeness

Let \mathbb{k} be an infinite discrete field. For every sequence $x \in \mathbb{k}^{|A|}$, the support of x is $|x|=\left\{a \in|A| ; x_{a} \neq 0\right\}$.

Definition

The linear finiteness space associated to $A=(|A|, \mathcal{F}(A))$ is

$$
\mathbb{k}\langle A\rangle=\left\{x \in \mathbb{k}^{|A|} ;|x| \in \mathcal{F}(A)\right\} .
$$

The linearized topology is generated by the neighborhoods of 0

$$
V_{J}=\{x \in \mathbb{k}\langle A\rangle ;|x| \cap J=\emptyset\}, \quad \text { with } J \in \mathcal{F}(A)^{\perp} .
$$

Example

Booleans. $\mathbb{B}=\{\mathbf{T}, \mathbf{F}\} \quad \mathbb{k}\langle\mathcal{B}\rangle=\mathbb{k}^{2}$. Integers. $|\mathcal{N}|=\mathbb{N} \quad \mathbb{k}\langle\mathcal{N}\rangle=\mathbb{k}^{(\omega)}$ and $\mathbb{k}\left\langle\mathcal{N}^{\perp}\right\rangle=\mathbb{k}^{\omega}$.

Finiteness Spaces, Functions.

Totality
C. Tasson

Intro

$\Lambda_{\mathcal{B}}$-calculus
Syntax
Semantics and non-determinism
Finiteness spaces
Totality,
towards
completeness

Theorem (Taylor-Ehrhard expansion)

Every program $P: A \Rightarrow B$ is interpreted by an analytic function $\llbracket P \rrbracket: \mathbb{k}\langle A\rangle \rightarrow \mathbb{k}\langle B\rangle$

$$
P=\sum_{n \in \mathbb{N}} P^{(n)}(0) x^{\otimes n} .
$$

Example

$$
\begin{aligned}
\mathbb{k}\langle!\mathcal{B} \multimap 1\rangle & =\mathbb{k}\left[X_{t}, X_{f}\right], \\
\mathbb{k}\langle!\mathcal{B} \multimap \mathcal{B}\rangle & =\mathbb{k}\langle!\mathcal{B} \multimap 1 \oplus 1\rangle=\mathbb{k}\langle!\mathcal{B} \multimap 1\rangle^{2} \\
& =\mathbb{k}\left[X_{t}, X_{f}\right] \times \mathbb{k}\left[X_{t}, X_{f}\right] .
\end{aligned}
$$

Towards completeness

Totality
C. Tasson

Intro

$\wedge_{\mathcal{B}}$-calculus

Semantics and non-determinism Finiteness spaces
(1) Introduction: Full Completeness for parallelism

- Full completeness and non determinism
- Algebraic λ-calculus
(2) The barycentric boolean calculus
- Syntax
- Semantics and non-determinism
- Finiteness spaces

3 Totality, towards completeness

- Totality
- Completeness

What is totality ?

Totality
C. Tasson

Intro
$\wedge_{\mathcal{B}}$-calculus
Totality,
towards

A way to refine the semantics and step to full completeness.
For every proof π and π^{\prime} of linear logic formulæ,

$$
\frac{\pi \vdash A \quad \pi^{\prime} \vdash A^{\perp}}{\left[\pi ; \pi^{\prime}\right] \vdash \perp} \text { Cut } \quad \llbracket \pi ; \pi^{\prime} \rrbracket=\left\langle\llbracket \pi \rrbracket, \llbracket \pi^{\prime} \rrbracket\right\rangle=1
$$

Let A be a finiteness space $A=(|A|, \mathcal{F}(A))$. The associate linear space is $\mathbb{k}\langle A\rangle=\left\{x \in \mathbb{k}^{|A|} ;|x| \in \mathcal{F}(A)\right\}$.

Definition

A totality candidate is an affine subspace \mathcal{T} of $\mathbb{k}\langle A\rangle$ such that $\mathcal{T}^{\bullet \bullet}=\mathcal{T}$ with

$$
\mathcal{T}^{\bullet}=\left\{x^{\prime} \in \mathbb{k}\langle A\rangle^{\prime} ; \forall x \in \mathcal{T},\left\langle x^{\prime}, x\right\rangle=1\right\}
$$

A totality space is a pair $(A, \mathcal{T}(A))$ with $\mathcal{T}(A)^{\bullet \bullet}=\mathcal{T}(A)$.

An algebraic description

Totality
C. Tasson

Intro
$\wedge_{\mathcal{B}}$-calculus
Totality,
towards

Every construction of linear logic has an algebraic description as a closed affine subspace.
$\mathcal{B}=1 \oplus 1$ Affine combinations:

$f \in \mathcal{T}(A \multimap B)$ whenever $\forall x \in \mathcal{T}(A), f(x) \in \mathcal{T}(B)$;
$F \in \mathcal{T}(A \Rightarrow B)$ whenever $\forall x \in \mathcal{T}(A), F(x) \in \mathcal{T}(B)$.
Example $(\mathcal{B} \Rightarrow \mathcal{B}=!\mathcal{B} \multimap \mathcal{B})$
$\mathbb{k}\langle\mathcal{B} \Rightarrow \mathcal{B}\rangle=\mathbb{k}\left[X_{t}, X_{f}\right] \times \mathbb{k}\left[X_{t}, X_{f}\right]$,

$$
\begin{aligned}
\left(P_{\mathbf{T}}, P_{\mathbf{F}}\right) \in & \mathcal{T}(\mathcal{B} \Rightarrow \mathcal{B}) \Leftrightarrow \\
& \forall\left(x_{\mathbf{T}}, x_{\mathbf{F}}\right) \in \mathcal{T}(\mathcal{B}), P_{\mathbf{T}}\left(x_{\mathbf{T}}, x_{\mathbf{F}}\right)+P_{\mathbf{F}}\left(x_{\mathbf{T}}, x_{\mathbf{F}}\right)=1 .
\end{aligned}
$$

Full Completeness at the first order boolean type.

Totality
C. Tasson

Intro

$\wedge_{\mathcal{B}}$-calculus
Totality,
towards

Syntax of $\boldsymbol{\Lambda}_{\mathcal{B}}$:

$$
\begin{aligned}
\mathbf{s}: & :=\mathbf{x} \in \mathcal{V}|\lambda \mathbf{x . s}|(\mathbf{s}) \mathbf{S} \\
|\mathbf{T}| \mathbf{F} \mid & \text { if } \mathbf{s} \text { then } \mathbf{R} \text { else } \mathbf{S} \\
\mathbf{R}, \mathbf{S} \quad: & : \sum_{i=1}^{m} a_{i} \mathbf{s}_{i} \quad \text { where } \sum_{i=1}^{m} a_{i}=1 .
\end{aligned}
$$

Proposition

For every term $\mathbf{S} \in \boldsymbol{\Lambda}_{\mathcal{B}}$ of type $\mathcal{B}^{n} \Rightarrow \mathcal{B}$, the semantics is total $\llbracket \mathbf{S} \rrbracket \in \mathcal{T}\left\langle\mathcal{B}^{n} \Rightarrow \mathcal{B}\right\rangle$.

Theorem (Completeness)

Every total function of $\mathcal{T}\left(\mathcal{B}^{n} \Rightarrow \mathcal{B}\right)$ is the interpretation of a term of the boolean barycentric calculus.

Algebraic proof: Euclidean division and affine combinations.

Around

Totality
C. Tasson

Intro

$\Lambda_{\mathcal{B}}$-calculus
Totality,

Corollary

Parallel functions such as

- Parallel-Or
- Berry function
can be encoded in $\boldsymbol{\Lambda}_{\mathcal{B}}$.

Generalisations

- Possible for finitary types built over 1 and \oplus.
- Impossible for infinite types such as \mathcal{N}.
- Generalisation to higher order boolean type ?

