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Abstract Persistence diagrams have been widely recognized as a compact
descriptor for characterizing multiscale topological features in data. When
many datasets are available, statistical features embedded in those persistence
diagrams can be extracted by applying machine learnings. In particular, the
ability for explicitly analyzing the inverse in the original data space from
those statistical features of persistence diagrams is significantly important for
practical applications. In this paper, we propose a unified method for the
inverse analysis by combining linear machine learning models with persistence
images. The method is applied to point clouds and cubical sets, showing the
ability of the statistical inverse analysis and its advantages.
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1 Introduction

Given a dataset, its statistical features can be extracted by applying machine
learning methods (Bishop 2007). Needless to say, machine learning is now one
of the central scientific and engineering subjects, and is rapidly enlarging its
theoretical foundations and ranges of practical applications. For example, in
materials science, the amount of available data has recently been increasing
due to improvement of experimental methods and computational resources.
These datasets are expected to be used for further developments of high per-
formance materials based on machine learnings, leading to a new concept called
“materials informatics” (Rajan 2005, 2012).

As another branch of data science, topological data analysis (TDA) (Carls-
son 2009; Edelsbrunner and Harer 2010) has also been rapidly developed from
theoretical aspects to applications in the last decade. In TDA, persistent ho-
mology and its persistence diagram (Edelsbrunner et al. 2002; Zomorodian and
Carlsson 2005) are widely used for capturing multiscale topological features in
data. Recent improvements of efficient computations of persistence diagrams
(Bauer et al. 2014, 2017) enable us to apply them into practical problems such
as materials science (Hiraoka et al. 2016; Saadatfar et al. 2017; Ichinomiya
et al. 2017; Kimura et al. 2017), sensor networks (de Silva and Ghrist 2007),
evolutions of virus (Chen et al. 2013) etc. As a descriptor of data, persistence
diagrams have the following significant properties: translation and rotation
invariance, multi-scalability, and robustness for noise. Together with develop-
ments of statistical foundations (Bubenik 2015; Chazal et al. 2015; Fasy et al.
2014; Kusano et al. 2016, 2017; Reininghaus et al. 2015), persistence diagrams
nowadays have been recognized as a compact descriptor for complicated data.

In a series of works on materials TDA (Hiraoka et al. 2016; Saadatfar et al.
2017; Ichinomiya et al. 2017; Kimura et al. 2017), analyzing the inverse in the
original data space (atomic configurations or digital images) from persistence
diagrams is significantly important to explicitly study the materials structures
and properties. Therefore, toward further progress that materials TDA incor-
porates with materials informatics, we need to develop a framework of machine
learnings on persistence diagrams which allows the inverse analysis.

In this paper, we propose a unified method for studying the shape of data by
using persistence diagrams with machine learnings in both direct and inverse
problems. The essence of our method is to combine persistence images (Adams
et al. 2017) and linear machine learning models.

For standard machine learning methods, the input data is supposed to be
given by vectors, and therefore we need to transform persistence diagrams
into vectors. Some vectorization methods of persistence diagrams have been
proposed in the literatures (Adams et al. 2017; Bubenik 2015; Kusano et al.
2016, 2017; Reininghaus et al. 2015), and we here use persistence images.
This is because it allows us to reconstruct persistence diagrams from vectors
obtained by machine learning results, providing a key step in the inverse route
of our analysis.
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Taking this advantage, we apply linear models of machine learnings to
persistence images. Since the learned result of linear machine learning models
is given by a vector with the same dimension as input vectors, we can easily
reconstruct the persistence diagram from the learned result using the function-
ality of persistence images. Namely, the persistence diagram itself is obtained
as learning. Furthermore, by studying inverse problems from the reconstructed
persistence diagram to the original data space, we can explicitly characterize
statistically significant topological features embedded in data. In this paper,
we deal with an inverse problem studying the locations of birth-death pairs of
persistence diagrams in the original data space. As another advantage using
linear machine learning models, we also propose an important concept called
sparse persistence diagram. This new concept allows us to discard irrelevant
generators and to focus on most significant ones in the reconstructed persis-
tence diagram for learning tasks.

It should be remarked that, for only direct problems such as predictions
from data, nonlinear methods such as kernel methods and neural networks are
possibly appropriate, because such nonlinear transformations often make the
prediction performance better than linear models. However, if our interest is
to understand mechanisms of data structures, the inverse route going back to
the original data from the learned results is inevitable.

As summary, the contribution of this paper is to propose a unified method
in topological data analysis with the ability to study inverse problems by
combining the following methods:

1. Persistence images
2. Linear machine learning models
3. Inverse analysis of persistence diagrams

In Section 2, after brief introduction of our input data formats and persistent
homology, we recall persistence images and linear models of machine learnings
used in this paper. Then, in Section 3, we demonstrate our method to some
problems on point clouds and cubical sets, and show the performance com-
paring to other methods. Some future problems and related topics including
some practical applications in materials science are summarized in Section 4.

2 Methods

We first explain some preliminaries about geometric models and persistent
homology. Although the theory of persistent homology has been rapidly ex-
tended in various general settings, we here introduce the minimum necessary
for later discussions. Readers who want to understand the theory in higher
generality are encouraged to study the latest literatures.
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2.1 Geometric models

In this paper, we mainly consider two types of input data. The first type is
given by a finite points P = {xi ∈ RN : i = 1, . . . ,m} in a Euclidean space
RN , which is also called a point cloud in TDA. For example, this data type is
frequently used for expressing atomic configurations in materials science.

Our interest is to characterize multiscale topological properties in P , and
to this aim, we consider the r-ball model

Pr =

m⋃
i=1

Br(xi),

where Br(xi) = {y ∈ RN : ||y − xi|| ≤ r} is the ball with radius r centered
at xi. By construction, when the radius r is very small (resp. large), Pr has
the same topology as N disconnected points (resp. one point). Between these
two extremal cases, Pr may exhibit appearance and disappearance of holes
by changing the radius r. Note that we have a natural inclusion Pr ⊂ Ps for
r ≤ s, meaning that the radius parameter r can be regarded as a resolution of
the point cloud P .

For practical data analysis, the r-ball model Pr is not convenient to handle
in computers, and hence we usually build simplicial complex models from Pr.
For instance, the Čech complex Čech(P, r) and the Rips complex (or Vietoris-
Rips complex) Rips(P, r) are simplicial complexes with the vertex set P whose
k-simplex is assigned by the following rule, respectively,

{xi0 , . . . , xik} ∈ Čech(P, r)⇔
k⋂

s=0

Br(xis) 6= ∅,

{xi0 , . . . , xik} ∈ Rips(P, r)⇔ Br(xis) ∩Br(xit) 6= ∅, 0 ≤ ∀s < ∀t ≤ k.

Note that, by construction, both simplicial complex models naturally define a
(right continuous) filtration. Namely, for Xr = Čech(P, r) or Xr = Rips(P, r),
it satisfies Xr ⊂ Xs for r ≤ s and Xs =

⋂
s<tXt. In this section, we denote

the filtration by X = {Xr : r ∈ R}.
Our next data type is given by a cubical set, which is a standard mathemat-

ical expression for digital images. Following the notation used in the reference
(Kaczynski et al. 2004), let I ⊂ R be an elementary interval, i.e.,

I = [`, `+ 1] or I = [`, `]

for some ` ∈ Z. An elementary cube Q = I1 × · · · × IN ⊂ RN is defined by
a product of elementary intervals Ii. Then, a subset X ⊂ RN is said to be
cubical if X can be expressed as a union of elementary cubes in RN .

Let us denote by KN
W the set of all elementary cubes in the window ΛW =

[−W,W ]N ⊂ RN . Given a function f : KN
W → R, we can build a cubical set in

ΛW as a sublevel set

Xt =
⋃
{Q ∈ KN

W : f(Q) ≤ t} (1)
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for each parameter t. In practical applications such as digital image analysis,
this function is often given by the Manhattan distance (e.g., see Figure 2) or
a grayscale function. It is easy to see that the cubical sets Xt also lead to a
filtration X = {Xt : t ∈ R}.

These are the two standard types of our input data. We note that those
filtrations satisfy the properties that Xt = ∅ for sufficiently small t and Xt is
acyclic1 for sufficiently large t, respectively.

2.2 Persistent homology

Let k be a field. In this paper, the qth homology Hq(X) of a topological space
X is defined over the field k, and hence Hq(X) is given as a k-vector space.
Intuitively, the dimension of Hq(X) as a k-vector space counts the number of
q-dimensional holes in X, and each basis vector expresses the corresponding
q-dimensional hole in X, where, for example, q = 0, 1, 2 express connected
components, rings, and cavities, respectively. Then, given a pair of topological
spaces X ↪→ Y , we can define the induced linear map ϕ : Hq(X) → Hq(Y ),
which characterizes whether a hole in X persists in Y or not.

The input to the persistent homology is given by a filtration X = {Xt : t ∈
R} of topological spaces. In this paper, Xt is given by a simplicial complex
or a cubical set. For simplicity, we also assume the properties for filtrations
remarked in the final paragraph in Section 2.1, although we do not really
need it by modifying the argument here. Then, the qth persistent homology
Hq(X) = (Hq(Xt), ϕ

t
s) of the filtration X is defined by the family of homologies

{Hq(Xt) : t ∈ R} and the induced linear maps ϕt
s : Hq(Xs) → Hq(Xt) for all

s ≤ t.
Under the assumption of our filtrations, the persistent homology Hq(X)

can be uniquely decomposed by using the so-called interval representations:

Hq(X) '
p⊕

i=1

I(bi, di), (2)

where bi, di ∈ R with bi < di. Here, I(bi, di) = (Ut, f
t
s) consists of a family of

vector spaces

Ut =

{
k, bi ≤ t < di,
0, otherwise,

and the identity map f ts = idk for bi ≤ s ≤ t < di. Note that the 0th persistent
homology in (2) is understood as the reduced sense, meaning that one con-
nected component which persists for any large t ∈ R is removed. Each interval
representation I(bi, di) is also called a generator of Hq(X).

Each generator I(bi, di) expresses that a q-dimensional hole appears in
X at the parameter t = bi, persists up to t < di, and then disappears at

1 A topological space X with H̃q(X) = 0 for any q is called acyclic, where H̃q(X) is the
reduced homology of X.
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t = di. We call bi, di, di−bi the birth time, death time, and lifetime of I(bi, di),
respectively.

Under the unique decomposition (2), the qth persistence diagram Dq(X)
of X is defined by a multiset2

Dq(X) = {(bi, di) ∈ ∆ : i = 1, . . . , p},

where ∆ = {(b, d) ∈ R2 : b < d}. It is known that the birth-death pair (bi, di) ∈
Dq(X) with large lifetime can be regarded as reliable topological structure in X,
while that with small lifetime is likely to be a noisy structure. This statement
is justified by the stability theorem of persistent homology (Cohen-Steiner et
al. 2007).

For a review about computational aspect of persistent homology, we refer
the readers to the paper (Otter et al. 2017).

2.3 Examples

Here, we show several examples to make clear the concepts explained so far.
To this aim, the examples are chosen to be simple enough for demonstration.

We first consider an example of a point cloud given by four points on the
plane shown in the left (r = 0) of Figure 1. As we explained, each point
is replaced by a ball and we study topological changes during the fattening
process of the balls by increasing the radii. This fattening process is drawn on
the left top of Figure 1, while the sequence below expresses its Čech complex
filtration.

At the radius r = b1, the first ring is born, and we record its birth parameter
as b1. Similarly, the second ring appears at the birth parameter r = b2. On the
other hand, at radius r = d1, d2, those rings disappear and we record them
as their death parameters. Hence, the 1st persistence diagram of the Čech
complex filtration is given by {(b1, d1), (b2, d2)}, which is shown on the right
of Figure 1.

r

r = b1 r = b2 r = d2 r = d1r = 0

d1

d2

b2b1

Fig. 1 Left top: Filtration of the r-ball models. Left bottom: Filtration of the corresponding
Čech complexes. Right: The 1st persistence diagram. (1) A ring is bone at r = b1. (2) Another
ring is bone at r = b2. (3) The second ring dies at r = d2. (4) The first ring dies at r = d1.

2 A multiset is a set with multiplicity of each point.
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Next, we consider an example of a cubical set. The input data is given
by a binary image (a) in Figure 2, and we consider a function f assigning an
integer on each pixel shown in (b). Here, positive (resp. negative) numbers are
assigned to the gray (resp. white) pixels using the Manhattan distance. Then,
following the construction (1) of sublevel sets, we obtain a filtration of cubical
sets of white pixels shown in (d).
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Fig. 2 (a) Input binary image. (b) Manhattan distance. (c) 0th reduced persistence dia-
gram. (d) Filtration of binary images with respect to the Manhattan distance. The colored
squares indicate the initial locations of three connected components. The blue square indi-
cates the connected component removed in the reduced persistent homology.

In this example, three connected components appear in the filtration and
those birth events are colored in blue and red. The death of those generators
corresponds to a merging to another connected component. Then, the 0th re-
duced persistence diagram is given by {(−2,−1), (−2, 3)}, shown in (c). Note
that the first connected component born at −3 is removed in the reduced per-
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sistence diagram. We also note that, from the assignment f using Manhattan
distance, all birth parameters take negative values. Figure 3 summarizes com-
mon geometric structures captured by the 0th persistence diagram based on
the Manhattan distance.

birth
0

de
at
h

(c)

(a) (b)

(d)

(e)

Fig. 3 Cubical sets drawn in the dashed circles (a)-(e) express typical geometric structures
in the 0th persistence diagram. (a) Large islands. (b) Small islands. (c) Large islands with
narrow bridges. (d) Narrow bands. (e) Broad bands. For (a) and (b), the births correspond
to the radii of the islands. For (d) and (e), the births and deaths correspond to the half
widths of the bands.

For deep analysis using persistence diagrams, we often want to know the
origin of each birth-death pair. One easy and useful way is to utilize a death
simplex (resp. death cube) for a point cloud (resp. cubical set). In the Čech
filtration model of Figure 1, two generators (i.e., rings) die when each red
simplex fills the corresponding ring, and those simplices show the locations of
the generators. We call these locations death positions of the generators. Even
for generators with higher dimensions and also for the setting of cubical sets,
this idea works in a similar way.

On the other hand, for generators with dimension zero, birth events may
possess the information of locations. In Figure 2(d), there are two red squares
and they express the central locations of each connected component. We call
these locations birth positions of the corresponding birth-death pairs.

We note that the birth/death positions are easily obtained in standard al-
gorithms of computing persistence diagrams, and hence no additional compu-
tations are required. These techniques, which will be demonstrated in the later
section, are exploited for some practical analysis in materials science (Kimura
et al. 2017). It should be remarked that, if one wants to obtain further infor-
mation about the inverse of birth-death pairs, the technique of optimal cycles
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(Dey et al. 2011; Escolar and Hiraoka 2016) can be another choice, although
it requires a much computer resource.

2.4 Persistence images

Recall that a persistence diagram is a multi-set on R2. Hence, we need to
vectorize persistence diagrams to apply machine learning models. In this paper,
we use the persistence image (Adams et al. 2017) for vectorization.

Given a qth persistence diagram Dq = {(bk, dk) ∈ ∆ : k = 1, . . . , `}, the
persistence image ρ is defined by a function on R2 as

ρ(x, y) =
∑̀
k=1

w(bk, dk) exp

(
− (bk − x)2 + (dk − y)2

2σ2

)
,

w(b, d) = arctan(C(d− b)p). (3)

Here, C > 0, p > 0, σ > 0 are parameters, w(b, d) is a weight function, and
we regard the function ρ as a vector in a function space L2(R2). We remark
that the weight function is chosen so that we can respect the significance of
generators according to its lifetimes in the statistical analysis. As we see in
Section 3, the parameters are usually determined to be appropriate values
using cross validations.

For computations, we discretize the persistence image ρ and construct a
histogram on the plane with an appropriate finite mesh. Obviously, since all
birth-death pairs are located in {(b, d) | N− ≤ b < d ≤ N+} with some
constants N−, N+, the histogram is constructed on this area. Then, we obtain
a vector from the discretization of ρ by ordering the elements on the grids in
a prefixed order. Note that the dimension of the vector is equal to the number
of grids used for the histogram. In the following, we also call the discretization
of ρ the persistence image.

We note that there are several methods for vectorizations of persistence
diagrams. One important advantage using persistence images is that we can
easily reconstruct a histogram from a vector, and hence can obtain a corre-
sponding persistence diagram. However, it is not straightforward in general
to reconstruct persistence diagrams from vectors in nonlinear vectorizations.
This advantage is effectively used in our method.

We also remark that, precisely speaking, the weight function (3) is not used
in the original paper (Adams et al. 2017) but first studied in the paper (Ku-
sano et al. 2017), in which performance comparisons with different weights for
persistence images and also with other vectorizations are thoroughly discussed.
For details, we refer the readers to the paper (Kusano et al. 2017).

2.5 Linear machine learning models

In this section, we briefly recall the logistic regression and the linear regression
as standard supervised machine learning methods (Bishop 2007).
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In the linear regression model, we consider a pair of an input vector x ∈
Rn (called explanatory variable) and its output value y ∈ R (called response
variable), and study the relation between them in the linear form

y = w · x+ b+ (noise),

where w ∈ Rn and b ∈ R are unknown parameters and the noise is randomly
determined from a normal distribution with mean 0. From a set of known
input-output pairs {(xi, yi)}Mi=1, called a training set, we find an optimal w
and b for the model. Such optimal parameters are derived by minimizing the
following mean squared loss error function with respect to w and b:

E(w, b) =
1

2M

M∑
i=1

(w · xi + b− yi)2. (4)

In the logistic regression model for a binary classification task, we consider
a pair of an input vector x ∈ Rn and its output value y ∈ {0, 1}, and study
the relation of classification 0/1 based on the following form

P (y = 1 | w, b) = g(w · x+ b),

P (y = 0 | w, b) = 1− P (y = 1 | w, b) = g(−w · x− b),
g(z) = 1/(e−z + 1),

(5)

where w ∈ Rn and b ∈ R are unknown parameters. From training data
{(xi, yi)}Mi=1, we find an optimal w and b in a similar way to the linear regres-
sion. Here, optimal parameters are given by minimizing the following cross
entropy error function:

L(w, b) = − 1

M

M∑
i=1

{yi log ŷi + (1− yi) log(1− ŷi)} ,

ŷi = g(w · xi + b).

(6)

We note that, for both the linear regression and logistic regression, these
optimization problems are equivalent to the maximization of the log likelihood.

In our method, the input vector x ∈ Rn is given by vectorized persistence
diagrams using persistence images. Then, the learned vector w becomes a dual
vector to the persistence images, and especially, its dimension is the same as
x. Hence, w can be expressed as a (dual) persistence diagram by the reverse
process of the vectorization using persistence images. In this way, our method
outputs persistence diagrams as learning results.

For practical applications, we often encounter the problem of over-fittings,
if the dimension n of input vectors is relatively large compared to the data size
M . Under this condition, the result of the optimization problem excessively
fit the training set and does not give appropriate performance for untrained
data. In our setting, since the dimension of vectors obtained from persistence
images is very large, we usually face the over-fitting problem. The vectors
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given by persistence images also have another statistical problem called multi-
collinearity(Bingham 2010). Adjacent grids elements of a vector by persistence
image are strongly correlated because of Gaussian diffusion, and such a strong
correlation causes the difficulty of determining coefficients and the numerical
instability.

One effective way for avoiding the over-fitting and multicollinearity is to
add a regularization (penalty) term R(w) into the error function. Namely, we
minimize the following modified error functions for w and b

E(w, b) + λR(w) (for a linear regression),

L(w, b) + λR(w) (for a logistic regression),

where λ > 0 is a weight parameter controlling the regularization effect. Typical
regularization terms are given as

R(w) =
1

2
‖w‖22, R(w) = ‖w‖1.

The former is called an `2-regularization and the latter is called an `1-regularization.
A linear regression with the `2-regularization is called ridge, while a linear re-
gression with the `1-regularization is called lasso (Robert 1996).

The advantage of the `2-regularization is its good mathematical property.
For example, `2-regularization term is differentiable but `1-regularization term
is not. The ridge optimization problem has the closed form solution. However,
the lasso does not have such forms.

On the other hand, the `1-regularization has a significant property of the
sparsity. A vector w is called sparse if its elements are all zero except for only a
few elements. It is well-known that the learned vector w under `1-regularization
becomes a sparse vector, and hence we obtain a sparse persistence diagram as a
result of learning. As we will see later, the sparseness of the learned persistence
diagram is often very useful, when we interpret the learned results.

The parameter λ of the regularization term controls the complexity of the
learned result (Bishop 2007). When the weight λ becomes larger, the regular-
ization term R(w) becomes smaller. This means that w becomes more sparse
in the `1-regularization. Such a reduction of the complexity is useful for finding
the most essential elements for regressions. However, when λ is too large, the
learned results may drop important information. Therefore, we need to deter-
mine a suitable λ in practice. A validation set or cross validation method are
often applied to choose such a parameter (Bishop 2007). The effect of changing
λ in our method is discussed in Section 3.

2.6 Summary of our method

1. Prepare an input data {(gi, yi)}Mi=1. Here, each gi is a point cloud or a
digital image, and yi is a real value for the linear regression or 0/1 value
for the logistic regression.
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2. Compute the persistence diagram D(i) from gi.
3. Compute the vectorization xi ∈ Rn of D(i) using the persistence image.
4. Apply the linear regression or the logistic regression with a regularization

term to the data {(xi, yi)}Mi=1 and find w ∈ Rn and b ∈ R. Choose the `2-
or `1-regularization, depending on the purpose.

5. The learned result w is visualized by the reconstruction of the persistence
diagram from w. From the reconstructed persistence diagram, one may
extract important areas on the diagram.

6. For explicitly identifying the geometric structure of those important areas
on the diagram, one can study the birth/death positions.

3 Results and discussions

In this section, we demonstrate the performance of our methods for logistic
regressions and linear regressions with binary images and point clouds. Here,
we use filtrations of cubical sets using Manhattan distance (black: positive,
white: negative) for binary images, while Čech complex filtrations are applied
for point clouds. All examples are experimented using scikit-learn3 and Hom-
Cloud4.

3.1 Logistic regression on binary images - an easy example

First, we examine the logistic regression on persistence diagrams of binary
images. Here, the binary image data is randomly generated by Algorithm 1 in
Appendix A, where a pair of parameters (N,S) is used to generate two types
of images. One pair (A) is set to be N = 100, S = 30 and the other (B) is
N = 250, S = 10. Figure 4 shows the samples of both data (left: (A), right:
(B)). We may intuitively observe that the images from (B) have somewhat
finer structures than the images from (A). Our task is the classification of the
parameters (A) and (B) from images, where we assign 0 and 1 for (A) and
(B), respectively.

For each parameter pair, 300 images are generated (total 2×300) and 200
of these images are sampled as a training set (total 2×200). Then, 2×100 re-
maining images are used as a test set to evaluate the learned result. Here,
0th persistence diagrams are applied for the task. The parameters of the
persistence images are set to be σ = 2.0, C = 0.5, p = 1.0 and the mesh
for the discretized persistence images is obtained by dividing the rectangle
[−40.5, 10.5] × [−30.5, 20.5] into 51 × 51 grids. The `2-regularization is used
and the weight parameter λ of the regularization term is determined by the
cross validation.

In this example, the score, evaluated as the mean accuracy, of the learned
result is 1.0, that is, we can perfectly identify the parameter pairs behind the

3 http://scikit-learn.org/
4 http://www.wpi-aimr.tohoku.ac.jp/hiraoka_labo/homcloud-english.html

http://scikit-learn.org/
http://www.wpi-aimr.tohoku.ac.jp/hiraoka_labo/homcloud-english.html
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Fig. 4 Input binary images and their 0th persistence diagrams. The left and right two
images are sampled from the parameter pairs (A) and (B), respectively.

images. In fact, we could also distinguish these two parameter pairs by simply
counting the number of connected components, if we had this prior knowledge.
In Section 3.2, we examine a more sophisticated classification problem. For
a while, let us use this example in order to explain some properties of our
method.
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Fig. 5 (a) The reconstructed persistence diagram from the learned vector w. The blue
(resp. red) area contributes to the class 0 (resp. 1). (b) A thresholding of (a). (c-1)∼(c-4)
The birth positions of the generators in blue and red areas in (b) are plotted with the same
color.

Figure 5 (a) shows the reconstructed persistence diagram from the learned
vector w, and (b) shows the area at which the magnitude is above a certain
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threshold. Recalling the classification rule (5), nonzero elements in w (and
hence nonzero generators in its reconstructed persistence diagram) work for
making classification decisions. Namely, from the 0/1 assignment rule, the
reconstructed persistence diagram concludes that generators in the blue (resp.
red) area statistically contribute to the classification (A) (resp. (B)).

Furthermore, by plotting the birth positions of these generators, we can
explicitly identify the geometric structures which characterize the parameter
pairs. Figure (c-1)∼(c-4) show those birth positions, where the blue (resp. red)
points correspond to the blue (resp. red) area. Recalling the interpretation
in Figure 3, we find that the characteristic geometric structures of (B) are
explained by small islands and narrow bands whose inner radii are 4 ∼ 10
pixels; this is consistent to our intuition that (B) contains finer structures.

Using this example, let us study the effect of the weight parameter λ for
the regularization. Figure 6 shows the reconstructed persistence diagrams from
the learned vectors for several weight parameters λ. When λ becomes larger,
in addition to the fact that the magnitude of the persistence diagram becomes
smaller, its distribution becomes simpler. This is because the weigh parameter
λ of the regularization controls the complexity of the learned result, which is
expressed in the distribution of the reconstructed persistence diagram.
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Fig. 6 The reconstructed persistence diagrams with several weight parameters λ. (a) λ =
0.35938 (determined by the cross validation), (b) λ = 10, and (c) λ = 100.

We also compare with the `1-regularization in this example. Figure 7 shows
the reconstructed persistence diagrams using the `1-regularization with sev-
eral parameters λ. As mentioned in Section 2.5, an important property of the
`1-regularization is the sparseness of the learned result w. In our method, this
property is reflected as sparse persistence diagram. Hence, again recalling the
classification rule (5), the selected few grids in the sparse persistence diagram
are supposed to work most effectively for the classification task. In other words,
the birth-death pairs around the grids are especially important for the clas-
sification. Furthermore, the number of selected grids decreases for large λ as
before, providing us with more compressed result and easier understandings
of the learning.
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Fig. 7 The reconstructed persistence diagrams using the `1-regularization with several
weight parameters λ. (a) λ = 0.01, (b) λ = 0.1, (c) λ = 1.

3.2 Logistic regression on binary images - a hard example

Next, let us set the parameter pairs for generating random binary images so
that the classification task becomes more difficult. Here, one parameter pair
(C) is set to be N = 160, S = 34 and the other pair (D) is N = 270, S = 18.
Figure 8 shows the sample input data (left: (C), right: (D)).
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Fig. 8 Input binary images and their 0th persistence diagrams. The left and right images
are sampled from the parameter pairs (C) and (D), respectively.

In this example, it seems difficult to distinguish two parameter pairs based
on our intuition. In fact, simple descriptors such as the average numbers of
connected components and white pixels do not work at all in this case.

The setting for the classification is the same as before, i.e., 2×200 for
training and 2×100 for the test, and we assign 0 and 1 to (C) and (D), respec-
tively. In this case, the score on the test set is 0.92 (baseline: 0.5). Figure 9
(a) shows the reconstructed persistence diagram as the learned result using
the `2-regularization with the weight λ = 0.0059948 determined by the cross
validation.

In this learning, the distribution of the reconstructed persistence diagram
looks complicated to observe clear features. Hence, let us increase the weight
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parameter λ for simplifying the distribution. Figure 9 (b) shows the result
with λ = 1, where its score of the learning is 0.91. It should be noted that,
although the score becomes only a little worse, the distribution turns out to be
simple enough to conclude that the red area is dominant in the region with the
birth scale > −20. From this simplification, we can explicitly obtain geometric
reasonings for this classification in a similar way to Section 3.1.
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Fig. 9 The reconstructed persistence diagrams using the `2-regularization for the parameter
pairs (C) and (D). (a) λ = 0.0059948 (chosen by cross validation), (b) λ = 1.

Now we compare our method to other standard methods for image classifi-
cations. The list of methods and those scores are summarized in Table 1. These
demonstrations show that persistence images with the logistic regression and
support vector machine have better accuracy than the others. In particular, we
note that the performance of our method is better than the bag of keypoints
approach with sift feature, which is one of the standard techniques for image
classifications (Lowe 1999; Sivic and Zisserman 2003; Csurka et al. 2004; Nowak
et al. 2006). This is because such standard image classification techniques are
developed mainly for clearly distinguishable and well-structured objects such
as photos of faces, artificial objects, or landscapes, and not for images like this
example. This suggests that our approach using persistence diagrams has an
advantage to disordered images, which are frequently observed in materials
science data (Kimura et al. 2017).

Method Mean accuracy

PI, logistic regression, `2-penalty 0.92
Bag of keypoints using sift with grid sampling, SVM classifier
with χ2 kernel

0.85

# of connected components of black pixels 0.73
# of connected components of white pixels 0.50
# of white pixels 0.50

Table 1 Performance comparison (PI: persistence image, SVM: support vector machine).
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3.3 Logistic regression on point clouds

In this example, the input point clouds are prepared from two different random
point processes; one is Poisson point process (PPP) and the other is Ginibre
point process (GPP) on a unit disk. It is known that PPP has no interaction
between points, while GPP has a repulsive interaction. The parameters for
these two point processes are adjusted so that the mean number of points
on the disk is 30. The task in this example is to identify PPP or GPP for
test point clouds. To this task, we apply our method to the 1st persistence
diagrams with the `2-logistic regression.
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Fig. 10 Random point clouds (Left: PPP, Right: GPP) and their 1st persistence diagrams

Figure 10 shows point clouds generated by PPP and GPP. The parameters
of the persistence images are set to be σ = 0.003, C = 80, p = 1.0 and the mesh
for the discretized persistence diagrams is obtained by dividing the square
[0, 0.15]2 into 150 × 150 grids. For each point process, 300 point clouds are
generated (total 2×300) and 200 of these point clouds are sampled as a training
set (total 2 × 200), where we assign 0 and 1 for PPP and GPP, respectively.
The remaining 2× 100 point clouds are used as a test set for evaluation. Here,
the weight parameter λ of the `2-regularization is determined by the cross
validation. The score of the learned result is 0.94.

Figure 11 (a) shows the reconstructed persistence diagram from the learned
vector w and (b) shows the positive and negative areas of (a) with a certain
threshold. Recall that, from the 0/1 assignment, the generators in the blue
(resp. red) area contributes to classifying into PPP (resp. GPP). From the
learned persistence diagram, we observe that the red area is located on the
region with large birth values. This is consistent to the fact that GPP has a
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Fig. 11 (a) The reconstructed persistence diagram. (b) A thresholding of (a). (c) The
death positions (triangles) in PPP. (d) The death positions (triangles) in GPP.

repulsive interaction, and hence it prevents the point cloud from constructing
rings with small birth values. Figure 11 (c) and (d) show the death positions
of the generators in the blue and red areas of (b) with the same colors, where
(c) (resp. (d)) corresponds to PPP (resp. GPP). Similarly to the discussion in
Figure 5, these death positions express characteristic geometric features used
for learnings more explicitly.

We remark that PPP and GPP can also be distinguished by using other
descriptors such as average nearest neighbor distances. An advantage of our
method is that we do not need any prior knowledge, providing us with more
universal method compared to problem-specific descriptors. In fact, the anal-
ysis using average nearest neighbor distance can be realized by the 0th persis-
tence diagram.

Now let us test another example for point clouds. The task is classifying
two types of point clouds; one is a square lattice with Gaussian noise, and the
other is a regular hexagonal lattice with Gaussian noise. Figure 12 shows the
input point clouds and their 1st persistence diagrams. In this example, the
distance between two nearest neighbors is one for both cases, and hence it is
difficult to distinguish these two types of point clouds using average nearest
neighbor distances.

We set the number of points to be 20 and the standard deviation of the
noise to be σ = 0.1. Figure 13 shows the reconstruct persistence diagram from
the learned vector w. The yellow circle (resp. rectangle) in the diagram shows
the birth-death pair of the regular hexagon (resp. square). One interesting
feature in this result is that the positive peak position in the reconstructed
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Fig. 12 Input point clouds and their 1st persistence diagrams. (a) A square lattice with
noise (b) A regular hexagonal lattice with noise.

diagram is shifted to the diagonal from yellow circle. Probably this is because
such a regular shape is optimal in order to leave from the diagonal, and many
birth-death pairs in noisy hexagonal lattices tend to move toward the diagonal.
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Fig. 13 The reconstructed persistence diagram. The yellow circle (resp. rectangle) shows
the birth-death pair corresponding to the regular hexagon (resp. square).

3.4 Linear regression on binary images

In this example, we examine the linear regression on binary images. The input
binary images are generated by Algorithm 1 with N = 150 and S is randomly
chosen from {20, 21, · · · , 29} uniformly. The task is to determine the random
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parameter S from images. Figure 14 shows sample images with S = 21 and
S = 28 and those persistence diagrams.
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Fig. 14 Sample images for the linear regression and their 0th persistence diagrams. (a)
S = 21, (b) S = 28.

From the construction of Algorithm 1, we know that S controls the area
of white pixels. Hence, to our task, we study the following descriptors:

(i) persistence image
(ii) the number of white pixels
(iii) the combination of (i) and (ii)

as explanatory variables and compare these performances. Here, the third
descriptor means that the response variable S is explained by the following
model

S = v · (# of white pixels) + w · (PI) + b+ (noise), (7)

where v, b ∈ R and w ∈ Rn are unknown parameters and determined from a
training set. For (i) and (iii), we apply both `2- and `1-regularizations. The
weight parameter λ of the regularization is determined by the cross validation.

The training set and test set consist of randomly generated 500 images
and 100 images, respectively. The learned results are assessed using the R2

coefficients of determination(Bingham 2010) on the test set, which are shown in
Table 2. As we observe, our methods (i) using `1- and `2-regularizations attain
almost the same performance as (ii), while the combination (iii) improves the
performance better.
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Method R2 coefficient

(i)
PI with ridge (`2) 0.86
PI with lasso (`1) 0.86

(ii) # of white pixels 0.88

(iii)
Both with ridge 0.93
Both with lasso 0.94

Table 2 R2 coefficients on the test set of the linear regression problem. These values become
larger when the learned model gives better predictions.

Figures 15 shows the reconstructed persistence diagrams obtained from
(i) and (iii). By construction of our regression model, the areas with positive
(resp. negative) values on the diagrams positively (resp. negatively) contribute
to the response variable S. Even in the linear regression model, we can observe
the sparseness property for the `1-regularization, which is useful for extracting
the most essential features for the response variable S from sample data.
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Fig. 15 The reconstructed persistence diagrams. (a) PI with ridge. (b) PI with lasso. (c)
Both with ridge. (d) Both with lasso.

From the mixed model (7), we can estimate the contributions of (i) and (ii)
in (iii) for predictions. For example, the following prediction results applied
to Figure 14 (a) and (b) with the `1-regularization imply that the prediction
mainly consists of the term v · (# of white pixels) and is modified negatively
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by the term w · (PI).

S ≈ (prediction of S) = v · (# of white pixels) +w · (PI) +b
21 ≈ 20.628 = 30.272 +(−5.917) +(−3.728)
28 ≈ 27.959 = 35.718 +(−4.031) +(−3.728)

20

10

0

-10

-20

-30

b
ir
th
[p
ix
e
ls
]

-40 -30 -20 -10 0 10
death[pixels]

3.0
2.4
1.8
1.2
0.6
0.0
-0.6
-1.2
-1.8
-2.4
-3.0

(a)
20

10

0

-10

-20

-30

b
ir
th
[p
ix
e
ls
]

-40 -30 -20 -10 0 10
death[pixels]

3.0
2.4
1.8
1.2
0.6
0.0
-0.6
-1.2
-1.8
-2.4
-3.0

(b)

Fig. 16 The weighted persistence diagrams for Figure 14 (a) and (b).

Furthermore, by showing the weighted persistence diagram (wixi)
n
i=1 for

the test persistence diagram x, we can explicitly clarify the important gener-
ators for modifications. Figures 16 shows the weighted persistence diagrams
of Figure 14 (a) and (b), and in this case, we find that generators around
(−10,−4) effectively work for predictions of S.

For applications in materials science, S can be regarded as a certain physi-
cal quantity such as conductivity of battery materials. Then, by this approach,
we can identify geometric structures in the images which most effectively affect
that physical quantity.

4 Conclusion

In this paper, we have proposed a unified method by combining persistence
images and linear machine learning models with the ability to study the in-
verse problem in the original data space. One of the important properties
of our method is that a persistence diagram is obtained as a learned result.
From such a reconstructed persistence diagram and the inverse analysis using
birth/death positions, we can explicitly characterize significant geometric fea-
tures embedded in dataset. We have also presented sparse persistence diagrams
as an important concept of machine learnings in topological data analysis.

Although we applied our method to linear regressions and logistic regres-
sions, it is obviously not limited to them, and many other linear machine
learning models such as support vector machine with a linear kernel and elas-
tic nets are also applicable. Moreover, we can similarly apply our method to
point clouds and cubical sets in higher dimensions.
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The proposed method is recently applied to several practical problems. For
example, in the paper (Kimura et al. 2017), the authors develop a method for
predicting locations of micro cracks generated by reduction reaction process
of iron ore sinters. In that application, they apply the persistence images with
the `1-linear regression to a huge amount of X-CT images, and select the crack
areas as a response variable. Then, it follows that the reconstructed persistence
diagram from the learned vector identifies generators which have significant
effects on crack formations, and hence, by studying their birth/death positions,
we can explicitly detect the location of micro cracks. We believe that the same
analysis is also useful to other problems dealing with large amount of images
such as pathology.

A Algorithm for generating random images

The algorithm for generating random binary images is given by Algorithm 1. It consists of
six parameters, W,N, S ∈ N, σ1 > 0, σ2 > 0, and t > 0. The area of white pixels in the
generated image is given by the orbits of the Brownian motion of N particles on a flat torus
with the size W ×W . The parameters S and σ1 determine the length of each orbit and
σ2 and t determine the radii of particles. In this paper we fix W = 300, σ1 = 4, σ2 = 2,
t = 0.01, and only N and S are changed. When N and S become larger, the generated image
tend to have more white pixels.

These kinds of random images are frequently obtained by experimental measurements in
materials science such as X-CT and TEM (Kimura et al. 2017). These seemingly disordered
images are supposed to be utilized for materials informatics, and one of the motivations of
this paper is to develop a universal framework for this purpose.

Algorithm 1 Generate a random binary image
procedure Gen-Image(W,N, S, σ1, σ2, t)

Let T be [0,W ]× [0,W ]
for n = 1, . . . , N do

Take xn,1 uniformly randomly on T
for s = 1, . . . , S do

Take d1 and d2 randomly from N (0, σ1)
xn,s+1 ← xn,s + (d1, d2) mod W ×W

H ← The Histogram of {xn,s} with W ×W mesh on T

Apply Gaussian filter to H with the standard deviation σ2 and set the result to H̃
return The Binary image from H̃ by thresholding with t
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