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Isosurface Visualization of Data with Nonparametric Models for Uncertainty

Tushar Athawale, Elham Sakhaee, and Alireza Entezari, Senior Member, IEEE

Abstract—The problem of isosurface extraction in uncertain data is an important research problem and may be approached in two
ways. One can extract statistics (e.g., mean) from uncertain data points and visualize the extracted field. Alternatively, data uncer-
tainty, characterized by probability distributions, can be propagated through the isosurface extraction process. We analyze the impact
of data uncertainty on topology and geometry extraction algorithms. A novel, edge-crossing probability based approach is proposed
to predict underlying isosurface topology for uncertain data. We derive a probabilistic version of the midpoint decider that resolves
ambiguities that arise in identifying topological configurations. Moreover, the probability density function characterizing positional
uncertainty in isosurfaces is derived analytically for a broad class of nonparametric distributions. This analytic characterization can
be used for efficient closed-form computation of the expected value and variation in geometry. Our experiments show the com-
putational advantages of our analytic approach over Monte-Carlo sampling for characterizing positional uncertainty. We also show
the advantage of modeling underlying error densities in a nonparametric statistical framework as opposed to a parametric statistical
framework through our experiments on ensemble datasets and uncertain scalar fields.

Index Terms—Uncertainty quantification, linear interpolation, isosurface extraction, marching cubes, nonparametric statistics

1 Introduction

Visualization techniques have become indispensable for exploration
and analysis of data produced by simulations or acquired in obser-
vational studies. One of the key challenges in visualization research
is the integration of uncertainty, inherent in acquisition or simulation
processes, into the visualization pipeline [44, 13, 3]. Addressing this
challenge is of paramount importance for building reliable visualiza-
tion systems and can lead to a greater penetration of visualization tools
in diverse application domains [23].

Data uncertainty is often attributed to inaccuracies in the acquisi-
tion or in the limited and incomplete measurements available to the
computational simulation process. In observational studies, uncertain-
ties are introduced at the acquisition stage, and one can characterize
this uncertainty, based on the physical models describing the sensing
process by a probability distribution at each data point. Moreover,
sampling (discretization) and quantization errors further contribute to
data uncertainty and lead to non-trivial transformations of probabil-
ity distributions. Similarly, in simulation science the uncertainty as-
sociated with model parameters leads to variability in the computed
solution. A common approach is to run an ensemble simulation that
seeks to capture the diversity of solutions, as the input variables are
sampled in the uncertainty range. Based on the diversity of the solu-
tions, one can make inference with statistical analysis of the ensemble
members [42, 41].

On the other hand, with the ever-growing size of data sets produced
from simulations or acquired (e.g., biomedical applications), the data
is usually processed, sometimes reduced, and often compressed be-
fore analysis and visualization. These post-processing operators also
transform these probability distributions that describe the uncertainty
at data points. More importantly, data processing in the visualiza-
tion algorithms introduce further transformations to these distributions
making the quantification of uncertainty as the data propagates through
the analysis pipeline particularly challenging.

In this paper, we study the interaction of data uncertainty with iso-
surface visualization and characterize the transformations introduced
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by isosurface extraction to the uncertainty of the input data. From
a high level point of view, the issue of data uncertainty in isosur-
face visualization can be dealt with in two ways. One can extract a
statistic (e.g., mean, median) from the probability distribution at each
data point – effectively denoising the data – and visualize the result-
ing field. On the other hand, one can propagate the probability dis-
tributions through the cell topology and geometry extraction stages
of isosurface visualization. We analyze the cell configuration and the
geometry extraction steps of the marching cubes algorithm in a (non-
parametric) statistical framework. The former is cast as a classification
problem which is solved via optimization, and the latter is solved in
closed-form to quantify positional uncertainties in isosurfaces. This
approach can be used for the analysis of uncertainty throughout and
after the extraction and for quantifying the uncertainty specific to the
visualized isosurface. We contrast and discuss the advantages of the
propagation approach to the static (e.g., mean) field visualization.

As the data propagates through various stages of processing, analy-
sis and visualization pipeline, these probability distributions are trans-
formed by various data processing operators. To enable the analy-
sis of uncertainty propagation, we employ nonparametric distributions
(e.g., histograms, empirical distributions, kernel density methods) for
modeling uncertainty since they provide the flexibility needed to char-
acterize these transformations. In nonparametric statistics, one does
not assume that the structure of the density function is fixed unlike
parametric statistics, and the complexity of the model grows in size
to accommodate the complexity of the task at hand. Parametric mod-
els significantly restrict characterization of the realistic distributions,
whereas nonparametric models allow us to capture a broader set of dis-
tributions for modeling uncertainty at each data point and analyze its
propagation in applications. The flexibility of nonparametric densities
has recently been advocated for uncertainty visualization [33].

In ensemble simulation datasets, the visual analysis of variability
of an isosurface through simultaneous visualization of all ensemble
members can be challenging. Our method provides a probabilistic
isosurfacing approach that can be used for the characterization of the
variations of the isosurface after the extraction from the ensemble. In
our approach, we represent the data uncertainty at each grid point by
a nonparametric distribution that is estimated from ensemble mem-
bers (e.g., histograms in the simplest case). This approach also can be
used for compact representation of data distributions when the num-
ber of ensemble members is large and data reduction is needed (e.g.,
re-binning histograms/kernels).

Specifically, our contributions include:

• We propose a technique for predicting isosurface topology by
casting the marching cubes configuration cases (i.e., vertex
signs), in a probabilistic framework, as a classification prob-
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lem. Our approach leverages vertex-crossing probabilities and
edge-crossing probabilities [34] for determination of cell con-
figuration. The proposed probabilistic approach provides more
accurate prediction of the isosurface topology than the non-
probabilistic approach e.g., statistical mean in uncertain data.

• We quantify and visualize the spatial uncertainties in an isosur-
face extracted from uncertain data when the underlying uncer-
tainty is modeled in a nonparametric statistical framework. In
this setting, Monte Carlo sampling is the simplest but expen-
sive approach to estimate the distribution of inverse interpolation
for characterizing isosurface geometry. However, we provide, in
closed-form, the distribution of inverse interpolation character-
izing the isosurface level-crossing positions. This closed-form
solution can be used for efficiently reconstructing the expected
isosurface, and its variance can illustrate the positional uncer-
tainty in the isosurface. Our closed-form derivation generalizes
uniform distribution studied in [1] to general kernels such as a
triangle, Epanechnikov, and other common kernels used in non-
parametric density estimation. The flexibility offered by the non-
parametric models can be used to provide more accurate isosur-
face reconstruction than the one corresponding to the parametric
models.

• When a grid cell is classified to be crossed by isosurface, and
cell configuration happens to be one of the ambiguous cases [17],
we devise a probabilistic midpoint decider for ambiguity resolu-
tion. While the existing techniques resolve the topological am-
biguities when data is not uncertain, the probabilistic midpoint
decider generalizes the ambiguity resolution methods to resolve
the ambiguities when data is uncertain (e.g., noisy or ensemble).
Uncertain midpoint decider derives the midpoint distribution in
closed-form for nonparametric density functions using splines.

• Non-local means (NLM) is a common technique used in image
processing that forms a non-local neighborhood of a data point
in a noisy dataset, based on their (patch) similarity. The mean
computed over this non-local neighborhood is used to denoise
that data point [5]. Since our framework can be used for propa-
gating the probability distributions through isosurface extraction,
we demonstrate that the distribution of non-local neighbors (e.g.,
histogram) – as opposed to just the mean – could provide a more
accurate reconstruction of the isosurface compared to the isosur-
face extracted from the NLM-denoised dataset.

2 Related Work

Uncertainty quantification and visualization of the quantified uncer-
tainties are considered among top challenges in visualization [44, 13,
12], and there is a growing body of research for developing effective
means for visualizing uncertainty [3]. Uncertainty in isosurfaces can
be visualized by mapping color and opacity proportional to spatial un-
certainty [37]. Osorio and Brodlie devised techniques [24] for visu-
alization of the possible spatial locations for uncertain 2-D isocon-
tours. A point-based displacement method was proposed by Grigo-
ryan and Rheingans [10, 11] to interactively visualize uncertainty in
the isosurface. Various animation techniques such as visual vibrations
and probabilistic animation can be used to represent uncertainty in the
data [4, 20]. Wittenbrink et al. proposed a non-overloading visualiza-
tion technique [43, 28] (as opposed to overloading techniques such as
pseudocoloring, opacity mapping) called glyphs to encode and visu-
alize uncertainty in the vector field data. The visualization techniques
for scalar and vector field data were extended in [21, 19] for visual-
izing spatial distribution datasets, in which at each grid location data
distribution is known.

Box plots are often used to encode various statistical quantities
such as mean, median, maximum, minimum etc. [22]. Whitaker et
al. devised contour boxplots [42] to visualize statistical quantities re-
lated to the ensemble of the isocontours extracted from the ensemble
simulation datasets. Pfaffelmoser and Westermann studied structural

variability [31] of the height fields by visualizing the global correla-
tion structures. Otto et al. visualized global uncertainty in 2-D vec-
tor fields [25] by computing probability density functions of particle
flows. The authors further extended this technique to uncertain 3-D
vector fields [26] with some performance improvements. Schlegel et
al. [40] demonstrated the suitability of Gaussian process regression
for interpolating uncertain data, given that a suitable covariance model
exists (whose parameters are estimated from the data). Thompson et
al. proposed a fuzzy isosurface visualization technique [41] to visu-
alize the possible isosurface locations in an uncertain scalar field. In
this technique, the researchers sliced the histogram of an ensemble of
values corresponding to each cell and performed direct volume ren-
dering of the likelihood that cell will be crossed by the isosurface. Lee
and Shen [16] devised an algorithm for efficient storage of integral his-
tograms and fast query of local histograms at arbitrary locations within
the data.

Pöthkow and Hege developed a volume rendering approach for vi-
sualizing positional uncertainty in an extracted isosurface [32]. In their
approach, given an isosurface, the probability of it crossing each cell of
the grid is computed when datapoints are modeled as independent nor-
mal distributions. These cell crossing probabilities are estimated using
a Monte Carlo approach and are visualized using a volume rendering
approach. Pöthkow et al. further extended this work to take into ac-
count the correlated Gaussian random fields [35]. Pfaffelmoser et al.
integrated computations of isosurface-crossing probabilities into the
front-to-back ray casting approach for volume rendering by consider-
ing distance dependent pairwise correlations among the samples along
a ray [30]. For the interactive visualization of the level-crossing uncer-
tainties, expensive Monte Carlo computations were replaced by fast
techniques such as maximum edge crossing probability and linked-
pairs [34]. Motivated by this work, Athawale and Entezari [1] de-
vised an efficient approach for closed-form computation of the level-
crossing probabilities when the underlying uncertainties are modeled
by uniform distributions (in a parametric framework). This approach
eliminates the expensive Monte Carlo computations which need to be
carried out per cell with closed-form formulas that are calculated a
priori [1].

Empirical distribution, histograms, kernel density estimation, and
weighted kernel density estimation are some of the nonparametric sta-
tistical approaches that can be used for characterizing data uncertainty.
The density estimate obtained from empirical distribution is discontin-
uous, since this technique estimates the probability mass only for the
observed sample values. Continuous estimate of the underlying den-
sity can be obtained with a histograming approach, where kernels are
non-overlapping, and the choice of kernels is limited to the uniform
kernel.

Kernel-based nonparametric density estimation approaches (i.e.,
Parzen [29] and Rosenblatt [38]) determine the set of the possible den-
sity estimates that asymptotically approximate the underlying distri-
butions. This nonparametric approach relaxes two restrictions of his-
tograms, i.e., smoother kernels such as a triangle, cubic, or Epanech-
nikov may be chosen, and they can overlap. Kernel density estimation
is, therefore, considered as a generalization of histograms. Each of
the kernels may be assigned equal or different weights based on the
sample location. Smooth estimates of the underlying density may be
obtained by a suitable choice of kernel and optimal bandwidth (i.e.,
scaling of kernel).

Pöthkow and Hege extended uncertainty analysis for the isosurfaces
to nonparametric uncertainty models [33]. The authors approximated
the level-crossing probabilities again using the Monte Carlo sampling.
One of the contributions of this paper is the generalization of the an-
alytic formulation of the level-crossing probability (i.e., the distribu-
tion of inverse linear interpolation) from the uniform density model
to the nonparametric densities with commonly used kernels. Our ap-
proach for quantifying spatial uncertainty in isosurfaces is applicable
when nonparametric densities are estimated with compactly-supported
kernels such as a triangle, Epanechnikov, cubic, and so on. As the
choice of kernel bandwidth is key to kernel density estimation, we
detail our approach for bandwidth selection for density estimation in

the Appendix. For clarity of presentation, we present our approach
for closed-form characterization of level-crossing probability of an
isosurface with the triangle kernel for nonparametric models. This
approach is directly applicable to other compactly-supported kernels
(e.g., quadratic, cubic, Epanechnikov).

3 Marching Uncertain Cubes

The marching cubes algorithm (MC) [18, 3] provides a triangulation
of an isosurface from a scalar field defined on a Cartesian grid and
consists of two steps. The first step involves classifying grid vertices
as above or below, depending on the scalar field’s value at each grid
point and its relation to the isovalue c. Vertex signs are then used to
construct the cell configuration, where the topology of the isosurface
inside each grid cell is determined. The second step determines isosur-
face geometry by computing the crossing locations on the grid edges
that belong to a cell that has been identified as crossed in the first step.
Level-crossing locations are computed using the inverse linear interpo-
lation formula in order to reconstruct isosurface that is consistent with
trilinear interpolation. Let v1 and v2 denote adjacent vertices in a cell
that have been classified with opposite signs during the cell configura-
tion step, and x and y be the data values at v1 and v2, respectively. The
isosurface corresponding to the isovalue c has a vertex vc whose loca-
tion can be computed using the inverse linear interpolation formula as
follows:

vc = (1− z)v1 + zv2, where z =
c− x

y− x
. (1)

Here, the ratio z determines the location of level-crossing between v1

and v2.
When there is uncertainty in the values assumed at each grid point,

the classification of vertices (i.e., determination of sign) as well as the
inverse linear interpolation steps need to be revisited in a probabilistic
view. In our work, we assume an independent noise model for prop-
agating the data uncertainty into the steps of classical MC algorithm.
In the following section, we present our classification approaches for
identifying cell topology, and in Subsection 3.3, we discuss the proba-
bilistic extension of ambiguity resolution methods when a cell is iden-
tified as an ambiguous case [17]. Subsection 3.2 presents our closed-
form characterization of level-crossing probability for geometry ex-
traction.

3.1 Cell Topology from Classification of Vertices

We first describe the problem setting. Let v1, . . .vN denote the ver-
tices in a Cartesian grid, and f (vn) be the scalar value attained at
vertex vn for 1 ≤ n ≤ N. When the scalar values are known exactly,
as in the classical MC algorithm, the classification of vertices is car-
ried out based on the isovalue c: vertex vn is classified as +1 when
f (vn)> c and −1 otherwise. When there is uncertainty present in the
data, the common approach is to model f (vn) with a random variable,
Xn, whose probability distribution, pdfXn

(x), reflects the uncertainty at
the grid point vn. We want to find a scheme that best represents the
underlying vertex classification for uncertain data.

In a given problem setting, one can classify the grid vertices based
on the most probable sign: vertex vn classified as +1 when Pr(Xn >
c)=

∫ ∞
c pdfXn

(x)dx> 0.5 and −1 otherwise. We refer to this method as
vertex-based classification. One widely used approach for estimating
vertex signs is taking the statistical mean of uncertain data. Classifica-
tion based on the statistical mean can be poor if the sign corresponding
to statistical mean and the most probable sign do not agree. The be-
havior is usually observed when noise samples are far away from the
underlying value, as demonstrated in Section 5 (e.g., Fig. 7).

Since the vertex-based classification approach processes each ver-
tex independently, it might lead to inaccurate vertex classification
when the vertex in question is almost equally likely to be on either
side of the isovalue (e.g., Pr(X > c)≈ 0.5). We might avoid this prob-
lem by classifying the vertices in a collaborative fashion. We propose
a vertex classification approach that decides vertex signs by process-
ing vertices in a collaborative fashion, and we also show an experiment
illustrating the benefit of a proposed method over a vertex-based clas-
sification method (Fig. 9).

Fig. 1: Edge-based vertex classification approach for deciding cell
topology. Random variable Xi with probability density Pd fXi

repre-
sents data uncertainty at cell corner vi. Numbers on edges represent
exemplar level-crossing probabilities (LCPs) for isovalue c. When
LCP is relatively high, edge vertices are likely to be classified with
opposite signs, e.g., edges v1v4 and v3v4. When LCP is relatively low,
edge vertices are likely to be classified with same signs, e.g., edges
v1v2 and v2v3. Marked vertices (with dark blue circle) represent signs
opposite to unmarked vertices.

Specifically, one can focus on the probability of a pair of vertices
being on the opposite sides of the isovalue in a grid. As a vertex is
being examined against other vertices for being in the same or oppo-
site side of the isovalue, one can classify it as ±1 so that there is a
global fitness optimality. The level-crossing probability (LCP) con-
cept, introduced by Pöthkow and Hege [34], assigns a probability of
the isosurface crossing an edge between two adjacent vertices in a grid.
Conceptually, if a vertex is deemed opposite to all of its neighbors be-
cause the level-crossing probabilities (LCPs) on its edges are high, it
should be classified as opposite to its neighbors (if there is consensus
among them). The two vertices sharing an edge with low LCP are
likely to be classified with the same sign (i.e., both +1 or both −1),
whereas two vertices sharing a high LCP edge are likely to be clas-
sified as opposite signs. Fig. 1 depicts the edge-based classification
approach for uncertain data.

The basic idea behind this edge-based classification is: given the
likelihood of an isosurface crossing the edges of a Cartesian grid,
what is the optimal assignment of ±1 to its vertices that best fits these
crossing probabilities? Although crossing probabilities are computed
from vertex distributions, it is the collaborative classification of ver-
tices (a vertex with respect to all of its neighbors) that differentiates
this method from the vertex-based classification. To build a global no-
tion of fitness for this classification, we build an objective function that
penalizes same-sign classification of vertices sharing a high LCP edge
and favors opposite-sign classification of vertices sharing a high LCP
edge. Let si and s j denote the signs assigned to vi and v j vertices, re-
spectively, and wi, j = 1−Pr(Xi > c)Pr(Xj > c)−Pr(Xi < c)Pr(Xj <
c) be the LCP [34] on the edge between vi and v j . Then siwi, js j > 0
has a positive penalty for same-sign classification and a negative cost
for opposite-sign classification. Let s = [s1, . . . ,sN ] denote the signs
for all grid vertices, and W =

[

wi, j

]

with 1 ≤ i, j ≤ N denote the LCP
matrix for all grid edges. Then the optimal classification is determined
by:

s
∗ = argmin

sn=±1

s
T

Ws. (2)

The cost for the combinatorial approach for solving this binary
quadratic assignment problem [39] is prohibitive (even though W is
very sparse and banded), and for a practical solution one can examine
a relaxed version of this objective function. One approximate solution
can be obtained by relaxing the sn = ±1 constraint to the quadratic
constraint s

T
s = 1. The solution (via the method of Lagrange multipli-
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lem. Our approach leverages vertex-crossing probabilities and
edge-crossing probabilities [34] for determination of cell con-
figuration. The proposed probabilistic approach provides more
accurate prediction of the isosurface topology than the non-
probabilistic approach e.g., statistical mean in uncertain data.

• We quantify and visualize the spatial uncertainties in an isosur-
face extracted from uncertain data when the underlying uncer-
tainty is modeled in a nonparametric statistical framework. In
this setting, Monte Carlo sampling is the simplest but expen-
sive approach to estimate the distribution of inverse interpolation
for characterizing isosurface geometry. However, we provide, in
closed-form, the distribution of inverse interpolation character-
izing the isosurface level-crossing positions. This closed-form
solution can be used for efficiently reconstructing the expected
isosurface, and its variance can illustrate the positional uncer-
tainty in the isosurface. Our closed-form derivation generalizes
uniform distribution studied in [1] to general kernels such as a
triangle, Epanechnikov, and other common kernels used in non-
parametric density estimation. The flexibility offered by the non-
parametric models can be used to provide more accurate isosur-
face reconstruction than the one corresponding to the parametric
models.

• When a grid cell is classified to be crossed by isosurface, and
cell configuration happens to be one of the ambiguous cases [17],
we devise a probabilistic midpoint decider for ambiguity resolu-
tion. While the existing techniques resolve the topological am-
biguities when data is not uncertain, the probabilistic midpoint
decider generalizes the ambiguity resolution methods to resolve
the ambiguities when data is uncertain (e.g., noisy or ensemble).
Uncertain midpoint decider derives the midpoint distribution in
closed-form for nonparametric density functions using splines.

• Non-local means (NLM) is a common technique used in image
processing that forms a non-local neighborhood of a data point
in a noisy dataset, based on their (patch) similarity. The mean
computed over this non-local neighborhood is used to denoise
that data point [5]. Since our framework can be used for propa-
gating the probability distributions through isosurface extraction,
we demonstrate that the distribution of non-local neighbors (e.g.,
histogram) – as opposed to just the mean – could provide a more
accurate reconstruction of the isosurface compared to the isosur-
face extracted from the NLM-denoised dataset.

2 Related Work

Uncertainty quantification and visualization of the quantified uncer-
tainties are considered among top challenges in visualization [44, 13,
12], and there is a growing body of research for developing effective
means for visualizing uncertainty [3]. Uncertainty in isosurfaces can
be visualized by mapping color and opacity proportional to spatial un-
certainty [37]. Osorio and Brodlie devised techniques [24] for visu-
alization of the possible spatial locations for uncertain 2-D isocon-
tours. A point-based displacement method was proposed by Grigo-
ryan and Rheingans [10, 11] to interactively visualize uncertainty in
the isosurface. Various animation techniques such as visual vibrations
and probabilistic animation can be used to represent uncertainty in the
data [4, 20]. Wittenbrink et al. proposed a non-overloading visualiza-
tion technique [43, 28] (as opposed to overloading techniques such as
pseudocoloring, opacity mapping) called glyphs to encode and visu-
alize uncertainty in the vector field data. The visualization techniques
for scalar and vector field data were extended in [21, 19] for visual-
izing spatial distribution datasets, in which at each grid location data
distribution is known.

Box plots are often used to encode various statistical quantities
such as mean, median, maximum, minimum etc. [22]. Whitaker et
al. devised contour boxplots [42] to visualize statistical quantities re-
lated to the ensemble of the isocontours extracted from the ensemble
simulation datasets. Pfaffelmoser and Westermann studied structural

variability [31] of the height fields by visualizing the global correla-
tion structures. Otto et al. visualized global uncertainty in 2-D vec-
tor fields [25] by computing probability density functions of particle
flows. The authors further extended this technique to uncertain 3-D
vector fields [26] with some performance improvements. Schlegel et
al. [40] demonstrated the suitability of Gaussian process regression
for interpolating uncertain data, given that a suitable covariance model
exists (whose parameters are estimated from the data). Thompson et
al. proposed a fuzzy isosurface visualization technique [41] to visu-
alize the possible isosurface locations in an uncertain scalar field. In
this technique, the researchers sliced the histogram of an ensemble of
values corresponding to each cell and performed direct volume ren-
dering of the likelihood that cell will be crossed by the isosurface. Lee
and Shen [16] devised an algorithm for efficient storage of integral his-
tograms and fast query of local histograms at arbitrary locations within
the data.

Pöthkow and Hege developed a volume rendering approach for vi-
sualizing positional uncertainty in an extracted isosurface [32]. In their
approach, given an isosurface, the probability of it crossing each cell of
the grid is computed when datapoints are modeled as independent nor-
mal distributions. These cell crossing probabilities are estimated using
a Monte Carlo approach and are visualized using a volume rendering
approach. Pöthkow et al. further extended this work to take into ac-
count the correlated Gaussian random fields [35]. Pfaffelmoser et al.
integrated computations of isosurface-crossing probabilities into the
front-to-back ray casting approach for volume rendering by consider-
ing distance dependent pairwise correlations among the samples along
a ray [30]. For the interactive visualization of the level-crossing uncer-
tainties, expensive Monte Carlo computations were replaced by fast
techniques such as maximum edge crossing probability and linked-
pairs [34]. Motivated by this work, Athawale and Entezari [1] de-
vised an efficient approach for closed-form computation of the level-
crossing probabilities when the underlying uncertainties are modeled
by uniform distributions (in a parametric framework). This approach
eliminates the expensive Monte Carlo computations which need to be
carried out per cell with closed-form formulas that are calculated a
priori [1].

Empirical distribution, histograms, kernel density estimation, and
weighted kernel density estimation are some of the nonparametric sta-
tistical approaches that can be used for characterizing data uncertainty.
The density estimate obtained from empirical distribution is discontin-
uous, since this technique estimates the probability mass only for the
observed sample values. Continuous estimate of the underlying den-
sity can be obtained with a histograming approach, where kernels are
non-overlapping, and the choice of kernels is limited to the uniform
kernel.

Kernel-based nonparametric density estimation approaches (i.e.,
Parzen [29] and Rosenblatt [38]) determine the set of the possible den-
sity estimates that asymptotically approximate the underlying distri-
butions. This nonparametric approach relaxes two restrictions of his-
tograms, i.e., smoother kernels such as a triangle, cubic, or Epanech-
nikov may be chosen, and they can overlap. Kernel density estimation
is, therefore, considered as a generalization of histograms. Each of
the kernels may be assigned equal or different weights based on the
sample location. Smooth estimates of the underlying density may be
obtained by a suitable choice of kernel and optimal bandwidth (i.e.,
scaling of kernel).

Pöthkow and Hege extended uncertainty analysis for the isosurfaces
to nonparametric uncertainty models [33]. The authors approximated
the level-crossing probabilities again using the Monte Carlo sampling.
One of the contributions of this paper is the generalization of the an-
alytic formulation of the level-crossing probability (i.e., the distribu-
tion of inverse linear interpolation) from the uniform density model
to the nonparametric densities with commonly used kernels. Our ap-
proach for quantifying spatial uncertainty in isosurfaces is applicable
when nonparametric densities are estimated with compactly-supported
kernels such as a triangle, Epanechnikov, cubic, and so on. As the
choice of kernel bandwidth is key to kernel density estimation, we
detail our approach for bandwidth selection for density estimation in

the Appendix. For clarity of presentation, we present our approach
for closed-form characterization of level-crossing probability of an
isosurface with the triangle kernel for nonparametric models. This
approach is directly applicable to other compactly-supported kernels
(e.g., quadratic, cubic, Epanechnikov).

3 Marching Uncertain Cubes

The marching cubes algorithm (MC) [18, 3] provides a triangulation
of an isosurface from a scalar field defined on a Cartesian grid and
consists of two steps. The first step involves classifying grid vertices
as above or below, depending on the scalar field’s value at each grid
point and its relation to the isovalue c. Vertex signs are then used to
construct the cell configuration, where the topology of the isosurface
inside each grid cell is determined. The second step determines isosur-
face geometry by computing the crossing locations on the grid edges
that belong to a cell that has been identified as crossed in the first step.
Level-crossing locations are computed using the inverse linear interpo-
lation formula in order to reconstruct isosurface that is consistent with
trilinear interpolation. Let v1 and v2 denote adjacent vertices in a cell
that have been classified with opposite signs during the cell configura-
tion step, and x and y be the data values at v1 and v2, respectively. The
isosurface corresponding to the isovalue c has a vertex vc whose loca-
tion can be computed using the inverse linear interpolation formula as
follows:

vc = (1− z)v1 + zv2, where z =
c− x

y− x
. (1)

Here, the ratio z determines the location of level-crossing between v1

and v2.
When there is uncertainty in the values assumed at each grid point,

the classification of vertices (i.e., determination of sign) as well as the
inverse linear interpolation steps need to be revisited in a probabilistic
view. In our work, we assume an independent noise model for prop-
agating the data uncertainty into the steps of classical MC algorithm.
In the following section, we present our classification approaches for
identifying cell topology, and in Subsection 3.3, we discuss the proba-
bilistic extension of ambiguity resolution methods when a cell is iden-
tified as an ambiguous case [17]. Subsection 3.2 presents our closed-
form characterization of level-crossing probability for geometry ex-
traction.

3.1 Cell Topology from Classification of Vertices

We first describe the problem setting. Let v1, . . .vN denote the ver-
tices in a Cartesian grid, and f (vn) be the scalar value attained at
vertex vn for 1 ≤ n ≤ N. When the scalar values are known exactly,
as in the classical MC algorithm, the classification of vertices is car-
ried out based on the isovalue c: vertex vn is classified as +1 when
f (vn)> c and −1 otherwise. When there is uncertainty present in the
data, the common approach is to model f (vn) with a random variable,
Xn, whose probability distribution, pdfXn

(x), reflects the uncertainty at
the grid point vn. We want to find a scheme that best represents the
underlying vertex classification for uncertain data.

In a given problem setting, one can classify the grid vertices based
on the most probable sign: vertex vn classified as +1 when Pr(Xn >
c)=

∫ ∞
c pdfXn

(x)dx> 0.5 and −1 otherwise. We refer to this method as
vertex-based classification. One widely used approach for estimating
vertex signs is taking the statistical mean of uncertain data. Classifica-
tion based on the statistical mean can be poor if the sign corresponding
to statistical mean and the most probable sign do not agree. The be-
havior is usually observed when noise samples are far away from the
underlying value, as demonstrated in Section 5 (e.g., Fig. 7).

Since the vertex-based classification approach processes each ver-
tex independently, it might lead to inaccurate vertex classification
when the vertex in question is almost equally likely to be on either
side of the isovalue (e.g., Pr(X > c)≈ 0.5). We might avoid this prob-
lem by classifying the vertices in a collaborative fashion. We propose
a vertex classification approach that decides vertex signs by process-
ing vertices in a collaborative fashion, and we also show an experiment
illustrating the benefit of a proposed method over a vertex-based clas-
sification method (Fig. 9).

Fig. 1: Edge-based vertex classification approach for deciding cell
topology. Random variable Xi with probability density Pd fXi

repre-
sents data uncertainty at cell corner vi. Numbers on edges represent
exemplar level-crossing probabilities (LCPs) for isovalue c. When
LCP is relatively high, edge vertices are likely to be classified with
opposite signs, e.g., edges v1v4 and v3v4. When LCP is relatively low,
edge vertices are likely to be classified with same signs, e.g., edges
v1v2 and v2v3. Marked vertices (with dark blue circle) represent signs
opposite to unmarked vertices.

Specifically, one can focus on the probability of a pair of vertices
being on the opposite sides of the isovalue in a grid. As a vertex is
being examined against other vertices for being in the same or oppo-
site side of the isovalue, one can classify it as ±1 so that there is a
global fitness optimality. The level-crossing probability (LCP) con-
cept, introduced by Pöthkow and Hege [34], assigns a probability of
the isosurface crossing an edge between two adjacent vertices in a grid.
Conceptually, if a vertex is deemed opposite to all of its neighbors be-
cause the level-crossing probabilities (LCPs) on its edges are high, it
should be classified as opposite to its neighbors (if there is consensus
among them). The two vertices sharing an edge with low LCP are
likely to be classified with the same sign (i.e., both +1 or both −1),
whereas two vertices sharing a high LCP edge are likely to be clas-
sified as opposite signs. Fig. 1 depicts the edge-based classification
approach for uncertain data.

The basic idea behind this edge-based classification is: given the
likelihood of an isosurface crossing the edges of a Cartesian grid,
what is the optimal assignment of ±1 to its vertices that best fits these
crossing probabilities? Although crossing probabilities are computed
from vertex distributions, it is the collaborative classification of ver-
tices (a vertex with respect to all of its neighbors) that differentiates
this method from the vertex-based classification. To build a global no-
tion of fitness for this classification, we build an objective function that
penalizes same-sign classification of vertices sharing a high LCP edge
and favors opposite-sign classification of vertices sharing a high LCP
edge. Let si and s j denote the signs assigned to vi and v j vertices, re-
spectively, and wi, j = 1−Pr(Xi > c)Pr(Xj > c)−Pr(Xi < c)Pr(Xj <
c) be the LCP [34] on the edge between vi and v j . Then siwi, js j > 0
has a positive penalty for same-sign classification and a negative cost
for opposite-sign classification. Let s = [s1, . . . ,sN ] denote the signs
for all grid vertices, and W =

[

wi, j

]

with 1 ≤ i, j ≤ N denote the LCP
matrix for all grid edges. Then the optimal classification is determined
by:

s
∗ = argmin

sn=±1

s
T

Ws. (2)

The cost for the combinatorial approach for solving this binary
quadratic assignment problem [39] is prohibitive (even though W is
very sparse and banded), and for a practical solution one can examine
a relaxed version of this objective function. One approximate solution
can be obtained by relaxing the sn = ±1 constraint to the quadratic
constraint s

T
s = 1. The solution (via the method of Lagrange multipli-
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Fig. 2: A ratio density in nonparametric statistics. Random variables
X and Y represent uncertain data values at the grid vertices v1 and
v2, respectively, having nonparametric distributions with the triangle
function as the basis kernel. Kh(X − xi) denotes a triangle function
with bandwidth h centered at X = xi, and Kh′(Y −y j) denotes a triangle

function with bandwidth h′ centered at Y = y j . Distribution of the ratio
random variable, Z, is illustrated for the isovalue of c.

ers for example) to this relaxed problem is the eigenvector of W corre-
sponding to its largest (negative) eigenvalue. For large datasets, eigen-
vector computation is still costly, and one can resort to the Nyström
method [9] for efficient computation. In Section 5, we demonstrate the
effectiveness of the approximate solution to an edge-based classifica-
tion problem compared to a vertex-based classification.

3.2 Ratio Distribution for Geometry Extraction

Our earlier work [1] characterized the ratio density, in closed-form, for
uniform parametric densities. We now derive ratio density analytically
for kernel-based density estimators. Our experiments in Section 5
(e.g., Fig. 8) show that nonparametric models provide more accurate
characterization of the error densities than the parametric models, and
therefore, providing more accurate reconstruction results.

Problem setting: Let X and Y be the random variables repre-
senting the uncertainty in the data values at adjacent grid vertices
v1 and v2, respectively, and xi (i = 1 . . .n) and y j ( j = 1 . . .m) be
the independent, identically distributed (IID) samples available from
the distributions of X and Y . The kernel-based density estima-
tors for the random variables X and Y are given by the functions

pdfX (x) =
1
n ∑

n
i=1 Kh(x− xi) and pdfY (y) =

1
m ∑

m
j=1 Kh′(y− y j), re-

spectively, where K(·) denotes kernel function, and h and h′ are the
bandwidth parameters [14]. Given that v1 and v2 are classified as op-
posite signs, the uncertainty in the location of the level-crossing vc on

the edge between them is given by the ratio random variable Z = c−X
Y−X

as a result of the inverse interpolation in Eq. (1). We now explain the
approach to derive the density function, in closed-form, of the level-
crossing random variable Z. Fig. 2 depicts the problem setting.

3.2.1 Nonparametric Density With Single Kernel

Initially, we describe a three-step process for analytically deriving the
ratio distribution for a simple case, where pdfX and pdfY consist of a
single triangle kernel each, i.e., when n= 1 and m= 1. In the first step,
we establish the joint distribution of the dependent random variables
Z1 = c−X and Z2 = Y −X . Since n = 1 and m = 1 in this case, the
random variables X and Y assume the values in the intervals [x1 −
h,x1 + h] and [y1 − h′,y1 + h′], respectively. Hence, the distribution
function of the random variable Z1 is a triangle function consisting of
two linear polynomials over the range [c− x1 − h,c− x1 + h]. The
density function of the random variable Z2 is also a triangle function
composed of 2 linear polynomials over the range [y1 −h′ −x,y1 +h′ −
x], where the random variable X takes the value x. The support of the
joint density function of Z1 and Z2 is a parallelogram [1].

When the random variables X and Y are independent, their joint
distribution is given by a product of their densities, pdfX and pdfY . In

Fig. 3: The joint density of the dependent random variables Z1 and Z2

when kernel-based densities for the random variables X and Y consist
of one triangle each. X and Y take values in the range [x1 −h,x1 +h]
and [y1 − h′,y1 + h′], respectively, and c denotes the isovalue. A, B,
C, and D represent the midpoints of the edges PQ, QR, RS, and SP,
respectively, and E is at the center of the parallelogram. The joint den-
sity function of Z1 and Z2 is a piecewise quadratic function consisting
of four polynomials highlighted with different colors with their sup-
ports being the subparallelograms PAED, AQBE, EBRC, and DECS.

case of single triangle kernels, it is given by Kh(X − x1) ·Kh′(Y − y1).
Since Pr(Z1,Z2) = Pr(c−X ,Y −X), the joint distribution of Z1 and
Z2 is a reflected and sheared version of Pr(X ,Y ). In the case of a sin-
gle triangle, Pr(Z1,Z2) is simply a reflected and sheared version of
the product Kh(X − x1) ·Kh′(Y − y1). As Kh(X − x1) ·Kh′(Y − y1) is
a piecewise polynomial function when the kernel is a triangle func-
tion, Pr(Z1,Z2) is also a piecewise polynomial function consisting of
four quadratic polynomials with their supports being the subparallelo-
grams shown in Fig. 3. In contrast, the joint is a constant function for
uniform distributions, as discussed in [1].

The second step consists of formulating the cumulative density
function of a random variable Z. The value of the ratio random vari-
able Z can be represented by slope of the line Z1 = zZ2. The expression
for the cumulative density function, cdfZ(z), can be obtained by inte-
grating the joint density of Z1 and Z2 as we sweep the line Z1 = zZ2

from slope z = 0 to z = 1:

cdfZ(z) = Pr(0 ≤ Z ≤ z)

= Pr(0 ≤ Z1 ≤ zZ2)+Pr(zZ2 ≤ Z1 < 0).
(3)

This sweeping process amounts to the integration of the joint as dis-
cussed in [1]; however, unlike the simple case of constant functions
in [1], the integration of the joint involves integrating high-order poly-
nomials for kernel functions, such as triangle or Epanechnikov. To
perform this integration, we use Green’s theorem, which relates the
integral over a domain of the joint to its line integrals. The process of
computing the cdfZ(z) is illustrated in Fig. 4. We integrate the poly-
nomials over the subparallelograms using Green’s theorem.

Lastly, the density function pdfZ(z) for the ratio random variable Z
is obtained by differentiating the cumulative density function cdfZ(z)
with respect to z. Our approach for the analytic characterization of the
ratio random variable can be expanded for other kernels of higher de-
gree with compact support, such as Epanechnikov, quartic, tricube, etc.
When using kernels of even degree, e.g. uniform or Epanechnikov, the
joint density function of the Z1 and Z2 is a single polynomial over its
entire support. For the kernels of odd degree, e.g. triangle or tricube,
the resulting joint distribution function is a piecewise polynomial. In
either case, the polynomials can be integrated using Green’s theorem.

3.2.2 Nonparametric Density With Multiple Kernels

When n > 1 or m > 1, we follow an approach similar to one described
in Subsection 3.2.1 for the closed form characterization of the ratio dis-
tribution. Since Pr(Z1,Z2) = Pr(c−X ,Y −X), the joint distribution

Fig. 4: The process for computing the cumulative distribution of Z,
cdfZ(z), as the line Z1 = z ·Z2 is swept from z = 0 (Z2 axis) to z = 1
(dotted line). The cdfZ(z) is determined by integrating a piecewise
polynomial function of the joint density (denoted by subparallelo-
grams with different colors) of Z1 and Z2 swept by the line Z1 = z ·Z2

(polynomials falling in the region enclosed by the red border). The
polynomials over the polygons og f , ohe j, hiAE, AQlkE, and jEk can
be integrated using the Green’s theorem.

of random variables Z1 and Z2 is, again, the reflected and sheared ver-
sion of Pr(X ,Y ). Thus, in case of multiple kernels, as shown in Fig. 5,
Pr(Z1,Z2) is the reflected and sheared version of the following prod-
uct:

Pr(X = x,Y = y) =
1

nm

n

∑
i=1

m

∑
j=1

Kh(x− xi)Kh′(y− y j). (4)

The analysis for each term, Kh(X − xi) ·Kh′(Y − y j), of the joint in Eq.
(4) is analogous to the simple case of a single kernel, as explained
in Subsection 3.2.1. Pr(Z1,Z2) is, therefore, the superposition of joint
distribution for each pair of kernels from pdfX and pdfY . In the case of
a triangle kernel, the density of the joint distribution of Z1 and Z2 is the
sum of the piecewise polynomial functions corresponding to each pair
of kernels from the nonparametric densities, pdfX and pdfY , scaled by

1
nm . The sweeping/integration process is similarly a superposition of
every pair of kernels from the two distributions. The process for deriv-
ing the cumulative density function, cdfZ(z), is shown in Fig. 5 when
n = 2 and m = 2, from which pdfZ is obtained via analytic differen-
tiation. This process is general for any compactly-supported kernel,
such as a triangle, Epanechnikov, and cubic. We provide an in-depth
analysis of the complexity of the proposed model for computing ratio
distribution in the Appendix.

Fig. 5: The joint distribution of Z1 and Z2 when nonparametric distri-
butions for X and Y consist of 2 triangle kernels each. Each parallelo-
gram represents the piecewise quadratic polynomial function consist-
ing of 4 polynomials over 4 subparallelograms (not explicitly shown as
in Fig. 3) for every pair of kernels. The cumulative distribution of Z,
cdfZ(z), is determined by integrating a piecewise polynomial function
for each of the parallelograms swept by the line Z1 = z ·Z2 (highlighted
in orange) using the Green’s theorem.

Fig. 6: Example of uncertain midpoint decider. M denotes the mid-
point random variable, pdfM(m) is the probability density of the ran-
dom variable M, and c represents the isovalue. For the given example,
Pr(M > c) > Pr(M < c), i.e., a topological decision is performed as-
suming the underlying configuration for the midpoint is positive.

3.3 Uncertain Midpoint Decider

When the predicted topology corresponds to ambiguous cases in the
marching cubes algorithm, the midpoint decider averages values at
the cell corners to make a topological decision (see Section 17.4.1
in [17]). However, the uncertainty in the data values at the cell corners
introduces uncertainty in the average value associated with a cell. We,
therefore, devise an uncertain midpoint decider to resolve topological
ambiguities probabilistically for uncertain data. The fact that density
of sum of random variables is given by convolving their density func-
tions, allows us to analytically characterize the midpoint distribution
when the data uncertainty at the cell vertices is modeled with nonpara-
metric densities. As uniform and triangle kernels represent the first
and second order B-splines (piecewise polynomial basis functions),
this enables us to derive a closed-form density function for the un-
certain midpoint in terms of higher order box splines (generalization
of B-splines) [7]. This method can be applied to other kernels if we
determine the convolution of kernels analytically.

We notice that pdf 1
a

X (x) = pdfX (ax) for any a > 0; therefore, given

L independent random variables Xℓ as ℓ= 1..L, each distributed as per

pdfXℓ
, distribution of the midpoint M = 1

L ∑
L
ℓ=1 Xℓ can be formulated

as:

pdfM = pdf X1
L

∗· · · ∗pdf XL
L

, (5)

where ∗ denotes convolution.
Again, consider two random variables X and Y , corresponding to

grid vertices v1 and v2 , where pdfX and pdfY consist of single ker-
nels each, with arbitrary bandwidths h and h′, respectively. If X and
Y are uniformly distributed and h = h′, the convolution of the two box
functions is a hat (triangle) function. When h �= h′ the convolution is
a general box spline. Similarly, when the kernels are triangle func-
tions, the convolution is, in general, a cubic box spline. We compute
convolution of L kernels, in closed form, using the finite differencing
framework introduced in [8]. This framework enables us to obtain the
high-order box spline kernel as the result of convolving kernels with
arbitrary bandwidths. The density function of the midpoint turns out
to be superposition of the box spline kernels shifted at sample points
which are mean of the samples of random variables Xℓ. The most
probable midpoint configuration is determined by slicing the midpoint
density function at the isovalue and integrating the density falling in
each of the slices. A topological decision is made based on the most
probable midpoint configuration. Fig. 6 presents an example of uncer-
tain midpoint decider. As the figure suggests, unlike Gaussian distri-
bution, the derived function can model the multi-modality of a real
density functions.

4 From Non-Local Means to Non-Local Density Estimation

While in ensemble simulation datasets samples of the distribution at
each data point are available from the ensemble, the uncertainty at each
data point can sometimes be estimated from the data itself. For in-
stance, in many denoising algorithms (e.g., Wiener filter), local neigh-
bors of a data point are considered as samples of the distribution at
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Fig. 2: A ratio density in nonparametric statistics. Random variables
X and Y represent uncertain data values at the grid vertices v1 and
v2, respectively, having nonparametric distributions with the triangle
function as the basis kernel. Kh(X − xi) denotes a triangle function
with bandwidth h centered at X = xi, and Kh′(Y −y j) denotes a triangle

function with bandwidth h′ centered at Y = y j . Distribution of the ratio
random variable, Z, is illustrated for the isovalue of c.

ers for example) to this relaxed problem is the eigenvector of W corre-
sponding to its largest (negative) eigenvalue. For large datasets, eigen-
vector computation is still costly, and one can resort to the Nyström
method [9] for efficient computation. In Section 5, we demonstrate the
effectiveness of the approximate solution to an edge-based classifica-
tion problem compared to a vertex-based classification.

3.2 Ratio Distribution for Geometry Extraction

Our earlier work [1] characterized the ratio density, in closed-form, for
uniform parametric densities. We now derive ratio density analytically
for kernel-based density estimators. Our experiments in Section 5
(e.g., Fig. 8) show that nonparametric models provide more accurate
characterization of the error densities than the parametric models, and
therefore, providing more accurate reconstruction results.

Problem setting: Let X and Y be the random variables repre-
senting the uncertainty in the data values at adjacent grid vertices
v1 and v2, respectively, and xi (i = 1 . . .n) and y j ( j = 1 . . .m) be
the independent, identically distributed (IID) samples available from
the distributions of X and Y . The kernel-based density estima-
tors for the random variables X and Y are given by the functions

pdfX (x) =
1
n ∑

n
i=1 Kh(x− xi) and pdfY (y) =

1
m ∑

m
j=1 Kh′(y− y j), re-

spectively, where K(·) denotes kernel function, and h and h′ are the
bandwidth parameters [14]. Given that v1 and v2 are classified as op-
posite signs, the uncertainty in the location of the level-crossing vc on

the edge between them is given by the ratio random variable Z = c−X
Y−X

as a result of the inverse interpolation in Eq. (1). We now explain the
approach to derive the density function, in closed-form, of the level-
crossing random variable Z. Fig. 2 depicts the problem setting.

3.2.1 Nonparametric Density With Single Kernel

Initially, we describe a three-step process for analytically deriving the
ratio distribution for a simple case, where pdfX and pdfY consist of a
single triangle kernel each, i.e., when n= 1 and m= 1. In the first step,
we establish the joint distribution of the dependent random variables
Z1 = c−X and Z2 = Y −X . Since n = 1 and m = 1 in this case, the
random variables X and Y assume the values in the intervals [x1 −
h,x1 + h] and [y1 − h′,y1 + h′], respectively. Hence, the distribution
function of the random variable Z1 is a triangle function consisting of
two linear polynomials over the range [c− x1 − h,c− x1 + h]. The
density function of the random variable Z2 is also a triangle function
composed of 2 linear polynomials over the range [y1 −h′ −x,y1 +h′ −
x], where the random variable X takes the value x. The support of the
joint density function of Z1 and Z2 is a parallelogram [1].

When the random variables X and Y are independent, their joint
distribution is given by a product of their densities, pdfX and pdfY . In

Fig. 3: The joint density of the dependent random variables Z1 and Z2

when kernel-based densities for the random variables X and Y consist
of one triangle each. X and Y take values in the range [x1 −h,x1 +h]
and [y1 − h′,y1 + h′], respectively, and c denotes the isovalue. A, B,
C, and D represent the midpoints of the edges PQ, QR, RS, and SP,
respectively, and E is at the center of the parallelogram. The joint den-
sity function of Z1 and Z2 is a piecewise quadratic function consisting
of four polynomials highlighted with different colors with their sup-
ports being the subparallelograms PAED, AQBE, EBRC, and DECS.

case of single triangle kernels, it is given by Kh(X − x1) ·Kh′(Y − y1).
Since Pr(Z1,Z2) = Pr(c−X ,Y −X), the joint distribution of Z1 and
Z2 is a reflected and sheared version of Pr(X ,Y ). In the case of a sin-
gle triangle, Pr(Z1,Z2) is simply a reflected and sheared version of
the product Kh(X − x1) ·Kh′(Y − y1). As Kh(X − x1) ·Kh′(Y − y1) is
a piecewise polynomial function when the kernel is a triangle func-
tion, Pr(Z1,Z2) is also a piecewise polynomial function consisting of
four quadratic polynomials with their supports being the subparallelo-
grams shown in Fig. 3. In contrast, the joint is a constant function for
uniform distributions, as discussed in [1].

The second step consists of formulating the cumulative density
function of a random variable Z. The value of the ratio random vari-
able Z can be represented by slope of the line Z1 = zZ2. The expression
for the cumulative density function, cdfZ(z), can be obtained by inte-
grating the joint density of Z1 and Z2 as we sweep the line Z1 = zZ2

from slope z = 0 to z = 1:

cdfZ(z) = Pr(0 ≤ Z ≤ z)

= Pr(0 ≤ Z1 ≤ zZ2)+Pr(zZ2 ≤ Z1 < 0).
(3)

This sweeping process amounts to the integration of the joint as dis-
cussed in [1]; however, unlike the simple case of constant functions
in [1], the integration of the joint involves integrating high-order poly-
nomials for kernel functions, such as triangle or Epanechnikov. To
perform this integration, we use Green’s theorem, which relates the
integral over a domain of the joint to its line integrals. The process of
computing the cdfZ(z) is illustrated in Fig. 4. We integrate the poly-
nomials over the subparallelograms using Green’s theorem.

Lastly, the density function pdfZ(z) for the ratio random variable Z
is obtained by differentiating the cumulative density function cdfZ(z)
with respect to z. Our approach for the analytic characterization of the
ratio random variable can be expanded for other kernels of higher de-
gree with compact support, such as Epanechnikov, quartic, tricube, etc.
When using kernels of even degree, e.g. uniform or Epanechnikov, the
joint density function of the Z1 and Z2 is a single polynomial over its
entire support. For the kernels of odd degree, e.g. triangle or tricube,
the resulting joint distribution function is a piecewise polynomial. In
either case, the polynomials can be integrated using Green’s theorem.

3.2.2 Nonparametric Density With Multiple Kernels

When n > 1 or m > 1, we follow an approach similar to one described
in Subsection 3.2.1 for the closed form characterization of the ratio dis-
tribution. Since Pr(Z1,Z2) = Pr(c−X ,Y −X), the joint distribution

Fig. 4: The process for computing the cumulative distribution of Z,
cdfZ(z), as the line Z1 = z ·Z2 is swept from z = 0 (Z2 axis) to z = 1
(dotted line). The cdfZ(z) is determined by integrating a piecewise
polynomial function of the joint density (denoted by subparallelo-
grams with different colors) of Z1 and Z2 swept by the line Z1 = z ·Z2

(polynomials falling in the region enclosed by the red border). The
polynomials over the polygons og f , ohe j, hiAE, AQlkE, and jEk can
be integrated using the Green’s theorem.

of random variables Z1 and Z2 is, again, the reflected and sheared ver-
sion of Pr(X ,Y ). Thus, in case of multiple kernels, as shown in Fig. 5,
Pr(Z1,Z2) is the reflected and sheared version of the following prod-
uct:

Pr(X = x,Y = y) =
1

nm

n

∑
i=1

m

∑
j=1

Kh(x− xi)Kh′(y− y j). (4)

The analysis for each term, Kh(X − xi) ·Kh′(Y − y j), of the joint in Eq.
(4) is analogous to the simple case of a single kernel, as explained
in Subsection 3.2.1. Pr(Z1,Z2) is, therefore, the superposition of joint
distribution for each pair of kernels from pdfX and pdfY . In the case of
a triangle kernel, the density of the joint distribution of Z1 and Z2 is the
sum of the piecewise polynomial functions corresponding to each pair
of kernels from the nonparametric densities, pdfX and pdfY , scaled by

1
nm . The sweeping/integration process is similarly a superposition of
every pair of kernels from the two distributions. The process for deriv-
ing the cumulative density function, cdfZ(z), is shown in Fig. 5 when
n = 2 and m = 2, from which pdfZ is obtained via analytic differen-
tiation. This process is general for any compactly-supported kernel,
such as a triangle, Epanechnikov, and cubic. We provide an in-depth
analysis of the complexity of the proposed model for computing ratio
distribution in the Appendix.

Fig. 5: The joint distribution of Z1 and Z2 when nonparametric distri-
butions for X and Y consist of 2 triangle kernels each. Each parallelo-
gram represents the piecewise quadratic polynomial function consist-
ing of 4 polynomials over 4 subparallelograms (not explicitly shown as
in Fig. 3) for every pair of kernels. The cumulative distribution of Z,
cdfZ(z), is determined by integrating a piecewise polynomial function
for each of the parallelograms swept by the line Z1 = z ·Z2 (highlighted
in orange) using the Green’s theorem.

Fig. 6: Example of uncertain midpoint decider. M denotes the mid-
point random variable, pdfM(m) is the probability density of the ran-
dom variable M, and c represents the isovalue. For the given example,
Pr(M > c) > Pr(M < c), i.e., a topological decision is performed as-
suming the underlying configuration for the midpoint is positive.

3.3 Uncertain Midpoint Decider

When the predicted topology corresponds to ambiguous cases in the
marching cubes algorithm, the midpoint decider averages values at
the cell corners to make a topological decision (see Section 17.4.1
in [17]). However, the uncertainty in the data values at the cell corners
introduces uncertainty in the average value associated with a cell. We,
therefore, devise an uncertain midpoint decider to resolve topological
ambiguities probabilistically for uncertain data. The fact that density
of sum of random variables is given by convolving their density func-
tions, allows us to analytically characterize the midpoint distribution
when the data uncertainty at the cell vertices is modeled with nonpara-
metric densities. As uniform and triangle kernels represent the first
and second order B-splines (piecewise polynomial basis functions),
this enables us to derive a closed-form density function for the un-
certain midpoint in terms of higher order box splines (generalization
of B-splines) [7]. This method can be applied to other kernels if we
determine the convolution of kernels analytically.

We notice that pdf 1
a

X (x) = pdfX (ax) for any a > 0; therefore, given

L independent random variables Xℓ as ℓ= 1..L, each distributed as per

pdfXℓ
, distribution of the midpoint M = 1

L ∑
L
ℓ=1 Xℓ can be formulated

as:

pdfM = pdf X1
L

∗· · · ∗pdf XL
L

, (5)

where ∗ denotes convolution.
Again, consider two random variables X and Y , corresponding to

grid vertices v1 and v2 , where pdfX and pdfY consist of single ker-
nels each, with arbitrary bandwidths h and h′, respectively. If X and
Y are uniformly distributed and h = h′, the convolution of the two box
functions is a hat (triangle) function. When h �= h′ the convolution is
a general box spline. Similarly, when the kernels are triangle func-
tions, the convolution is, in general, a cubic box spline. We compute
convolution of L kernels, in closed form, using the finite differencing
framework introduced in [8]. This framework enables us to obtain the
high-order box spline kernel as the result of convolving kernels with
arbitrary bandwidths. The density function of the midpoint turns out
to be superposition of the box spline kernels shifted at sample points
which are mean of the samples of random variables Xℓ. The most
probable midpoint configuration is determined by slicing the midpoint
density function at the isovalue and integrating the density falling in
each of the slices. A topological decision is made based on the most
probable midpoint configuration. Fig. 6 presents an example of uncer-
tain midpoint decider. As the figure suggests, unlike Gaussian distri-
bution, the derived function can model the multi-modality of a real
density functions.

4 From Non-Local Means to Non-Local Density Estimation

While in ensemble simulation datasets samples of the distribution at
each data point are available from the ensemble, the uncertainty at each
data point can sometimes be estimated from the data itself. For in-
stance, in many denoising algorithms (e.g., Wiener filter), local neigh-
bors of a data point are considered as samples of the distribution at
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(a) (b) (c) (d) (e)

Fig. 7: A comparison of vertex-classification techniques for the isosurface visualization (c = −0.59) of tangle function. (a) The groundtruth
visualization. Color mapped error visualization relative to the groundtruth (map shown by error colorbar) for the isosurface in noisy data
corresponding to (b) statistical mean, (c) vertex-based classification, (d) edge-based classification. (e) Color mapped spatial uncertainties in
the isosurface (map shown by ratio variance colorbar) for the result with edge-based classification. The advantage of the probabilistic vertex
classification techniques over statistical mean technique is clearly evident from the color mapped error visualization. From the similar patterns
in subfigures (d) and (e) indicated by the boxes, it can be observed that the regions of relatively high ratio variance are likely to have relatively
high error in the expected isosurface computation relative to the groundtruth.

that data point. Moreover, in probabilistic marching cubes [32, 35] the
uncertainty is modeled as a Gaussian distribution whose covariance is
estimated from a local neighborhood (via PCA).

Non-local filtering methods have been proven to be superior to local
methods for denoising applications [36, 2]. For instance, the non-local
means (NLM) method [5] identifies a non-local neighborhood for each
data point based on the similarity of patches around the data point
and the members of the non-local neighborhood. The denoising is
then usually carried out by averaging the data point with its non-local
neighborhood. Since our framework allows the marching cubes algo-
rithm for propagation of uncertainty through the isosurface extraction,
we leverage the non-local neighborhood for estimating the distribution
at each data point. The non-local density estimation approach for iso-
surface visualization shows subtle reconstruction improvements over
the NLM technique, as shown in Section 5 (e.g., Fig. 11). The dis-
tance between two vertices vi and v j is defined based on the similarity
between the patches around them:

dist(vi,v j) = �Nk(vi)−Nk(v j)�. (6)

Here the notion of distance between the neighborhoods, �Nk(vi)−
Nk(v j)�, is a (weighted) sum of square differences between the cor-
responding patches, of size k, centered on vi and v j respectively.

We leverage the non-local matching idea, that is now widely used
in denoising algorithms, for kernel density estimation. The density
estimation for random variable Xi modeling uncertainty in voxel vi is
obtained by:

pdfXi
=

1

τ

N

∑
j=1

f (v j)K
(

dist(vi,v j)
)

, (7)

where τ is a normalizing constant. When K is the uniform kernel this
provides a non-local generalization of the histograming approach that
forms a distribution from the values of all voxels in the data whose
surrounding patch is similar to that of the voxel vi. To avoid searching
the entire dataset for finding non-local neighbors, often NLM imple-
mentations restrict the search to a window around each voxel for this
neighborhood analysis [5]. More smooth density estimation can be ob-
tained by choosing K from smooth kernels such as the triangle, Parzen,
or Epanechnikov. Moreover, based on the non-local neighbors and the
choice of kernel, we can perform bandwidth estimation as discussed
in the Appendix.

5 Experiments

We first provide a brief overview of the experiment setup. In our first
set of experiments, we use ensemble datasets for isosurface visual-
ization, whereas our second set of experiments consists of visualizing

spatial uncertainties in the isosurface extracted from a single uncertain
scalar field. In ensemble datasets, error samples are acquired through
multiple simulations or by injecting the noise in the dataset for testing
the performance of different techniques. For a single uncertain scalar
field, samples within the user specified window size are considered as
the error samples at each grid point.

The underlying error densities at each grid point are estimated from
the error samples using parametric or nonparametric models. For a lo-
cal statistics, each base kernel associated with error sample is assigned
equal weight. For non-local statistics, each base kernel associated with
error sample is assigned a weight based on neighborhood similarity as
explained in Section 4.

We quantify and visualize uncertainty in isosurfaces using nonpara-
metric density estimates at grid vertices. Isosurface topology is de-
termined using techniques described in Subsection 3.1 and Subsec-
tion 3.3. The geometric uncertainty is then characterized in closed
form by computing ratio distribution on each grid edge using the tech-
niques described in Subsection 3.2 and Section 4. Analytic charac-
terization of the ratio distribution can be used for closed-form com-
putation of the expected value and variance on each grid edge. While
former quantity can be used to reconstruct a stable isosurface, the latter
can be used to visualize spatial uncertainty in an expected isosurface
on the grid edges.

Our first experiment on a synthetic dataset consists of visualizing
the spatial uncertainty in the level-set extracted from the tangle func-
tion [15] for the isovalue of c = −0.59. In this experiment, we show
the advantage of vertex-based classification and edge-based classifica-
tion techniques for determining isosurface topology over vertex classi-
fication based on the statistical mean of data. The ensemble represent-
ing uncertainty in data is obtained by injecting the noise from shifted
triangle kernels in the tangle dataset. Five noise samples are gener-
ated per kernel from 10 shifted triangle kernels and are injected into
the dataset to create an ensemble of 50 realizations. Eight kernels are
placed closer to the underlying value, whereas two kernels are placed
far away.

Fig. 7 visualizes the tangle function for nonparametric noise model.
At each grid vertex, nonparametric density is estimated with the tri-
angle function as base kernel and plugin rule for bandwidth estima-
tion, as explained in the Appendix. Fig. 7a visualizes the result of
linear interpolation in the sample data, which we consider to be the
ground truth. Fig. 7b shows the expected isosurface extracted from
the mean of noisy data. Fig. 7c and Fig. 7d visualize the expected
surface extracted for the same noisy data when isosurface topology
corresponds to vertex-based classification and edge-based classifica-
tion techniques, respectively. Fig. 7e visualizes the color mapped ratio
distribution variance for the isosurface with edge-based classification.

The difference for various vertex-classification techniques is visu-
ally noticeable, particularly in the areas where blobs of the isosurface
connect each other. For statistical mean technique, the noise samples
far away from the underlying value considerably shift the mean of the
data from the underlying value. This causes isosurface to break. How-
ever, the probabilistic techniques for vertex classification take into ac-
count noise distribution and preserve the connection.

We support our visual evidence by performing quantitative analy-
sis. The Metro program [6] provides a functionality to compute the
geometric difference between two meshes, and the program has been
integrated into Meshlab software in the Hausdorff distance sampling
filter. Isosurface for each vertex-classification technique is sampled at
the mesh vertices using Metro program. The samples with low, mod-
erate, and high error with respect to the groundtruth are mapped to
green, blue, and red, respectively. We also compute the root mean
squared error (RMS) for each of the vertex-classification techniques.
The RMS for statistical mean, vertex-based classification, and edge-
based classification results are 0.342, 0.111, and 0.110, respectively.
RMS and error visualization clearly indicate the advantage of the latter
two techniques over the former one.

Ratio distribution variance visualization can be useful, especially in
real dataset visualization, in identifying parts of the isosurface that are
very sensitive to noise, and are therefore, likely to have expectation
relatively far away from the groundtruth. High ratio variance implies
high sensitivity of isosurface to noise and vice versa. In Fig. 7(d) and
Fig. 7(e), it can be observed that the areas of low sensitivity to noise
(green) have low error relative to the groundtruth; however, the areas
of high sensitivity to noise (red/blue) can have high or low error rela-
tive to the groundtruth. From similar patterns in subfigures Fig. 7(d)
and Fig. 7(e) indicated in the boxes, it can be observed that regions of
relatively high ratio variance are likely to have relatively high error in
expected isosurface computation relative to the groundtruth.

Our second experiment on a synthetic dataset consists of visual-
ization of the spatial uncertainty in the level-set extracted from the
teardrop function [15] for the isovalue of c = −0.002. In this experi-
ment, we show the advantage of nonparametric models over paramet-
ric models for characterizing error densities. The ensemble represent-
ing uncertain data is obtained by a same procedure as for the tangle
dataset.

Fig. 8(a) visualizes the groundtruth. Fig. 8(b) and Fig. 8(c) visualize
expected isosurface in the noisy dataset assuming parametric and non-
parametric densities, respectively. Parametric noise model assumes
uniform error density. The mean and width of the uniform density at
each grid location is estimated from the ensemble members. In non-
parametric density estimation, uniform kernel is associated with each
noise sample, and the plugin rule is used for bandwidth estimation.
Fig. 8(d) visualizes color mapped ratio density variance for the result
corresponding to nonparametric models. Topology for the results in
the noisy dataset is decided with edge-based classification technique.

Visually, the isosurface in nonparametric statistics looks closer to
the groundtruth than the one in parametric statistics. In the case of
uniform parametric noise model, outlier samples at each grid location
result in poor estimation of the parameters of uniform density, i.e., the
mean and the width. This leads to more geometry in the extracted
isosurface. In the case of nonparametric density estimation, outliers
do not significantly affect the shape of the estimated density.

We, again, support our observation by performing a quantitative
analysis similar to the experiment for the tangle dataset. The RMS
for parametric and nonparametric density models are 0.626 and 0.096,
respectively. RMS and color mapped error relative to the groundtruth
clearly show the advantage of nonparametric models over parametric
models for characterizing the underlying densities. Ratio distribution
variance visualization in Fig. 8d, as in the case of tangle function, can
be useful in identifying parts of the isosurface that are very sensitive
to noise, and therefore, likely to have expectation relatively far away
from the groundtruth.

Fig. 9 visualizes isocontour (c = 0.008) extracted from a mixture
of 2-d Gaussian probability density functions. The density function
is sampled on a high resolution (600× 600) grid. The hixel data [41]

(a) (b) (c) (d)

Fig. 8: Parametric versus nonparametric noise density models for the
isosurface visualization (c = −0.002) of teardrop function. (a) The
groundtruth visualization. Color mapped error visualization relative to
the groundtruth (map shown by error colorbar) for the isosurface ex-
tracted in noisy data assuming (b) a parametric statistical framework,
(c) a nonparametric statistical framework. (d) Color mapped spatial
uncertainties (map shown by ratio variance colorbar) in the isosurface
for a nonparametric framework. Color mapped errors relative to the
groundtruth clearly show the advantage of nonparametric models over
parametric models for characterizing the error densities. From similar
patterns in subfigures (c) and (d) indicated by boxes, it can be ob-
served that regions of relatively high ratio variance are likely to have
relatively high error in the isosurface with respect to the groundtruth.

Fig. 9: Vertex-based classification versus edge-based classification.
Image shows the result of isocontour extraction (c = 0.008) from a
mixture of 2 Gaussian density functions. Isocontour in a high reso-
lution data is shown in green. Isocontours corresponding to vertex-
based classification and edge-based classification are extracted from
the hixel dataset [41] corresponding to high resolution data. While
the former is shown in red, the latter is shown in yellow. Stars cor-
respond to vertex-based classification, whereas circles correspond to
edge-based classification. White represents positive vertices (+1),
whereas magenta represents negative vertices (−1) for both vertex-
classification techniques. Places where colors of stars and circles do
not match (indicated in large circles) represent grid locations where
vertex-based classification and edge-based classification do not agree.

is generated from a high resolution grid with block size of 100× 100
and histogram bin count of 10. Histogram derived at each location
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Fig. 7: A comparison of vertex-classification techniques for the isosurface visualization (c = −0.59) of tangle function. (a) The groundtruth
visualization. Color mapped error visualization relative to the groundtruth (map shown by error colorbar) for the isosurface in noisy data
corresponding to (b) statistical mean, (c) vertex-based classification, (d) edge-based classification. (e) Color mapped spatial uncertainties in
the isosurface (map shown by ratio variance colorbar) for the result with edge-based classification. The advantage of the probabilistic vertex
classification techniques over statistical mean technique is clearly evident from the color mapped error visualization. From the similar patterns
in subfigures (d) and (e) indicated by the boxes, it can be observed that the regions of relatively high ratio variance are likely to have relatively
high error in the expected isosurface computation relative to the groundtruth.

that data point. Moreover, in probabilistic marching cubes [32, 35] the
uncertainty is modeled as a Gaussian distribution whose covariance is
estimated from a local neighborhood (via PCA).

Non-local filtering methods have been proven to be superior to local
methods for denoising applications [36, 2]. For instance, the non-local
means (NLM) method [5] identifies a non-local neighborhood for each
data point based on the similarity of patches around the data point
and the members of the non-local neighborhood. The denoising is
then usually carried out by averaging the data point with its non-local
neighborhood. Since our framework allows the marching cubes algo-
rithm for propagation of uncertainty through the isosurface extraction,
we leverage the non-local neighborhood for estimating the distribution
at each data point. The non-local density estimation approach for iso-
surface visualization shows subtle reconstruction improvements over
the NLM technique, as shown in Section 5 (e.g., Fig. 11). The dis-
tance between two vertices vi and v j is defined based on the similarity
between the patches around them:

dist(vi,v j) = �Nk(vi)−Nk(v j)�. (6)

Here the notion of distance between the neighborhoods, �Nk(vi)−
Nk(v j)�, is a (weighted) sum of square differences between the cor-
responding patches, of size k, centered on vi and v j respectively.

We leverage the non-local matching idea, that is now widely used
in denoising algorithms, for kernel density estimation. The density
estimation for random variable Xi modeling uncertainty in voxel vi is
obtained by:

pdfXi
=

1

τ

N

∑
j=1

f (v j)K
(

dist(vi,v j)
)

, (7)

where τ is a normalizing constant. When K is the uniform kernel this
provides a non-local generalization of the histograming approach that
forms a distribution from the values of all voxels in the data whose
surrounding patch is similar to that of the voxel vi. To avoid searching
the entire dataset for finding non-local neighbors, often NLM imple-
mentations restrict the search to a window around each voxel for this
neighborhood analysis [5]. More smooth density estimation can be ob-
tained by choosing K from smooth kernels such as the triangle, Parzen,
or Epanechnikov. Moreover, based on the non-local neighbors and the
choice of kernel, we can perform bandwidth estimation as discussed
in the Appendix.

5 Experiments

We first provide a brief overview of the experiment setup. In our first
set of experiments, we use ensemble datasets for isosurface visual-
ization, whereas our second set of experiments consists of visualizing

spatial uncertainties in the isosurface extracted from a single uncertain
scalar field. In ensemble datasets, error samples are acquired through
multiple simulations or by injecting the noise in the dataset for testing
the performance of different techniques. For a single uncertain scalar
field, samples within the user specified window size are considered as
the error samples at each grid point.

The underlying error densities at each grid point are estimated from
the error samples using parametric or nonparametric models. For a lo-
cal statistics, each base kernel associated with error sample is assigned
equal weight. For non-local statistics, each base kernel associated with
error sample is assigned a weight based on neighborhood similarity as
explained in Section 4.

We quantify and visualize uncertainty in isosurfaces using nonpara-
metric density estimates at grid vertices. Isosurface topology is de-
termined using techniques described in Subsection 3.1 and Subsec-
tion 3.3. The geometric uncertainty is then characterized in closed
form by computing ratio distribution on each grid edge using the tech-
niques described in Subsection 3.2 and Section 4. Analytic charac-
terization of the ratio distribution can be used for closed-form com-
putation of the expected value and variance on each grid edge. While
former quantity can be used to reconstruct a stable isosurface, the latter
can be used to visualize spatial uncertainty in an expected isosurface
on the grid edges.

Our first experiment on a synthetic dataset consists of visualizing
the spatial uncertainty in the level-set extracted from the tangle func-
tion [15] for the isovalue of c = −0.59. In this experiment, we show
the advantage of vertex-based classification and edge-based classifica-
tion techniques for determining isosurface topology over vertex classi-
fication based on the statistical mean of data. The ensemble represent-
ing uncertainty in data is obtained by injecting the noise from shifted
triangle kernels in the tangle dataset. Five noise samples are gener-
ated per kernel from 10 shifted triangle kernels and are injected into
the dataset to create an ensemble of 50 realizations. Eight kernels are
placed closer to the underlying value, whereas two kernels are placed
far away.

Fig. 7 visualizes the tangle function for nonparametric noise model.
At each grid vertex, nonparametric density is estimated with the tri-
angle function as base kernel and plugin rule for bandwidth estima-
tion, as explained in the Appendix. Fig. 7a visualizes the result of
linear interpolation in the sample data, which we consider to be the
ground truth. Fig. 7b shows the expected isosurface extracted from
the mean of noisy data. Fig. 7c and Fig. 7d visualize the expected
surface extracted for the same noisy data when isosurface topology
corresponds to vertex-based classification and edge-based classifica-
tion techniques, respectively. Fig. 7e visualizes the color mapped ratio
distribution variance for the isosurface with edge-based classification.

The difference for various vertex-classification techniques is visu-
ally noticeable, particularly in the areas where blobs of the isosurface
connect each other. For statistical mean technique, the noise samples
far away from the underlying value considerably shift the mean of the
data from the underlying value. This causes isosurface to break. How-
ever, the probabilistic techniques for vertex classification take into ac-
count noise distribution and preserve the connection.

We support our visual evidence by performing quantitative analy-
sis. The Metro program [6] provides a functionality to compute the
geometric difference between two meshes, and the program has been
integrated into Meshlab software in the Hausdorff distance sampling
filter. Isosurface for each vertex-classification technique is sampled at
the mesh vertices using Metro program. The samples with low, mod-
erate, and high error with respect to the groundtruth are mapped to
green, blue, and red, respectively. We also compute the root mean
squared error (RMS) for each of the vertex-classification techniques.
The RMS for statistical mean, vertex-based classification, and edge-
based classification results are 0.342, 0.111, and 0.110, respectively.
RMS and error visualization clearly indicate the advantage of the latter
two techniques over the former one.

Ratio distribution variance visualization can be useful, especially in
real dataset visualization, in identifying parts of the isosurface that are
very sensitive to noise, and are therefore, likely to have expectation
relatively far away from the groundtruth. High ratio variance implies
high sensitivity of isosurface to noise and vice versa. In Fig. 7(d) and
Fig. 7(e), it can be observed that the areas of low sensitivity to noise
(green) have low error relative to the groundtruth; however, the areas
of high sensitivity to noise (red/blue) can have high or low error rela-
tive to the groundtruth. From similar patterns in subfigures Fig. 7(d)
and Fig. 7(e) indicated in the boxes, it can be observed that regions of
relatively high ratio variance are likely to have relatively high error in
expected isosurface computation relative to the groundtruth.

Our second experiment on a synthetic dataset consists of visual-
ization of the spatial uncertainty in the level-set extracted from the
teardrop function [15] for the isovalue of c = −0.002. In this experi-
ment, we show the advantage of nonparametric models over paramet-
ric models for characterizing error densities. The ensemble represent-
ing uncertain data is obtained by a same procedure as for the tangle
dataset.

Fig. 8(a) visualizes the groundtruth. Fig. 8(b) and Fig. 8(c) visualize
expected isosurface in the noisy dataset assuming parametric and non-
parametric densities, respectively. Parametric noise model assumes
uniform error density. The mean and width of the uniform density at
each grid location is estimated from the ensemble members. In non-
parametric density estimation, uniform kernel is associated with each
noise sample, and the plugin rule is used for bandwidth estimation.
Fig. 8(d) visualizes color mapped ratio density variance for the result
corresponding to nonparametric models. Topology for the results in
the noisy dataset is decided with edge-based classification technique.

Visually, the isosurface in nonparametric statistics looks closer to
the groundtruth than the one in parametric statistics. In the case of
uniform parametric noise model, outlier samples at each grid location
result in poor estimation of the parameters of uniform density, i.e., the
mean and the width. This leads to more geometry in the extracted
isosurface. In the case of nonparametric density estimation, outliers
do not significantly affect the shape of the estimated density.

We, again, support our observation by performing a quantitative
analysis similar to the experiment for the tangle dataset. The RMS
for parametric and nonparametric density models are 0.626 and 0.096,
respectively. RMS and color mapped error relative to the groundtruth
clearly show the advantage of nonparametric models over parametric
models for characterizing the underlying densities. Ratio distribution
variance visualization in Fig. 8d, as in the case of tangle function, can
be useful in identifying parts of the isosurface that are very sensitive
to noise, and therefore, likely to have expectation relatively far away
from the groundtruth.

Fig. 9 visualizes isocontour (c = 0.008) extracted from a mixture
of 2-d Gaussian probability density functions. The density function
is sampled on a high resolution (600× 600) grid. The hixel data [41]

(a) (b) (c) (d)

Fig. 8: Parametric versus nonparametric noise density models for the
isosurface visualization (c = −0.002) of teardrop function. (a) The
groundtruth visualization. Color mapped error visualization relative to
the groundtruth (map shown by error colorbar) for the isosurface ex-
tracted in noisy data assuming (b) a parametric statistical framework,
(c) a nonparametric statistical framework. (d) Color mapped spatial
uncertainties (map shown by ratio variance colorbar) in the isosurface
for a nonparametric framework. Color mapped errors relative to the
groundtruth clearly show the advantage of nonparametric models over
parametric models for characterizing the error densities. From similar
patterns in subfigures (c) and (d) indicated by boxes, it can be ob-
served that regions of relatively high ratio variance are likely to have
relatively high error in the isosurface with respect to the groundtruth.

Fig. 9: Vertex-based classification versus edge-based classification.
Image shows the result of isocontour extraction (c = 0.008) from a
mixture of 2 Gaussian density functions. Isocontour in a high reso-
lution data is shown in green. Isocontours corresponding to vertex-
based classification and edge-based classification are extracted from
the hixel dataset [41] corresponding to high resolution data. While
the former is shown in red, the latter is shown in yellow. Stars cor-
respond to vertex-based classification, whereas circles correspond to
edge-based classification. White represents positive vertices (+1),
whereas magenta represents negative vertices (−1) for both vertex-
classification techniques. Places where colors of stars and circles do
not match (indicated in large circles) represent grid locations where
vertex-based classification and edge-based classification do not agree.

is generated from a high resolution grid with block size of 100× 100
and histogram bin count of 10. Histogram derived at each location
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(a) Classification based on mean field

(b) Vertex-based classification method

(c) Edge-based classification method

(d) Mean (e) Vertex-based (f) Edge-based

Fig. 10: A Comparison of vertex-classification techniques for the
isosurface visualization (c = 24◦C) of an ensemble representing un-
certain temperature field [27]. Boxes mark differences in isosurface
topology. Subfigures (d), (e), and (f) provide zoomed-in views of the
regions enclosed by the orange boxes in subfigure (a), (b), and (c),
respectively. Edge-based classification in (f) extracts the isocontour
along a coastline of the Gulf of Mexico unlike the other vertex classi-
fication techniques. Positional uncertainties in expected isosurface are
color mapped (quantiles formed after histogram equalization).

in hixel data (6× 6) is used to characterize data uncertainty. Fig. 9
shows results for vertex-based classification and edge-based classifica-
tion. Classification for the two techniques disagree when isocontour in
a low resoultion grid is close to grid vertices, i.e., when classification
probabilities for vertices are close to 0.5 in the case of vertex-based
classification. Also, edge-based classification approach pulls isocon-
tour (yellow) closer to isocontour (green) in a high resolution dataset
when compared to isocontour (red) based on vertex-based classifica-
tion.

In an experiment on a real ensemble dataset, we quantify and vi-
sualize spatial uncertainty in an expected isosurface extracted from
uncertain temperature field for the isovalue of c = 24◦C, as shown in
Fig. 10. We analyse the impact of various vertex classification methods
on isosurface topology. The climate simulations representing uncer-
tainty in 2-meter termperature field are obtained from the DEMETER
project [27]. The ensemble of simulations consists of 63 realizations
acquired through 7 different models for day 90 of the 2000−02 hind-
cast. The data is provided on a regular grid of size 144× 72 pixels
with 2.5 degrees resolution along the longitude and latitude. This ex-
periment setting is similar to the one in section 7 of [33].

Fig. 10a, Fig. 10b, and Fig. 10c show the effect of vertex-
classification techniques on isosurface topology. Nonparametric den-
sity estimation for mentioned subfigures is performed with Epanech-
nikov base kernel and plugin rule for bandwidth estimation. The
vertex-based classification method in Fig. 10b shows significant dif-
ferences in topology when compared to vertex classification based on
statistical mean in Fig. 10a. Gray boxes mark places where isosurface
topology is affected, e.g., merged rings of isosurfaces in Fig. 10b that
are separate in Fig. 10a, and newly formed isosurface rings in Fig. 10b

that are absent in Fig. 10a. Isosurface topology in Fig. 10b is different
from Fig. 10a mainly in the areas of relatively high spatial uncertainty
(red colored regions) in Fig. 10a. We have already shown the advan-
tage of vertex-based classification method over a classification based
on statistical mean of data for tangle function. Edge-based classifi-
cation in Fig. 10c also captures topological changes comparable to
vertex-based classification in Fig. 10b, e.g., merged and newly formed
isosurfaces.

The dotted and the orange boxes indicate places where edge-based
classification shows topological differences for corresponding vertex-
based classification. As we can observe from the zoomed-in views
of the regions marked by the orange boxes in Fig. 10, the edge-based
classification extracts the isocontour along a coastline of the Gulf of
Mexico unlike the other classification methods. It can be observed that
the cell-crossing probabilities are relatively high along the mentioned
coastline region for the same dataset visualization in [33]. We also
observe that the isothermal region follows the coastline at many places
in Fig. 10 e.g., the coastline of the Gulf of California.

A large number of cells in the area of the dotted box in Fig. 10a
have very low cell-crossing probabilities for nonparametric models, as
visualized in [33]. The red color of isosurface enclosed by the dotted
box in Fig. 10a indicates high spatial uncertainty of isosurface. Vertex-
based classification method in Fig. 10b classifies all vertices with same
sign, thus, eliminating the entire ring of isosurface present in Fig. 10a.
However, the edge-based classification method in Fig. 10c takes into
account relative edge crossing probabilities and therefore classifies
vertices for edges with relatively high edge-crossing probabilities with
opposite signs. Thus, the edge-based classification method avoids
complete elimination of isosurfaces with high spatial uncertainty from
visualization.

Now, we perform the uncertainty analysis on isosurface extracted
from a single uncertain scalar field. We compare non-local statis-
tics with local statistics for isosurface visualization of the bonsai tree
dataset (c = 84). Fig. 11a visualizes the result of the linear interpo-
lation in the locally computed mean field. All the bonsai tree results
corresponding to probabilistic techniques visualize expected isosur-
face with topology corresponding to the vertex-based classification
method. Fig. 11b visualizes an isosurface assuming the underlying
noise model to be a parametric uniform density [1]. The mean and the
width of the uniform density at each grid point is estimated from the
local neighbors. The isosurface visualization for Fig. 11c is obtained
by performing nonparametric density estimation on local neighbors at
each grid location. The nonparametric density estimation is performed
with the uniform base kernel and a plugin rule for bandwidth estima-
tion. Each base kernel for density estimation on local neighbors is
equally weighed.

For the experiments with non-local statistics, the voxels in the win-
dow of size 5× 5× 5 around each voxel are considered as error sam-
ples, and the neighborhood similarity window size is set to 3×3×3.
Fig. 11d shows the result of linear interpolation in data denoised using
non-local means (NLM) algorithm [5]. Fig. 11e visualizes the ex-
pected isosurface by performing nonparametric density estimation on
non-local neighbors, as explained in Section 4. The weights for uni-
form base kernel associated with each of the error samples are derived
using NLM algorithm [5]. The bandwidth estimation is performed us-
ing rule of thumb approach with normal density as a reference. We
justify using the rule of thumb approach for weighted kernel density
estimation in Appendix. Fig. 11f visualizes the relative spatial uncer-
tainties for the isosurface in Fig. 11e by colormapping the variance
of ratio density function after histogram equalization. In parts of the
isosurface with relatively high ratio density variance, it is very likely
that error in expected computation is relatively high with respect to the
groundtruth.

The isosurface reconstruction in non-local statistics recovers most
of the bonsai tree branches without much loss of detail. However, iso-
surface visualization in local statistics results in a significant loss of
detail. Advantage of non-local techniques over local techniques for
level-set extraction is evident in the areas marked by the black boxes.
Among the probabilistic techniques for the isosurface extraction, non-

(a) (b) (c)

(d) (e) (f)

Fig. 11: Non-local techniques (the bottom row) versus local techniques (the top row) for the isosurface visualization (c = 84) of the bonsai tree
dataset. Isosurface visualization corresponding to (a) locally computed mean of data, (b) locally estimated uniform density, (c) locally estimated
nonparametric density, (d) data denoised using a non-local means (NLM) technique [5], (e) nonparametric density estimation on non-local
neighbors. (f) Color mapped spatial uncertainties in the isosurface in subfigure (e) (quantiles after histogram equalization). Boxes with the same
color indicate the reconstruction performance for each of the techniques. Black boxes mark a few areas where local techniques break the bonsai
tree branches, whereas the branches are recovered in non-local techniques. Similarly, the nonparametric models recover more branches than the
parametric models as shown by regions marked by yellow boxes. Moreover, the orange boxes indicate the places where nonparametric density
estimation on non-local neighbors shows subtle reconstruction improvements over the NLM technique.

parametric statistics recovers few branches that are broken in para-
metric statistics, as indicated in yellow boxes. The isosurface corre-
sponding to nonparametric density estimation on non-local neighbors
recovers branches at a few places where they are not recovered for
the NLM denoised dataset. Few such regions are enclosed in orange
boxes.

Fig. 12 visualizes results similar to the bonsai tree experiment. The
fuel dataset is visualized for the isovalue of c = 97.74, assuming data
to be uncertain. Nonparamatric density in local and non-local tech-
niques is estimated with an Epanechnikov base kernal. While the for-
mer uses the plugin rule, the latter uses the rule of thumb for band-
width estimation. For non-local techniques, search window size and
neighborhood similarity window size are set to 5×5×5 and 3×3×3,
respectively. The non-local techniques recover more data features than
the local techniques, especially in the top portion of the fuel dataset.
Among the probabilistic techniques for recovering isosurface, the non-
local techniques provide smoother reconstruction when compared to
the local techniques.

6 Conclusion & Future Work

We study the problem of isosurface extraction in an uncertain scalar
field when the data uncertainty is characterized in the general frame-
work of nonparametric statistics.

We devise a probabilistic techniques for handling uncertainty in
cell configurations for isosurface topology determination. We propose
vertex-based classification and edge-based classification methods to
classify vertex signs. While the vertex-based classification approach
works independently on each grid vertex, the edge-based classification
approach works in collaborative fashion by taking into account spatial
neighbors. In the case of cell configuration corresponding to ambigu-
ous topology, we develop a probabilistic midpoint decider to resolve

the topological ambiguities. We derive, in closed form, probability
density at cell midpoint when data uncertainty is characterized with
parametric and nonparametric models.

In order to study geometric uncertainty in level-crossing locations
of an isosurface, we analyze interaction between linear interpolation
and data uncertainty characterized with parametric and nonparametric
densities. We also propose a scheme for accurately characterizing un-
derlying noise densities by leveraging non-local statistics. We show
the advantage of non-local statistics approach for characterizing data
uncertainty over locally estimated parametric and nonparametric den-
sities. We plan to analytically characterize the spatial uncertainties in
the isosurfaces by taking into account correlations in the random field.
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(a) Classification based on mean field

(b) Vertex-based classification method

(c) Edge-based classification method

(d) Mean (e) Vertex-based (f) Edge-based

Fig. 10: A Comparison of vertex-classification techniques for the
isosurface visualization (c = 24◦C) of an ensemble representing un-
certain temperature field [27]. Boxes mark differences in isosurface
topology. Subfigures (d), (e), and (f) provide zoomed-in views of the
regions enclosed by the orange boxes in subfigure (a), (b), and (c),
respectively. Edge-based classification in (f) extracts the isocontour
along a coastline of the Gulf of Mexico unlike the other vertex classi-
fication techniques. Positional uncertainties in expected isosurface are
color mapped (quantiles formed after histogram equalization).

in hixel data (6× 6) is used to characterize data uncertainty. Fig. 9
shows results for vertex-based classification and edge-based classifica-
tion. Classification for the two techniques disagree when isocontour in
a low resoultion grid is close to grid vertices, i.e., when classification
probabilities for vertices are close to 0.5 in the case of vertex-based
classification. Also, edge-based classification approach pulls isocon-
tour (yellow) closer to isocontour (green) in a high resolution dataset
when compared to isocontour (red) based on vertex-based classifica-
tion.

In an experiment on a real ensemble dataset, we quantify and vi-
sualize spatial uncertainty in an expected isosurface extracted from
uncertain temperature field for the isovalue of c = 24◦C, as shown in
Fig. 10. We analyse the impact of various vertex classification methods
on isosurface topology. The climate simulations representing uncer-
tainty in 2-meter termperature field are obtained from the DEMETER
project [27]. The ensemble of simulations consists of 63 realizations
acquired through 7 different models for day 90 of the 2000−02 hind-
cast. The data is provided on a regular grid of size 144× 72 pixels
with 2.5 degrees resolution along the longitude and latitude. This ex-
periment setting is similar to the one in section 7 of [33].

Fig. 10a, Fig. 10b, and Fig. 10c show the effect of vertex-
classification techniques on isosurface topology. Nonparametric den-
sity estimation for mentioned subfigures is performed with Epanech-
nikov base kernel and plugin rule for bandwidth estimation. The
vertex-based classification method in Fig. 10b shows significant dif-
ferences in topology when compared to vertex classification based on
statistical mean in Fig. 10a. Gray boxes mark places where isosurface
topology is affected, e.g., merged rings of isosurfaces in Fig. 10b that
are separate in Fig. 10a, and newly formed isosurface rings in Fig. 10b

that are absent in Fig. 10a. Isosurface topology in Fig. 10b is different
from Fig. 10a mainly in the areas of relatively high spatial uncertainty
(red colored regions) in Fig. 10a. We have already shown the advan-
tage of vertex-based classification method over a classification based
on statistical mean of data for tangle function. Edge-based classifi-
cation in Fig. 10c also captures topological changes comparable to
vertex-based classification in Fig. 10b, e.g., merged and newly formed
isosurfaces.

The dotted and the orange boxes indicate places where edge-based
classification shows topological differences for corresponding vertex-
based classification. As we can observe from the zoomed-in views
of the regions marked by the orange boxes in Fig. 10, the edge-based
classification extracts the isocontour along a coastline of the Gulf of
Mexico unlike the other classification methods. It can be observed that
the cell-crossing probabilities are relatively high along the mentioned
coastline region for the same dataset visualization in [33]. We also
observe that the isothermal region follows the coastline at many places
in Fig. 10 e.g., the coastline of the Gulf of California.

A large number of cells in the area of the dotted box in Fig. 10a
have very low cell-crossing probabilities for nonparametric models, as
visualized in [33]. The red color of isosurface enclosed by the dotted
box in Fig. 10a indicates high spatial uncertainty of isosurface. Vertex-
based classification method in Fig. 10b classifies all vertices with same
sign, thus, eliminating the entire ring of isosurface present in Fig. 10a.
However, the edge-based classification method in Fig. 10c takes into
account relative edge crossing probabilities and therefore classifies
vertices for edges with relatively high edge-crossing probabilities with
opposite signs. Thus, the edge-based classification method avoids
complete elimination of isosurfaces with high spatial uncertainty from
visualization.

Now, we perform the uncertainty analysis on isosurface extracted
from a single uncertain scalar field. We compare non-local statis-
tics with local statistics for isosurface visualization of the bonsai tree
dataset (c = 84). Fig. 11a visualizes the result of the linear interpo-
lation in the locally computed mean field. All the bonsai tree results
corresponding to probabilistic techniques visualize expected isosur-
face with topology corresponding to the vertex-based classification
method. Fig. 11b visualizes an isosurface assuming the underlying
noise model to be a parametric uniform density [1]. The mean and the
width of the uniform density at each grid point is estimated from the
local neighbors. The isosurface visualization for Fig. 11c is obtained
by performing nonparametric density estimation on local neighbors at
each grid location. The nonparametric density estimation is performed
with the uniform base kernel and a plugin rule for bandwidth estima-
tion. Each base kernel for density estimation on local neighbors is
equally weighed.

For the experiments with non-local statistics, the voxels in the win-
dow of size 5× 5× 5 around each voxel are considered as error sam-
ples, and the neighborhood similarity window size is set to 3×3×3.
Fig. 11d shows the result of linear interpolation in data denoised using
non-local means (NLM) algorithm [5]. Fig. 11e visualizes the ex-
pected isosurface by performing nonparametric density estimation on
non-local neighbors, as explained in Section 4. The weights for uni-
form base kernel associated with each of the error samples are derived
using NLM algorithm [5]. The bandwidth estimation is performed us-
ing rule of thumb approach with normal density as a reference. We
justify using the rule of thumb approach for weighted kernel density
estimation in Appendix. Fig. 11f visualizes the relative spatial uncer-
tainties for the isosurface in Fig. 11e by colormapping the variance
of ratio density function after histogram equalization. In parts of the
isosurface with relatively high ratio density variance, it is very likely
that error in expected computation is relatively high with respect to the
groundtruth.

The isosurface reconstruction in non-local statistics recovers most
of the bonsai tree branches without much loss of detail. However, iso-
surface visualization in local statistics results in a significant loss of
detail. Advantage of non-local techniques over local techniques for
level-set extraction is evident in the areas marked by the black boxes.
Among the probabilistic techniques for the isosurface extraction, non-
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(d) (e) (f)

Fig. 11: Non-local techniques (the bottom row) versus local techniques (the top row) for the isosurface visualization (c = 84) of the bonsai tree
dataset. Isosurface visualization corresponding to (a) locally computed mean of data, (b) locally estimated uniform density, (c) locally estimated
nonparametric density, (d) data denoised using a non-local means (NLM) technique [5], (e) nonparametric density estimation on non-local
neighbors. (f) Color mapped spatial uncertainties in the isosurface in subfigure (e) (quantiles after histogram equalization). Boxes with the same
color indicate the reconstruction performance for each of the techniques. Black boxes mark a few areas where local techniques break the bonsai
tree branches, whereas the branches are recovered in non-local techniques. Similarly, the nonparametric models recover more branches than the
parametric models as shown by regions marked by yellow boxes. Moreover, the orange boxes indicate the places where nonparametric density
estimation on non-local neighbors shows subtle reconstruction improvements over the NLM technique.

parametric statistics recovers few branches that are broken in para-
metric statistics, as indicated in yellow boxes. The isosurface corre-
sponding to nonparametric density estimation on non-local neighbors
recovers branches at a few places where they are not recovered for
the NLM denoised dataset. Few such regions are enclosed in orange
boxes.

Fig. 12 visualizes results similar to the bonsai tree experiment. The
fuel dataset is visualized for the isovalue of c = 97.74, assuming data
to be uncertain. Nonparamatric density in local and non-local tech-
niques is estimated with an Epanechnikov base kernal. While the for-
mer uses the plugin rule, the latter uses the rule of thumb for band-
width estimation. For non-local techniques, search window size and
neighborhood similarity window size are set to 5×5×5 and 3×3×3,
respectively. The non-local techniques recover more data features than
the local techniques, especially in the top portion of the fuel dataset.
Among the probabilistic techniques for recovering isosurface, the non-
local techniques provide smoother reconstruction when compared to
the local techniques.

6 Conclusion & Future Work

We study the problem of isosurface extraction in an uncertain scalar
field when the data uncertainty is characterized in the general frame-
work of nonparametric statistics.

We devise a probabilistic techniques for handling uncertainty in
cell configurations for isosurface topology determination. We propose
vertex-based classification and edge-based classification methods to
classify vertex signs. While the vertex-based classification approach
works independently on each grid vertex, the edge-based classification
approach works in collaborative fashion by taking into account spatial
neighbors. In the case of cell configuration corresponding to ambigu-
ous topology, we develop a probabilistic midpoint decider to resolve

the topological ambiguities. We derive, in closed form, probability
density at cell midpoint when data uncertainty is characterized with
parametric and nonparametric models.

In order to study geometric uncertainty in level-crossing locations
of an isosurface, we analyze interaction between linear interpolation
and data uncertainty characterized with parametric and nonparametric
densities. We also propose a scheme for accurately characterizing un-
derlying noise densities by leveraging non-local statistics. We show
the advantage of non-local statistics approach for characterizing data
uncertainty over locally estimated parametric and nonparametric den-
sities. We plan to analytically characterize the spatial uncertainties in
the isosurfaces by taking into account correlations in the random field.
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[7] C. De Boor, K. Höllig, and S. D. Riemenschneider. Box Splines, vol-

ume 98 of Applied Mathematical Sciences. Springer-Verlag, 1993.

[8] A. Entezari, M. Nilchian, and M. Unser. A box spline calculus for the

discretization of computed tomography reconstruction problems. Med.

Img., IEEE Trans. on, 31(8):1532–1541, 2012.

[9] C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spectral grouping using

the nystrom method. Pattern Analysis and Machine Intelligence, IEEE

Trans. on, 26(2):214–225, 2004.

[10] G. Grigoryan and P. Rheingans. Probabilistic surfaces: Point based prim-

itives to show surface uncertainty. In IEEE Vis., 2002. (VIS 2002)., pages

147–153, 2002.

[11] G. Grigoryan and P. Rheingans. Point-based probabilistic surfaces to

show surface uncertainty. Vis. and Comp. Graphics, IEEE Trans. on,

10(5):564–573, 2004.

[12] C. Johnson. Top scientific visualization research problems. Comp.

Graphics and Applications, IEEE, 24(4):13–17, July-Aug. 2004.

[13] C. Johnson and A. Sanderson. A next step: Visualizing errors and uncer-

tainty. Comp. Graphics and App., IEEE, 23(5):6–10, Sept.-Oct. 2003.

[14] M. C. Jones, J. S. Marron, and S. J. Sheather. A brief survey of bandwidth

selection for density estimation. Journal of the American Statistical As-

sociation, 91:401–407, 1996.

[15] A. Knoll, Y. Hijazi, A. Kensler, M. Schott, C. Hansen, and H. Hagen. Fast

ray tracing of arbitrary implicit surfaces with interval and affine arith-

metic. In Comp. Graphics Forum, volume 28, pages 26–40, 2009.

[16] T. Y. Lee and H. W. Shen. Efficient local statistical analysis via integral

histograms with discrete wavelet transform. IEEE Trans. on Vis. and

Comp. Graphics, 19(12):2693–2702, Dec. 2013.

[17] A. Lopes and K. Brodlie. Interactive approaches to contouring and iso-

surfacing for geovisualization. Exploring Geovisualization, 2005.

[18] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d

surface construction algorithm. 1987.

[19] A. L. Love, A. Pang, and D. L. Kao. Visualizing spatial multivalue data.

IEEE Comp. Graphics and Applications, 25(3):69–79, 2005.

[20] C. Lundstrom, P. Ljung, A. Persson, and A. Ynnerman. Uncertainty visu-

alization in medical volume rendering using probabilistic animation. Vis.

and Comp. Graphics, IEEE Trans. on, 13(6):1648–1655, 2007.

[21] A. Luo, D. Kao, and A. Pang. Visualizing spatial distribution data sets.

Proc. Symp. Data Visualization 2003 (VISSYM 03), pages 29–38, 2003.

[22] R. McGill, J. W. Tukey, and W. A. Larsen. Variations of box plots. The

American Statistician, 32(1):12–16, February 1978.

[23] T. Munzner, C. Johnson, R. Moorhead, H. Pfister, P. Rheingans, and T. S.

Yoo. NIH-NSF visualization research challenges report summary. Comp.

Graphics and Applications, IEEE, 26(2):20–24, 2006.

[24] R. A. Osorio and K. Brodlie. Contouring with uncertainty. Theory and

Practice of Comp. Graphics 2008., pages 59–66, 2008.

[25] M. Otto, T. Germer, H. C. Hege, and H. Theisel. Uncertain 2d vector field

topology. In Comp. Graph. Forum, volume 29, pages 347–356, 2010.

[26] M. Otto, T. Germer, and H. Theisel. Uncertain topology of 3d vector

fields. In IEEE Pacific Vis. Symp. (PacificVis), pages 67–74, 2011.

[27] T. Palmer, A. Alessandri, U. Andersen, P. Cantelaube, M. Davey,
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