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Abstract
Simulations and measurements often result in scalar fields with uncertainty due to errors or output sensitivity estimates. Meth-
ods for analyzing topological features of such fields usually are not capable of handling all aspects of the data. They either
are not deterministic due to using Monte Carlo approaches, approximate the data with confidence intervals, or miss out on
incorporating important properties, such as correlation. In this paper, we focus on the analysis of critical points of Gaussian-
distributed scalar fields. We introduce methods to deterministically extract critical points, approximate their probability with
high precision, and even capture relations between them resulting in an abstract graph representation. Unlike many other
methods, we incorporate all information contained in the data including global correlation. Our work therefore is a first step
towards a reliable and complete description of topological features of Gaussian-distributed scalar fields.

1 Introduction

Critical points are important features of scalar fields. They build
the foundation for topological analysis of isocontours as they rep-
resent events of structural change of level sets with varying iso-
value. Because scalar fields often originate from measurements and
simulations, uncertainty in the data is the rule rather than the ex-
ception. One common source of uncertain scalar fields are ensem-
ble simulations. By applying small perturbations to the input pa-
rameters, indicators for output reliability can be derived. To then
model these errors into the data, several approaches such as de-
riving further indicators [PGA13], approximating the value distri-
butions [PH13] [PKXJ12], or directly operating on the finite set
of ensemble members [LPK05] exist. A widely used representa-
tion for uncertainty is Gaussian distributions as they require only a
mean and variance at every point of the domain and provide good
approximation in error modelling. For Gaussian-distributed scalar
fields, the usual topological definitions are not applicable directly.
Even critical points – the basis of topological analysis – become
fuzzy. Most methods are only capable of approximating indicators
for critical points or miss out on using all important properties of
the data. One property often not completely incorporated is local
and especially global correlation. By visualizing correlation using
clustering [PW12] and glyphs [PW13], Pfaffelmoser and Wester-
mann show that some important features can only be discovered
from correlation. Therefore it is advisable to handle this relation
between grid points as a major property of the data.

In this paper we provide a deterministic method for extracting
critical points that can appear in the realizations of a Gaussian-
distributed scalar field defined over a simplicial grid. For this, we

normalize the space of all possible realizations and investigate the
local neighborhoods of the domain points. This leads to the in-
troduction of singular patches as representations of critical points.
Singular patches enable us to not only extract probabilities of crit-
ical points with high precision, but also build an abstract represen-
tation as basis for identifying more complex topological features.

2 Related Work

Uncertainty in data is an important factor when it comes to draw-
ing conclusions and modeling abstractions. As it is a relevant topic
in scientific visualization [JS03] [Joh04], many publications deal
with extending visualizations and algorithms to handle uncertainty
or with developing new methods. Some overviews over existing vi-
sualizations using different techniques like texture, color-mapping,
animation, and additional geometry can be found in [PWL97]
[MRH∗05] [PRJ12] [BOL12] [GS06].

The topology of deterministic discrete fields allows for a more
abstract analysis and has been studied intensively. Especially for
topological features of scalar and vector fields many robust and effi-
cient methods have been developed and improved. Based on Morse
theory [Mor34], the Reeb graph [Ree46] is used in many applica-
tions to extract critical points, level sets, and their relations. Even
though there are several algorithms available that deal with fast and
stable computation of the Reeb graph [PSBM07] [ATC∗08] and the
contour tree [PCM02] [CSA03] [CLLR05] – the Reeb graph of a
scalar field over a simply-connected domain – none of them can be
applied directly in case of uncertain data.

The influence of uncertainty on level sets has been studied by
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Pöthkow and Hege [PH11] by introducing level probabilistic mea-
sures for crossing isovalues in cells. They use this to extract un-
certain isocontours [PWH11]. Pfaffelmoser et al. [PRW11] extend
the measures to also address correlation in the data. Uncertain con-
tour trees have been visualized by Kraus [Kra10] by combining two
trees representing the range of variation and therefore reducing the
data to confidence intervals. Wu and Zang [WZ13] visualize uncer-
tainty on three levels – data, contours, and topology – combining
contour trees of multiple but only a finite amount of realizations.

For uncertain vector fields, Otto et al. [OGHT10] redefine
streamline integration to extract the probabilistic topological skele-
ton. Their computation, however, is very expensive due to heavily
relying on sampling and does not incorporate correlation.

Since critical points play an important role in the overall topo-
logical structure, our focus lies on their identification, extraction,
and relation in uncertain scalar fields. Petz et al. [PPH12] extract
critical points in uncertain vector fields using local classification
based on a point’s neighborhood in the grid. They do this by lim-
iting the distribution to the local neighborhood for each point. By
only considering this marginal distribution, they may lose features
hidden in global correlation and are not able to capture structural
information between critical points.

In uncertain scalar fields, Günther et al. [GST14] identified
mandatory critical points – regions, in which critical points of a
specific type occur in all realizations. For saddle points, their algo-
rithm is very expensive and not applicable to large datasets. They
also do not incorporate correlation and limit uncertainty represen-
tation to a finite support of the density function – a confidence re-
gion for each point not dealing with the actual type of the distribu-
tion. Another approach is given by Mihai and Westermann [MW14]
propagating uncertainty from Gaussian distributions in the domain
to gradients and the Hessian matrices. This allows for extracting
regions containing potential critical points and filter them by con-
fidence. As they limit the distribution to the local neighborhood of
a point, only considering the marginal distribution, they lose global
correlation. Even though they can extract positional indicators, the
structure and relation between points is still unclear.

3 Background

As representations of scalar fields and especially uncertainty in
scalar fields differ across publications, this section gives the basic
notions used in this paper.

Scalar Fields – We call the mapping s : D→R a scalar field over
a domain D⊂Rd . To allow for combinatorial analysis, the domain
usually is approximated using a finite set of sample points DS =
{x1, . . . ,xn} ⊂ D. By defining a neighborhood N : DS → P(DS)
with P denoting the power set, one can span a grid across the ap-
proximated region. Furthermore we require the grid to be connected
and consists only of simplicial cells in which we assume linear in-
terpolated scalar values.

Uncertain Scalar Fields – In contrast to a deterministic scalar
field, an uncertain scalar field U can be treated as a multivariate
random variable U : Ω→Rn. It maps every element ω of the sam-
ple space Ω to a realization U(ω)∈Rn for which every component
(U(ω))i represents the scalar value of one sample point xi.

We focus on Gaussian-distributed data, as it is an established
model and used in many publications. A Gaussian-distributed
scalar field U ∼ Nn(µ,Σ) is fully described by the mean vector
µ ∈ Rn and the covariance matrix Σ ∈ Rn×n. Every sample point
xi has a marginal distribution of Ui ∼N (µi,σ

2
i ) with σi being the

standard deviation. For the sake of readability, we often write vec-
torial elements such as µ and σ as mappings µ : DS → R, map-
ping a value to each sample point. The covariance matrix encodes
not only the individual variance, but also the correlation between
every pair of sample points. Every entry can be decomposed into
Σi, j = ρ(xi,x j) ·σi ·σ j, where ρ : DS×DS → [−1,1] is the Pear-
son product-moment correlation coefficient. A correlation coeffi-
cient of 1 or−1 signals direct/indirect proportionality between two
random variables whereas 0 describes no dependency at all. Note
that nonlinear dependencies cannot be modelled using this repre-
sentation. In real data, these correlations can either be part of the
dataset, e.g. they arise from modelling the measurement environ-
ment or simulation, or they can be estimated using statistical meth-
ods. For further details and an example see Section 13.

The interpolation between sample points in Gaussian fields is not
trivial. To ensure that critical points of realizations are located on
sample points, we assume a linear interpolation as used by most
publications. Although Schlegel et al. [SKS12] have shown that
interpreting the whole field as a Gaussian process, more accurate
assumptions on the distributions of points within cells can be made,
this increases the theoretical complexity by a lot and only has a
notable effect in poorly sampled regions.

Scalar Field Topology – The topology of scalar fields often is
defined in terms of the evolution and relation of level sets. A level
set for a function s : D→R is Ls(α) = {x ∈ D | s(x) = α}, namely
all points of the domain mapped to certain function value α. We
denote a connected component of a level set as a contour. Altering
α leads to structural changes in the level sets at certain points of the
domain. These points are called critical points and can be divided
into three types. At minima/maxima, new contours appear or ex-
isting contours vanish whereas saddle points represent merging or
splitting contours or a change of their genus numbers.

Focusing on uncertain scalar fields, the aforementioned defini-
tions do not apply directly. With every point theoretically evalu-
ating to every possible scalar value, assumptions about level sets,
contours, and singularities become fuzzy. We show, however, in the
following sections that by looking at the space of all realizations
and transferring the concept of a critical point into this space, we
can investigate topological features of Gaussian-distributed fields.

4 Overview

Figure 1 gives an overview over all steps we take to extract critical
points, their properties, and structure. The main goal is to compute
singular patches – a representation of critical points in the context
of uncertain Gaussian scalar fields. A patch stands for a specific
scalar value configuration in the neighborhood of a specific grid
point. As the topological type of a point only depends on the local
neighborhood, we first abstract the value difference to all neigh-
bors introducing neighbor configurations. To handle uncertainty,
we look at the space of all possible realizations and combine this
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Figure 1: Overview over our method including intermediate steps and relevant structures. Most important results are marked with thick
outlines. Starting with the dataset, our method extracts critical points, their probability, and even relations.

with the neighbor configurations. This leads to singular patches as
segments on hyperplanes in a high-dimensional space. Based on
these segments we then approximate probabilities using sampling
in low dimensional subspaces and even extract relations between
singular patches. This leads to the patch graph – an abstract struc-
ture to represent all possible critical points and their behaviour in
the space of all realizations. Besides describing basic features that
can be found in the graph, we emphasize its advantage by providing
a merging method that leads to the identification of critical points
that change their locations across different realizations.

5 Realization Space

With U being an n-dimensional random variable, every point inRn

represents exactly one realization of U . In this space, the positive
semidefinite covariance matrix Σ describes an ellipsoid expressing
the variance in every direction. We first standardize this space by
transforming it so that the underlying distribution becomes a stan-
dard normal distribution. By diagonalizing Σ into ΓΛΓ

T using the
eigenvalue decomposition, we can rewrite U as

U = µ+ΓΛ
1
2 Z. (1)

With Z ∼ Nn(0, In) being a standard normal distributed random
variable. Here, Λ ∈ Rn×n is the diagonal matrix with eigenvalues
λ1, . . . ,λn ∈R. Γ ∈Rn×n is the matrix containing the correspond-
ing eigenvectors γ1, . . . ,γn ∈Rn as columns. All this equation does
is first applying the deviations of U by the multiplication with Λ

1
2 . Γ

then aligns the main directions to the ones described by Σ. Adding
µ to translate the mean then completes the transformation.

Since the eigenvalues represent the variances in the main direc-
tions, which now are the main axes of the space of Z, we can reduce
the dimension by removing axes with eigenvalues below a certain
threshold θ> 0. W.l.o.g. let the eigenvalues be sorted in descending
order. For the rest of the paper we denote the number of significant
eigenvalues as d. For a point z ∈Rd , the value of a realization of U
at a grid point x can be written as

Uz(x) = µ(x)+
d

∑
k=1

γk(x)
√

λkzk. (2)

This standardization process is well known in many different dis-
ciplines (e.g. as Principal Component Analysis [Hot33]). For us,
it allows to look at uncertain scalar fields in a well-defined space
while also reducing the amount of free parameters. The degree of
reduction can be controlled by the expressive parameter θ.

For most of the paper, we refer to Rd as realization space. Fur-
thermore, we use Uz as additional dimension leading to the ex-
tended realization space. In the extended realization space, the

function graph of Equation (2) describes a hyperplane for every
grid point as it is a linear combination of the components of z. This
can be seen more clearly in Figure 2. While Figure 2 (c) shows the
realization space, Figure 2 (b) has the aforementioned extension to
express scalar values of grid points as hyperplanes.

6 Critical Points in Realization Space

Identifying and classifying critical points on simplicial grids can be
done locally. Edelsbrunner et al. [EHP08] use reduced Betti num-
bers to identify simple critical points. Using the lower link of a
grid point, namely all adjacent grid points having a smaller scalar
value and all connections between them, based on the number of
holes and connected components a classification can be made. In
our work, we use a notation based on ordering the local neighbor-
hood and encode the lower and upper links in a neighbor configu-
ration. This allows for a consistent usage in further steps while also
reflecting the underlying implementation.

6.1 Neighbor Configuration

Since the topological type of a point only depends on the relative
value to its neighbors, we first abstract this neighborhood. For this,
we use the signum function of the value difference

sgn
(
Uz(xi)−Uz(x j)

)
(3)

which either evaluates to −1, 0, or 1 depending on whether the
value of point xi is lower, equal, or higher than the value of x j in
a certain realization z. To extend this to all neighbors and allow
for a algebraic notation, we first define an ordering on the set of
neighbors N(x) for every grid point x ∈ DS. This is done by the
mapping ox : {1, . . . , |N(x)|} → N(x) (4)

with ∀i, j ∈ {1, . . . , |N(x)|} : ox(i) = ox( j)⇔ i = j. This allows for
retrieving the i-th neighbor of x with ox(i). How one chooses the
ordering can be arbitrary. Usually it is given implicitly through the
description of the grid or can be computed easily (e.g. by ordering
neighbors in counter clockwise direction in 2-dimensional grids).
Using the same ordering across the grid is not necessary and, in
fact, not always possible due to different neighborhood sizes.

To express the relation of one point to all its neighbors, we
introduce the neighbor configuration. We define it as a mapping
cx :Rd →{−1,0,1}|N(x)| with

(cx(z))i = sgn(Uz(x)−Uz(ox(i))). (5)

cx depends on the point x ∈ DS as the neighborhood can vary
across the grid. It also maps different values to different realiza-
tions z ∈Rd , due to the actual values at the grid positions being
dependent on the realization.
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Figure 2: Different spaces used to define singular patches based on a 2-dimensional realization space. A grid point x and all of its neighbors,
e.g. y, are represented as hyperplanes in the extended realization space (b). Here Uz(x) and Uz(y) may have an intersection denoting all
realizations with equal value at x and y. Projecting this intersection and all the ones for x’s other neighbors into the space spanned by zi’s
(the realization space) it decomposes this space (c) into sets of realizations with x having the same neighbor configuration. We call these
regions patches. Classifying patches based on the configuration leads to singular patches representing maxima (red), saddles (yellow) and
minima (not present in this example). Combining the regions in realization space (realization sets) with the point’s plane, one can also think
of patches as regions on hyperplanes in the extended realization space (d).

6.2 Classification

Up to this point, cx only describes the relation between a grid
point’s scalar value and the values of all its neighbors. To decide
whether this configuration belongs to a certain type of critical point,
a classification has to be made.

Identifying a maximum (max) or minimum (min) is straight-
forward as it is independent from any kind of ordering. For a
neighborhood size of |N(x)| = 4, e.g. a maximum is clearly in-
dicated by cx(z) = (1,1,1,1)T , while a minimum corresponds to
cx(z) = (−1,−1,−1,−1)T . For saddle points (sad), however, the
ordering is crucial. A simple saddle point represents the split or join
of two or more contours. Therefore, at the point’s scalar value, two
or more contours have to intersect the point. Locally, this can be
decided by counting adjacent cells that lead to a contour travers-
ing through the point. E.g., in a 2-dimensional grid with neigh-
bor ordering by angle and a neighborhood size of |N(x)| = 4, only
cx(z) = (1,−1,1,−1)T and cx(z) = (−1,1,−1,1)T indicate saddle
points. Grid points located on the border of the domain are excep-
tions to this saddle classification. Here, a saddle point cannot be
decided locally as its type depends on the course the contours take
across the domain. We handle those cases by introducing a separate
type (bsad) to represent potential border saddles that only require
one intersecting contour. Including regular points (reg), the topo-
logical classification can be formalized with a mapping:

tx : {−1,1}|N(x)|→{reg,max,min, sad,bsad}. (6)

We deliberately exclude cases with (cx(z))i = 0, namely one or
more neighbors having the same scalar value. Depending on the
concrete type, those cases can form topological borderline cases
with critical points being expanded over multiple grid points. In
Morse theory, these borderline cases are called degenerate criti-
cal points and are usually avoided by applying small distortions to
the affected grid points or by using some further ordering criteria,
which is often referred to as Simulation of Simplicity [EM90]. Due
to the seamless realization space, we are not able to change scalar
values of single realizations without affecting fundamental proper-
ties of the space. By excluding those cases in all further steps, we
avoid those problems and still keep consistency.

6.3 Realization Set

The concept of the neighbor configuration can also be looked at
from a different perspective. Instead of describing the relation a
point has to its neighbors in a certain realization, one can also ask,
which realizations have a specific neighbor configuration. For this,
we use the following inequation:

r · (Uz(xi)−Uz(x j))> 0. (7)

With this, we can find all realizations that share a specific relation
between two grid points xi and x j only by choosing r ∈ {−1,1}
– again excluding cases with Uz(xi) =Uz(x j). E.g., all realizations
with xi having a greater value than x j fulfill Inequation (7) with r =
1. Together with a given neighbor configuration c̄ ∈ {−1,1}|N(x)|

we can extend this to all neighbors of a grid point x by writing

c̄i · (Uz(x)−Uz(ox(i)))> 0. (8)

Furthermore, equation (2) gives us an exact description of the
points’ values, leading to

c̄i·
d

∑
k=1

(
γk(x)− γk (ox(i))

)√
λk︸ ︷︷ ︸

(Ax)i,k

zk > c̄i ·
(

µ (ox(i))− µ(x)
)

︸ ︷︷ ︸
(bx)i

. (9)

With a matrix Ax ∈R|N(x)|×d and a vector bx ∈R|N(x)| with entries
defined as indicated by the above formula we can write the whole
system of inequalities for a specific neighbor configuration as

Cc̄ ·Ax · z�Cc̄ ·bx. (10)

Here, Cc̄ = diag(c̄1, . . . , c̄|N(x)|) is a diagonal matrix multiplying the
i-th entry of c̄ to the i-th row of the system of inequalities and � is
the component-wise greater relation.

With this short notation, one can describe regions in realization
space with a grid point having a certain neighbor configuration. We
will also refer to this as the realization set Sx : {−1,1}|N(x)|→Rd

with Sx(c̄) = {z ∈Rd |Cc̄ ·Ax · z�Cc̄ ·bx} (11)

as the set of all realizations with a point x ∈ DS having a neighbor
configuration c̄.

7 Singular Patches

By patch we denote a region in the realization space with a grid
point having a specific neighbor configuration. A patch p therefore
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is defined as a tuple p := (xp,cp) with xp ∈ DS being a grid point
and cp ∈ {−1,1}|N(xp)| describing a neighbor configuration of xp.
We again exclude cases with (cp)i = 0 as we want to be able to
classify all defined patches. It is worth noting because of this, the
realization set Sxp(cp) of a patch always is an open set. As singular
patches we denote those patches that lead to a grid point being a
critical point in the corresponding realizations. Therefore, a patch
p = (xp,cp) is singular, iff txp(cp) 6= reg.

Figure 2 summarizes the conception of singular patches on the
example of a point x with |N(x)|= 4. Despite the shown realization
space only having dimension 2, relations and structures in the fig-
ure directly translate into arbitrary dimensions. Figure 2 (d) shows
patches interpreted as regions on hyperplanes. This becomes espe-
cially useful when dealing with patch relations in Section 9.

7.1 Patch Filtering

Even though the above definitions lead to a finite amount of sin-
gular patches, the actual number can be very large. Our example in
Section 13 operates on a 2-dimensional regular grid with every grid
point having 6 neighbors. This neighborhood results in 26 = 64 dif-
ferent neighbor configurations of which 34 describe critical points.
Therefore, there are 34 · n singular patches which have to be han-
dled in further analysis steps. The following sections describe two
methods reducing the amount of patches significantly.

Empty Patches – Due to correlation and the elimination of di-
rections with low variance in Section 5, for a patch p = (xp,cp),
the set of realizations Sxp(cp) can turn out to be an empty set.
As the system of inequalities (10) forms a convex polytope in the
d-dimensional space, emptiness can be checked using well estab-
lished methods from optimization theory. Many efficient and stable
algorithms are available with runtimes depending on the number of
restrictions and the amount of variables to consider. In our imple-
mentation we use the linear and quadratic programming algorithms
of the CGAL-library [FGSW15] as it provides good performance
and stability.

Region of Interest – To further reduce the amount of patches, we
use a confidence region in the realization space to remove patches
representing critical points that are very unlikely. Since the stan-
dardization resulted in a fully symmetric probability density func-
tion, we can use a spherical region around the origin. The radius
describes how many realizations still are covered with the remain-
ing patches intersecting the confidence region. To make this more
expressive, we choose a threshold δ ∈ [0,1] which denotes the
percentage of realizations that have to be covered. Based on this
threshold, one has to find the radius of the confidence region, which
cannot be done in an analytical way. Since we only want to make
sure we cover enough realizations, the radius can be overestimated.
Therefore, one simple numerical computation per dataset can be
used to estimate an upper bound for this radius. To extract only
patches with realization sets having a non-empty intersection with
the confidence region, we can, again, use optimization methods.
For a patch p = (xp,cp), by solving the quadratic program

zT z→Min!, Ccp ·Axp · z�Ccp ·bxp , (12)

the minimal distance of the patch’s polytope to the origin can be
found. By simply comparing it with the radius of the confidence

region, we can decide whether to eliminate or keep it. Although we
reduce the amount of patches, we keep a consistent and complete
coverage of the defined region in realization space. This is impor-
tant for further steps investigating the structure of singular patches.
Also note that this step is not necessary to make our method appli-
cable but reduces computation time of subsequent steps.

7.2 Patch Sampling

Given a patch p = (xp,cp), we are interested in extracting the prob-
ability for the point xp taking neighbor configuration cp. To do so,
we have to integrate the probability density function over the poly-
topic realization set Sxp(cp). Just like in the previous section, this
is, however, not possible in an analytical way. For this reason we
approximate the probability using sampling. The naive approach
would be to draw k sample points from Nd(0, Id) and count the
amount of samples kin that are part of the realization set Sxp(cp).
The probability is then approximated by kin

k . The main drawback of
this method is the usual high dimension d. Not only does this seem
to increase the amount of required sample points tremendously but
also makes the inside test for the polytopic region expensive. In the
following section, however, both problems get resolved by limiting
the sampling method to a low dimensional subspace.

8 Restriction Space

The realization set of a patch p = (xp,cp) is a convex region in the
d-dimensional space. Sampling this region to retrieve the probabil-
ity of a patch therefore might seem to require a number of sam-
ple points that depends on d. This is, however, not the case as the
convex region is bound by only a small number of restrictions –
namely the number of neighbors |N(xp)| of the patch’s grid point.
As |N(xp)| usually is much smaller than d, the convex region is un-
bounded in most of the directions. Sampling the multidimensional
Gaussian kernel in an unbounded direction always results in a fac-
tor of 1 and therefore can be omitted. To only sample in bounded
directions, we extract a subspace – we call it restriction space –
for every grid point. The bounded directions are the normals of the
restrictions. As these normals appear as row vectors in the already
computed matrix Axp , all there is left to do is to define the space
spanned by these vectors by extracting a basis. This can be done
by orthonormalization. We chose the Householder transformation
[Pre07] as it provides high numerical stability. Because it is defined
operating on column vectors, we apply it to Axp

T ∈Rd×|N(xp)| re-
sulting in a so-called QR-decomposition

Axp
T = Qxp ·Rxp . (13)

Here, Qxp ∈ Rd×d is an orthogonal matrix representing a basis
transformation and Rxp ∈Rd×|N(xp)| is an upper triangular matrix
containing the restriction normals in the new subspace. With this,
the system of inequalities (10) describing the realization set of a
patch p = (xp,cp) can be rewritten as

Ccp ·Rxp
T ·QT

xp · z︸ ︷︷ ︸
z′

�Ccp ·bxp . (14)

Even though z′ is also an element of Rd , due to RT
xp being a lower

triangular matrix, only |N(xp)| components contribute to the sys-
tem. This shows that we only have to generate a fairly low amount
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Figure 3: Different situations of patches in the extended realization
space with them either being adjacent (a,b,c) or not (d,e,f). We dif-
ferentiate between horizontal (a), vertical (b), and higher order (c)
adjacency.

of samples in a subspace of dimension |N(xp)|, which gives us a
high precision approximation of the patch probabilities. Further-
more, the orthonormalization preserved the standard normal dis-
tribution due to the matrix Qxp being orthogonal, which keeps the
sample generation simple. Memory consumption is also low as the
triangular matrix Rxp only requires to store at most 1

2 |N(xp)|2 val-
ues for every grid point.

The other methods used in our pipeline operating on the real-
ization set and therefore in d-dimensional space are the test for
emptiness and the application of the thresholding from Section 7.1.
As both require solving linear or quadratic programs, their com-
putational cost depends on the underlying dimension. It turns out
that these methods can also be applied in the subspace. The check
for emptiness is trivial in that sense, as emptiness can only arise
from bounded directions which are by definition preserved in the
restriction space. As it is an orthogonal transformation preserving
distances, also the patch filtering using a threshold radius around
the center can be done in the subspace. Here, one only has to take
the distance of the subspace in the omitted directions into account,
which are given as right sides in the system of restrictions.

The restriction space is a key point in our computation, as it
makes all of the used algorithms be only dependent on the neigh-
borhood size and the number of grid points. Although it requires
a preprocessing step, computing Rx for all grid points using the
Householder transformation, this step is much faster and scalable
than operating in the original space.

9 Singular Patch Adjacency

When looking at singular patches as convex regions on planes in
the extended realization space, as shown in Figure 2 (d), an interest-
ing observation can be made. Leaving the realization set of a patch
over one of its restrictions leads to a change in the neighbor config-
uration of the corresponding grid point. If this results in the point
changing its topological type, the Poincaré-Hopf theorem [Lib12]
implies that some other point has to change its type too for the
global topology to remain consistent. If the neighbor configuration
changes with the point keeping its type, the point has to be a sad-
dle patch, as it is the only type that has multiple configurations. In
either case there has to be at least a second patch sharing the ex-
act same edge of the convex region. This we call patch adjacency.
In general, we call two patches adjacent iff they share a facet and
their corresponding grid points also are adjacent in the grid. Figure
3 shows some common situations of two patches of two different
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z2

Uz z2

z1

A D

B

C

A

B

C

D

z1

z2

Uz z2

z1

A D

B

C

Figure 4: Exemplary horizontal (a) and vertical (b) folds in a 2-
dimensional realization space (bottom right). In extended realiza-
tion space (left) two patches overlap forming two other patches.
Folds appear in the patch graph as special patterns (top right).
Maximum patches are colored red while saddle patches are yellow.
The edges of the graph indicate vertical (green), horizontal (blue),
and order 2 (gray) adjacency.

grid points over a 2-dimensional realization space. (a), (b), and (c)
are examples for the patches being adjacent. In (d) and (e), the in-
tersection is empty resulting in both patches clearly not being ad-
jacent. Case (f), however, despite both patches having a non-empty
intersection, they are not adjacent by the definition above. The rea-
son for this is that the corresponding grid points cannot be direct
neighbors as otherwise the plane of one point would be a restriction
on the plane of the other point. In the following we will describe
different forms of patch adjacency and introduce two properties –
order and direction – to classify adjacency.

As order of adjacency we denote the type of facet the patches
share. In a two dimensional space, e.g., order 1 stands for a shared
line (Figure 3 (a) and (b)) whereas order 2 represents a point (Figure
3 (c)). In three dimensions, order 1 is a plane, 2 a line, and 3 a point.
It can be shown that the order always lies within the range [1,d]
with d being the dimension of the realization space. If two adjacent
patches are located on the same plane, thus representing different
configurations for the same grid point, the order is determined by
the number of different digits in the neighbor configuration. If the
patches are on different planes, the order is retrieved differently.
First, for both patches to be adjacent at all, they have to be bordered
by the restriction which comes from the two planes intersecting
each other. We call this the mutual restriction. For the order to be
higher than one, the patches have to share additional restrictions
for which they have to lie in different half spaces. These additional
restrictions can only arise from additional planes of grid points that
are in the neighborhood of both grid points of the patches.

The second property we use for differentiating adjacency is the
direction. If the patches are located on different planes, the direc-
tions states whether both lie on the same or on different sides of the
mutual restriction. In case of both being located on the same side,
we call it vertical adjacency (Figure 3 (b)), as the patches are on top
of each other with respect to the scalar value axis Uz. If both lie on
different sides, we call it horizontal (Figure 3 (a)) as they are side
by side. As patches on the same plane cannot overlap each other,
the adjacency is always classified as horizontal. The reason for this
classification is that different types of adjacencies represent dif-
ferent topological changes when traversing over the corresponding
facet in realization space. This becomes more clear in the following
section.
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Figure 5: Edge coloring (a) and node glyph (b) used for visualizing
the patch graph. In (c), some regions indicating critical points with
spatial uncertainty can be seen. The texture indicates the probabil-
ity of the points being at a specific location within the region.

10 Singular Patch Graph

To represent singular patches and their relations given by different
types of adjacency, we build a graph structure. For every singu-
lar patch, we introduce a node augmented with all patch-specific
properties like patch probability and topological type. Adjacency
between patches is expressed via edges connecting the correspond-
ing nodes. Edge properties are order and direction of adjacency. In
this graph, several interesting structures can be identified. Some of
them are described in the following.

Birth/Death of Branches – The first observation is that edges
representing vertical adjacency of order 1 appear mostly between
a saddle patch and an extremum patch. Traversing over the facet
connecting the patches in realization space therefore leads to the
birth/death of an extremum while also creating/erasing a saddle.
This is expected, as for every extremum there has to be a saddle it
is connected to to maintain a consistent topological situation. Note
that in the context of contour trees, such adjacencies can also be
interpreted as birth/death of branches.

Points with Spatial Uncertainty – Edges representing horizon-
tal adjacency usually appear between singular patches of the same
type. Like before, traversal over the corresponding facet in realiza-
tion space leads to changes in the topology of the resulting scalar
field. For patches belonging to the same grid point this simply
means that the neighbor configuration changes without changing
the type of the grid point. In case of patches on different planes,
thus different grid points, this situation represents a critical point
moving to a different grid point in the scalar field. The extraction
of these critical points with spatial uncertainty can be quite relevant,
as they allow for tracking critical points over different realizations.

Folds – Besides the basic connections between nodes represent-
ing local changes of topology, more complex structures can be
extracted from the graph. One that can be found very frequently
are folds. Two typical patch configurations and their corresponding
nodes and edges in the patch graph are shown in Figure 4. In both
cases, the patches A and D overlap each other forming the patches
B and C. Again we can distinguish between horizontal (a) and ver-
tical (b) folds based on the relation of the overlapping patches. The
theory, exact structure, and possible side effects of folds require
further research and are therefore not discussed in detail.

11 Node Merging

Although the focus of this paper lies on introducing and comput-
ing the singular patch graph, we want to emphasize its benefit by
extracting points with spatial uncertainty. We do this by merging

(a) (b) (c)

Figure 6: Dataset containing a maximum with spatial uncertainty
(a). Merging the patch graph (a) allows for identifying the varying
maximum as an important critical point (b).

nodes that represent the same critical point having different loca-
tions in the domain. For two nodes to be merging candidates, they
have to have the same topological type and must be connected by
horizontal adjacency. By redirecting edges previously connected to
either one of the nodes to the merged one, we can repeat merging
until no more candidates are present. This process, however, does
not preserve the property of merged patches not overlapping in re-
alization space. The reason for this is the reconnection of horizontal
adjacency edges not ensuring disjoint realization sets. Therefore we
explicitly forbid merging nodes that have overlapping realization
sets by using the emptiness check for polytopes.

Limiting the merging to non-overlapping patches is a strength
and a weakness at the same time. On the one hand it ensures that at
most one critical point of the merged set is present in any realization
and therefore allows for summing up the probabilities from Section
7.2. On the other hand it introduces ambiguity and an expensive
check for emptiness. In case of a horizontal fold, e.g., as shown in
Figure 4, while patch C can either be merged onto A or D, A and
D themselves cannot be merged together due to them overlapping.
Despite these limitations it still allows for detecting critical points
that otherwise would have been missed due to lack of prominence.

12 Visualization

For visualization of the patch graph we use two methods. Although
the graph itself can be quite complex and therefore not suitable for
direct visualization, we draw it to get first insights into its structure.
Using a force-directed layout we can show a large amount of nodes
only by specifying edge lengths. Edge properties can be expressed
using not only these lengths but thickness and color. Furthermore,
node properties, like patch probability and the topological type, are
represented using glyphs. In Figure 5 the edge coloring (a) and
node glyphs (b) are shown. As colors we use red for maxima, blue
for minima, yellow for saddles, and green for border saddles.

The second visualization bridges the gap between the abstract
singular patch graph and the uncertain scalar field by operating
on the underlying grid. The main purpose is to communicate the
results of merging critical points with spatial uncertainty and the
computed probabilities. As can be seen in Figure 5 (c), we surround
the region of a critical point by a thin border with transparency in-
dicating the accumulated probability of all patches involved. To in-
dicate the type as well as the probability distribution within such a
region, we fill it with a stripe texture having a specific color. The
stripes help distinguish overlapping regions. This method also al-
lows for providing additional context information e.g. in the form
of a map or color mapped mean field in the background.
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#grid points 800 3600 5400 7200 9000 10800 12600 14400

patches 0:00:15 0:00:25 0:00:35 0:00:38 0:00:43 0:00:51 0:00:56 0:00:58
adjacency 0:45:50 1:19:23 1:29:48 1:26:02 1:26:37 1:33:52 1:39:31 1:38:13
merging 0:44:11 1:43:16 2:37:24 2:53:18 3:23:54 4:23:25 5:00:32 5:22:34

Table 1: Computation times (h:mm:ss) of the main steps in our
pipeline applied to different grid sizes.
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Figure 7: An estimate on the relative sampling error by averaging
the deviation at different sample counts.

13 Examples

We applied our methods to two datasets. To show the basic concept
of critical points with spatial uncertainty, we first look at a synthetic
dataset. It also makes the advantage of our method compared to ex-
isting approaches clear. As second dataset we chose a temperature
forecast, which represents a typical real-world example.

13.1 Synthetic dataset

We generated a synthetic dataset to show a typical situation in
which existing methods fail to detect a significant feature that our
method is able to find. Based on a 2-dimensional regular 9×9 grid,
we chose the covariance matrix and mean vector to create a specific
topological situation. First, there are three critical points which are
in every realization. There are also five points in the center of the
grid of which exactly one is a maximum in any realization. Figure
6 (b) shows the patch graph which got simplified by our merging
in (c). (a) shows the critical point regions after the merging step.
The graph clearly shows what critical points can occur, what their
probabilities are and how they are related to each other. While most
of the points form single components due to them being part of ev-
ery realization, the five points in the middle of the grid correctly
get identified. The horizontal adjacencies between them allow for
easy and overlap-free merging, resulting in the whole region get-
ting identified as one critical point with spatial uncertainty. As the
individual probabilities of the points are small and could be even
made smaller by extending the grid, methods treating them sepa-
rately will miss them. E.g., Günther et al. [GST14] would not iden-
tify these points as they clearly are not mandatory. Also, because
Mihai and Westermann [MW14] filter single points by their confi-
dence, the individual points can fall below the threshold while the
combined one lies above it.

13.2 Weather forecast

The second dataset is temperature data from the European Center
for Medium-Range Weather Forecasts (ECMWF). Not only do they
provide measured temperature fields but also uncertain fields rep-
resenting forecasts resulting from ensemble simulations. While the
uncertain fields are given by a field for mean and one for standard
deviation, the correlation matrix is missing. However, this matrix
can be generated using different techniques. A common approach
is to compute correlation based on an analytic function, e.g. the

(a) (b)

Figure 8: The patch graph (a) of an uncertain temperature fore-
cast with 2 eigenvalues chosen. Zooming to a connected component
(b) allows for investigating patch adjacency and even higher level
structures like folds (red).
squared exponential [Pac03]. Since we have access to measured
temperature data, we use this instead to generate the correlation
matrix. For this, we use 500 measures, which were acquired over
a period of more than 8 months. These measures are then used to
extract the correlation between every pair of points. The basic as-
sumption is that by using a large amount of fields, the extracted
correlation only depends on geographic factors. Combining the cor-
relation matrix with the standard deviation of the forecast to get a
complete covariance matrix, we have all data to apply our method.

We use a 240 hour forecast above the region of Europe as un-
certain field. The triangular grid consists of 14 400 points with a
neighborhood size of 6 for interior points. Even though the uncom-
pressed covariance matrix is as big as 1.6GB, using the SLEPc
[HRV05] library we are able to quickly compute the most sig-
nificant eigenvalues and eigenvectors. We only use the first 18
eigenvalues as they are enough to describe 95% of the data’s vari-
ance. Our algorithm extracts 69 354 singular patches intersecting a
threshold region with δ = 0.95 (see Section 7.1). The adjacency
computation results in 1 681 477 connections between patches.
Merging nodes to extract critical points with spatial uncertainty as
described in section 11 leads to a reduction to 22 819 critical points.

Computation Times – We did our computations on an Intel
Xeon CPU E5-2630 with 32 virtual cores running at 2.4GHz. In
Table 1, the computation times of the major steps in our pipeline
are shown. For a better overview, we did multiple runs on subsets
of the domain with different grid point counts. One can see that the
merging algorithm takes the majority of the time as it requires a lot
of emptiness checks. Also, while the parallelization of the compu-
tation of patches and patch adjacency is straightforward, the merg-
ing has a non-trivial parallelization, which also contributes to high
computation times. As the methods mainly depend on the number
of patches and patch adjacencies and therefore the output size, there
is a non-linear behaviour regarding the number of grid points.

Sampling Precision – As the computation of the probabilities
for all critical points relies on sampling, there always is an er-
ror involved. To get an idea about the magnitude of this error, we
did multiple sampling runs with different sample counts. For every
sample count and every patch, we computed the mean and standard
deviation across 50 runs. We then averaged the relative standard de-
viation of all patches with a mean probability of at least 0.05. Figure
7 shows the results of this computation and therefore gives an esti-
mate of the relative error introduced during sampling. One can see
that the error decreases fairly quickly and even sample point counts
of only 10 000 result in an average relative deviation of only 3%.
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Figure 9: Regions of merged critical points in a Gaussian-distributed scalar field of temperature data. In (a), an overview over all critical
points is given. In (b), only points which are present in at least 50% of all realizations with a color mapped mean field in the background are
shown. Zooming in gives a clearer look at the probability distributions inside the merged regions (c). Here, e.g., the critical points A and C
have a higher spatial uncertainty than B as the texture is spread out more.

Patch Graph – Even with the reduced amount of 22 819 nodes,
the patch graph is too complex to look into manually. The reason
for this is it being a structure representing 18-dimensional features
embedded in a 2-dimensional visualization. For demonstration pur-
poses and to get an idea about the structure of the patch graph, we
show the patch graph resulting from using only the first 2 eigenval-
ues in Figure 8 (a). In (b), a typical connected component is shown.
Besides the different forms of adjacency, folds can be identified
(red border) as they are always represented by specific combina-
tions of nodes and edges. We plan on studying the properties of the
patch graph in lower dimensions to then use the insights gained to
algorithmically operate on more complex graphs in the future.

Critical Points – With every merged node representing multi-
ple patches that can belong to multiple grid points, we can draw
them as regions as described in Section 12. The resulting image
can be seen in Figure 9 (a). More probable points can be identified
by a more prominent border. Alternatively, one can filter out criti-
cal points with low probability as shown in Figure 9 (b). Using only
borders and transparent fillings allows for visualizing context infor-
mation. In both (a) and (b) we added country borders to provide a
geographic reference. Furthermore, (b) has the color coded mean
field as background which gives an idea of the actual scalar values.
A closeup look can be seen in Figure 9 (c). The probability distri-
bution inside the regions is important to get a better understanding
about the spatial uncertainty of the points. While the texture of (B)
only is very local, the stripes of (A) and (C) are spread out more in-
dicating a higher likelihood to be at different locations. Just like in
our synthetic example, points like (A) and (C) might be missed by
methods looking only at mandatory critical points or at local prob-
ability estimates. Only by deterministically extracting all possible
points, merging, and accumulating the probability we are able to
detect those features. Our sampling method not only gives us prob-
ability information but also allows for computing other measures.
The numbers shown in Figure 9 (c) denote the mean scalar value
the critical point has across all realizations it is present in. These
values could be interesting, e.g., when it comes to topological sim-
plification.

14 Limitations, and Future Work

Even though the theoretical complexity of the time-critical parts
in our computation pipeline only depends on the number of grid
points and the neighborhood sizes, there still are performance is-
sues. The main reason for this is the large amount of linear and

quadratic programs that have to get solved to check for patch empti-
ness and adjacency. In future work we want to improve our algo-
rithms and replace important steps by combinatorial counterparts
using insights gained from the patch graph. We also would like to
get rid of the two parameters – namely the number of significant
eigenvalues and the threshold radius – thus the need to compute the
eigen decomposition at all. As our method depends on the neigh-
borhood sizes it does not scale well with increasing dimension of
the underlying domain. Despite our method being applicable in ar-
bitrary dimensions, the fast increasing number of neighbors cur-
rently does not allow to use it with domain dimensions higher than
two due to long computation times.

An even more important goal is to dive deeper into the structural
properties of the patch graph. While our node merging is able to
extract critical points that otherwise would be hard to identify, it
requires explicit overlap tests and depends on the order of patch
merging. Investigating higher-level features like folds can lead to
simplification, abstract representation, and an overall better under-
standing of topology of uncertain scalar fields.

15 Conclusion

In this paper we presented a novel method to look at topological
features of Gaussian-distributed scalar fields. Given the mean field
and covariance matrix, we introduced singular patches as analogy
for critical points taking into account uncertainty and correlation
in the data. These patches can be used to not only extract criti-
cal points and compute their probability with high precision but
also to get further insights into the structure and relation between
them. By defining patch adjacency we can build the patch graph –
an abstract structure containing much information about topologi-
cal structures, such as critical points changing their location, birth
and death of contour tree branches, and folds. Even though under-
standing the patch graph to its fullest requires further research, we
emphasize the value by a simplification algorithm to extract and
visualize some of the critical points with spatial uncertainty.
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