
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Fast Combinatorial Vector Field Topology
Jan Reininghaus, Christian Löwen, and Ingrid Hotz

Abstract—This paper introduces a novel approximation algorithm for the fundamental graph problem of combinatorial vector
field topology (CVT). CVT is a combinatorial approach based on a sound theoretical basis given by Forman’s work on a
discrete Morse theory for dynamical systems. A computational framework for this mathematical model of vector field topology
has been developed recently. The applicability of this framework is however severely limited by the quadratic complexity of its
main computational kernel. In this work we present an approximation algorithm for CVT with a significantly lower complexity.
This new algorithm reduces the runtime by several orders of magnitude, and maintains the main advantages of CVT over the
continuous approach. Due to the simplicity of our algorithm it can be easily parallelized to improve the runtime further.

Index Terms—9.VI.IX.II Flow Visualization, 7.II.II.I Graph algorithms

✦

1 INTRODUCTION

TOPOLOGICAL data analysis has been proven
successful for the visualization of vector fields.

The topology of a vector field is derived from
the homotopy classes of its streamlines. Standard
algorithms for the extraction of this topological
skeleton involve many numerical challenges: finding
all zeros, integrating streamlines and streamsurfaces,
the intersection of those, and the extraction of
periodic orbits. While there are stable numerical
algorithms to do this [1], the overall resulting
framework has many computational parameters that
may strongly influence the result. Furthermore, the
topological skeleton is usually rather complex for
real world vector fields. One is therefore interested
in a meaningful simplification of the skeleton [2], [3],
[4], [5], [6].

A computational framework for a combinatorial
vector field topology (CVT) which addresses these
challenges was developed recently [7]. This approach
has three main advantages compared to the continu-
ous approach:

1) Persistency: The natural output of this frame-
work is a hierarchy of topological skeletons. The
importance of a critical point in this hierarchy
is determined by a value closely related to the
concept of persistence [8], [9]. This allows the
user to discriminate between stable and unstable
features of the vector field.

2) Consistency: The resulting topological skeletons
are always consistent with the topology of the
underlying domain. While this property may
seem rather academic it significantly increases
the robustness of the algorithm: a single critical

• J. Reininghaus, C. Löwen and I. Hotz are with Zuse Institute Berlin.
E-mail: reininghaus@zib.de, loewen@zib.de and hotz@zib.de

point cannot be missed or misclassified, as this
would affect the consistency of the result. In a
sense, topological consistency serves as an error
correcting code.

3) Simplicity: There are no computational parame-
ters. This enables a fully automatic analysis of a
series of vector fields.

The main weakness of this framework is its
computational complexity of O(n2 log n), where n
denotes the number of nodes in the data set. Even
rather small datasets with 60k nodes take about 30
minutes to compute. The quadratic scaling in the
runtime therefore severely limits the applicability to
real world data sets - an application to large 3D data
sets seems also unfeasible using this algorithm.

We therefore propose a new algorithm that
can replace the computational kernel of [7]. This
approximation algorithm has a lower empirical
complexity of O(n3/2 log n) and maintains the three
main advantages mentioned above. It reduces the
runtime by several orders of magnitude for our data
sets, while it produces visually the same results
as the exact algorithm and preserves a certain
monotonic behavior of the exact solution. Almost all
computational time of our algorithm is spent solving
shortest path problems with negative weights. As
this particular graph problem is easily parallelizable,
we have implemented it using CUDA, which reduces
the runtime even further.

While the proposed algorithm might in principal be
applicable to vector field data of any dimension, we
restrict its description and the analysis of its results
to triangulated 2D manifolds.

2 RELATED WORK

Vector field topology was introduced to the
visualization community by Helman and

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

Hesselink [10]. They defined the concept of a
topological skeleton consisting of critical points
and connecting separatrices to segment the field
into regions of topologically equivalent streamline
behavior. Algorithms to extract periodic orbits,
completing this topological structure, were proposed
in [11], [12], [6]. A good introduction to the concepts
and algorithms of vector field topology is given in [1].

To improve the applicability of vector field
topology, a variety of extensions like topology
tracking, extraction of boundary topology, or
extensions to 3D have been developed. For a rather
complete overview of these methods we refer to the
survey paper [13].

As the topological skeleton of real world data sets
is usually rather complex, a lot of work has been
done towards simplification of topological skeletons
of vector fields, see [2], [3], [4], [5], [6].

Scalar field topology developed almost
independently from vector field topology. The
main application areas in visualization include
segmentation, transfer function design, and ridge
extraction. Due to their robustness and stability,
combinatorial extraction algorithms have been
especially successful in this context [14], [15], [16],
[17]. To reduce the often very complex topological
structure that is generated by these algorithms, a
controlled simplification is introduced based on the
mathematically well-founded concept of persistence
in [8], [9]. Due to the simplicity and clarity of
this simplification strategy, it has been widely
adopted. Most of the above-mentioned extraction
algorithms make use of Forman’s work [18] on a
discrete scalar field topology for cell complexes.
Rather than choosing a suitable class of continuous
functions, a single number is assigned to each cell
of the complex and all further steps are combinatorial.

Motivated by the success of the concept of persis-
tence and the simple and robust extraction algorithms
[19] based on Forman’s work [20], a computational
framework for a combinatorial vector field topology
introduced by Forman [21] was recently introduced
in [7].

In this computational framework, the problem of
extraction and simplification is reduced to a graph-
theoretic problem, see Section 3.2. The fundamental
graph problem (5) that needs to be solved is a gen-
eralized version of the maximum weighted bipartite
matching problem [22]. In [7] this problem was solved
exactly using the Hungarian method, see Section 4.1,
with a computational complexity of O(n2 log n). As
for large data sizes this is prohibitively expensive,
one is interested in fast approximation algorithms.
There is a lot of literature on the approximation of the

0

1

2

0

1

01

0

0

1

2

0

1

01

0

Fig. 1. Basic definitions. Left: the simplicial graph
of a single triangle. Middle: a combinatorial vector
field (dashed) - covered nodes are drawn solid. Right:
equivalent depiction using arrows.

maximum weighted matching problem, see [23] for
an overview. It is, however, unclear how one would
efficiently extend these algorithms to compute the
sequence of maximal weight matchings (5). Also, the
graphs described in Section 3.2 have a very specific
structure in their connectedness and weights that can
be exploited by a custom algorithm.

3 FOUNDATION

In this section we briefly introduce the main concepts
of combinatorial vector field topology (CVT). For a
more detailed description and motivation of these
ideas see [7]. We first present the mathematical model
of CVT provided by Forman’s work in Section 3.1.
The computational framework containing a detailed
description of the fundamental graph problem of CVT
is introduced in Section 3.2.

3.1 Mathematical Model

For simplicity we restrict ourselves to triangulated 2D
manifolds while the mathematical theory for CVT is
defined in a far more general setting [21].

Given a triangulation of a manifold, we first define
its simplicial graph G = (S, L). The nodes S of the
graph consist of the vertices, edges, and triangles of
the triangulation and each node αp is labeled with the
dimension p of the geometric simplex it represents
(see Figure 1, left). We denote the total number of
nodes |S| in this graph with n. We refer to the graph
edges as links to avoid confusion with the edges of
the triangulation. The links L of the graph encode the
neighborhood relation of the triangulation: if the sim-
plex represented by node αp is in the boundary of the
simplex represented by the node βp+1 then {αp, βp+1}
is a link in the graph. Note that only simplices whose
dimension differs by one are linkable.

A matching of a graph is defined as a subset of links
such that no two links are adjacent. Using these defini-
tions, a combinatorial vector field V can be defined as a
matching of a simplicial graph (see Figure 1, middle).
An arrow representation of this combinatorial field as
used in [21] is shown in Figure 1 right.

The nodes of the graph that are not covered by V
are called critical points (see Figure 2, left). If αp is
a critical point of V , we say that the critical point

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

0

1

2

0

1

01

0

0

1

2

0

1

01

0

0

1

2

0

1

01

Fig. 2. Topological Features in CVT. Left: a critical point
of index 0, i.e. a sink (red). Middle: a separatrix (red).
Right: an attracting periodic orbit (red).

has index p. A critical point of index p is called sink
(p = 0), saddle (p = 1), or source (p = 2).

A combinatorial p-streamline is a path in the graph
whose links alternate between V and the complement
of V and the dimension of the nodes of the path
alternates between p and p + 1. A p-streamline
connecting two critical points is called a separatrix,
see Figure 2, middle. If a p-streamline is closed, we
call it either an attracting periodic orbit (p = 0) (see
Figure 2, right) or a repelling periodic orbit (p = 1).

For a vector field defined on a 2D manifold K , the
relation of the topological skeleton to the topology of
the domain K can be easily formulated. Let cp denote
the number of critical points with index p, Ap the
number of closed p-streamlines and bp the p-th Betti
number of the domain K . For a detailed introduction
to the Betti numbers of a manifold we refer to [24].
Forman has proven in [21] that for any p there holds
the strong Morse inequality

Ap + cp − cp−1 + ...± c0 ≥ bp − bp−1 + ...± b0. (1)

Due to the finite nature of the above definitions,
the topological features (critical points, separatrices
and periodic orbits) can be computed exactly in a
combinatorial vector field. We therefore always get a
topological skeleton that is consistent with the topol-
ogy of the underlying manifold.

Note that in continuous vector field topology sepa-
ratrices are sometimes defined differently - a stream-
line that connects a saddle with a periodic orbit is
also called a separatrix. While this does not directly
correspond to our definition of separatrices, we can
also extract these lines by following the p-streamlines
that emanate from a saddle.

3.2 Computational Framework

Given a combinatorial vector field on a 2D simplicial
graph we can easily extract its complete topological
skeleton, i.e. its critical points, separatrices and
periodic orbits [25]. The main challenge of CVT lies
therefore in the computation of a good combinatorial
representative of the input vector field. For an
overview of the computational framework that is
described in detail below, we refer to Figure 3.

For simplicity, assume that we are given a con-
tinuous vector field f defined on a triangulated 2D
manifold K . We first construct the simplicial graph
G = (S, L). To represent the continuous input data on
this discrete entity, we compute link weights ω : L→
R. If � = {αp, βp+1} ∈ L is a matching edge it can be
thought of as an arrow pointing from αp to βp+1. We
therefore assign a large weight to � if such an arrow
reflects the flow behavior of f well. In this paper, we
propose to measure the tangential flow of f along �.
Let c(·) denote the midpoint coordinates of a given
simplex. Then the weight for a link is computed by
integrating the vector field f in tangential direction
τ = c(βp+1)− c(αp) along �, i.e.,

ω(�) =
∫

�

f · τ

‖τ‖ ds. (2)

If we are given a gradient vector field, then this defini-
tion corresponds to the difference of the scalar values
given at the end points of the link. This is a standard
definition of weights in scalar field topology [19].

A combinatorial representative V of the continuous
input vector field f can now be computed by finding
the heaviest matching of all matchings M of this link
weighted-graph G

V = arg max
M∈M

ω(M), (3)

where ω(M) denotes the sum of the weights of the
links in M . Note that the graph G is bipartite, i.e.,
there is a partition of its nodes S = U ∪̇W such that
L(U) = L(W) = ∅, where L(U) denotes the set of
links whose nodes are contained in U . This greatly
simplifies the algorithms needed to solve (3). A simple
bipartition is given by U = {αp ∈ S : p is odd} and
W = {αp ∈ S : p is even}.

The size of the set of critical points C(V) of a
combinatorial vector field V is directly related to the
number of links in its matching |V | by |C(V)| =
|S| − 2 |V |. We can therefore compute a combinatorial
vector field with a prescribed number of critical points
by computing

Vk = arg max
M∈M,|M|=k

ω(M), (4)

i.e., the heaviest matching of a given size. Note
that C(Vj+1) ⊂ C(Vj) for any j due to the graph-
theoretic structure of the matching problem (4),
see [22]. Let k0 = |V | denote the size of the heaviest
matching, and let kn = maxk∈N |Vk| denote the size
of the heaviest maximum cardinality matching.
From a topological point of view, Vk0 corresponds
to the initial combinatorial vector field without
any simplifications, while Vkn corresponds to a
completely simplified version of it.

The topological hierarchy V of a combinatorial
vector field can now be defined as the sequence of

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

Fig. 3. Computational pipeline. Given a triangulated vector field (left), we construct its corresponding simplicial
graph (middle) and compute link weights using (2). We then compute the maximum weight matching sequence
(4) of this link weighted graph resulting in a hierachy of topological skeletons (right) of the input data.

matchings
V = (Vk)k=k0,...,kn

. (5)

The main task of a computational framework for
CVT is to compute the sequence (5). We therefore
refer to it as the fundamental graph problem of CVT.

Note that the weight difference ω(Vj) − ω(Vj+1)
gives us a measure for the importance of
the simplification which is closely related to
persistence [14]. For future reference, we call
this difference of matching weights the weight of
cancellation j. If we are dealing with gradient vector
field data, then this weight difference corresponds
to the difference of the scalar values of the critical
points being canceled. We can therefore make use of
(5) to remove topological noise (see Figure 6), or to
reduce the topological representation of the data to
its dominant structures (see Figure 7). This enables a
multi-scale topological analysis of vector fields.

In [7] the fundamental graph problem of CVT was
computed exactly using the Hungarian method [22].
While the Hungarian method is usually employed
to compute the maximum weight matching (3), it
naturally computes the whole sequence of maximum
weighted matchings (5) we are interested in.

4 ALGORITHM

In this section we first briefly present the exact
approach to the solution of the fundamental graph
problem of CVT (5) employed in [7]. We then use
this description of the exact method to motivate our
approximation algorithm in Section 4.2. To enable a
good reproducibility of our results we give a detailed
description of our algorithm including pseudo code
in Section 4.3. We conclude this section with some
comments and details on the parallelization of this
algorithm in Section 4.4.

Due to the structure of the considered graphs the
number of links m is bounded by the number of nodes
n, i.e. O(n) = O(m). When discussing the complexity
of the employed algorithms we will implicitly make
use of this fact.

4.1 Exact Method

The following presentation of the Hungarian method
[26] closely follows [22]. The basic idea is to start with
V0 and then to iteratively compute the sequence (4).
In each iteration the augmenting path of maximum
weight is computed. An augmenting path of a match-
ing Vj is a path in the graph whose start and end
nodes are not covered by the matching and whose
links alternate between Vj and its complement. The
weight of an augmenting path p is defined as the
alternating sum

∑|p|−1
�=0 (−1)� ω(p�) of the weights of

its links p�. Given an augmenting path p of maximum
weight we can augment the matching Vj to get Vj+1

by computing the symmetric difference 	 of Vj and
p. This will result in Vj+1, see [22] for a proof. For
an illustration of a single iteration of this method we
refer to Figure 4.

The maximum weight augmenting path of a
bipartite graph G = (S, L) with a matching M can
be found by solving a shortest path problem on a
derived graph as follows. Let U and W denote a
bipartition of the graph G = (S, L), i.e. S = U ∪̇W and
L(U) = L(W) = ∅. Further, let DM = (S, �L) denote
the directed graph with link weights �ω obtained from
G and M by orienting each link � ∈ M from W to
U with weight �ω(�) := ω(�), and orienting each link
� ∈ L \M from U to W with weight �ω(�) := −ω(�).
See Lines 8 - 15 of Algorithm 4 for pseudo code of
this construction. The augmenting path of maximum
weight in M is now given as the shortest path in DM

0 0

0

0

1

2

1

10 0

0

0

1

2

1

1 0 0

0

0

1

2

1

1

Fig. 4. Illustration of a single iteration of the exact
method. Given the heaviest matching with two links
(left) its heaviest augmenting path (middle) is com-
puted. We augment the matching along this path to get
the heaviest matching with three links (right).

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

from the set of nodes UM := U \ S(M) to the set of
nodes WM := W \ S(M), where S(M) denotes the
nodes of S that are covered by M .

Note that the sets UM and WM are precisely the
critical points of the combinatorial vector field given
by the matching M . From a topological point of view
one could therefore say that the Hungarian method
iteratively simplifies the vector field by canceling
pairs of critical points.

One can easily see that DM contains no circle
C with negative weight because of the maximality
property of the computed matchings (4). One can
therefore employ the Bellman-Ford algorithm [22] to
find the shortest path. This leads to a total runtime
of O(n3) for the fundamental graph problem of
CVT (5). One can also employ Dijkstra’s algorithm
(even though the graph contains negative weights)
by constructing a graph with nonnegative weights
with the same shortest path from UM to WM . To
do this efficiently, one updates a node potential in
each iteration, which leads to an overall runtime
of O(n2 log n) for (5). This is the method that was
employed in [7].

Note that the weight of the maximum weight aug-
menting path decreases as we iteratively compute (5),
see [22]. In the following approximation algorithm we
make sure that this monotonic behavior is preserved.

4.2 Approximation Method

The exact algorithm described above has a
computational complexity of O(n2 log n), as it
needs to solve n shortest path problems with
positive weights. To reduce this rather large runtime
we propose to approximate the exact solution by
augmenting the matching along all shortest paths
computed when we solve the shortest path problem.

3

3

4 -1

-2

Fig. 5. Comparison of algorithms for (5). A simple edge
weighted graph illustrates the differences between the
presented algorithms. The order of augmenting paths
taken by the exact algorithm is (blue, red, green) with
corresponding weights (4, 2, -1). The approximate al-
gorithm without the corrector phase takes (blue, green,
red) with corresponding weights (4, -1, 2). The full
Predictor-Corrector algorithm works as follows: (blue,
green, undo green, red, green) resulting in the mono-
tone sequence of augmenting path weights (4, 2, -1).

As demonstrated in Section 5.4 this leads to a
significantly reduced overall runtime. For more
details on the algorithmic realization of this idea we
refer to Section 4.3 and the pseudo code given in
Algorithm 2. We call this step of our algorithm the
Predictor phase.

If we continued in this fashion we would generate
an approximation of (5) without the monotonic behav-
ior mentioned at the end of Section 4.1. In practice this
may result in a bad approximation of the exact solu-
tion (see Figure 6, bottom-left). We therefore maintain
the monotonicity of the exact solution which leads to
a good approximation. To achieve this, we apply a
roll-back operation to the matching sequence which
guarantees the monotonic behavior as follows. After
each Predictor phase (see above) of our algorithm, we
compute the weight of the heaviest augmenting path
of the current matching Vj . If this weight is smaller
than the weight of the augmenting path that led to Vj

we can continue with the Predictor phase. Otherwise
we need to find a matching V�, � < j where this
property is fulfilled.

The algorithmic realization of this idea is described
in Section 4.3 and pseudo code is given in Algorithm
3. For future reference we call this step of our
algorithm the Corrector phase.

For the overall combinatorial Predictor-Corrector
algorithm that produces a monotone approximation
of (5) we refer to the pseudo code shown in Algorithm
1. A simple edge weighted graph is used in Figure 5
to demonstrate our Predictor-Corrector algorithm.

Note that the monotonicity property of our ap-
proximation is necessary to maintain the Persistency
property of CVT. If we deal with a gradient vector
field, then the critical points should be canceled in
an order determined by the difference of their scalar
values. The exact algorithm always cancels the pair
of connected critical points with the smallest scalar
difference. Our monotony preserving approximation
algorithm guarantees that the scalar difference of
canceled pairs always increases as we simplify the
topological skeleton. As can be seen in Figure 6, this
property is not only necessary to maintain Persistency
but it also seems to be sufficient in practice.

4.3 Implementational Details

We now proceed by giving a detailed and accurate de-
scription of our approximation algorithm for (5) moti-
vated in Section 4.2. To ensure a good reproducibility
of our results this part will be quite technical. The
main algorithm is given in Algorithm 1. The input of
this algorithm is the link weighted simplicial graph
G = (U ∪̇W, L, ω), where U ∪̇W denotes a bipartition
of the nodes S of the graph. For a detailed description
of this input data we refer to Section 3.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

The output of Algorithm 1 consists of an approxi-
mation of the heaviest maximum cardinality matching
Vkn and an array of maximum weight augmenting
paths P . Vkn and P enable us to efficiently reconstruct
all matchings in the sequence (5). This is due to the
fact the last path stored in P is an alternating path
in Vkn whose endpoints are both matched. We can
therefore reconstruct Vkn−1 by taking the symmetric
difference 	 of Vkn with the last path stored in
P . This operation can be interpreted as an inverse
augmentation of the matching. Storing the sequence
(5) in this fashion is much more efficient than storing
the individual matchings. The size of an augmenting
path is in O(

√
n) for our type of graphs (they are

typically not space filling curves) while the size of
a single matching is in O(n).

Algorithm 1 Predictor-Corrector algorithm for (5)
Input: G
Output: Vkn , P

1: M ← ∅
2: P ← ∅
3: loop
4: (isFinished, M, P) ← Predict(G, M, P)
5: if isFinished = false then
6: (M, P) ← Correct(G, M, P)
7: else
8: Vkn ← M
9: return (Vkn , P)

We now describe the Predictor phase (Line 4 of
Algorithm 1). The pseudo code for this procedure
is given in Algorithm 2. Line 1 calls Algorithm 4
to compute for each node the heaviest augmenting
path ending in it. The paths are stored implicitly
via the node attribute .predLink, while the weight of
the augmenting path is stored in the node attribute
.distance. For a detailed description of Algorithm 4 see
below. Line 2 computes the subset A of the nodes of
partition W that are not covered by the matching and
whose computed distance is finite. Line 8 extracts the
augmenting path p that starts in the last element of A
by following the node attribute .predLink through the
graph and then removes the last element of A. Lines
9-12 check if p is still a valid augmenting path in
the graph (the first augmenting path is always valid
but may invalidate subsequent paths), augment the
matching M along p by computing their symmetric
difference 	 (see Figure 4) and append p to the list
of augmenting paths P.

The Corrector phase (Line 6 of Algorithm 1) is
similar to the Predictor phase described above. Its
pseudo code is given in Algorithm 3. The procedure
weight called in Lines 6,7 and 10 computes the weight
of a given augmenting path, that is, the alternating

Algorithm 2 Predictor phase
Input: G, M, P
Output: isFinished, M, P

1: (S.distance, S.predLink) ← BellmannFord(G, M)
2: A ← {s ∈W \ S(M): s.distance <∞}
3: A ← sortByDistance(A)
4: if A = ∅ then
5: return (true, M, P)
6: else
7: while A
= ∅ do
8: p ← getAugmentingPath(S, A.pop())
9: if isValidAugmentingPath(M, p) then

10: M ← M 	 p
11: P.push(p)
12: return (false, M, P)

sum of link weights.

Algorithm 3 Corrector phase
Input: G, M, P
Output: M, P

1: loop
2: (S.distance, S.predLink)← BellmannFord(G, M)
3: A ← {s ∈W \ S(M): s.distance <∞}
4: A ← sortByDistance(A)
5: p ← getAugmentingPath(S, A.top())
6: barrier ← weight(G, p)
7: if barrier ≤ weight(G, P.top()) then
8: return (M, P)
9: else

10: while barrier > weight(G, P.top()) do
11: M ← M 	 P.pop()

Almost all computational time of the overall ap-
proximation algorithm is spent in Algorithm 4. We
therefore present its pseudo code and some details on
the application specific changes we have introduced
compared to the standard Bellman-Ford shortest path
algorithm. The input of Algorithm 4 consists of the
link weighted simplicial graph G = (U∪̇W, L, ω),
the current matching M . The output consists of the
weight of the heaviest augmenting path for each node
in the graph stored in .distance, and the respective
augmenting paths stored implicitly in .predLink.

Lines 1 - 16 initialize all variables so that the main
Bellman-Ford loop computes the output described
above. Note that Lines 9 - 15 correspond to the
construction of the directed graph DM described in
Section 4.1. Lines 17 - 28 are a variant of Bellman-
Ford optimized for the particular class of graphs
we deal with, and modified to support an efficient
parallelization, see Section 4.4. Instead of the while
loop with an abort criterion one typically iterates
Lines 22 - 25 n times. As the longest shortest path
in our class of graphs is in O(

√
n) it is very beneficial

to check whether we can abort this loop early. This is

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

the purpose of Lines 16 - 18 and 28. Since the graph
is not dense, only a small subset of nodes have to be
considered in each iteration, which is achieved by the
Lines 3, 20, 21 and 27.

Algorithm 4 Bellman-Ford matching variant
Input: G, M
Output: S.distance, S.predLink

1: for all s ∈ S do
2: s.predLink ← nil
3: isActive[s] ← true
4: if s ∈ U \ S(M) then
5: s.distance ← 0
6: else
7: s.distance ← ∞
8: �L← ∅
9: for all � = {u, w} ∈ L, u ∈ U, w ∈ W do

10: if � ∈M then
11: �L← �L ∪ (u, w)
12: �ω(�)← ω(�)
13: else
14: �L← �L ∪ (w, u)
15: �ω(�)← −ω(�)
16: abort ← false
17: while abort = false do
18: abort ← true
19: for all s ∈ S do
20: if isActive[s] = true then
21: isActive[s] ← false
22: for all � = (u, s) ∈ �L do
23: if s.distance > u.distance + �ω(�) then
24: s.distance ← u.distance + �ω(�)
25: s.predLink ← �
26: for all � = (s, w) ∈ �L do
27: isActive[w] ← true
28: abort ← false

4.4 Parallelization

As practically all computational time of Algorithm 1
is spent in the Bellman-Ford algorithm (Lines 16-28
of Algorithm 4), its efficiency is critical to the overall
runtime. In [27] it is shown that an implementation of
this shortest path problem using CUDA can result in a
great performance increase. Unfortunately we cannot
directly make use of this parallel approach to Bellman-
Ford, as we need to know not only the distances,
but also the shortest paths themselves in our applica-
tion. Including the computation of the shortest paths
via the variable .predLink in the algorithm presented
in [27] results in a race condition that leads to invalid
results.

We therefore need to formulate Bellman-Ford in a
parallel fashion such that there are no race conditions.
This can be achieved by iterating over the incoming
edges (Line 22 of Algorithm 4) for each node of the
graph instead of its outgoing edges as in [27]. We can

then parallelize the loop in Line 19 of Algorithm 4 as
the write accesses are exclusive for each thread (the
Boolean array isActive and the Boolean variable abort
may be written to concurrently but this does not pose
a problem).

5 RESULTS

5.1 Approximation Quality

To determine the quality of our approximation algo-
rithm we applied it to a synthetic data set shown in
Figure 6. The data set was produced by sampling the
analytic function f : [−1, 1]2 → R

f(x, y) = sin(10 x) sin(10 y) e−3 (x2+y2) (6)

on a uniform triangulation with 16k vertices, adding
uniform noise of the range [−0.05, 0.05] to the sub
domain [0, 1] × [−1, 1] and taking the gradient. Note
that the spatially varying amount of noise provides a
special challenge for the topological analysis. Figure 6
shows a visualization of this triangulated vector field
as a surface line-integral-convolution (LIC) using
the scalar value of f as the z-coordinate. We then
solved (5) for this data set using the exact algorithm
described in Section 4.1 and our new predictor-
corrector algorithm described in Section 4.2. To
evaluate the importance of the corrector phase, we
also computed (5) using only the predictor phase. The
63 most important critical points, i.e. the critical points
of Vkn−31, are depicted for each algorithm in Figure 6.

The result of our predictor-corrector approxima-
tion algorithm (top-right) is very similar to the exact
result (top-left). The predictor-only result (bottom-
left) however is quite different from the exact result.
This bad approximation behavior of the predictor-
only algorithm can also be seen in the weight of the
cancellations (see Section 3.2 for a definition) depicted
in Figure 6, bottom-right. The x-axis represents the
pair cancellations, while the y-axis shows the weight
of the cancellations. The proposed predictor-corrector
algorithm (blue curve) closely follows the exact algo-
rithm (red curve) and is monotonically decreasing. In
contrast, the predictor-only algorithm (green curve) is
quite different from the exact algorithm and does not
preserve the monotonic behavior of the exact solution.

5.2 Application

To demonstrate the usefulness of fast CVT we
applied our algorithm to a real-world data set from
climate research. This data set is a short subset
of the IPCC AR4 climate projections, which were
carried out at DKRZ by the Max-Planck-Institute
for Meteorology with the coupled atmosphere-ocean
model ECHAM5/MPI-OM. We have used the 10
meter wind components depicted by a surface LIC
representation in Figure 8 using the pressure for the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

2680 2700 2720 2740 2760
−10

0

−10
−1

−10
−2

Cancellations
W

ei
gh

t
of

C
an

ce
lla

ti
on

without corrector phase
with corrector phase
exact

Fig. 6. Approximation vs. exact method. A synthetic data set, described in Section 5.1, is analyzed using the
exact method (top-left), the novel predictor-corrector approximation algorithm (top-right), and the predictor-only
variant (bottom-left). The 63 most dominant critical points are shown as blue (sinks), yellow (saddles), and red
(sources) balls. The weights of the last cancellations are shown for the different algorithms in a semi-logarithmic
plot (bottom-right).

color values. We sampled this data set on a simplicial
graph with about 2.5 million nodes and computed (5)
with our combinatorial predictor-corrector algorithm.
The runtime using a CUDA implementation of our
algorithm was 4 minutes. The estimated runtime
using the exact algorithm described in [7] is about 6
weeks.

The full set of critical points of the initial combi-
natorial vector field Vk0 without any simplification is
shown in Figure 7. The critical points in this Figure
are scaled by their importance value given by the
difference of the matching weights ω(Vj) − ω(Vj+1),
see Section 3.2. Note that larger critical points corre-
spond to strong pressure systems, even though the
pressure values were not employed in the calculation
of (5). This indicates the physical relevance of the
persistence-like important measure induced by (5) for
real-world vector field data.

5.3 Comparison

To compare the presented combinatorial approach
to vector field topology with a continuous one [1],
we analyzed the climate data set described above
with both approaches. To compare the hierarchy of
combinatorial vector fields to the single continuous

extraction result, we selected the combinatorial
vector field with the same number of critical points
as the continuous extraction result. Both sets of
critical points are depicted in Figure 8, the critical
points extracted by the continuous method shown
as black balls, the critical points computed by the
combinatorial algorithm as white balls. Note that
Figure 7 only seems to contain fewer critical points
as they are scaled by their importance resulting in
critical points that are smaller than a pixel.

As can be seen in Figure 8, most critical points
of both methods coincide. The critical points found
by the continuous method, that are not included in
the combinatorial result, all appear in flat regions of
the vector field, i.e. regions where the magnitude is
close to zero. They are therefore not stable w.r.t. to
perturbations of the data and may be considered as
noise artifacts. Also, they may strongly depend on
the chosen interpolation.

To describe the differences of our simplification
strategy with the existing continuous extraction algo-
rithms we can make use of the result shown in Fig-
ure 6. All existing simplification methods mentioned
in Section 2 do not make use of the magnitude of
the vector field. Therefore the peaks in the center of

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

Fig. 7. Importance measure illustration. The 10 meter wind components form a data set from climate research
are depicted as a surface LIC using the pressure for the color. The white balls show the critical points computed
by the combinatorial method. The size of the balls is determined by the persistence like importance measure
described in Section 3.2. Note that the pressure is only depicted here to illustrate the physical relevance of the
importance measure.

the data set would be given the same importance
as the small hill tops near the boundary of the data
set. In contrast, the presented combinatorial approach
takes the magnitude of the vector field into account,
which results in the simplification hierarchy shown in
Figure 3, right. The small hill tops near the boundary
of the data set are canceled at an early stage, while
the peaks in the center are canceled last.

5.4 Performance

To measure the performance advantage of our
algorithm over the exact algorithm we computed
(5) for the aneurysm data used in [7], the synthetic
data set described in Section 5.1, and four resolutions
of a real-world data set from climate research
described in Section 5.3 using the exact algorithm
described in Section 4.1 and our approximation
algorithm. The timings for an Intel Core 2 Duo 3
GHz CPU with a Nvidia Geforce GTX 260 Core 216

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

Fig. 8. Comparison with continuous approach. The 10 meter wind components form a data set from climate
research are depicted as a surface LIC using the wind velocity for the color. The black balls show the critical
points of the vector field computed by a continuous method, while the white balls show an extraction result of the
presented combinatorial approach.

graphics card are given in Table 1. To determine
the parallel scalability we computed all data sets
with 1 thread, 2 threads, and on the GPU. The CPU
version was implemented with OpenMP, while the
GPU version was implemented in CUDA. Due to
the extremely long runtime of the exact method we
have not measured its runtime for the larger data sets.

In theory, Algorithm 1 could have a very large
computational complexity - even an upper bound for
the complexity is hard to derive due to the Predictor-

Corrector interplay. In practice however, our approx-
imation algorithm has an empirical complexity of
O(n3/2 log n) as can be seen in the 1×CPU column of
Table 1. The OpenMP implementation shows a near
perfect parallel scaling when going from one thread
to two threads. The speed up provided by the CUDA
implementation ranges between 1.5× and 30× - the
larger the data set the bigger the speed up.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

TABLE 1
Runtime analysis. (5) was computed for various data

sets with the exact algorithm used in [7] and our novel
algorithm using an OpenMP implementation (CPU)

and a CUDA implementation (GPU).

Name #nodes [7] 1×CPU 2×CPU GPU
Aneurysm 60k 2360s 12s 6s 4s
Synthetic 97k 6258s 31s 16s 8s
Climate 1 154k 15919s 55s 28s 10s
Climate 2 614k * 569s 284s 52s
Climate 3 2458k * 4982s 2619s 237s
Climate 4 9830k * 37602s 19014s 1220s

6 DISCUSSION

Our novel approximation algorithm for the
fundamental graph problem (5) of combinatorial
vector field topology alleviates the main weakness
of the computational framework presented in [7],
while it preserves the three main advantages of CVT
mentioned in Section 1.

As demonstrated in Section 5.1 the Persistency prop-
erty of CVT is maintained by our approximation
algorithm. Each point is given an importance value
that indicates its relevance in the overall data set as
discussed in Section 5.2. Since the approximation al-
gorithm results in a matching sequence, the resulting
topological skeletons are always consistent with the
topology of the domain. As our predictor-corrector
algorithm does not introduce any computational pa-
rameters, the Simplicity of CVT is also maintained.

The main weakness of CVT is its large
computational runtime. This weakness is alleviated
by our algorithm that reduces the runtime from
weeks to minutes for large data sets, see Table 1.
While this algorithm is only approximative in nature,
it produces results that are visually indistinguishable
from the exact solution of (5), see Section 5.1. The
algorithm is also capable of dealing with data sets
with varying amounts of noise, as can be seen in
Figure 6.

Overall, our algorithm significantly broadens the
applicability of combinatorial vector field topology.

Our predictor-corrector approximation algorithm
for (5) produces results that are very close to the
exact solution for the graphs we consider. We assume
that this is due to the preservation of the monotony
and the special structure of the simplicial graph and
the symmetries of the link weights (2). From a graph
theoretic point of view it would be interesting to
find out whether there are other classes of graphs
where our algorithm for (5) produces such good
results. A possible limitation for the application of
our algorithm to other graph problems is the fact
that the Bellman-Ford algorithm does not work when

the graph contains a circle with negative weight
[22]. In the exact method we can use Bellman-Ford
due to the maximality property (4) of the computed
matchings (see Section 4.1). In our approximate
setting this maximality property does not necessarily
hold and there may theoretically exist circles of
negative weight. However in all of our experiments
we have never encountered such a case. This may be
due to the monotonic behavior of our approximation
or the manifold structure of the graphs. A thorough
theoretical investigation of this empirical observation
may be worthwhile.

The main remaining problem of CVT that limits
its applicability is the geometric embedding of
the separatrices and periodic orbits as shown
and discussed in [7]. We hope that the presented
algorithm might be useful in alleviating this problem
as it allows for a quick evaluation of possible
remedies and enables the use of much finer meshes
to represent the input data.

The presented algorithm might enable an extension
of CVT to 3D - computing (5) for a 2D simplicial graph
with 10 million nodes takes only about 20 minutes,
see Table 1. It is however unclear how the complexity
of the algorithm would be affected by the different
structure of a 3D simplicial graph. Another problem
in 3D may be the rather large memory consumption
of the explicit representation of the simplicial graph
and the fact that the extraction of topological features
in 3D is a lot more involved.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous re-
viewers for their valuable comments that significantly
improved the quality of this paper. This work was
funded by the DFG Emmy-Noether research program.
Finally, we would like to thank David Günther, Jens
Kasten, Daniel Baum, and Tino Weinkauf for many
fruitful discussions on this topic.

REFERENCES

[1] T. Weinkauf, “Extraction of topological structures in 2d and
3d vector fields,” Ph.D. dissertation, University Magdeburg,
2008. [Online]. Available: http://www.zib.de/weinkauf/

[2] X. Tricoche, G. Scheuermann, H. Hagen, and S. Clauss, “Vector
and tensor field topology simplification on irregular grids,” in
VisSym ’01: Proceedings of the symposium on Data Visualization
2001, D. Ebert, J. M. Favre, and R. Peikert, Eds. Wien, Austria:
Springer-Verlag, May 28–30 2001, pp. 107–116.

[3] X. Tricoche, G. Scheuermann, and H. Hagen, “Continuous
topology simplification of planar vector fields,” in VIS ’01:
Proceedings of the conference on Visualization ’01. Washington,
DC, USA: IEEE Computer Society, 2001, pp. 159–166.

[4] T. Weinkauf, H. Theisel, K. Shi, H.-C. Hege, and H.-P. Seidel,
“Extracting higher order critical points and topological simpli-
fication of 3D vector fields,” in Proc. IEEE Visualization 2005,
Minneapolis, U.S.A., October 2005, pp. 559–566.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

[5] T. Klein and T. Ertl, “Scale-space tracking of critical points
in 3d vector fields,” in Topology-based Methods in Visualization,
ser. Mathematics and Visualization, H. H. Helwig Hauser and
H. Theisel, Eds. Springer Berlin Heidelberg, May 2007, pp.
35–49.

[6] G. Chen, K. Mischaikow, R. Laramee, P. Pilarczyk, and
E. Zhang, “Vector field editing and periodic orbit extraction
using morse decomposition,” IEEE Transactions in Visualization
and Computer Graphics, vol. 13, pp. 769–785, 2007.

[7] J. Reininghaus and I. Hotz, “Combinatorial 2d vector field
topology extraction and simplification,” in TopoInVis ’09, sub-
mitted for publication and presented 2009.

[8] H. Edelsbrunner, D. Letscher, and A. Zomorodian, “Topolog-
ical persistence and simplification,” Discrete Comput. Geom.,
vol. 28, pp. 511–533, 2002.

[9] H. Edelsbrunner and J. Harer, “Persistent homology — a
survey,” in Surveys on Discrete and Computational Geometry:
Twenty Years Later, J. E. Goodman, J. Pach, and R. Pollack, Eds.
AMS Bookstore, 2008, vol. 458, pp. 257–282.

[10] J. Helman and L. Hesselink, “Representation and display of
vector field topology in fluid flow data sets,” Computer, vol. 22,
no. 8, pp. 27–36, Aug. 1989.

[11] T. Wischgoll and G. Scheuermann, “Detection and visualiza-
tion of closed streamlines in planar flows,” IEEE Transactions
on Visualization and Computer Graphics, vol. 7, no. 2, pp. 165–
172, 2001.

[12] H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel, “Grid-
independent detection of closed stream lines in 2d vector
fields,” in Proceedings of the VMV Conference 2004, Stanford,
USA, November 2004, p. 665.

[13] R. S. Laramee, H. Hauser, L. Zhao, and F. H. Post, “Topology-
based flow visualization, the state of the art,” in Topology-based
Methods in Visualization, ser. Mathematics and Visualization,
H. H. Helwig Hauser and H. Theisel, Eds. Springer Berlin
Heidelberg, May 2007, pp. 1–19.

[14] H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci,
“Morse-smale complexes for piecewise linear 3-manifolds,”
in SCG ’03: Proceedings of the nineteenth annual symposium on
Computational geometry. New York, NY, USA: ACM, 2003, pp.
361–370.

[15] A. Gyulassy, V. Natarajan, V. Pascucci, P.-T. Bremer, and
B. Hamann, “A topological approach to simplification of three-
dimensional scalar functions,” IEEE Transactions on Visualiza-
tion and Computer Graphics, vol. 12, no. 4, pp. 474–484, 2006.

[16] A. Gyulassy, “Combinatorial construction of morse-smale
complexes for data analysis and visualization.” Ph.D. disser-
tation, University of California, Davis, 2008.

[17] T. Lewiner, H. Lopes, and G. Tavares, “Applications of for-
man’s discrete morse theory to topology visualization and
mesh compression,” IEEE Transactions on Visualization and
Computer Graphics, vol. 10, no. 5, pp. 499–508, 2004.

[18] R. Forman, “A user’s guide to discrete morse theory,”
in Proceedings of the 2001 Internat. Conf. on Formal Power
Series and Algebraic Combinatorics, ser. Advances in Applied
Mathematics, 2001. [Online]. Available: citeseer.ist.psu.edu/
forman01users.html

[19] T. Lewiner, “Geometric discrete Morse complexes,” Ph.D.
dissertation, Department of Mathematics, PUC-Rio, 2005,
advised by Hlio Lopes and Geovan Tavares. [Online].
Available: http://www.matmidia.mat.puc-rio.br/∼tomlew/
phd thesis puc uk.pdf

[20] R. Forman, “Morse theory for cell complexes,” Advances in
Mathematics, vol. 134, pp. 90–145, 1998.

[21] ——, “Combinatorial vector fields and dynamical systems,”
Mathematische Zeitschrift, vol. 228, pp. 629–681, 1998.

[22] A. Schrijver, Combinatorial Optimization, R. Graham, B. Korte,
L. Lovasz, A. Widgerson, and G. Ziegler, Eds. Springer, 2003.

[23] S. Hougardy and D. Drake, “Approximation algorithms for the
weighted matching problem,” in Oberwolfach Report 28, 2004.

[24] A. Hatcher, Algebraic Topology. Cambridge, U.K.:
Cambridge University Press, 2002, available at
http://www.math.cornell.edu/∼hatcher/AT/ATpage.html.

[25] J. Reininghaus, D. Günther, I. Hotz, S. Prohaska, and H.-C.
Hege, “A computational framework for data analysis using
discrete morse theory,” in 3rd Int. Congress on Mathematical
Software - ICMS 2010,, Kobe, Japan, Sept. 13 - 15, 2010, accepted
for publication.

[26] H. Kuhn, “The hungarian method for the assignment prob-
lem,” Naval Research Logistics Quarterly, vol. 2, pp. 83–97, 1955.

[27] P. Harish and P. Narayanan, “Accelerating large graph algo-
rithms on the gpu using cuda,” in Proc of IEEE International
Conference on High Performance Computing, 2007.

Jan Reininghaus Jan Reininghaus studied
mathematics with a focus on numerical anal-
ysis at the Humboldt University of Berlin,
Germany. He received the M.S. degree in
Mathematics in 2007. He is a main author
of OpenFFW, an open source finite element
framework written in Matlab.

Christian Löewen Christian Löewen studied
computer science with focus on hardware
oriented programming at the University of ap-
plied science, Iserlohn, Germany. During his
employment as a student research assistant
at the Scientific Visualization department at
the Zuse Institute in Berlin he was involved in
the development process of the CVT frame-
work. The focus of his work was the parallel
formulation of computationally intensive al-
gorithms. He wrote his diploma thesis on the

implementation and optimization of these algorithms for the CUDA
framework. In 2009 he received his diploma(UAS) and now works as
a software developer in Aachen, Germany.

Ingrid Hotz Ingrid Hotz received the M.S. de-
gree in theoretical Physics from the Ludwig
Maximilian University in Munich Germany
and the PhD degree from the Computer Sci-
ence Department at the University of Kaiser-
slautern, Germany. During 2003 – 2006 she
worked as a postdoctoral researcher at the
Institute for Data Analysis and Visualization
(IDAV) at the University of California. Cur-
rently she is the leader of a junior research
group at the Zuse Institute in Berlin Germany.

Her research interests are in the area of data analysis and scientific
visualization with focus on tensor and vector fields.

