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Abstract—Creating high-quality quad meshes from triangulated surfaces is a highly non trivial task that necessitates consideration of
various application specific metrics of quality. In our work, we follow the premise that automatic reconstruction techniques may not generate
outputs meeting all the subjective quality expectations of the user. Instead, we put the user at the center of the process by providing a
flexible, interactive approach to quadrangulation design. By combining scalar field topology and combinatorial connectivity techniques, we
present a new framework, following a coarse to fine design philosophy, which allows for explicit control of the subjective quality criteria on
the output quad mesh, at interactive rates. Our quadrangulation framework uses the new notion of Reeb atlas editing, to define with a small
amount of interactions a coarse quadrangulation of the model, capturing the main features of the shape, with user prescribed extraordinary
vertices and alignment. Fine grain tuning is easily achieved with the notion of connectivity texturing, which allows for additional extraordinary
vertices specification and explicit feature alignment, to capture the high-frequency geometries. Experiments demonstrate the interactivity
and flexibility of our approach, as well as its ability to generate quad meshes of arbitrary resolution with high quality statistics, while meeting
the user’s own subjective requirements.

Index Terms—Quadrangulation, Reeb graph, Connectivity operators.
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1 INTRODUCTION

The generation of quad meshes from triangle meshes is a
challenging task that requires the simultaneous management
of many objective and subjective quality criteria, such as
feature alignment, orthogonality, regularity, and adaptive
sampling. Automatic optimization of multiple criteria is
difficult, where global and local constraints may contradict
each other. For instance, enforcing local feature alignment
may induce many vertices with non-ideal valences (called
extraordinary vertices), which affects the regularity of the
mesh in a global way. Thus, the notion of an ideal quad
mesh is application dependent but also subjective.

User assisted schemes overcome the difficulties of auto-
mated decisions by providing the user with the ability
to influence the importance of the quality criteria and
related constraints. Starting with the pioneering work of
Krishnamurthy and Levoy [24], there has been substantial
work in this area, for instance by Tarini et al. [40] and Tong
et al. [44]. We design a user-centric approach that offers
exhaustive capabilities and comprehensive control during
quadrangulation design. This work targets knowledgable
users from the diverse application domains of quadrilat-
eral meshes, otherwise frustrated by inappropriate design
decisions made by automated techniques. However, most
of existing semi-automatic techniques try to approximate
the user’s constraints through an optimization process [21],
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[6], [36], which may fail in precisely reproducing the exact
configuration the user had in mind (inaccurate approxima-
tion of feature corners or misalignment of the extraordinary
vertices). Moreover, they do not enable tools dealing with
global and local constraints simultaneously. Also they often
delegate tasks to the user not directly related to quad
mesh design, such as the specification of paramaterization
conditions or the selection of eigenfunctions. Finally, pre-
vious work has not been specifically designed to develop
editing operations at interactive rates, a necessary feature
for iterative artistic design.

We address these challenges, proposing a new quadrangu-
lation framework that supports an explicit global and local
control during the meshing process. In addition to design
and editing at interactive rates, our framework provides
flexibility by enabling the user to relocate extraordinary
vertices as well as to modify mesh alignment, orientation
and connectivity. These tasks are achieved through the new
concepts of the Reeb atlas and Connectivity textures.

Contributions We reduce the challenges of quad mesh
construction to that of topology aware scalar field design,
while maintaining flexible control of the output mesh, at
interactive rates. An itemized list of our main contributions:

• Flexible and interactive quadrangulation with ex-
plicit and robust control of extraordinary vertices and
mesh alignment, experiencing response times of edit-
ing operations under half a second for models with up
to 400,000 triangles.

• Local and global design flexibility, control of the
location, valence, alignment of extraordinary vertices
and of the orientation of the quads, at both a global
and local level.

• Topology aware scalar field design, a novel tech-
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Fig. 1. For an input polygonal model (a), our interactive quadrangulation framework is driven by a user-defined scalar field
(b), that guides a Reeb atlas segmentation of the model into a coarse quadrangulation capturing the dominant features of
the shape (c) and allows control of the extraordinary vertices. Since the charts of the Reeb atlas have a guaranteed generic
topology, they can be efficiently parameterized to the unit square (d). Designing connectivity textures of the unit square (e)
enables an easy yet flexible quad-only meshing of the charts, providing a fine-grain control for the explicit capture of the
high-frequency geometric details, while maintaining interactive rates of editing operations.

nique that allows the explicit control of each contour
of the field, to better capture the model’s geometry and
to design fractional critical contours, while maintaing
a consistent field topology.

• Reeb atlas parameterization, by exploiting the topo-
logical guarantees of a Reeb graph segmentation cou-
pled with our topology aware scalar field design,
we derive a robust technique for parameterization,
topological and geometrical editing on surfaces of
arbitrary topology.

• Connectivity texturing, interactive local modifica-
tions to the output mesh with interaction tools similar
to on-surface texture painting.

2 RELATED WORK

The literature on quad mesh generation has experienced
considerable growth in the last few years. To better contex-
tualize our work, this discussion organizes existing tech-
niques as to the level of user control allowed within the
varying approaches. For a more comprehensive discussion
on the subject, we direct the reader to the surveys of Alliez
et al. [2] and Hormann et al. [20].

Automated techniques. Automated techniques aim at
building a quadrangulation avoiding user intervention alto-
gether. For example, connectivity-based approaches convert
polygons into quad elements with local operators that are
driven by advancing fronts [29], simplification to base
domains and regular refinement [10], merging adjacent
triangles [25], and the projections of voxel vertices [7]. The
global distribution of rectangular cells facilitates the con-
struction of quad-dominant connectivity [45]. Additionally,
numerical integration of orthogonal vector fields [22] and
principal curvature directions [1] is successful in automati-
cally constructing well shaped and aligned quad elements.
Global parameterization schemes [35], [3] and individual

parameterization of localized charts [5],[31] generate qual-
ity meshes dominated by regular vertices (valence 4). In
particular, in [31], an automatic parameterization algorithm
based on a Reeb graph decomposition is proposed. In com-
parison, our work, also using a Reeb graph decomposition,
provides a formalism to achieve interactive control over
the extraordinary vertex topological and geometrical layout.
While these techniques have varying success concerning
feature alignment, adaptive sampling, and element quality,
automated methods do not provide flexible mechanisms to
handle extraordinary vertices (valence other than 4) and
mesh alignment that may lead to undesirable artifacts in
the final mesh. As the concept of the ideal quad-mesh is
versatile, application dependent and subjective, flexibility
and control are of paramount importance.

User-driven techniques. We discuss user-driven techniques
as those methods that provide mechanisms to allow addi-
tional user annotations of the model offering some relative
control over extraordinary vertices and mesh alignment.
For example, quadrangulations from scalar fields allow
inputs including the specification of extrema vertices [14]
to control the placement of integer polar singularities that
correspond to extraordinary vertices in the final mesh, as
well as conductance terms to control mesh alignment [38].
Spectral quadrangulation requires the user to select the
appropriate eigenfunction [13], offering partial control over
the extraordinary vertices (where each extremum of the
eigenfunction has an unconstrained valence), and extended
user inputs to influence alignment and importance sampling
[21]. Direction field painting [6], [36] by the user influences
mesh alignment while trying to determine automatically
natural locations for extraordinary vertices. User-defined
coarse quad meshes drive the global structure of a final
quad representation, locally sampling each region with
regular grids [24], or setting up linear system constraints
for a global parameterization [44], or by adhering to spe-
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cific connectivity rules to develop highly regular polycube
representations [40], [26]. Existing user-driven techniques
permit increased control in the quad meshing process by
allowing specification of alignment and/or handling of
extraordinary vertices. However, the interactions may not
be straightforward (with additional inputs dictated by the
nature of the algorithm and not by that of the quad design
process itself) nor offer a full exact control over the final
mesh structure at interactive rates. In this work, we propose
a framework that encorporates multi-level control, local and
global, of the mesh structure and alignment, with interactive
response to editing operations.

3 FRAMEWORK OVERVIEW

Our quadrangulation framework is motivated
by several target features, including inter-
activity, local and global editing scopes
and design flexibility. These
goals are intended to sup-
port the user’s artistic pro-
cess by providing important
functionalities, allowing con-
stant modification of the de-
sign with interactive response
times for any editing oper-
ation. Our local and global
controls encourage a multi-
level design philosophy: first,
modifying the overall struc-
ture affecting the configu-
ration of the extraordinary
vertices, as well as coarse
mesh alignment; then pro-
viding small-scale handling
to capture the high-frequency
geometrical details of the surface. The remainder of this
section presents a framework overview, illustrated to the
right and in Fig. 1. We reduce the challenging problem of
quad mesh construction to that of topology aware scalar
field design to take advantage of the efficient nature of
scalar field computation. The global geometry and structure
of the quad mesh is inferred from a user-defined scalar field
constructed over the input triangular mesh (Fig. 1b). This
first stage of our framework uses an efficient linear system
solver based on fast Cholesky fatorization of the Laplace
operator. We build on this in a novel way with topological
constraints for explicit control of all critical level sets within
the scalar field (Sec. 6).

Despite its advantages of simplicity and speed, scalar field
based quadrangulation [14] can only model integer singu-
larities, corresponding to the critical points of the scalar
field and generating high-valence extraordinary vertices. In
order to overcome this issue, while exploiting the speed
and flexibility of scalar field design, we introduce the new
notion of Reeb atlases (Sec. 5). Given a scalar field defined
on the input mesh, we build the Reeb graph (Fig. 1c) to

guide a chart segmentation with local parameterizations of
the surface (Fig. 1d). Global editing operators of the Reeb
atlas modify the scalar field by manipulating the geometry
of structures derived from the Reeb graph.

After establishing a segmentation and local parameteriza-
tions that define a coarse quad mesh, we introduce the
notion of connectivity textures (Sec. 7) that provide the
user an easy and flexible localized control of the quad
mesh construction. In this stage, the user defines the local
connectivity as a texture living on top of the parameter-
ization of the chart of interest. This connectivity texture
abstraction increases the design flexibility by enabling any
meshing strategy, not only restricted to parameterization
contouring. Note that in our framework, the user still has
the possibility to come back to the global editing of the
atlas, even after local connectivity texturing. We describe
in detail in Sec. 6 in which configurations the connectivity
textures need to be reset. Finally, a stitching procedure
(Sec. 7.2) composes the connectivity textures to construct
the quad-only mesh (Fig. 1e). A typical usage scenario of
our interactive approach is presented in Sec. 8 along with
its performance evaluation.

4 INTERACTIVE SCALAR FIELD DESIGN

In our framework, the global control of the quad mesh
is dependent on the design of a piecewise linear (PL)
scalar field defined on the vertices of the input triangular
surface and linearly interpolated over the triangles. The
construction of this field drives global control mechanisms
over the extraordinary vertices and high-level orientation of
the mesh. To best fit our application, it is important for the
scalar field to be smooth, to contain a controlled number
of critical points, and to be computed and updated within
interactive rates. Harmonic fields become a natural choice
because their properties closely parallel these requirements.
A harmonic field defined on a manifold surface is a scalar
field f : S → R satisfying the differential equation,

∇2f = 0, (1)

subject to boundary conditions (Dirichlet in our context).
In the discrete case, where the surface is given by a
triangular mesh S, the Laplace-Beltrami operator ∇2 is
usually discretized using cotangent weights [33], which
leads to a symmetric and positive-definite sparse matrix
L =W −D whose elements wij of W are defined,

wij =

{
− 1

2 (cotαij + cotβij) if edge [i, j] ∈ S
0 otherwise (2)

where αij and βij are opposite angles to edge eij and D
is a diagonal matrix with elements dii given by row sums
of W .

We make use of the penalty method to impose constraints
to the linear system derived from equation (1). Consider C,
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the set of indices of constrained vertices, then the harmonic
scalar field is obtained by solving the linear system,

(L+ P )f = Pb, (3)

where P is a diagonal matrix with non-zero entries pii = α
only if i ∈ C and α is the penalty weight (α = 108 [46]).
Constrained values are set within the vector b,

bi =

{
si, i ∈ C
0, otherwise

(4)

where si is the desired scalar value assigned to vertex i.
The main advantage of using penalty method to impose
constraints is that supernodal schemes [12] can be used to
update (and downdate) the Cholesky fatorization, making it
possible to include and remove constraints efficiently [46].

The initial user input to our framework is the specification
of the extrema of an harmonic function. It has been
observed that in general the extrema are best placed at ex-
tremities of prominant features of the shape (Fig 2). From a
meshing perspective, these extrema will correspond to polar
extraordinary vertices (valence editing operations will be
discussed in Sec. 6). We provide the user with an automatic
initial suggestion aiming at detecting prominent features by
computing the integral of the geodesic distance function.
This function is approximated in practice as follows (see
[19] for further details). Geodesic neighborhoods (of a
pre-defined maximum radius r) are iteratively built with
Dijkstra’s algorithm by picking randomly unvisited source
vertices until the entire surface is covered. Then the integral
geodesic distance is approximated by summing for each
vertex its geodesic distance to each source vertex, weighted
by the area of the corresponding geodesic neighborhood
(for r, we used the original threshold suggested in [19]).
This function is invariant to rigid transformations and will
give a high value for the vertices which are the furthest
away from the geodesic barycenters of the surface. Thus,
we will identify the maxima of this function as prominent
features for the initial suggestion. In practice, we sort the
maxima by decreasing function value and add them to the
list of constrained vertices C if their geodesic distance to
previously selected constrained vertices is higher than r.
The list C = {(vi, hi)}Ni=0 is split into two subsets C0 and
C1 in accordance with the height function h, where hmin

and hmax are the respective minimum and maximum values
of h, then C0 = {vi | vi ∈ C and hi < 1

2 (hmin + hmax)}
and C1 = C − C0. We assign initial constraint values 0
and 1 to the vertices in C0 and C1 respectively (Eq. 4).
While the set of constrained vertices C is not dependent
on global rotations of the surface, the height function is.
We give the user the opportunity to re-oriente the shape if
needed to obtain a more appealing initial suggestion.

5 REEB ATLAS

In this section, we introduce the notion of Reeb atlas which
is our core abstraction for interactive quad-remeshing. We

Fig. 2. The harmonic scalar field f is drafted by the
user, modifying the automatically suggested extrema. Reeb
charts, constructed from the arcs of the Reeb graph, seg-
ment the model into multiple regions with known topology.

describe in the next section an important contribution of our
approach, the interactive editing capabilities of the Reeb
atlas, which allows the user to interactively control the
global extraordinary vertex layout of the output mesh.

Given a scalar field f over a manifold surface S, a straight-
forward quadrangulation strategy consists in computing a
parameterization of S, with U : S → [0, 1], whose level
sets align with those f , and V : S → [0, 1], whose level
sets align with the gradient of f . On the sphere with two
antipodal extrema, U and V respectively map to the latitude
and longitude coordinate systems, and contouring regularly
along both U and V constructs a quad dominant mesh
with nearly orthogonal edges. While this technique has
been shown to be simple and efficient [14], it is limited by
the fact it can only model integer singularities, generating
extraordinary vertices with high valence that correspond to
the critical points of f . To benefit from the simplicity and
speed of scalar field based quadrangulation, we extend this
methodology with added structural control by leveraging
topological structures inferred from the scalar field.

5.1 Morse Theory Background

For completeness, we briefly review Morse theory as well
as its extension to the piecewise-linear setting.
Let f : M → R be a smooth function on a manifold M.
For a given scalar w, the level set L(w) is defined as the
inverse image of w onto M through f , L(w) = f−1(w).
We call each connected component of L(w) a contour.
As w changes continuously in R, the points at which the
topology of a contour changes are called critical points [28]
and the corresponding function values are called critical
values. If all of the critical points of f are non-degenerate
and have distinct values, then f is a Morse function. For a
given critical point c, if it admits an open neighborhood
on M such that it is the unique critical point, then c
is called isolated. Morse functions counts finitely many
critical points and all of them are isolated.
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In the case of triangulated surfaces, the domain of f :
S → R is a manifold 2D simplicial complex. Within each
simplex of S, f is the linear interpolation of its values at
the vertices: f is called a piecewise-linear (PL) function.
The following operations on a simplicial complex are used
to identify critical points. The star of a simplex v is the
set of simplices that contain v as a face: St(v) = {σ ∈
S | v ≤ σ}, where v ≤ σ denotes that v is a face of σ.
The link Lk(v) of a simplex v is the set of simplices in
the closure of the star of v that are not also in its star:
Lk(v) = St(v) − St(v), where St denotes the closure of
the star. In PL functions, critical points can only occur
at vertices. The lower link of v is the subset of the link
containing only simplices with all their vertices lower in
function value than v: Lk−(v) = {σ ∈ Lk(v)| u ≤
σ → f(u) < f(v)}. Symmetrically, the upper link is
Lk+(v) = {σ ∈ Lk(v)| u ≤ σ → f(v) < f(u)}. A vertex
v in S is regular iff both Lk−(v) and Lk+(v) are simply
connected, otherwise v is a critical point of f . If Lk−(v)
is empty, v is a minimum. Symmetrically, if Lk+(v) is
empty, v is a maximum. Otherwise, if v is not regular, v is
a saddle. We call a critical contour a contour containing a
critical point. A sufficient condition for the above critical
point classification to succeed is that all the vertices of S
admit distinct values. If this is not case, we symbolically
perturbate f with Simulation of Simplicity [17], which will
also implicitly resolve non-isolated critical points.

5.2 Reeb Graph

Reeb Graphs are traditionally defined through an equiv-
alence relation [37]. In this discussion, we will use an
alternate, but equivalent, formalism [42] since it better
reflects the implemented data structure and it raises a
straightforward definition of the Reeb charts. Given a
smooth manifold M, a retraction is defined as a continuous
map such that the image is a subset of its domain M and the
restriction of the map to the image is the identity [18]. A
contour retraction of M under a Morse function f is defined
as a continuous map that retracts each contour (connected
component of a level set) of f to a single point (see
[42] for further details). By continuity, adjacent contours
are retracted to adjacent points and distinct contours are
retracted to distinct points. Then the Reeb graph R(f) is
the contour retract of M under f . It consists of arcs and
nodes, where branching only occurs at critical points of
f . The field f can be decomposed into f = ψ ◦ φ, where
φ : M→ R(f) is a contour retraction and ψ : R(f)→ R is
a continuous function that maps points in R(f) to the real
line R. Several algorithms have been proposed to compute
a Reeb graph from a piecewise-linear scalar field defined
on a triangular surface S [9], [30]. Our experiments showed
that the saddle contouring algorithm [32] presented the best
performances in our context. Its complexity depends on the
number of simplices in S and the number of saddles of
f . Typically the user designed scalar fields generate few
saddles, leading to virtually linear computation. Moreover,
our implementation explicitly stores the regular vertices of

Fig. 3. Our parameterization strategy maps the boundaries
of the Reeb chart (open annulus or open disc) to the unit
square by defining UV Dirichlet boundary conditions within
the Laplace system. Open annuli are cut into discs by a
streamline guided by the scalar field gradient.

f along the arcs of the Reeb graph. Although the Reeb
graph is defined for manifolds of arbitrary dimension (see
[4] for a survey), we restrict the remaining discussion to
closed 2-manifolds of arbitrary genus, denoted S (surfaces
with boundaries are discussed in Sec. 8.1).

Reeb chart. Given the contour retraction φ : M → R(f),
a Reeb chart Si is the preimage by φ of the interior of
an arc Ai of R(f) [43]. By construction, Reeb charts are
continuous pilings of closed 1-dimensional contours. Since
they are the preimage of the interior of arcs, Reeb charts
do not include critical contours and are thus open sets with
the topology of an open annulus (a connected genus zero
surface, with two boundary components excluded). Note
that a boundary component collapses to a point if an arc is
linked to an extremum. Because Reeb charts are constructed
from the regular contours of f , their definition does not
require f to be strictly Morse (i.e. degenerate saddles).
Given the segmentation of the surface into Reeb charts, the
Reeb atlas is defined as the union of the charts with respec-
tive local parameterizations. Because Reeb charts have a
controlled topology, they are robustly, easily and efficiently
parameterized with a generic strategy. The remainder of this
section discusses the parameterization of a Reeb chart.

5.3 Reeb Chart Parameterization

Each Reeb chart Si of S is built by duplicating the triangles
of S that fully map to the interior of the arc Ai via
φ. Boundary triangles, intersected by the critical contours
adjacent to Ai, are also inserted into Si, illustrated as grey
triangles in Fig. 2. In order to obtain smooth boundary
components for the charts, the boundary triangles are
shrunk such that their vertices being outside of the chart
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get snapped along the boundary critical contour (by sliding
them along an incoming edge crossing the contour).

A parameterization maps the open annulus Si to the unit
square by solving two harmonic functions with Dirichlet
boundary conditions (Fig. 3) using the solver presented in
Sec. 4. The field U : Si → [0, 1] is computed to align with
the level lines of f by constraining the boundary vertices of
Si, projected to the two critical contours, to either U = 0
or U = 1 (Fig. 3). The orthogonal field V : Si → [0, 1] is
computed by tracing a cutting streamline along the mesh
edges of Si guided by the gradient of U , turning the
annulus into a disc. The vertices of the cutting edges are
duplicated and assigned values, V = 0 and V = 1, to map
the boundary of Si to the unit square. Each Reeb chart
Si mapping through φ to an arc of R(f) adjacent to an
extremum of f (Fig. 3) are parameterized differently, in
the purpose of generating quad-only outputs (as explained
later in Sec. 6.3). The boundary triangles that neighbor
the extremum are included within Si so that Si has a
single boundary component and is homeomorphic to a disc.
The boundary vertices are segmented into four contiguous
polylines and assigned values mapping the boundary to
the unit square. This parameterization scheme splits polar
singularities into four fractional components (Sec. 6.3).

At this stage, the Reeb atlas represents a coarse quadran-
gulation of the surface. Each Reeb chart is equipped with
its own local parameterization to the unit square and may
be represented by a single quad in the coarse mesh. Note
that saddles of f correspond to extraordinary vertices.

6 GLOBAL EDITING OF THE REEB ATLAS

In the previous section, we introduced the Reeb atlas
abstraction. We now describe the interactive control capa-
bilities of this framework, with which the user will interact
in a feedback loop process. We propose a set of editing op-
erations to allow the user to control both the geometry and
the topology of the Reeb atlas. To ensure interactive times
in the design process, the Reeb atlas editing operations
are based on modifications of the underlying scalar field f
through fast updates provided by the supernodal schemes
of the penalization solver (Sec. 4). These functionalities
provide the user global control on the orientation of the final
mesh by editing the geometry of Reeb chart boundaries
as well as global control on the valence, location and
alignment of extraordinary vertices.

The Reeb chart boundaries are defined by critical contours
of f . While the relocation of minima and maxima is well
understood, consisting of removing the original constraint
and replacing it with a new one at a different location,
moving saddle contours requires a bit more machinery.
This section discusses the constraints we associate with the
saddle contours (Sec. 6.1) and, consequently, our ability to
control them (Sec. 6.2).

Fig. 4. Reorienting a saddle contour: the original levelset
curve (a) is modified through the critical contour widget
(b) where the mesh-plane intersection describes the new
contour geometry (c). Saddle triangles are constrained (d)
to ensure the scalar field respects the critical contours (e).

6.1 Enforcing the Geometry of Critical Contours

For each saddle contour, additional constraints are added
to the Laplace system at the vertices of saddle triangles
(triangles intersected by the critical contour) to ensure
that the scalar field levelsets respect the user designed
geometry. Assume that the user modified the geometry of
a saddle contour with a scalar value sc (Sec. 6.2) so as to
intersect the triangle t = {p0, p1, p2} on edges e0 = p0p1
and e2 = p2p0 (Fig. 4). The intersection points pin =
p0 + α0(p1 − p0) and pout = p2 + α1(p0 − p2) and scalar
values sin = s0+α0(s1−s0) and sout = s2+α1(s0−s2),
where s0, s1, s2 are associated with the vertices of t, assist
in the definition of vertex constraints. The vertex pi of t
is projected onto the segment pinpout yielding the point p′i
with a scalar value s′i. The scalar constraint assigned to pi
for t is s̃i = sc + (si − s′i). The final constraint of each
vertex is averaged with values of adjacent saddle triangles.
This novel constraint computation enables strict control of
the contour of f , aligning to the user’s designed polyline.
Introducing Dirichlet boundary conditions in this way might
generate unintended critical points in highly constrained
configurations. To remove this potential noise in f , we
use a combinatorial cleanup procedure. The extra critical
points are identified without ambiguity (not belonging to
any constraints) and removed from the Reeb graph [15].
To reflect the changes induced by the simplification within
the scalar field, we used the algorithm described in [16].
This procedure guarantees the topological correctness of
the designed scalar field.

Note that initially, and also after each editing operation, all
the saddle contours of f are constrained using the above
scheme (even if the contours are not displaced). Then,
the effects of the editing operations are localized to the
charts of interest. For instance, when adding an extrema
within a Reeb chart (Fig. 5, top), the level sets of f remain
unchanged in the other charts since the geometry and the f
value of their boundaries are enforced in the solve (see
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Fig. 5. Global impact of Reeb atlas editing operations.
Reeb charts whose triangle list changes after the operation
are transparent. Top: chart insertion and deletion (through
insertion and deletion of extrema). Middle: contour displace-
ment. Bottom: chart subdivision.

Fig. 5, top insets). Similarly, when displacing a saddle
contour at the boundary of a chart of interest, the other
boundaries remain in position and conserve their f value
(Fig. 5, middle). Then to guarantee that the saddle contour
displacement does not alter the topology of f , our interface
discards any interaction that generates a contour which is
not a closed loop, or that makes the contour overlap another
saddle contour or sweep an extremum. Finally, note that
after each editing operation, the Reeb graph is recomputed
globally. Then, the list of Reeb charts which need an update
of their individual triangle list is tracked based on the lists
of regular vertices of the arcs of the Reeb graph (Fig. 5).
From the user’s perspective, every time an extremum is
added to or removed from a chart of interest, the chart
needs a reset of its triangle list. Also, every time a chart
boundary is edited (including fractional singularity design,
cf. Sec. 6.3), the adjacent charts need an update of their
triangle lists.

6.2 Manipulating the Critical Contours

The modification of saddle curves is achieved via a 3-
dimensional critical contour widget (Fig. 4). This widget
consists of rotational handles that allow the user to orient
a cutting plane whose intersection with the surface defines
the new saddle curve geometry. Anchors can be defined on
the saddle curves to behave as endpoints for the widget,
localizing the effects of the manipulation. This widget
and its design interactions are further demonstrated in the
accompanying video. We further describe the use of this
widget for multiple important and novel controls in scalar
field design.

Aligning Multiple Saddles. When the scalar field f admits
a succession of nearby saddles (Fig. 6), it may be desireable
to align the associated critical contours. In effect, this

Fig. 6. Thin Reeb charts (left and top) result where multiple
saddles have nearly equivalent scalar values. Our global
editing operations support the geometric contol of the con-
tours, linking the saddle vertices and removing thin Reeb
charts (right and bottom).

functionality coarsens the Reeb atlas by removing thin Reeb
charts to align extraordinary vertices in the final quad mesh.
The atlas coarsening maintains the total number of saddle
vertices while decreasing the number of saddle contours,
yet the Reeb charts remain well defined.

Aligning multiple saddles (Fig. 6) is achieved interactively
by first deleting the critical contours to align. Next, the user
clicks on pairs of saddles to be connected with automated
mesh traversals (shortest paths) providing initial curve
segments. Then, the user can further re-orient them with
the critical contour widget (the aligned curves are then
constrained as discussed in Sec. 6.1).

Subdividing Reeb Charts. In addition to merging Reeb
charts, we support their splitting as well. Because the Reeb
chart is defined as a collection of contours, splitting a
chart into two can be achieved by flagging a particular
contour (i.e. clicking on a vertex, see Fig. 5, bottom) and
by construction each child chart maintains the topological
guarantees of the Reeb atlas segmentation. Reeb chart
splitting facilitates alignment of the scalar field, the charts’
parameterizations and consequently the final quad mesh, to
surface features. This functionality is demonstrated with the
L-shape (Fig. 13) and Moai (Fig. 14) models.

6.3 Fractional Singularities

In the following, we assume that the final quad mesh is
extracted by contouring the local chart parameterizations.
As such, we are able to offer a formalization linking scalar
field critical points and the extraordinary vertices of the
related quadrilateral mesh. We introduce a novel mecha-
nism for controlling the extraordinary vertices, managed
at a global level during the scalar field design, through
the new notion of fractional critical points (an extension
of concepts from direction field design [36] and surface
parameterization [35], [44] to scalar fields).

Fractional Polar Singularities. When a boundary compo-
nent of a Reeb chart is an extremum vertex, parameterizing
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Operation Add Chart Del Chart Move Bound. Add Bound. Saddle Align. Frac. Poles Frac. Saddles
Figure Fig. 5 (top) Fig. 5 (top) Fig. 5 (mid.) Fig. 5 (bot.) Fig. 6 Fig. 7 Fig. 8
Interaction Click Click Drag Click Clicks Clicks Clicks + Drag

TABLE 1
Summary list of the Reeb atlas editing operations.

Fig. 7. Fractional poles: a polar vertex (left) split into 2 half-
poles (val. 2, middle) and 4 quarter-poles (val. 3, right).

the chart with a cutting streamline (as an open annulus) gen-
erates a polar singularity that leads to triangular elements
around a high valence extraordinary vertex (Fig. 7, left). To
guarantee the generation of a quad-only output, we use the
notion of fractional singularity. In particular, our default
parameterization strategy for disc charts (Sec. 5.3) splits
a polar singularity into quarter poles, where the resulting
quad mesh containts 4 valence 3 vertices (Fig. 7, right).

An alternative proposed to the user is to split the polar
singularity into 2 half-poles, constraining a sequence of
mesh edges with constant min/max f values (0 or 1); then,
the chart is parameterized with a cutting streamline (Fig. 7,
middle). This configuration corresponds to the concept of
non-isolated critical points in the smooth setting. We use
Simulation of Simplicity (SoS) [17] in the PL setting to
maintain a consistent combinatorial representation of f .
The resulting quad mesh has 2 valence-2 extraordinary
vertices at the endpoints of the extremum segment.

Fractional Saddle Singularities. In the spirit of handling
fractional polar singularities, we design fractional saddle
singularities within the scalar field design. Saddle vertices
correspond to extraordinary vertices within the final quad
mesh (Fig. 8, left). We provide a set of atomic editing
operations that enable the user to redistribute easily the
high valency of saddles with the new notions of half- and
quarter-saddles. While there exists multiple possible com-
binations of adjacent Reeb chart parameterization configu-
rations, we abrieviate this discussion to the example shown
in Fig. 8. A non-degenerate saddle contour is a set of two
closed curves admitting exactly one common point. Half-
saddle splitting is supported by modifying the geometry of
the saddle contour to be described, for example, with two
closed curves linked by a middle segment that is aligned
to the edges of the mesh. The half-saddles are defined at
the intersection of the middle segment and the two closed
curves (Fig. 8, middle).

Due to our default parameterization method for discs,
splitting polar vertices into quarter-poles, the construction
of half-saddles can lead to the removal of pairs of extraor-
dinary vertices in the quad mesh. In particular, the singular-

Fig. 8. Fractional saddles: a saddle vertex (val. 8, left) split
into 2 half-saddles (val. 6, middle) and 4 quarter-saddles
(val. 5, right).

ities of min/split-saddle and merge-saddle/max Reeb charts
are removed. On the torus model, all singularities can be
classified as these types, resulting in a completely regular
quadrangulation (Fig. 9).

To design half-saddle configurations (Fig. 8, middle), the
user deletes the original saddle contours and vertex, then
initiates the tracing of two contours from manually chosen
vertices. The middle segment is automatically computed
as the shortest path defined along mesh edges between
the two points. User-defined half-saddle contours can be
geometrically edited via the critical contour widget to align
to surface features. The network of critical contours defin-
ing the half-saddle is assigned a single constraint isovalue.
Note, the middle segment relates to the notion of non-
isolated critical point in the smooth setting, handled in the
PL setting with SoS. Splitting a saddle reduces the valence
of the related vertex by redistributing it among the multiple,
created extraordinary vertices. The quarter-saddle configu-
ration (Fig. 8, right) further supports this observation, later
exemplified on the Blade model (Fig. 14). Quarter saddles
are designed by first deleting the original saddle contour
and vertex. Then the user clicks on a reference vertex to
extract its isocontour. Three other reference vertices are
selected along this isocontour and pairs of reference vertices
are connected through shortest path computations (Fig. 8,
right). Finally, an extremum is inserted at the location of
the original saddle to maintain a valid field topology. The
user can use the critical contour widget to further align the
contour (constrained as discussed in Sec. 6.1).

Fig. 9. The torus remeshed with fractional half-saddles
(right) does not contain any extraordinary vertices.
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Fig. 10. Connectivity texturing of a challenging geometry (multiple sharp features) on a purposely coarse segmentation.
For a given Reeb chart (left), global subdivisions reproduce meshing results from isocontouring (top). In contrast,
connectivity texturing maps user designed quadrangulations of the unit square to the parameterized chart (bottom) for
improved flexibility and control. Above, we illustrate snapshots of the design process over time (bottom): in this example,
the user triggered a few polychord insertions, followed by cube subdivisions to capture the feature corners at the top of the
shape, and finally subdivided the texture to obtain the desired sampling density.

7 LOCAL EDITING & CONNECTIVITY TEXTURES

To this point the user-defined scalar field guides a Reeb
atlas segmentation of the model, resulting in multiple
individually parameterized mesh regions. In practice, quad-
rangulation techniques based on parameterizations derive a
final quad mesh by uniformly contouring each parameter.
This gridded sampling approach generates all ideal valence
vertices internal to each segmented region; however, it lacks
flexibility in the local design of mesh connectivity. We
introduce connectivity textures that decouple the alignment
of the final mesh elements from the underlying parameteri-
zations to improve flexibility in the mesh design (Fig. 10).

Connectivity textures. Similar to texture images, a con-
nectivity texture is a user designed quadrangulation of the
unit square that is mapped to a Reeb chart region based on
its parameterization. This abstraction improves flexibility
within the design process by allowing the user to explicitly
insert additional extraordinary vertices and modify the ori-
entation of the quads. Additionally, internally representing
the quadrangulations within the plane, then projecting the
points onto the Reeb chart improves robustness and speed,
discussed throughout the remainder of this section.

Planar-based Projections. The vertices of a connectivity
texture are efficiently projected to the Reeb chart mesh
Si. We maintain a planar representation S ′i based on the
parameterization (Sec. 5.3) stored within a binary space
partitioning (BSP) tree. The BSP tree allows efficient
lookups while the mapping of Si to the unit square ensures
robustness. Given a quadrangulation Q of the unit square,
the connectivity texture is projected onto Si in O(mlog(n))
time, where m is the number of quad vertices and n is the
number of triangles in Si. The triangle t′ ∈ S ′i containing
a vertex v ∈ Q is found in O(log(n)) time by virtue of the
BSP tree. The projection of v to Si is obtained based on
its barycentric coordinates within t′, computed on t.

While interactions described in the following section are

performed in 3D-space, where the texture is mapped to
Si, the underlying computations are performed on the unit
square. The connectivity and vertex locations of the final
quad mesh are stored as a texture. With the described
projection methods, we are able to maintain interactive rates
and guarantee smoothly interpolating projections during
vertex movement and mesh subdivision operations.

7.1 Local User Interface

We support a collection of connectivity-based operators to
interactively design and edit the quad elements as desired
by the user’s meshing paradigm. Initially the connectivity
texture assigned to each Reeb chart region is the unit square
(Fig. 10). The user designs a quadrangulation for each re-
gion by applying refinement, coarsening and improvement
operations [23], [39], [11] to the quad elements.

Connectivity Operators. The user interacts with the con-
nectivity texture design by simply selecting an element (or
pairs of elements) for refinement and coarsening, illustrated
by the time lapse in Fig. 10 and showcased in the accompa-
nying video. We support global subdivision of the texture,
user selected edge subdivision that initiates a polychord
insertion, polychord deletion, cube-based subdivision for
polycube-like meshing [40], [26], quad-open and -close
operators, as well as quad-edge and vertex-edge flipping.
Meanwhile, we maintain a history stack to undo/redo the
specified operations. By inserting additional extraordinary
vertices, the mesh can be designed to precisely adapt
sample densities to complex geometry and better align with
mesh features as compared to isocontouring (Fig. 10).

Vertex Movement. Via connectivity textures, the ability
to locally modify the location of vertices of the final quad
mesh is straightforward and robust. In a comparable manner
to [34], the mouse movement is used to perturb the uv-
mapping of selected vertices. The vertex re-projection onto
the Reeb chart Si is efficiently computed, and the small
processing required to ensure that the reprojected point
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Fig. 11. A coarse base domain is extracted from an existing
quad-mesh and parameterized (middle). The face is locally
improved by connectivity texturing to better capture the
nose (right) with no impact on the rest of the mesh (insets).

moves in the same screen space direction as the mouse
is negligible, maintaining interactive rates. It is important
to note that vertex movement simultaneously executes local
relaxation to allow easy displacements of groups of vertices
in a single mouse move, while ensuring orthogonality of the
quads, identifying flags differentiate anchor vertices that
remain unaffected by the smoothing (shown in the video).

After editing the connectivity textures of the different
charts, the user still has the possibility to modify globally
the Reeb atlas. However, it implies a reset of the connectiv-
ity textures of the updated Reeb charts (Sec. 6.1). Finally,
note that connectivity texturing can be used in principle on
top of any quad base domain, as shown in figure 11 for the
purpose of localized interactive improvement.

7.2 Final Mesh Stitching

Because the quadrangulations are constructed individually
for each Reeb chart region, the final composition of the
mesh is handled with a post process stitching and localized
vertex relaxation. The stitching algorithm greedily merges
pairs of nearest boundary vertices. Two vertices, va and vb,
are merged if the distance between them, dab = |va − vb|,
is smaller than a ratio of the minimum distance to the
neighboring boundary vertices, d < αda and d < αdb (in
practice α = 0.25), where da = min(|vi − va|, |vj − va|)
and db = min(|vm − vb|, |vn − vb|). The vertices vi,j and
vm,n are the neighboring boundary vertices of va and vb
respectively. T-junctions may be present after the greedy
stitching algorithm exhausts the possible vertex mergers by
associated the non-merged vertices with nearby boundary
edges as demonstrated in Fig. 12. Similarly addressed in

Fig. 12. T-junctions are resolved by the stitching process:
inserting new quads where multiple T-junctions share a
common edge (a), or performing mesh surgery along the
path between two nearby triangles and inserting quads
along the cut (b).

Fig. 13. Remeshing examples on primitive shapes. Our
global and local approach is flexible, making it possible
to design different quad connectivities and extraordinary
vertex types over the same model.

geometry clipmaps [27] and rectangular multi-chart ge-
ometry images [8], we resolve such regions to develop a
watertight mesh. Where clipmaps insert zero-area triangles
and multi-chart geometry images use local remeshing of
boundary triangles, we must couple T-junctions to ensure
quad-only connectivity. Edge flips have been applied to
merge nearby zero-area triangles [41], but this causes a
twist in the mesh elements that negatively affects the
alignment of mesh edges. Instead, we implement a greedy
algorithm to resolve pairs of nearby zero-area triangles
by inserting new quads between them. First, multiple T-
junctions on a shared mesh edge are resolved by recursively
applying the illustrated template (Fig. 12), refining the
element whose edge the T-junctions share, such that any
mesh edge contains at most one T-junction. The T-junctions
then describe zero-area triangles on the mesh, and breadth-
first traversals compute the set of shortest paths between
mesh vertices belonging to pairs of these triangles. The
mesh is cut along the shortest of these candidate paths, and
new edges are inserted between the duplicated vertices to
form a quad-only connectivity (Fig. 12). The breadth-first
traversal and subsequent mesh surgery is repeated until all
pairs of triangles are removed from the model in a greedy
fashion. Given a closed manifold, it is guaranteed that there
will be an even number of T-junctions (equivalently thought
of as zero-area triangles). As such, it is possible to pair all
T-junctions by quadrangulating the region between them,
and construct a quad-only watertight mesh.

8 DISCUSSION

Typical usage scenario. As described in the accompanying
video, user interaction is required at two levels.

First, in the global view, the user places sparse segmentation
inputs (corresponding to extrema of f ) typically at the
extremity of prominent features if he/she is unsatisfied
with the automatic suggestion. The Reeb atlas is then
automatically completed while guaranteeing the generation
of an atlas made of charts with controlled topology. The
user may decompose further the atlas by the addition or
the subdivision of charts with click interactions. Also, a 3D
widget is provided to edit the alignment of the boundaries
of the chart, and consequently of their parameterization.
Finally, the intersection points of the chart boundaries
(corresponding to critical points of f ) will correspond to
extraordinary vertices in the final mesh. The user can edit
the valence and location of those extraordinary vertices
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Fig. 14. Examples of user designed quad meshes generated with our framework accompanied by quality statistics (vertex
count, extraordinary vertex count, max difference from the valence-4, the average mesh angle and scaled Jacobian).

with a set of curve editing operations applied on the chart
boundaries as demonstrated in the accompanying video.

Second, when the user is satisfied with the Reeb atlas
segmentation, local views of each Reeb chart are opened
to design connectivity textures via subdivisions, deletions
and element movements. Typically, our experiments showed
that connectivity texturing was often achieved through a
sequence of global subdivisions, possibly with intermediate
cube subdivisions (Fig. 10). Finally, an automated stitching
algorithm generates the final output mesh by composing the
connectivity textures.

Notice that although topology aware scalar field design is
a central technique in our approach, this aspect is totally
hidden to the user who does not have to be knowledgeable
about topology or scalar field design. The system inputs are
solely focused on the users’ quality criteria, determining
the exact placement and valence of extraordinary vertices
as well as localized edge alignment. These controls are
specific and exact as the user does not abstractly affect the
mesh through the modification of algorithmic parameters,
i.e. eigenfunction selection nor boundary parameterization
specifications. Because the Reeb graph can be a close
approximation of the medial axis of the shape [26], it aids
in the creation of a coarse quadrangulation for the model
that captures dominant features with minimal amount of
interaction. Also, the related theory of the Reeb graph
provides important topological guarantees for our chart seg-
mentation, enabling generic connectivity texture mapping.

8.1 Experimental Results

We implemented our interactive quadrangulation frame-
work in C++ using the CHOLMOD libraries for our linear
system solver [12]. The timings reported in this section are
the results collected from experiments run on commodity
desktop computers with Linux and MacOS. The duration of
a quadrangulation session is variable (from a few seconds
to several minutes for the models presented in this paper, cf.
accompanying video), depending on the complexity of the
input shape as well as the user skill and design exigence.
Regarding the Reeb atlas editing, while the number of final
extrema is fairly low in the presented outputs (from 2 to
5), the number of editing operations of the chart boundaries

is related to the topology of the surface. For instance, the
genus-5 Botijo atlas editing involved one reeb chart subdivi-
sion, 2 half-saddle splitting followed by 3 saddle alignment.
More interestingly, and quantifiable, are the response tim-
ings for computations imposed by our system. The boxplots
(Fig. 16), illustrating the median, minimum, maximum, as
well as lower and upper quartiles, highlight the timings
acquired from our experiments for the scalar field update,
Reeb graph computation, Reeb chart parameterization, and
connectivity texture subdivision and coarsening operations.
The median timings are well below 0.5s, allowing for real
time interaction. We showcase several models generated
using our approach in Figs. 13, 14, and 15, illustrating
important features of our framework. The L-shaped meshes,
with cube-like and polycube-like connectivity, and the bitori
meshes, illustrating a single saddle vertex with valence 8
versus two half-saddles with valence 6, spotlight the design
flexibility (Fig. 13). The twisted bar (Fig. 13) illustrates
the orientation and alignment control of the Reeb atlas. The
Moai and Bimba models showcase the removal of polar
vertices from genus-0 models. The Botijo model highlights
the advantage of the Reeb atlas abstraction, capable of
managing a user-driven segmentation of a model with
complex topology, while providing topological guarantees
necessary for parameterization. Our framework handles
mesh boundaries by either constraining a contour of f along
the boundary, i.e., the Hand, or by filling the boundary then
removing quads from the texture.

In many cases, especially when the Reeb chart describes
a cylindrical mesh component, regular subdivision pro-
vides fast and easy high-quality quadrangulations of the
Reeb charts, i.e., the Botijo handles, the Hand’s fingers,
the torso’s of the Moai and Bimba, as well as pieces

Fig. 16. Boxplot response timings of our system computa-
tions (in seconds, wrt the number of input triangles).
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Fig. 15. The comparison of our technique against quad meshes from multiple algorithms illustrates our improved control
of extraordinary vertices, i.e. location and valence, as well as element alignment, while producing quality output models
for the Rocker Arm and Bimba models (reporting the same quality statistics as Fig. 14). Extraordinary vertices with a
valence greater or less than four are respectively reported with blue and green spheres. On the Rocker Arm model, each
quadrilateral is color mapped based on the max angle between its normal and its neighbors’ normals, from yellow (0◦) to
dark red (90◦). Notice the alignment of the extraordinary vertices and the alignment to sharp features.

of the Blade and Rocker Arm models. The added flex-
ibility of connectivity texturing improves the alignment

of the final mesh to surface features
(sharp features on the the Rocker
arm, Botijo and Blade models) as
well as user designed adaptivity to
better sample high frequency geom-
etry (the Bimba’s bow, zoom inset in
Fig. 15). The number of extraordi-
nary vertices is strictly controlled by
the user, and can be maintained to
a desired value. The quality of the
meshes used throughout this paper
is measured in the inset histograms.
The quality of the output is depen-
dent on the user’s diligence, but, as
demonstrated by the histograms, high
quality meshes that are numerically
stable for finite element simulations
can be generated using our system.

8.2 Comparison

In this section, we compare our interactive approach to
automatic [10] and semi-automatic techniques [13], [21],
[6], [36] for a mechanical and organic models (Figs. 15
and 17). Included in these visual comparisons are quality
statistics of the assorted models, demonstrating that our
approach generates quad meshes with objective quality
scores that are on par with other state-of-the-art techniques.
More interestingly, the visual comparison highlights ad-
vantages of our approach which are not directly reflected
by objective quality measurements, such as: sharp feature
preservation, extraordinary vertex alignment and localized
adaptative sampling. A key advantage of our approach is
its ability to robustly control the number, location, valence
and alignment of the extraordinary vertices. In contrast,
other techniques (Figs. 15 and 17) provide output meshes
that approximate the user’s input constraints. As a result,

these methods may produce undesireable effects related
to extraordinary vertices, such as inaccurate approximation
of feature corners, misalignment of the emminating mesh
edges, and extraordinary vertex clustering. By strictly de-
signing our meshes to align extraordinary vertices through
straight edge paths, in contrast to [6], [36] but similar to
[13], [21], [10], we design quad models that are conducive
to texturing, coarsening and smooth surface fitting via
subdivision and spline-based surfaces.

As illustrated in Figs. 15 and 17, the extraordinary vertices
of our Rocker Arm, Bimba and Botijo models are well
aligned, placed at strategic locations, and the mesh edges
between them are aligned to the sharp features of the
models. In particular, we focus the reader’s attention to the
protruding corners on the hammer component of the Rocker
Arm where our approach exactly captures these elements;
as well as the bottom of the Bimba model to which our
edges are aligned and extraordinary vertices placed within
corner regions. In contrast, note the quad strip twisting that
occurs across sharp features with the other techniques.

Another major distinction between our approach and the
semi-automated techniques is our ability to design a config-
uration that captures the symmetry of the model that may be
difficult to quantify by (semi-) automatic algorithms (Fig.
17). For example, the Bimba model contains symmetric

Fig. 17. Comparison to [47]. Our approach enables to gen-
erate a mesh with fewer extraordinary vertices, aligned and
placed at specific locations, respecting local symmetries.
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extraordinary vertices, i.e., the face and shoulders, with
edges aligned to the model’s curvature, i.e., the face, neck
and chest. Further, the design of the connectivity textures
on a local scale allows the user to adapt the sample density,
capturing high frequency geometric detail and symmetry of
the bow in the Bimba’s hair (zoom inset in Fig. 15).

8.3 Limitations

An important observation of this work is the link between
extraordinary vertices and critical points of the under-
lying scalar field, handled by the Reeb atlas segmenta-
tion algorithm. The system requires training of users to
understand the connections between the interactions on
the Reeb atlas and the resulting extraordinary vertices, as
well as becoming familiar with the interaction tools. Our
current interface can benefit from more straightforward
control mechanisms to facilitate user interactions. However,
as these aspects of the user interface do not affect the
discussed underlying technologies, we view this as out of
the scope of this research. Also, although our approach
enables to split scalar field critical points into many types of
extraordinary vertices (with valence 2, 3, 5, 6 and more on
monkey saddles), a formal investigation of the exact output
space of scalar-field based meshing may provide concrete
insights about the theoretical expressiveness of the Reeb
atlas framework. However, we believe such a theoretical
study goes beyond the scope of this paper.

Finally, optimal alignment of quad meshes often requires
adaptive sampling, introducing many extraordinary vertices.
While this is completely feasible within our framework
(demonstrated in multiple models in this paper), it can
become time consuming to design and manipulate such
models.

9 CONCLUSION AND FUTURE WORK

Our technique bridges the gap between purely geometrical
approaches and combinatorial connectivity techiques to
leverage advantages of the two distinct worlds within one
coherent system. This study provides interesting insights,
linking scalar field topology to extraordinary vertices and
their global alignment. Our Reeb atlas, the mechanism by
which we induce the alignment and construct a coarse
quadrangulation of the model, enriches scalar field design
by providing topological structure and awareness. We de-
velop a multi-level methodology that, in addition to global
Reeb atlas updates, supports local editing operations via
connectivity textures to explicitly define the final mesh
structure. Reeb atlas and connectivity textures are two
complementary tools, with partial overlapping scopes, that
uniquely provide global and local controls (respectively).
Designing a complex Reeb atlas will tend to allow sim-
ple connectivity textures (the Hand, Bitorus and Botijo,
Fig.14); whereas, designing a simple Reeb atlas may re-
quire complex connectivity textures (RockerArm, Fig. 10).
Our connectivity textures completely localize the global

effects of quadrangulation design, limited to a single Reeb
chart. Relying on the topological information provided by
the Reeb atlas, our framework is able to resolve conflicts
between regions meshed with different sample densities.
The local operations are performed over the unit square
for efficient and robust computation and projection. We
demonstrate the interactive (response times below 0.5s) and
flexible nature of our approach throughout the paper.

This paper focuses on developing underlying technologies
that provide the flexibility, interactivity and robustness re-
quired by a user-centric meshing process. Based on the gen-
erality and flexibility of our framework, in future work we
intend to enrich our system’s interface with additional auto-
mated user assistances to augment the designer’s productiv-
ity. At a global scale, improved heuristics may suggest bet-
ter initial Reeb atlases, possibly providing hints that contain
aligned and/or fractional saddles. At a fine scale, geomet-
rical analysis in the parametric domain of individual Reeb
charts can lead to automated initial
geometry-aware connectivity textures, on
which a user may interactively edit. Fi-
nally, it will be interesting to further ex-
plore the full potential of connectivity
textures to design meshes with arbitrary
polygons, i.e., hexagons (right), as well as
extensions to volumetric shape representations.
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