

[ILSS06]

Delaunay complexes Computational topology

Julien Tierny jtierny@sci.utah.edu

April 28, 2009

< 口 > < 同

Julien Tierny (jtierny@sci.utah.edu)

Delaunay complexes

April 28, 2009 1

5900

Well... where were we?

Course Syllabus:

- Basics on topological spaces;
- Simplicial complexes;
- Homology;
- Topology abstractions (Reeb graph, MS-complex, etc.):
 - Computation algorithms;
 - Processing and simplification frameworks.

Back to the past:

- Complexes often come from real-life acquisitions;
- Most of the time: point clouds;
- How can we derive a valid simplicial complex out of that?
- Next lectures:

Delaunay complexes;

- Simulation of Simplicity;
- Alpha shapes.

SQA

Outline

Basics:

- Voronoï diagrams;
- Delaunay triangulations;
- Algorithm example in \mathbb{R}^2 .

② Generalization:

- Power diagrams;
- Regular triangulations;
- Algorithm in arbitrary dimension [ES92].

< A

nac

Problem formulation

• Input:

• A set *P* of points in \mathbb{R}^d in general position;

- Output:
 - A valid and unique *d*-dimensional simplicial complex *K*;
 - Whose underlying space $|\mathcal{K}|$ is the **convex** hull of *P*:
 - The convex hull might not be a satisfactory approximation;
 - Can be formulated as a geometrical optimization problem;
 - Here, we only deal with combinatorial aspects.

Problem formulation

• Input:

• A set P of points in \mathbb{R}^d in general position;

- Output:
 - A valid and unique *d*-dimensional simplicial complex *K*;
 - Whose underlying space $|\mathcal{K}|$ is the **convex** hull of *P*:
 - The convex hull might not be a satisfactory approximation;
 - Can be formulated as a geometrical optimization problem;
 - Here, we only deal with combinatorial aspects.

Input description

- Notion of general position:
 - *P*: set of points in \mathbb{R}^d ;
 - The points of *P* are in general position if:
 - No (d + 1) points lie in a common (d 1)-dimensional plane;
 - Or no (d+2) points lie in a common (d-1)-sphere.
 - Examples of forbidden configuration in \mathbb{R}^2 :
 - Three co-linear points;
 - Four points on a same circle.
- Strong limitation, but still:
 - There's always a way to trick the data :)
 - Simulation of Simplicity [EM90]:
 - Slight perturbations on the data;
 - Transform forbidden configurations into non-degenerate ones;
 - Next class :)

JQ P

イロト イポト イヨト イヨト

Delaunay triangulations and mesh quality (intuition)

- A suitable property for surface mesh generation:
 - Having 2-simplices with regular geometry:
 - Equilateral triangles;
 - Enables to limit numerical errors when using the mesh:
 - Texture mapping;
 - Simulation, etc.
- What we can do *easily*:
 - Maximize the minimum angle of triangles.

JQ P

Delaunay triangulations and angles (intuition)

• Given a triangulation of 4 points in \mathbb{R}^2 (example):

- Given the circumcircle C(ABD) of the triangle ABD;
- A way to get rid of small angles in BCD:

• Push C outside C(ABD).

- We can only play on \mathcal{K} (not on P), then, just guarantee that:
 - Given a 2-simplex $\sigma \in \mathcal{K}$, no point of P lie inside $\mathcal{C}(\sigma)$;
 - Just flip the edge *BD* into *AC*;
 - Does it always make the trick?

So what?

- According to this intuitive 2D example:
 - Given a set of points P in general position;
 - ${\scriptstyle \bullet }$ We need to compute a simplicial complex ${\cal K},$ such that:
 - P is the vertex set of \mathcal{K} ;
 - Given a 2-simplex $\sigma \in \mathcal{K}$;
 - No point of P lie strictly inside of $C(\sigma)$;
 - The dimension of \mathcal{K} is 2;
 - $\bullet~$ The 2-simplices of ${\cal K}$ have at most 3 neighbors;

• Then:

- We need to partition the space into cells:
 - Such that the vertices of those cells are the centers of the correct circumcircles;
 - The vertices of the cells have degree 3;
 - Notion of Voronoï diagram :)

So what?

- According to this intuitive 2D example:
 - Given a set of points P in general position;
 - ${\scriptstyle \bullet }$ We need to compute a simplicial complex ${\cal K},$ such that:
 - P is the vertex set of \mathcal{K} ;
 - Given a 2-simplex $\sigma \in \mathcal{K}$;
 - No point of P lie strictly inside of $C(\sigma)$;
 - The dimension of ${\cal K}$ is 2;
 - $\bullet~$ The 2-simplices of ${\cal K}$ have at most 3 neighbors;

• Then:

- We need to partition the space into cells:
 - Such that the vertices of those cells are the centers of the correct circumcircles;
 - The vertices of the cells have degree 3;
 - Notion of Voronoï diagram :)

4) Q (~

Voronoï diagrams

Due to Georgy Voronoï (1907) but also met in Descartes's notes;

• Diversified applications (medecine, chemistry, climatology, etc.);

SQA

Voronoï diagrams (continued)

- Let $\pi_p(x)$ be :
 - The Euclidean distance between a point $x \in \mathbb{R}^d$ and a point $p \in P$;
- Chordale χ_{p,q} (p, q ∈ P):
 χ_{p,q}: Locus of points x ∈ ℝ^d with π_p(x) = π_q(x);
 χ_{p,q} is a (d − 1) plane;
- Half-spaces:
 - Let H_{p,q} be the half space of points of x ∈ ℝ^d, such that:
 π_p(x) ≤ π_q(x);
- The Voronoï cell V(p) of p ∈ P is:
 V(p) = ∩_{q∈P-{p}}H_{p,q};
 or: V(p) = {x ∈ ℝ^d | π_p(x) ≤ π_q(x), q ∈ P}.

SQA

・ロト ・ 一 ト ・ 日 ト

Voronoï diagrams (continued)

- Properties:
 - V(p) is a convex polyhedron in \mathbb{R}^d ;
 - The intersection of the interiors of any two Voronoï cells is empty;
 - The union of all the Voronoï cells (Voronoï tessellation) covers \mathbb{R}^d ;
 - In 2D:

• is it true that the vertices of the cells have always degree 3?

Delaunay triangulation

- Given a set of points P in \mathbb{R}^d ;
- The Delaunay triangulation $\mathcal{D}(P)$ of P is a triangulation of P;
- Such that:
 - There is no point of P in the inside of the circum-hypersphere of any d-simplex $\sigma \in \mathcal{D}(P)$;
- Let's use the Voronoï tessellation :)

JQ P

<ロト < 同ト < 三ト < 三ト

Delaunay triangulation (continued)

Notion of Nerve:

- Let ${\mathcal F}$ be a finite collection of sets.
- The nerve $\mathcal{N}(\mathcal{F})$ of \mathcal{F} consists of all subcollections whose sets have a non-empty common interesection:

•
$$\mathcal{N}(\mathcal{F}) = \{ X \subseteq \mathcal{F} | \cap X \neq \emptyset \};$$

Definition (Delaunay triangulation)

The Delaunay triangulation of a finite set of points P in \mathbb{R}^d is isomorphic to the nerve of the collection of Voronoï cells:

$$\mathcal{D}(P) = \{ \sigma \subseteq P | \cap_{p \in \sigma} V(p) \neq \emptyset \}$$

SQA

In words

Basics

- The Delaunay triangulation can be seen as the dual of the Voronoï tessellation;
- It is composed of simplices σ:
 - That form the convex hull of sets of points of P,
 - whose Voronoï cells have non-empty intersections (adjacent cells);

Delaunay triangulations: properties

- Under the assumption of general position on P:
 - No d + 2 points of P lie on a common (d 1)-sphere;
 - Then:
 - The center of these spheres are on the boundaries of the Voronoï cells;
 - No d + 2 Voronoï cells have a non-empty common intersection;
 - (in 2D, degree-3 vertices);
 - Equivalently:
 - The dimension of any simplex of $\mathcal{D}(P)$ is at most *d* (see picture).
 - Valid *d*-dimensional simplicial complex!

Algorithm example

- Incremental algorithm:
 - 1 Initial artificial simplex σ_0 ;
 - 2 Incremental insertion of a point $p \in P$:
 - Identify the simplex containing p;
 - 2 Topological flip (locally guarantee Delaunay constraints);
 - 3 Related topological flips (globally guarantee Delaunay constraints);
 - Records the flips in flip history;
 - **3** Remove the simplices having a vertex of the initial *artificial simplex* σ_0 ;

SQA

イロト イポト イヨト イヨト

Notion of topological flip

• Aglorithm: incremental insertion plus Delaunay conditions;

• In 2D:

- Insertion of a point in a simplex ('1 to 3');
- Edge-flip: no point inside the circumsphere of a triangle ('2 to 2');
- In 3D:
 - Insertion of a point in a simplex ('1 to 4');
 - Triangle-flip: no point inside the circumsphere of a tet ('3 to 2');
- In dimension d: k d-simplices to (d+2-k) d-simplices.

[ES92]

Notion of topological flip

• Aglorithm: incremental insertion plus Delaunay conditions;

• In 2D:

• Insertion of a point in a simplex ('1 to 3');

• Edge-flip: no point inside the circumsphere of a triangle ('2 to 2');

In 3D:

- Insertion of a point in a simplex ('1 to 4');
- Triangle-flip: no point inside the circumsphere of a tet ('3 to 2');

• In dimension d: k d-simplices to (d + 2 - k) d-simplices.

2D example

- Spatial hierarchy lookup (flip history);
- Point insertion;
- Topological flips (in 2D, edge opposite angles).

• Time complexity: O(log(n)) (look-up), repeated n times.

< A

SQA

Generalizations

- Several ways to generalize Voronoï diagrams and Delaunay triangulations;
- Just play on π_p :
 - Non Euclidean metrics;
- In particular,
 - Point weighting (flexibility);
 - The power functions;
 - $\pi_p(x) = |xp|^2 w_p;$
 - Direct application: wireless network design.
 - In general, point weighting allows for point importance characterization.

<ロト < 同ト < 三ト < 三ト

SQA

Chordales and half-spaces revisited

Half-spaces: •

• $H_{p,q}$: half-space of points $x \in \mathbb{R}^d$ with: • $\pi_p(x) \leq \pi_q(x);$

200

 $\equiv \rightarrow$

・ ロ ト ・ 同 ト ・ 三 ト ・

Voronoï diagrams revisited: Power diagrams

For each p ∈ P:
 The Power cell P(p) of p ∈ P is:
 P(p) = ∩_{q∈P-{p}}H_{p,q}
 or P(p) = {x ∈ ℝ^d |π_p(x) ≤ π_q(x), q ∈ P}.

Properties:

- *P*(*p*) is a convex polygon;
- The intersection of the interiors of any two power cells is empty;
- The union of all the power cells covers \mathbb{R}^d ;
- The collection of power cells and their faces:
 - defines the cell complex $\mathcal{P}(P)$;
 - the Power diagram of P.

JQ P

<ロト < 同ト < 三ト < 三ト

General position revisited

- Given the power functions $\pi_p, p \in P$;
- The context of general position slightly varies:
 - 1) For every d + 1 weighted points in P:
 - There is a unique unweighted point $x \in \mathbb{R}^d, x \notin P$,
 - $\, \bullet \,$ with the same power distance from all the d+1 points.
 - 2 For every d + 2 weighted points in *P*:
 - There is no such point;
 - (Generalization of the sphere condition).

JQ P

<ロト < 同ト < 三ト < 三ト

Notion of orthogonality

- Two weighted points $p, z \in P$ are *orthogonal* if:
 - $|pz|^2 = w_p + w_z;$
 - Their Euclidean distance is equal to the sum of their power contribution;
 - Then:

• In other words, p and z are such that they do not influence each other.

- Let σ be a *d*-simplex of *P*:
 - Convex hull of d + 1 points of P;
 - There is a unique weighted point $z \in P$, such that:
 - z is orthogonal to all the weighted points of σ ;
 - z is the orthogonal center of σ , noted $z(\sigma)$.

JQ P

イロト イポト イヨト イヨト

Global regularity

•
$$\pi_p(z) = w_z$$
 and $\pi_z(p) = w_p$, $\forall p \in \sigma$;

• σ is globally regular if:

•
$$\pi_z(q) > w_q, \forall q \in P;$$

- Generalization of the property:
 - No point of P in the circumsphere of a d-simplex;
 - If all the weights of $p \in \sigma$ are zero,
 - The sphere centered in z with radius $\sqrt{w_z}$ is the circumsphere of σ .

Definition (Regular triangulations)

The regular *d*-simplices, together with their faces, define a simplicial complex called the *regular triangulation* of *P*, noted $\mathcal{R}(P)$.

• If all the weights of all points of P are zero, then:

JQ P

<ロト < 同ト < 三ト < 三ト

Local regularity

- Let \mathcal{T} be an arbitrary triangulation of P;
- Let σ' and σ'' be two adjacent *d*-simplices of \mathcal{T} :
 - $\sigma' \cap \sigma'' \neq \emptyset$; • $\sigma' \cap \sigma'' = \sigma$; • σ is a (d-1)-simplex. • Let $a \in P$, such that $a \in \sigma', a \notin \sigma''$; • Let $b \in P$, such that $b \in \sigma'', b \notin \sigma'$; • See picture (?) • Let $z' = z(\sigma'), \pi_{z'}(p) = w_z, \forall p \in \sigma'$; • σ is locally regular in T if: • $w_b < \pi_{z'}(b)$;

• If all the (d-1)-simplices of \mathcal{T} are locally regular, then $\mathcal{T} = \mathcal{R}(P)$:

- This allows for incremental algorithms :)
- This also gives the topological flip condition.

200

・ロト ・ 一日 ト ・ 日 ト ・ 日 ト

Topological flippability

• Let $T = \sigma' \cup \sigma''$;

• σ is *flippable* in *T* if:

• conv(T) is the underlaying space -T— of T.

• Consider the d (d – 2)-simplices of σ :

• Such a (d-2)-simplex is *convex* if:

• There is an hyperplane containing it;

 $\, \bullet \,$ Such that σ' and σ'' both lie on the same side of the hyperplane.

• Otherwise, the (d-2)-simplex is *reflex*.

• |T| = conv(T) if and only if:

• All reflex (d-2)-simplices of σ have degree 3;

• Each is exactly incident to 3 (d-1)-simplices.

Then:

- The geometrical realization in \mathbb{R}^d of $\mathcal{R}(P)$ is guaranteed;
- This guarantees that R(P) is a d dimensional simplicial complex.

JQ P

Incremental algorithm for Regular triangulations

Initial artificial d-simplex:

•
$$\sigma_0 = conv(\{p_{-d}, \dots, p_0\});$$

• $p_{ij} = 0$ if $-i > j;$

•
$$p_{ij} = +\infty$$
 if $-i = -j$;
• $p_{ij} = -\infty$ if $-i < j$.

Incremental insertion:

- Spatial lookup for the *d*-simplex σ_T containing p_i (flip history);
- If $\mathcal{R}(T \cup \{p_i\}) \neq \sigma_T$ (locally non-regular):
 - Topological flip $T \cup \{p_i\}$;
 - While there remains locally non-regular (d 1)-simplices adjacent to p_i , flip them (stack).
- 3 Remove the simplices having a vertex in the initial *artificial* simplex.
 - Same algorithm as in the 2D example;
 - Time complexity: $O(nlog(n)) + n^{d/2}$.

SQA

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ

Conclusion

- Given a point cloud P of \mathbb{R}^d :
 - We showed how to realize a *d* dimensional simplicial complex being a triangulation of *P*;
 - The underlaying space of this triangulation is the convex hull of *P*.
- We generalized it to weighted point clouds.
- Still!
 - This is only a combinatorial solution to shape reconstruction from point clouds;
 - Only the validity of the simplicial complex is guaranteed;
 - For example, reliable surface reconstruction from point clouds in \mathbb{R}^3 is still an active geometry research topic!

SQA

イロト イポト イヨト イヨト

Edelsbrunner H., Mücke E. P.:

Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms.

ACM Transactions on Graphics 9 (1990), 66–104.

- EDELSBRUNNER H., SHAH N. R.: Incremental topological flipping works for regular triangulations. In ACM Symposium on Computational Geometry (1992), pp. 43–52.
- ISENBURG M., LIU Y., SHEWCHUCK J., SNOEYINK J.: Streaming computation of delaunay triangulations. ACM Transactions on Graphics 25 (2006), 1049–1056.