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Well... where were we?

Course Syllabus:

Basics on topological spaces;
Simplicial complexes;
Homology;
Topology abstractions (Reeb graph, MS-complex, etc.):

Computation algorithms;
Processing and simplification frameworks.

Back to the past:

Complexes often come from real-life acquisitions;
Most of the time: point clouds;
How can we derive a valid simplicial complex out of that?
Next lectures:

Delaunay complexes;
Simulation of Simplicity;
Alpha shapes.
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Outline

1 Basics:

Voronöı diagrams;
Delaunay triangulations;
Algorithm example in R2.

2 Generalization:

Power diagrams;
Regular triangulations;
Algorithm in arbitrary dimension [ES92].
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Basics

Problem formulation

⇒

Input:

A set P of points in Rd in general position;

Output:

A valid and unique d-dimensional simplicial complex K;
Whose underlying space |K| is the convex hull of P:

The convex hull might not be a satisfactory approximation;
Can be formulated as a geometrical optimization problem;
Here, we only deal with combinatorial aspects.
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Basics

Input description

Notion of general position:

P: set of points in Rd ;
The points of P are in general position if:

No (d + 1) points lie in a common (d − 1)-dimensional plane;
Or no (d + 2) points lie in a common (d − 1)-sphere.

Examples of forbidden configuration in R2:

Three co-linear points;
Four points on a same circle.

Strong limitation, but still:

There’s always a way to trick the data :)
Simulation of Simplicity [EM90]:

Slight perturbations on the data;
Transform forbidden configurations into non-degenerate ones;
Next class :)
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Basics

Delaunay triangulations and mesh quality (intuition)

A suitable property for surface mesh generation:
Having 2-simplices with regular geometry:

Equilateral triangles;

Enables to limit numerical errors when using the mesh:

Texture mapping;
Simulation, etc.

What we can do easily:

Maximize the minimum angle of triangles.
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Basics

Delaunay triangulations and angles (intuition)

Given a triangulation of 4 points in R2 (example):

Given the circumcircle C(ABD) of the triangle ABD;
A way to get rid of small angles in BCD:

Push C outside C(ABD).

We can only play on K (not on P), then, just guarantee that:

Given a 2-simplex σ ∈ K, no point of P lie inside C(σ);
Just flip the edge BD into AC ;
Does it always make the trick?
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Basics

So what?

According to this intuitive 2D example:

Given a set of points P in general position;
We need to compute a simplicial complex K, such that:

P is the vertex set of K;
Given a 2-simplex σ ∈ K;
No point of P lie strictly inside of C(σ);
The dimension of K is 2;
The 2-simplices of K have at most 3 neighbors;

Then:
We need to partition the space into cells:

Such that the vertices of those cells are
the centers of the correct circumcircles;
The vertices of the cells have degree 3;
Notion of Voronöı diagram :)
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Basics

Voronöı diagrams

⇒

Due to Georgy Voronöı (1907) but also met in Descartes’s notes;

Diversified applications (medecine, chemistry, climatology, etc.);
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Basics

Voronöı diagrams (continued)

Let πp(x) be :

The Euclidean distance between a point x ∈ Rd and a point p ∈ P;

Chordale χp,q (p, q ∈ P):

χp,q: Locus of points x ∈ Rd with πp(x) = πq(x);
χp,q is a (d − 1) plane;

Half-spaces:
Let Hp,q be the half space of points of x ∈ Rd , such that:

πp(x) ≤ πq(x);

The Voronöı cell V (p) of p ∈ P is:

V (p) = ∩q∈P−{p}Hp,q;

or: V (p) = {x ∈ Rd |πp(x) ≤ πq(x), q ∈ P}.
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Basics

Voronöı diagrams (continued)

⇒

Properties:

V (p) is a convex polyhedron in Rd ;
The intersection of the interiors of any two Voronöı cells is empty;
The union of all the Voronöı cells (Voronöı tessellation) covers Rd ;
In 2D:

is it true that the vertices of the cells have always degree 3?
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Basics

Delaunay triangulation

Given a set of points P in Rd ;

The Delaunay triangulation D(P) of P is a triangulation of P;

Such that:

There is no point of P in the inside of the circum-hypersphere of any
d-simplex σ ∈ D(P);

Let’s use the Voronöı tessellation :)
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Basics

Delaunay triangulation (continued)

Notion of Nerve:

Let F be a finite collection of sets.
The nerve N (F) of F consists of all subcollections whose sets have a
non-empty common interesection:

N (F) = {X ⊆ F| ∩ X 6= ∅};

Definition (Delaunay triangulation)

The Delaunay triangulation of a finite set of points P in Rd is isomorphic
to the nerve of the collection of Voronöı cells:

D(P) = {σ ⊆ P| ∩p∈σ V (p) 6= ∅}
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Basics

In words

⇒

The Delaunay triangulation can be seen as the dual of the Voronöı
tessellation;

It is composed of simplices σ:

That form the convex hull of sets of points of P,
whose Voronöı cells have non-empty intersections (adjacent cells);
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Basics

Delaunay triangulations: properties

⇒

Under the assumption of general position on P:

No d + 2 points of P lie on a common (d − 1)-sphere;
Then:

The center of these spheres are on the boundaries of the Voronöı cells;
No d + 2 Voronöı cells have a non-empty common intersection;
(in 2D, degree-3 vertices);
Equivalently:
The dimension of any simplex of D(P) is at most d (see picture).
Valid d-dimensional simplicial complex!
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Basics

Algorithm example

Incremental algorithm:

1 Initial artificial simplex σ0;

2 Incremental insertion of a point p ∈ P:

1 Identify the simplex containing p;

2 Topological flip (locally guarantee Delaunay constraints);

3 Related topological flips (globally guarantee Delaunay constraints);

4 Records the flips in flip history;

3 Remove the simplices having a vertex of the initial artificial simplex σ0;
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Basics

Notion of topological flip

Aglorithm: incremental insertion plus Delaunay conditions;

In 2D:
Insertion of a point in a simplex (‘1 to 3’);
Edge-flip: no point inside the circumsphere of a triangle (‘2 to 2’);

In 3D:
Insertion of a point in a simplex (‘1 to 4’);
Triangle-flip: no point inside the circumsphere of a tet (‘3 to 2’);

In dimension d : k d-simplices to (d + 2− k) d-simplices.

[ES92]
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Basics

2D example

Spatial hierarchy lookup (flip history);

Point insertion;

Topological flips (in 2D, edge opposite angles).

Time complexity: O(log(n)) (look-up), repeated n times.
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Generalization to power functions

Generalizations

Several ways to generalize Voronöı diagrams and Delaunay
triangulations;

Just play on πp:

Non Euclidean metrics;

In particular,

Point weighting (flexibility);
The power functions;
πp(x) = |xp|2 − wp;
Direct application: wireless network design.
In general, point weighting allows for point importance characterization.
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Generalization to power functions

Chordales and half-spaces revisited

Chordale χp,q (p, q ∈ P):

Locus of points x ∈ Rd with πp(x) = πq(x);
Then, χp,q is the following hyperplane:

χp,q = 2
Pd

i=1 xi (qi − pi ) +
Pd

i=1(p2
i − q2

i )− wp + wq = 0;

Half-spaces:
Hp,q: half-space of points x ∈ Rd with:

πp(x) ≤ πq(x);
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Generalization to power functions

Voronöı diagrams revisited: Power diagrams

For each p ∈ P:
The Power cell P(p) of p ∈ P is:

P(p) = ∩q∈P−{p}Hp,q

or P(p) = {x ∈ Rd |πp(x) ≤ πq(x), q ∈ P}.

Properties:

P(p) is a convex polygon;
The intersection of the interiors of any two power cells is empty;
The union of all the power cells covers Rd ;
The collection of power cells and their faces:

defines the cell complex P(P);
the Power diagram of P.
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Generalization to power functions

General position revisited

Given the power functions πp, p ∈ P;

The context of general position slightly varies:

1 For every d + 1 weighted points in P:

There is a unique unweighted point x ∈ Rd , x /∈ P,
with the same power distance from all the d + 1 points.

2 For every d + 2 weighted points in P:

There is no such point;
(Generalization of the sphere condition).
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Generalization to power functions

Notion of orthogonality

Two weighted points p, z ∈ P are orthogonal if:

|pz |2 = wp + wz ;
Their Euclidean distance is equal to the sum of their power
contribution;
Then:

πp(z) = wz = −πz(z);
and πz(p) = wp = −πp(p).

In other words, p and z are such that they do not influence each other.

Let σ be a d-simplex of P:

Convex hull of d + 1 points of P;
There is a unique weighted point z ∈ P, such that:

z is orthogonal to all the weighted points of σ;
z is the orthogonal center of σ, noted z(σ).
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Generalization to power functions

Global regularity

πp(z) = wz and πz(p) = wp, ∀p ∈ σ;

σ is globally regular if:

πz(q) > wq,∀q ∈ P;
Generalization of the property:

No point of P in the circumsphere of a d-simplex;
If all the weights of p ∈ σ are zero,
The sphere centered in z with radius

√
wz is the circumsphere of σ.

Definition (Regular triangulations)

The regular d-simplices, together with their faces, define a simplicial
complex called the regular triangulation of P, noted R(P).

If all the weights of all points of P are zero, then:

P(P) = V(P);
R(P) = D(P).
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Generalization to power functions

Local regularity

Let T be an arbitrary triangulation of P;

Let σ′ and σ′′ be two adjacent d-simplices of T :

σ′ ∩ σ′′ 6= ∅;
σ′ ∩ σ′′ = σ;
σ is a (d − 1)-simplex.
Let a ∈ P, such that a ∈ σ′, a /∈ σ′′;
Let b ∈ P, such that b ∈ σ′′, b /∈ σ′;
See picture (?)
Let z ′ = z(σ′), πz′(p) = wz , ∀p ∈ σ′;
σ is locally regular in T if:

wb < πz′(b);

If all the (d − 1)-simplices of T are locally regular, then T = R(P):

This allows for incremental algorithms :)
This also gives the topological flip condition.
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Generalization to power functions

Topological flippability

Let T = σ′ ∪ σ′′;
σ is flippable in T if:

conv(T ) is the underlaying space —T— of T .

Consider the d (d − 2)-simplices of σ:
Such a (d − 2)-simplex is convex if:

There is an hyperplane containing it;
Such that σ′ and σ′′ both lie on the same side of the hyperplane.

Otherwise, the (d − 2)-simplex is reflex.

|T | = conv(T ) if and only if:
All reflex (d − 2)-simplices of σ have degree 3;
Each is exactly incident to 3 (d − 1)-simplices.

Then:
The geometrical realization in Rd of R(P) is guaranteed;
This guarantees that R(P) is a d dimensional simplicial complex.
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Generalization to power functions

Incremental algorithm for Regular triangulations

1 Initial artificial d-simplex:

σ0 = conv({p−d , . . . , p0});
pij = 0 if −i > j ;
pij = +∞ if −i = −j ;
pij = −∞ if −i < j .

2 Incremental insertion:

Spatial lookup for the d-simplex σT containing pi (flip history);
If R(T ∪ {pi}) 6= σT (locally non-regular):

Topological flip T ∪ {pi};
While there remains locally non-regular (d − 1)-simplices adjacent to
pi , flip them (stack).

3 Remove the simplices having a vertex in the initial artificial simplex.

Same algorithm as in the 2D example;

Time complexity: O(nlog(n)) + nd/2.
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Conclusion

Given a point cloud P of Rd :

We showed how to realize a d dimensional simplicial complex being a
triangulation of P;
The underlaying space of this triangulation is the convex hull of P.

We generalized it to weighted point clouds.

Still!

This is only a combinatorial solution to shape reconstruction from
point clouds;
Only the validity of the simplicial complex is guaranteed;
For example, reliable surface reconstruction from point clouds in R3 is
still an active geometry research topic!

Julien Tierny (jtierny@sci.utah.edu) ()Delaunay complexes April 28, 2009 28



References

Edelsbrunner H., Mücke E. P.:
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