

Delaunay complexes

Computational topology

Julien Tierny
jtierny@sci.utah.edu

April 28, 2009

Well... where were we?

- Course Syllabus:
- Basics on topological spaces;
- Simplicial complexes;
- Homology;
- Topology abstractions (Reeb graph, MS-complex, etc.):
- Computation algorithms;
- Processing and simplification frameworks.
- Back to the past:
- Complexes often come from real-life acquisitions;
- Most of the time: point clouds;
- How can we derive a valid simplicial complex out of that?
- Next lectures:
- Delaunay complexes;
- Simulation of Simplicity;
- Alpha shapes.

Outline

(1) Basics:

- Voronoï diagrams;
- Delaunay triangulations;
- Algorithm example in \mathbb{R}^{2}.
(2) Generalization:
- Power diagrams;
- Regular triangulations;
- Algorithm in arbitrary dimension [ES92].

Problem formulation

- Input:
- A set P of points in \mathbb{R}^{d} in general position;
- Output:
- A valid and unique d-dimensional simplicial complex \mathcal{K};
- Whose underlying space $|\mathcal{K}|$ is the convex hull of P :
- The convex hull might not be a satisfactory approximation;
- Can be formulated as a geometrical optimization problem;
- Here, we only deal with combinatorial aspects.

Problem formulation

- Input:
- A set P of points in \mathbb{R}^{d} in general position;
- Output:
- A valid and unique d-dimensional simplicial complex \mathcal{K};
- Whose underlying space $|\mathcal{K}|$ is the convex hull of P :
- The convex hull might not be a satisfactory approximation;
- Can be formulated as a geometrical optimization problem;
- Here, we only deal with combinatorial aspects.

Input description

- Notion of general position:
- P : set of points in \mathbb{R}^{d};
- The points of P are in general position if:
- No $(d+1)$ points lie in a common $(d-1)$-dimensional plane;
- Or no $(d+2)$ points lie in a common $(d-1)$-sphere.
- Examples of forbidden configuration in \mathbb{R}^{2} :
- Three co-linear points;
- Four points on a same circle.
- Strong limitation, but still:
- There's always a way to trick the data :)
- Simulation of Simplicity [ем90]:
- Slight perturbations on the data;
- Transform forbidden configurations into non-degenerate ones;
- Next class :)

Basics

Delaunay triangulations and mesh quality (intuition)

- A suitable property for surface mesh generation:
- Having 2-simplices with regular geometry:
- Equilateral triangles;
- Enables to limit numerical errors when using the mesh:
- Texture mapping;
- Simulation, etc.
- What we can do easily:
- Maximize the minimum angle of triangles.

Basics

Delaunay triangulations and angles (intuition)

- Given a triangulation of 4 points in \mathbb{R}^{2} (example):
- Given the circumcircle $\mathcal{C}(A B D)$ of the triangle $A B D$;
- A way to get rid of small angles in $B C D$:
- Push C outside $\mathcal{C}(A B D)$.
- We can only play on \mathcal{K} (not on P), then, just guarantee that:
- Given a 2-simplex $\sigma \in \mathcal{K}$, no point of P lie inside $\mathcal{C}(\sigma)$;
- Just flip the edge $B D$ into $A C$;
- Does it always make the trick?

So what?

- According to this intuitive 2D example:
- Given a set of points P in general position;
- We need to compute a simplicial complex \mathcal{K}, such that:
- P is the vertex set of \mathcal{K};
- Given a 2 -simplex $\sigma \in \mathcal{K}$;
- No point of P lie strictly inside of $\mathcal{C}(\sigma)$;
- The dimension of \mathcal{K} is 2 ;
- The 2 -simplices of \mathcal{K} have at most 3 neighbors;
- Then:
- We need to partition the space into cells:
- Such that the vertices of those cells are the centers of the correct circumcircles;
- The vertices of the cells have degree 3;
- Notion of Voronoï diagram :)

So what?

- According to this intuitive 2D example:
- Given a set of points P in general position;
- We need to compute a simplicial complex \mathcal{K}, such that:
- P is the vertex set of \mathcal{K};
- Given a 2 -simplex $\sigma \in \mathcal{K}$;
- No point of P lie strictly inside of $\mathcal{C}(\sigma)$;
- The dimension of \mathcal{K} is 2 ;
- The 2 -simplices of \mathcal{K} have at most 3 neighbors;
- Then:
- We need to partition the space into cells:
- Such that the vertices of those cells are the centers of the correct circumcircles;
- The vertices of the cells have degree 3;
- Notion of Voronoï diagram :)

Voronoï diagrams

- Due to Georgy Voronoï (1907) but also met in Descartes's notes;
- Diversified applications (medecine, chemistry, climatology, etc.);

Voronoï diagrams (continued)

- Let $\pi_{p}(x)$ be :
- The Euclidean distance between a point $x \in \mathbb{R}^{d}$ and a point $p \in P$;
- Chordale $\chi_{p, q}(p, q \in P)$:
- $\chi_{p, q}$: Locus of points $x \in \mathbb{R}^{d}$ with $\pi_{p}(x)=\pi_{q}(x)$;
- $\chi_{p, q}$ is a $(d-1)$ plane;
- Half-spaces:
- Let $H_{p, q}$ be the half space of points of $x \in \mathbb{R}^{d}$, such that:

$$
\text { - } \pi_{p}(x) \leq \pi_{q}(x) \text {; }
$$

- The Voronoï cell $V(p)$ of $p \in P$ is:
- $V(p)=\cap_{q \in P-\{p\}} H_{p, q} ;$
- or: $V(p)=\left\{x \in \mathbb{R}^{d} \mid \pi_{p}(x) \leq \pi_{q}(x), q \in P\right\}$.

Voronoï diagrams (continued)

- Properties:
- $V(p)$ is a convex polyhedron in \mathbb{R}^{d};
- The intersection of the interiors of any two Voronoï cells is empty;
- The union of all the Voronoï cells (Voronoï tessellation) covers \mathbb{R}^{d};
- In 2D:
- is it true that the vertices of the cells have always degree 3 ?

Delaunay triangulation

- Given a set of points P in \mathbb{R}^{d};
- The Delaunay triangulation $\mathcal{D}(P)$ of P is a triangulation of P;
- Such that:
- There is no point of P in the inside of the circum-hypersphere of any d-simplex $\sigma \in \mathcal{D}(P)$;
- Let's use the Voronoï tessellation :)

Delaunay triangulation (continued)

- Notion of Nerve:
- Let \mathcal{F} be a finite collection of sets.
- The nerve $\mathcal{N}(\mathcal{F})$ of \mathcal{F} consists of all subcollections whose sets have a non-empty common interesection:
- $\mathcal{N}(\mathcal{F})=\{X \subseteq \mathcal{F} \mid \cap X \neq \emptyset\} ;$

Definition (Delaunay triangulation)

The Delaunay triangulation of a finite set of points P in \mathbb{R}^{d} is isomorphic to the nerve of the collection of Voronoï cells:

$$
\mathcal{D}(P)=\left\{\sigma \subseteq P \mid \cap_{p \in \sigma} V(p) \neq \emptyset\right\}
$$

- The Delaunay triangulation can be seen as the dual of the Voronoï tessellation;
- It is composed of simplices σ :
- That form the convex hull of sets of points of P,
- whose Voronoï cells have non-empty intersections (adjacent cells);

Delaunay triangulations: properties

- Under the assumption of general position on P :
- No $d+2$ points of P lie on a common ($d-1$)-sphere;
- Then:
- The center of these spheres are on the boundaries of the Voronoï cells;
- No d +2 Voronoï cells have a non-empty common intersection;
- (in 2D, degree-3 vertices);
- Equivalently:
- The dimension of any simplex of $\mathcal{D}(P)$ is at most d (see picture).
- Valid d-dimensional simplicial complex!

Algorithm example

- Incremental algorithm:
(1) Initial artificial simplex σ_{0};
(2) Incremental insertion of a point $p \in P$:
(1) Identify the simplex containing p;
(2) Topological flip (locally guarantee Delaunay constraints);
(3) Related topological flips (globally guarantee Delaunay constraints);
(4) Records the flips in flip history;
(3) Remove the simplices having a vertex of the initial artificial simplex σ_{0};

Notion of topological flip

- Aglorithm: incremental insertion plus Delaunay conditions;
- In 2D:
- Insertion of a point in a simplex ('1 to 3');
- Edge-flip: no point inside the circumsphere of a triangle ('2 to 2');
- In 3D:
- Insertion of a point in a simplex ('1 to 4');
- Triangle-flip: no point inside the circumsphere of a tet ('3 to 2');
- In dimension d : $k d$-simplices to $(d+2-k) d$-simplices.

Notion of topological flip

- Aglorithm: incremental insertion plus Delaunay conditions;
- In 2D:
- Insertion of a point in a simplex ('1 to 3');
- Edge-flip: no point inside the circumsphere of a triangle ('2 to 2');
- In 3D:
- Insertion of a point in a simplex ('1 to 4');
- Triangle-flip: no point inside the circumsphere of a tet ('3 to 2');
- In dimension d : $k d$-simplices to $(d+2-k) d$-simplices.

[ES92]

2D example

- Spatial hierarchy lookup (flip history);
- Point insertion;
- Topological flips (in 2D, edge opposite angles).

- Time complexity: $O(\log (n))$ (look-up), repeated n times.

Generalizations

- Several ways to generalize Voronoï diagrams and Delaunay triangulations;
- Just play on π_{p} :
- Non Euclidean metrics;
- In particular,
- Point weighting (flexibility);
- The power functions;
- $\pi_{p}(x)=|x p|^{2}-w_{p}$;
- Direct application: wireless network design.
- In general, point weighting allows for point importance characterization.

Chordales and half-spaces revisited

- Chordale $\chi_{p, q}(p, q \in P)$:
- Locus of points $x \in \mathbb{R}^{d}$ with $\pi_{p}(x)=\pi_{q}(x)$;
- Then, $\chi_{p, q}$ is the following hyperplane:
- $\chi_{p, q}=2 \sum_{i=1}^{d} x_{i}\left(q_{i}-p_{i}\right)+\sum_{i=1}^{d}\left(p_{i}^{2}-q_{i}^{2}\right)-w_{p}+w_{q}=0 ;$
- Half-spaces:
- $H_{p, q}$: half-space of points $x \in \mathbb{R}^{d}$ with:
- $\pi_{p}(x) \leq \pi_{q}(x)$;

Voronoï diagrams revisited: Power diagrams

- For each $p \in P$:
- The Power cell $P(p)$ of $p \in P$ is:
- $P(p)=\cap_{q \in P-\{p\}} H_{p, q}$
- or $P(p)=\left\{x \in \mathbb{R}^{d} \mid \pi_{p}(x) \leq \pi_{q}(x), q \in P\right\}$.
- Properties:
- $P(p)$ is a convex polygon;
- The intersection of the interiors of any two power cells is empty;
- The union of all the power cells covers \mathbb{R}^{d};
- The collection of power cells and their faces:
- defines the cell complex $\mathcal{P}(P)$;
- the Power diagram of P.

General position revisited

- Given the power functions $\pi_{p}, p \in P$;
- The context of general position slightly varies:
(1) For every $d+1$ weighted points in P :
- There is a unique unweighted point $x \in \mathbb{R}^{d}, x \notin P$,
- with the same power distance from all the $d+1$ points.
(2) For every $d+2$ weighted points in P :
- There is no such point;
- (Generalization of the sphere condition).

Notion of orthogonality

- Two weighted points $p, z \in P$ are orthogonal if:
- $|p z|^{2}=w_{p}+w_{z}$;
- Their Euclidean distance is equal to the sum of their power contribution;
- Then:
- $\pi_{p}(z)=w_{z}=-\pi_{z}(z) ;$
- and $\pi_{z}(p)=w_{p}=-\pi_{p}(p)$.
- In other words, p and z are such that they do not influence each other.
- Let σ be a d-simplex of P :
- Convex hull of $d+1$ points of P;
- There is a unique weighted point $z \in P$, such that:
- z is orthogonal to all the weighted points of σ;
- z is the orthogonal center of σ, noted $z(\sigma)$.

Global regularity

- $\pi_{p}(z)=w_{z}$ and $\pi_{z}(p)=w_{p}, \forall p \in \sigma$;
- σ is globally regular if:
- $\pi_{z}(q)>w_{q}, \forall q \in P$;
- Generalization of the property:
- No point of P in the circumsphere of a d-simplex;
- If all the weights of $p \in \sigma$ are zero,
- The sphere centered in z with radius $\sqrt{w_{z}}$ is the circumsphere of σ.

Definition (Regular triangulations)

The regular d-simplices, together with their faces, define a simplicial complex called the regular triangulation of P, noted $\mathcal{R}(P)$.

- If all the weights of all points of P are zero, then:
- $\mathcal{P}(P)=\mathcal{V}(P) ;$
- $\mathcal{R}(P)=\mathcal{D}(P)$.

Local regularity

- Let \mathcal{T} be an arbitrary triangulation of P;
- Let σ^{\prime} and $\sigma^{\prime \prime}$ be two adjacent d-simplices of \mathcal{T} :
- $\sigma^{\prime} \cap \sigma^{\prime \prime} \neq \emptyset$;
- $\sigma^{\prime} \cap \sigma^{\prime \prime}=\sigma$;
- σ is a $(d-1)$-simplex.
- Let $a \in P$, such that $a \in \sigma^{\prime}, a \notin \sigma^{\prime \prime}$;
- Let $b \in P$, such that $b \in \sigma^{\prime \prime}, b \notin \sigma^{\prime}$;
- See picture (?)
- Let $z^{\prime}=z\left(\sigma^{\prime}\right), \pi_{z^{\prime}}(p)=w_{z}, \forall p \in \sigma^{\prime}$;
- σ is locally regular in \mathcal{T} if:

$$
w_{b}<\pi_{z^{\prime}}(b)
$$

- If all the $(d-1)$-simplices of \mathcal{T} are locally regular, then $\mathcal{T}=\mathcal{R}(P)$:
- This allows for incremental algorithms :)
- This also gives the topological flip condition.

Topological flippability

- Let $T=\sigma^{\prime} \cup \sigma^{\prime \prime}$;
- σ is flippable in T if:
- $\operatorname{conv}(T)$ is the underlaying space -T- of T.
- Consider the $d(d-2)$-simplices of σ :
- Such a ($d-2$)-simplex is convex if:
- There is an hyperplane containing it;
- Such that σ^{\prime} and $\sigma^{\prime \prime}$ both lie on the same side of the hyperplane.
- Otherwise, the $(d-2)$-simplex is reflex.
- $|T|=\operatorname{conv}(T)$ if and only if:
- All reflex $(d-2)$-simplices of σ have degree 3;
- Each is exactly incident to $3(d-1)$-simplices.
- Then:
- The geometrical realization in \mathbb{R}^{d} of $\mathcal{R}(P)$ is guaranteed;
- This guarantees that $\mathcal{R}(P)$ is a d dimensional simplicial complex.

Incremental algorithm for Regular triangulations

(1) Initial artificial d-simplex:

- $\sigma_{0}=\operatorname{conv}\left(\left\{p_{-d}, \ldots, p_{0}\right\}\right)$;
- $p_{i j}=0$ if $-i>j$;
- $p_{i j}=+\infty$ if $-i=-j$;
- $p_{i j}=-\infty$ if $-i<j$.
(2) Incremental insertion:
- Spatial lookup for the d-simplex σ_{T} containing p_{i} (flip history);
- If $\mathcal{R}\left(T \cup\left\{p_{i}\right\}\right) \neq \sigma_{T}$ (locally non-regular):
- Topological flip $T \cup\left\{p_{i}\right\}$;
- While there remains locally non-regular $(d-1)$-simplices adjacent to p_{i}, flip them (stack).
(3) Remove the simplices having a vertex in the initial artificial simplex.
- Same algorithm as in the 2D example;
- Time complexity: $O(n \log (n))+n^{d / 2}$.

Conclusion

- Given a point cloud P of \mathbb{R}^{d} :
- We showed how to realize a d dimensional simplicial complex being a triangulation of P;
- The underlaying space of this triangulation is the convex hull of P.
- We generalized it to weighted point clouds.
- Still!
- This is only a combinatorial solution to shape reconstruction from point clouds;
- Only the validity of the simplicial complex is guaranteed;
- For example, reliable surface reconstruction from point clouds in \mathbb{R}^{3} is still an active geometry research topic!

圊 Edelsbrunner H., Mücke E. P.:
Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms.
ACM Transactions on Graphics 9 (1990), 66-104.

- Edelsbrunner H., Shah N. R.:

Incremental topological flipping works for regular triangulations. In ACM Symposium on Computational Geometry (1992), pp. 43-52.
围 Isenburg M., Liu Y., Shewchuck J., Snoeyink J.: Streaming computation of delaunay triangulations. ACM Transactions on Graphics 25 (2006), 1049-1056.

