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Applicative motivations

Computational topology:
Concise topology abstractions for:

Computer graphics;
Visualization;
Data analysis, etc.
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But...

Honestly, can you see anything?
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Now,

Is it any better?
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Persistence

Need to:

Cope with the effect of geometrical noise on topology abstractions;

Yes... but no! How do you define noise then?

Let’s make it up to the application needs!

Persistence key ideas:
Provide an abstract framework to:

Measure scales on topological features;
Order topological features in term of importance/noise.

How long is a topological feature persistent?

As long as it refuses to die...
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Persistent homology groups

Basic intuition (1/3)

f : M → R;
In R(f ), apply the elder’s rule:

Think of arc’s lower extremity’s value as birthdate;
At a juncture, the older arc continues and the younger ends.

Now pick two image values a and b (a ≤ b).
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Persistent homology groups

Basic intuition (2/3)

Consider the sub-level sets Xa and Xb of a and b;
Let X(a,b) be the union of the connected components of Xb that have
a non-empty intersection with Xa:
Let β0(a, b) = #CC (X(a,b)) (here β0(a, b) = 2).
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Persistent homology groups

Basic intuition (3/3)

If f is Morse, we can read β0(a, b) on the Reeb graph R(f ):

β0(a, b) is the number of arcs that strictly span [a, b].
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Persistent homology groups

Mission accomplished!

By the way, what did we do exactly?

We’ve just identified:
regarding to f ,

the connected components with biggest “life duration” on [a, b]:

Julien Tierny (jtierny@sci.utah.edu) ()Persistent homology February 13, 2009 9



Persistent homology groups

Mission accomplished!

By the way, what did we do exactly?

We’ve just identified:
regarding to f ,

User defined measurement system!

the connected components with biggest “life duration” on [a, b]:

[a, b]: User defined scale/zoom!
β0(a, b): Topological features.

Classification of topological features wrt the importance
suggested by f :

Make the zoom [a, b] increase to sort the the arcs of R(f ) by
increasing topological importance.
You only have to get rid progressively of the least topological
important arcs to filter R(f )...
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Persistent homology groups

... Mission really accomplished?

So far, we introduced:
A general framework for:

Measuring importance of connected components;
Focusing on user defined scales;
Classifying connected components by importance.

How can we extend it to other topological features?

By the way, what are these other topological features?
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Focusing on user defined scales;
Classifying connected components by importance.
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Persistent homology groups

... Mission really accomplished?

So far, we introduced:
A general framework for:

Measuring importance of connected components;
Focusing on user defined scales;
Classifying connected components by importance.

How can we extend it to other topological features?

By the way, what are these other topological features?

Number of connected components: ...β0;
Let’s generalize to the other Betti numbers! :)
Notion of persistent homology groups.
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Persistent homology groups

Filtration

f : K → R, such that f is injective and monotonic:
f (σ) ≤ f (τ) ∀(σ, τ) ∈ K | σ ≤ τ.
Example:

f : VertK → R;
f (τ) = maxσ≤τ (f (σ)) + ε, ε→ 0.

Filtration: sequence of the sub-complexes Ki of f −1(−∞, ai ].

K0 = ∅;
K1 = {v0};
K2 = {v0, v1};
K3 = {v0, v1, (v0, v1)}.
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Persistent homology groups

Filtration

f : K → R, such that f is injective and monotonic:
f (σ) ≤ f (τ) ∀(σ, τ) ∈ K | σ ≤ τ.
Example:

f : VertK → R;
f (τ) = maxσ≤τ (f (σ)) + ε, ε→ 0.

Filtration: sequence of the sub-complexes Ki of f −1(−∞, ai ].

This is Ki .

What is i equal to?:

Progressive f span,
one simplex / it;
We have:

5 vertices,
7 edges,
3 triangles.

This is K15.
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Persistent homology groups

The filtration as a measurement sequence

Filtration:

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Kn = K
This defines a natural measurement sequence (with regard to f );

Given some user-defined scale [a, b] on f , we want to:

See how the topological features (Betti numbers) evolve.

Simple!
Let’s look at the homology groups at each step of the sequence!

Finest scale.

Look at this evolution on arbitrary [ai , aj ] such that i ≤ j :

Here is the scale :)
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Persistent homology groups

Homomorphisms induced by the filtration

The filtration induces a sequence of inclusion maps:

|K0| → |K1| → · · · → |K |;
... and then a sequence of homomorphisms on the homology groups:

0 = Hp(K0) → Hp(K1) → · · · → Hp(Kn) = Hp(K )

f i ,j
p : Hp(Ki ) → Hp(Kj):

Maps some classes from Hp(Ki ) to some of Hp(Kj);
some: those who still live in Hp(Kj).

but... hold on a second...

This is the exact idea of incremental Betti numbers computation
[DE93]!
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Persistent homology groups

Persistent homology groups

Definition (pth persistent homology groups)

The pth persistent homology groups are the images of the homomorphisms
induced by inclusion: H i ,j

p = im f i ,j
p , 0 ≤ i ≤ j ≤ n.

The corresponding pth Betti numbers are the rank of these groups:

βi ,j
p = rank(H i ,j

p ).
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Persistent homology groups

In pictures

Image by inclusion: Ha,b
0 = im f a,b

0 ;

A class of H0 merges with another one in ∗, and then dies!

β0(Xa) = 3;

βa,b
0 = 2!

This is the exact idea of the contour tree algorithm [CSA00].
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Persistent homology groups

Contour trees from a persistent homology point of view

Why does the contour tree algorithm really work?

Let’s have a look at the Reeb graph algorithm first:
1 Reeb graphs are obtained by “quotienting” contours,
2 plus by considering the resulting quotient topology.

As a result from Morse theory [Mil63], branching in R(f ) only occurs
at critical values [Ree46]:

Warning! the inverse is not true in dimensions higher than 2.

To know how classes connect to each other (2nd part):

Observe how the connected components of level sets evolve;
... especially at critical values (branching)!
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Persistent homology groups

Contour trees from a persistent homology point of view

...but simply-connected domains are very particular:
When two contours merge:

There’s no way these two contours were connected before;
This would mean they had taken “individual disconnected paths”;
Impossible since the domain is simply-connected.

Contours continuously pill on
each other to form sub-level sets;

... without disconnecting
sub-level sets!

The classes of the 0th persistent homology groups and of the 1st

persistent boundary groups evolve the same way!
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Persistent homology groups

Contour trees from a persistent homology point of view

Then, we no longer need to keep track of contours;

... but of the connected component of the sub-level sets!
A UF structure on the filtration is now sufficient :)

The same holds at split configurations (opposite of f ).

This give the quotient topology at critical values;

What about regular values:
Merging the join-tree and the split-tree:

This is nothing but a merge-sort! (filtration);
Observe local connectivity every time we pick an edge.
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Persistent homology groups

Back to persistent homology groups

H i ,j
p : homology classes living in Ki and still living in Kj ;

A given class γ ∈ H i
p:

was born in Ki : γ /∈ H i−1,i
p ;

died in Kj :

f i,j−1
p (γ) /∈ H i−1,j−1

p ;
f i,j
p (γ) ∈ H i−1,j

p .

Its life duration, its persistence, is p(γ) = aj − ai ;
Importance of a topological feature!
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Persistent homology groups

This is great! ...but what’s the point?

So far:

Given a measuring system (f function),
We are able to evaluate scales on topological features,
And decide of their importance.

But the super cool thing about homology is Betti numbers, right?

What about the persistent Betti numbers?
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Persistent homology groups

Persistence diagrams

Draw classes in the plane, in function of their birth and death;

Several classes can occur on the same spot! (same life);
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Persistent homology groups

Multiplicity (of life)

Enumerate the classes born in Ki and dead in Kj (same spot):
µi,j

p = (βi,j−1
p − βi,j

p )− (βi−1,j−1
p − βi−1,j

p ).

(βi ,j−1
p − βi ,j

p ): those living in Ki and dead in Kj (2 circles);

(βi−1,j−1
p − βi−1,j

p ): those living in Ki−1 and dead in Kj (1 circle).
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Persistent homology groups

Persistent Betti numbers

Definition (pth persistent Betti numbers)

For every pair of indices 0 ≤ k ≤ l ≤ n and every dimension p, the pth

persistent Betti number is:

βk,l
p =

∑
i≤k

∑
j>l µ

i ,j
p .

Julien Tierny (jtierny@sci.utah.edu) ()Persistent homology February 13, 2009 23



Persistent homology groups

Yes, but how can we compute them then?

Matrix reduction :) (still);

Do we have to compute the Smith Normal form of the boundary
matrices at each step of the filtration sequence?!!!

It turns out that no :)

Run a slightly different reduction algorithm;
All the information we need appears;
See Herbert Edelsbrunner’s course notes for more details.

Julien Tierny (jtierny@sci.utah.edu) ()Persistent homology February 13, 2009 24



Persistent homology groups

Intermediary conclusion

Persistent homology brings a general framework for:

Measuring user-defined noise (f function);
On a user-defined scale;
To classify topological features (Betti numbers) by importance.

Back to real life:

Great! We can filter topological noise now!
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Back to real life

What’s the trick here?
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Back to real life

Persistence based Reeb graph simplification

Sort the arcs in term of persistence;

Remove them one at a time:

Update adjacent arcs connectivity and persistence (elder’s rule);
Until the user defined persistence scale is reached.

1-manifold example:

[GND∗07]
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Back to real life

Persistence based simplification in higher dimensions

Some trivial cases:

Minimum - Joining saddle arc;
Maximum - Splitting saddle arc.

Others:

[PSBM07]

The result is a filtered Reeb graph :)

What about the initial function? Is it filtered too?
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Back to real life

Back to geometry, everything’s related :)

Let’s take the buddha example (2-manifold);

Given the consistent filtered Reeb graph R(f̂ ):

How can we obtain the filtered version f̂ of f ?

[NGH04]
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Back to real life

Back to geometry, everything’s related :)

Let’s take the buddha example (2-manifold);

Given the consistent filtered Reeb graph R(f̂ ):

How can we obtain the filtered version f̂ of f ?

We need to constraint f so f̂ admits critical values
only at the critical nodes of R(f̂ );

Heat propagation process;

Laplace equation with non-homogeneous Dirichlet
conditions:

∆f̂ (p) = 0
f̂ (p) = f (p) if p corresponds to a critical node in
R(f̂ );

Also a matrix reduction process :)

See the “Fair morse functions” paper [NGH04].

Now, is R(f̂ ) always the Reeb graph of f̂ ?

[NGH04]
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