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Summary

• What? What for?

• Preliminary background

• A simple algorithm

• Local parameterization

– Least Squares Conformal Maps [Levy et al. 2002]

• Global parameterization

– Curvature prescription, circle packing and metric optimization

       [Kharevych et al. 2006, Jin et al. 2008, Ben Chen et al. 2008]

• Perspectives

– Quadrangulation, cross parameterization, volume parameterization
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What? What for? 

• Construct a coordinate system on a surface S

• Find a bijective mapping to some reference domain D

–

–                              , etc.

– Reverse-engineering the manifold
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What? What for? 

• Construct a coordinate system on a surface S

• Find a bijective mapping to some reference domain D

–

–                              , etc.

– Reverse-engineering the manifold

• Why?

– Texture mapping (“historical”)

– Signal processing on surfaces (bump maps, transfer, etc.)

– Recovers a structure on an unstructured representation

– Surface quadrangulation (animation, simulation, etc.)
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Texture mapping in a nutshell
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Texture mapping motivations

• Mimic fine geometric details

– Facilitate geometric modeling

– Maintain a low memory footprint for the raw geometry

– Re-usability of the textures
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Texture mapping motivations

• Mimic fine geometric details

– Facilitate geometric modeling

– Maintain a low memory footprint for the raw geometry

– Re-usability of the textures

• Mostly, interactive applications

• Typical target geometries

– Trees

– Buildings

– Human faces

– Etc.
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In practice

• Projections are in general not appropriate (non convex embeddings)

• Geometry unfolding 

• Texture processing in the planar domain

• Challenges

– Only developable surfaces unfold without distortion

– Compute an unfolding map that minimizes distortion

– What distortion are we talking about?
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Preliminary background

• Unfolding stuff? We have a history!

– Cartography: most of parameterization vocabulary

– Orthographic projection (~2,000 BC)

– Stereographic projection (Hipparchus 120 BC)

– Cylindrical projection (Mercator 1594)

– Azimuthal projection (Lambert 1777)
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Preliminary background

• Unfolding stuff? We have a history!

– Cartography: most of parameterization vocabulary

– Orthographic projection (~2,000 BC)

– Stereographic projection (Hipparchus 120 BC)

– Cylindrical projection (Mercator 1594)

– Azimuthal projection (Lambert 1777)

• Historical motivations

– Facilitate navigation

– Concerns about metric properties

• Stereographic: preserves angles

• Cylindrical: preserves angles + straight loxodromes

• Azimuthal: preserves areas (national atlases)
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Smooth setting recap

• d-manifold 

– Topological space such that every open set 

of it is homeomorphic to an open set of 
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– Every point has a neighborhood homeomorphic

to an open of        or of its half space

– Boundary: (d-1)-manifold

• Additional smoothness requirements (transition functions)

• Tangent plane on 2-manifolds

– Enables to pull Euclidean geometry tools for calculus on manifolds:

• Inner product, metrics

• Distances, angles, areas

• Gradient, Laplace-Beltrami operator, etc.



Map classification

•

–      is parameterized with            coordinates

–
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Map classification

•

–      is parameterized with            coordinates

–

• Harmonic maps

–

• Conformal maps

–

–

– Locally isotropic: they map circles to circles

– Preserve angles locally

• Isometric maps

– Conformal maps with zero area distortion

– Preserve lengths
8
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Discrete setting recap (1/2)

• Simplicial complex 

– d-simplex: convex hull of (d+1) affinely 

independent points in        with 0 ≤ d ≤ n

– Vertex (0), edge (1), triangle (2)

– Face of a d-simplex: simplex defined by a 

non empty subset of its d+1 points 

–     : Collection of simplices, such that every face of a simplex is in  
and any two simplices intersect in a common face or not at all.
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Discrete setting recap (2/2)

• Triangulation of a manifold 

–     , such that the union of its simplices is 

homeomorphic to 
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Discrete setting recap (2/2)
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• Triangulation of a manifold 

–     , such that the union of its simplices is 

homeomorphic to 

– PL 2-manifold: 

• Surface triangulation 

• Piecewise linear interpolant

– Scalar field: valued at 0-simplices + linear interpolation

– For any point of     , barycentric coordinates

– Gradient of a scalar field: piecewise constant vector field

–



Discretization of the Laplace operator

• Discrete Laplace operators

– Simple interpretation with differential coordinates [Sorkine 2005]

–

–  

–    can be viewed as a discretization of the Laplace-Beltrami operator
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Discretization of the Laplace operator

• Discrete Laplace operators

– Simple interpretation with differential coordinates [Sorkine 2005]

–

–  

–    can be viewed as a discretization of the Laplace-Beltrami operator

• Matrix form

–                                            , symmetric version 
             

:

•                                                                                         

–      : graph Laplacian

– [Pinkall and Polthier 1993]

•

–                               … no free lunch :(   [Wardetzky et al. 2007] 11
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Solving a Laplace equation

• Compute the scalar field f, such that:

–

–
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Solving a Laplace equation

• Compute the scalar field f, such that:

–

–

• Constraint handling [Xu et al. 2009]

– Many techniques exist (direct elimination, substitution)

– Penalty method

•

•

• Least square problem                   with 

• Unique solution 

– CHOLMOD library (support for fast updates)
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A simple unfolding algorithm (1/2)
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A simple unfolding algorithm (1/2)
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• [Floater and Hormann 2005]

– Given a surface    with disc topology

– A harmonic map                   is one to one if

•     maps homeomorphically       to   

and     is a convex region of   

• Uniformization theorem

– Any simply connected surface can be mapped

conformally to its canonical domain (Mobius)

– There exist harmonic maps being conformal

– Good heuristic 

• Boundary arc length parameterization

• Low distortion boundary mapping



A simple unfolding algorithm (2/2)
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A simple unfolding algorithm (2/2)

• Simple and fast implementation (~ 200k triangles per second)

14



A simple unfolding algorithm (2/2)

14

• Simple and fast implementation (~ 200k triangles per second)

• Decent conformal approximation (for low distortion boundary mappings)

– Orthogonality (                    )



A simple unfolding algorithm (2/2)
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• Simple and fast implementation (~ 200k triangles per second)

• Decent conformal approximation (for low distortion boundary mappings)

– Orthogonality (                    )

– Local isotropy (                       )

• Geometric interpretation: extreme smoothing
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Et voila!
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Planck
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Zombie
Planck
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Planck
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Zombie
Planck

Afro 
Planck

Plausible 
Planck

Et voila!

• Fast algorithm, easy to implement, decent results with a good boundary

• You're now able to write your own geometry texturing program
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Mission accomplished?

• Well...

– Constraints on the boundary's shape

– Convexity of the planar domain
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Mission accomplished?

• Well...

– Constraints on the boundary's shape

– Convexity of the planar domain

– Induces important area distortion

– Significant waste of texture space

• Need for truly conformal parameterizations

• Need for boundary-free algorithms

17



Boundary free algorithms

• Before Least Squares Conformal Maps

– MIPS  [Hormann and Greiner 2000]

– ABF [Sheffer and de Sturler 2001]

– Arbitrary cuts, no convexity requirement

– Iterative solvers (slow convergence)

18
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Boundary free algorithms

• Before Least Squares Conformal Maps

– MIPS  [Hormann and Greiner 2000]

– ABF [Sheffer and de Sturler 2001]

– Arbitrary cuts, no convexity requirement

– Iterative solvers (slow convergence)

• Least Squares Conformal Maps [Levy et al. 2002]:

– First linear method

– Unique solution

– Few triangle flips in practice

• Set the bar higher :)

18
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Least Squares Conformal Maps

19

• A complete texturing framework

– Automatic “atlas” generation

– Fast boundary free conformal parameterization (Blender, Silo)

– Texture packing (UVatlas of DirectX)
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Least Squares Conformal Maps

• A complete texturing framework

– Automatic “atlas” generation

– Fast boundary free conformal parameterization (Blender, Silo)

– Texture packing (UVatlas of DirectX)

19

[Levy02]



Back to the roots

• Key idea
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Riemann eq. (Least Squares sense)
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Back to the roots
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• Key idea

– Penalize the violation of the Cauchy

Riemann eq. (Least Squares sense)

• Back to the definition of a conformal map

– For each triangle, define consistently 

an orthonormal basis (x, y)

–

– In other terms 

– Let 

• Minimizing the violation of Cauchy Riemann equations

–

– Gradient formulation!



Complex formulation

• Concise Cauchy Riemann equation

–

–

– Implies: 
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– Implies: 

• Complex gradient
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Complex formulation

• Concise Cauchy Riemann equation

–

–

– Implies: 

• Complex gradient

–

–

• Conformal energy

–

21



Minimizing the conformal energy

• Matrix form

–

–      : Hermitian complex conjugate

•

22
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Minimizing the conformal energy

• Matrix form

–

–      : Hermitian complex conjugate

•

–

•      : n'xn matrix (n: vertices, n': triangles)

•     : nxn matrix

•  

• If the vertex j belongs to triangle i, 0 otherwise
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Minimizing the conformal energy

• Matrix form

–

–      : Hermitian complex conjugate

•

–

•      : n'xn matrix (n: vertices, n': triangles)

•     : nxn matrix

•  

• If the vertex j belongs to triangle i, 0 otherwise

•  

• Issues with trivial solutions

22
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Locking degrees of freedom in a least 
squares problem

• Avoiding trivial solutions

– Pinning 2 vertices is enough!

– Geodesic diameter

23
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Locking degrees of freedom in a least 
squares problem

• Avoiding trivial solutions

– Pinning 2 vertices is enough!

– Geodesic diameter

• Locking variables

–

–

–       : n'x(n – p) matrix,      : n'xp,      (n-p) vector,      p vector 

–

–

–

23
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A few results

• Theoretical results

– The matrix A has full rank with p ≥ 2

– The solution is indeed unique

– Solution independent of the quality

of the input triangulation

• Practical results

– Solver: conjugate gradient 

– At the time, dozens of seconds (P3 CPU)

– Very low angular distortion

24
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Automatic atlas generation

• Hold on...

– The input surface has to be homeomorphic to a disc...

– Let's partition it into disc segments (usually done manually)

– Hide discontinuities in concave configurations (normals)

– Geodesic distance from the feature lines: seed extraction

– Chart merging if the contact point is too early

– No guarantee on the induced distortion, see [Wang 2008]

25
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Texture packing

26

• Making a good usage of the texture memory

– Maximize the filling of the texture space with non convex polygons

– Known as the packing problem (NP-complete)
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Texture packing

26

• Making a good usage of the texture memory

– Maximize the filling of the texture space with non convex polygons

– Known as the packing problem (NP-complete)

• A Tetris game

– Rescale each unfolded chart to its original 3D area

– Maximum diameter oriented vertically + sorting in decreasing order

– Horizon computation

– Minimize the lost space for each chart

[Levy02]
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Can we do better?

• Technical limitations (~minor)

– Triangle flips can occur

– Overlapping can occur (not really a problem)

• More fundamental limitation

– Important discontinuity across 

chart boundaries

• Problematic for applications

– Texturing, just alright: visual 

artifacts are often hidden by shading

– What about other signals? (bumps)

• Towards global parameterization
27
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Global Parameterization

• Computing unfoldings with global continuity

– Obviously, only discs unfold to the plane

– Notion of chart atlas and transition functions

– Well behaved transition functions

28
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Global Parameterization
• Computing unfoldings with global continuity

– Obviously, only discs unfold to the plane

– Notion of chart atlas and transition functions

– Well behaved transition functions

• Notion of surface quadrangulation

– Contouring of global parameterizations

– Quadrilaterals in place of triangles

– Reverse-engineer the geometric structure

– More on this later

• Many (sophisticated) attempts

– Integrating direction fields

– [Ray et al. 2006] [Kalberer et al. 2007]

– Prone to numerical instabilities

– Why are those solutions sophisticated?
28
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From local to global parameterization

“Any problem which is non-linear in character, which involves more than 
one coordinate system (…) is likely to require considerations of 
topology and group theory for its solution.

 In the solution of such problems, classical analysis will frequently 
appear as an instrument in the small, integrated over the whole 
problem with the aid of topology or group theory.”

Marston Morse, 1934

29
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• This phenomenon continues when adding more quads

– Corner of less than 4 quads: positive deficit

– Corner of more than 4 quads: negative deficit

– Same reasoning if the atlas is cut open (     )

• What's going on?

– Gauss Bonnet theorem, for closed surfaces

•

– Constraints for optimization problems

• Btw, how did the others do?

– Vector fields, Poincare-Hopf theorem 

•

– Scalar fields, Morse-Euler relation

•
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• Except at prescribed singularities, constant Gaussian curvature

• After a conformal transformation

– Gaussian curvature varies from a constant

– But still, the integral is related to the Euler characteristic

• Given 3 fixed points, there is a unique representative of conformal maps 
which induces constant Gaussian curvature 

– Optimization with constrained curvature (good transitions)
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• The uniformization theorem stands originally for metrics

– Original metric: ambient induced by the embedding in R3

–

– Optimized metric: in the target domain (induces the unfolding)

• We need to find a formalism to conformally modify the ambient metric 

– After metric modification, l must satisfy the triangular inequality

– After metric modification, we want circles to unfold to circles

– Notion of circle packing metric

• Optimization process

– Conformally optimize the abstract metric until constant curvature

– Unfold the mesh triangle by triangle, according to the final metric

[Jin08]
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• Radius function

–

– Radius of a circle centered at 

• Angular function

–

– Angles at the intersection of the radii

• A bit of trigonometry (for euclidean targets)

–

• Circle packing metrics

–

–              is conformally transformed into               if 

– … if it preserves angles

– Optimization: radii become the variables

[Jin08]
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• Quick recap

– Variables: radial component of the metric at each vertex

– Constraints (Gauss Bonnet theorem) 

• 0 for all vertices (flat mesh)

• Prescribed Gaussian curvature at selected vertices

– How do we play with the variables then?

• Iterative conformal metric scaling (smooth setting)

–                           , with  

– Notion of Ricci flow: 

– Flow that scales the metric according to the current curvature

–

• Ricci flow and uniformization theorem [Hamilton 1988] [Chow 1991]

– The Ricci flow converges to a metric yielding constant curvature
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• In short

– Applying the Ricci flow on a circle packing metric will iteratively 
transform it such that it eventually yields constant curvature (0)

– Iterative mesh unfolding according to the specified atlas layout

• Playing with the radial component of the metric 

–

– Inserting curvature constraints      in the discrete Ricci flow

•

• Uniqueness of the solution [Chow and Luo 2003]

– The discrete Ricci flow is the gradient of a convex energy
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Gradient descent algorithm

37

• Set the curvature constraint

– 0 for all the vertices

– Except for the singularities (determined by the atlas layout)

• Set the initial     and  
          

. Heuristic: 

1) compute the current edge lengths     (from     and     and      )

2) compute the current angles of each triangle (from     )

3) compute the current Gaussian curvature (angle deficit at each vertex)

4) update the scaling factor:  

5) normalize the scaling factor: 

6) update the radial component of the metric (from the scaling factor) 

• Repeat until the curvature is close to the constraint value (threshold)

• Pin one triangle in the plane, iteratively pin neighbors (from the metric)

• Simple, right?



Chronology and enhancements
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• Three different techniques appeared ~ simultaneously

– Different formulations

– In essence, exactly the same process

– [Kharevych et al. 2006]

– [Jin et al. 2008]

• Connection to Ricci flow

• Euclidean, spherical and hyperbolic targets

• Gradient descent and Newton's method

– [Ben Chen et al. 2008]

• Non iterative approach

• Automatic singularity layout

[Kharevych06]



Are we done now?!

39

• There is still room for enhancements

– Generation of the initial atlas layout?

– Control on the singularities

– Control on the alignment and orientation

• Towards artistic quadrangulation

• How about 3-manifolds?

[Jin08]
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Notion of surface quadrangulation

40

• Given a global parameterization

– Iso-contouring of the (u, v) fields

– Yields a surface discretization made of

quadrilaterals

• Why is it interesting?

– The discretization captures the unfolding

• Pin one quad and continue (instant unfolding)

– The discretization captures the geometrical structure

• Numerical stability (animation, simulation, etc.)

• From a reverse engineering point of view (jpg → svg)

– Artists generate surfaces made of quads

– Quadrangulating a surface makes it ready for

the geometric modeling pipeline 
[Bommes09]



Initial altas layout

41

• Defines the extraordinary vertices of the mesh

• Defines the orientation and alignment of the edges

• Fully manual

– Singularity graph [Tong et al. 2006]

– Polycube maps [Tarini et al. 2004]

• Fully automatic

– Based on the Morse-Smale complex [Dong et al. 2006]

• Semi-automatic

– Driven by sparse directional constraints

– [Huang et al. 2008], [Bommes et al. 2009]

• Then, you could use any global parameterization technique (in theory)

[Huang08]



Towards artistic quadrangulation

42

• Automatic techniques?

– Artists say “no way!” 

• Semantic of the surface (not necessarily related to its geometry)

• Need for control

• User driven techniques

– Still require a lot of intervention (plus advanced skills)

• More general problem of cross parameterization

–

– Applications in shape registration, recognition, etc.



What about volumes?

43

• For the same reasons, interesting to reverse engineer too

– Harmonic maps with prescribed singularities

– [Martin et al. 2009], [Martin et al. 2010]

– [Xia et al. 2010]

• Discrete Ricci flow on PL 3-manifolds?

• Still a lot to do :)

[Martin10]



A few useful references

• “Surface Parameterization : A tutorial and a survey”, Floater M. and 
Hormann K., Advances in Multiresolution for Geometric 
Modelling, pp. 157-186, 2005.

• “Mesh Parameterization: Theory and Practice”, Hormann K., Levy 
B., Sheffer A., ACM SIGGRAPH Course Notes, 2007

• “Least Squares Conformal Maps”, Levy B., Petitjean S., Ray N., 
Maillot J., Proc. Of ACM SIGGRAPH 2002.

• “Discrete Surface Ricci Flow”, Lin M., Kim J., Luo F., Gu X., IEEE 
Transactions on Visualization and Computer Graphics 2008.
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